/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2010, 2017, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. */ /** \defgroup PtlRPC Portal RPC and networking module. * * PortalRPC is the layer used by rest of lustre code to achieve network * communications: establish connections with corresponding export and import * states, listen for a service, send and receive RPCs. * PortalRPC also includes base recovery framework: packet resending and * replaying, reconnections, pinger. * * PortalRPC utilizes LNet as its transport layer. * * @{ */ #ifndef _LUSTRE_NET_H #define _LUSTRE_NET_H /** \defgroup net net * * @{ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* MD flags we _always_ use */ #define PTLRPC_MD_OPTIONS 0 /** * log2 max # of bulk operations in one request: 2=4MB/RPC, 5=32MB/RPC, ... * In order for the client and server to properly negotiate the maximum * possible transfer size, PTLRPC_BULK_OPS_COUNT must be a power-of-two * value. The client is free to limit the actual RPC size for any bulk * transfer via cl_max_pages_per_rpc to some non-power-of-two value. * NOTE: This is limited to 16 (=64GB RPCs) by IOOBJ_MAX_BRW_BITS. */ #define PTLRPC_BULK_OPS_BITS 6 #if PTLRPC_BULK_OPS_BITS > 16 #error "More than 65536 BRW RPCs not allowed by IOOBJ_MAX_BRW_BITS." #endif #define PTLRPC_BULK_OPS_COUNT (1U << PTLRPC_BULK_OPS_BITS) /** * PTLRPC_BULK_OPS_MASK is for the convenience of the client only, and * should not be used on the server at all. Otherwise, it imposes a * protocol limitation on the maximum RPC size that can be used by any * RPC sent to that server in the future. Instead, the server should * use the negotiated per-client ocd_brw_size to determine the bulk * RPC count. */ #define PTLRPC_BULK_OPS_MASK (~((__u64)PTLRPC_BULK_OPS_COUNT - 1)) /** * Define maxima for bulk I/O. * * A single PTLRPC BRW request is sent via up to PTLRPC_BULK_OPS_COUNT * of LNET_MTU sized RDMA transfers. Clients and servers negotiate the * currently supported maximum between peers at connect via ocd_brw_size. */ #define PTLRPC_MAX_BRW_BITS (LNET_MTU_BITS + PTLRPC_BULK_OPS_BITS) #define PTLRPC_MAX_BRW_SIZE (1U << PTLRPC_MAX_BRW_BITS) #define PTLRPC_MAX_BRW_PAGES (PTLRPC_MAX_BRW_SIZE >> PAGE_SHIFT) #define ONE_MB_BRW_SIZE (1U << LNET_MTU_BITS) #define MD_MAX_BRW_SIZE (1U << LNET_MTU_BITS) #define MD_MAX_BRW_PAGES (MD_MAX_BRW_SIZE >> PAGE_SHIFT) #define DT_MAX_BRW_SIZE PTLRPC_MAX_BRW_SIZE #define DT_DEF_BRW_SIZE (4 * ONE_MB_BRW_SIZE) #define DT_MAX_BRW_PAGES (DT_MAX_BRW_SIZE >> PAGE_SHIFT) #define OFD_MAX_BRW_SIZE (1U << LNET_MTU_BITS) /* When PAGE_SIZE is a constant, we can check our arithmetic here with cpp! */ #if ((PTLRPC_MAX_BRW_PAGES & (PTLRPC_MAX_BRW_PAGES - 1)) != 0) # error "PTLRPC_MAX_BRW_PAGES isn't a power of two" #endif #if (PTLRPC_MAX_BRW_SIZE != (PTLRPC_MAX_BRW_PAGES * PAGE_SIZE)) # error "PTLRPC_MAX_BRW_SIZE isn't PTLRPC_MAX_BRW_PAGES * PAGE_SIZE" #endif #if (PTLRPC_MAX_BRW_SIZE > LNET_MTU * PTLRPC_BULK_OPS_COUNT) # error "PTLRPC_MAX_BRW_SIZE too big" #endif #if (PTLRPC_MAX_BRW_PAGES > LNET_MAX_IOV * PTLRPC_BULK_OPS_COUNT) # error "PTLRPC_MAX_BRW_PAGES too big" #endif #define PTLRPC_NTHRS_INIT 2 /** * Buffer Constants * * Constants determine how memory is used to buffer incoming service requests. * * ?_NBUFS # buffers to allocate when growing the pool * ?_BUFSIZE # bytes in a single request buffer * ?_MAXREQSIZE # maximum request service will receive * * When fewer than ?_NBUFS/2 buffers are posted for receive, another chunk * of ?_NBUFS is added to the pool. * * Messages larger than ?_MAXREQSIZE are dropped. Request buffers are * considered full when less than ?_MAXREQSIZE is left in them. */ /** * Thread Constants * * Constants determine how threads are created for ptlrpc service. * * ?_NTHRS_INIT # threads to create for each service partition on * initializing. If it's non-affinity service and * there is only one partition, it's the overall # * threads for the service while initializing. * ?_NTHRS_BASE # threads should be created at least for each * ptlrpc partition to keep the service healthy. * It's the low-water mark of threads upper-limit * for each partition. * ?_THR_FACTOR # threads can be added on threads upper-limit for * each CPU core. This factor is only for reference, * we might decrease value of factor if number of cores * per CPT is above a limit. * ?_NTHRS_MAX # overall threads can be created for a service, * it's a soft limit because if service is running * on machine with hundreds of cores and tens of * CPU partitions, we need to guarantee each partition * has ?_NTHRS_BASE threads, which means total threads * will be ?_NTHRS_BASE * number_of_cpts which can * exceed ?_NTHRS_MAX. * * Examples * * #define MDS_NTHRS_INIT 2 * #define MDS_NTHRS_BASE 64 * #define MDS_NTHRS_FACTOR 8 * #define MDS_NTHRS_MAX 1024 * * Example 1): * --------------------------------------------------------------------- * Server(A) has 16 cores, user configured it to 4 partitions so each * partition has 4 cores, then actual number of service threads on each * partition is: * MDS_NTHRS_BASE(64) + cores(4) * MDS_NTHRS_FACTOR(8) = 96 * * Total number of threads for the service is: * 96 * partitions(4) = 384 * * Example 2): * --------------------------------------------------------------------- * Server(B) has 32 cores, user configured it to 4 partitions so each * partition has 8 cores, then actual number of service threads on each * partition is: * MDS_NTHRS_BASE(64) + cores(8) * MDS_NTHRS_FACTOR(8) = 128 * * Total number of threads for the service is: * 128 * partitions(4) = 512 * * Example 3): * --------------------------------------------------------------------- * Server(B) has 96 cores, user configured it to 8 partitions so each * partition has 12 cores, then actual number of service threads on each * partition is: * MDS_NTHRS_BASE(64) + cores(12) * MDS_NTHRS_FACTOR(8) = 160 * * Total number of threads for the service is: * 160 * partitions(8) = 1280 * * However, it's above the soft limit MDS_NTHRS_MAX, so we choose this number * as upper limit of threads number for each partition: * MDS_NTHRS_MAX(1024) / partitions(8) = 128 * * Example 4): * --------------------------------------------------------------------- * Server(C) have a thousand of cores and user configured it to 32 partitions * MDS_NTHRS_BASE(64) * 32 = 2048 * * which is already above soft limit MDS_NTHRS_MAX(1024), but we still need * to guarantee that each partition has at least MDS_NTHRS_BASE(64) threads * to keep service healthy, so total number of threads will just be 2048. * * NB: we don't suggest to choose server with that many cores because backend * filesystem itself, buffer cache, or underlying network stack might * have some SMP scalability issues at that large scale. * * If user already has a fat machine with hundreds or thousands of cores, * there are two choices for configuration: * a) create CPU table from subset of all CPUs and run Lustre on * top of this subset * b) bind service threads on a few partitions, see modparameters of * MDS and OSS for details * * NB: these calculations (and examples below) are simplified to help * understanding, the real implementation is a little more complex, * please see ptlrpc_server_nthreads_check() for details. * */ /* * LDLM threads constants: * * Given 8 as factor and 24 as base threads number * * example 1) * On 4-core machine we will have 24 + 8 * 4 = 56 threads. * * example 2) * On 8-core machine with 2 partitions we will have 24 + 4 * 8 = 56 * threads for each partition and total threads number will be 112. * * example 3) * On 64-core machine with 8 partitions we will need LDLM_NTHRS_BASE(24) * threads for each partition to keep service healthy, so total threads * number should be 24 * 8 = 192. * * So with these constants, threads number will be at the similar level * of old versions, unless target machine has over a hundred cores */ #define LDLM_THR_FACTOR 8 #define LDLM_NTHRS_INIT PTLRPC_NTHRS_INIT #define LDLM_NTHRS_BASE 24 #define LDLM_NTHRS_MAX (num_online_cpus() == 1 ? 64 : 128) #define LDLM_BL_THREADS LDLM_NTHRS_AUTO_INIT #define LDLM_CLIENT_NBUFS 1 #define LDLM_SERVER_NBUFS 64 #define LDLM_BUFSIZE (8 * 1024) #define LDLM_MAXREQSIZE (5 * 1024) #define LDLM_MAXREPSIZE (1024) /* * MDS threads constants: * * Please see examples in "Thread Constants", MDS threads number will be at * the comparable level of old versions, unless the server has many cores. */ #ifndef MDS_MAX_THREADS #define MDS_MAX_THREADS 1024 #define MDS_MAX_OTHR_THREADS 256 #else /* MDS_MAX_THREADS */ #if MDS_MAX_THREADS < PTLRPC_NTHRS_INIT #undef MDS_MAX_THREADS #define MDS_MAX_THREADS PTLRPC_NTHRS_INIT #endif #define MDS_MAX_OTHR_THREADS max(PTLRPC_NTHRS_INIT, MDS_MAX_THREADS / 2) #endif /* default service */ #define MDS_THR_FACTOR 8 #define MDS_NTHRS_INIT PTLRPC_NTHRS_INIT #define MDS_NTHRS_MAX MDS_MAX_THREADS #define MDS_NTHRS_BASE min(64, MDS_NTHRS_MAX) /* read-page service */ #define MDS_RDPG_THR_FACTOR 4 #define MDS_RDPG_NTHRS_INIT PTLRPC_NTHRS_INIT #define MDS_RDPG_NTHRS_MAX MDS_MAX_OTHR_THREADS #define MDS_RDPG_NTHRS_BASE min(48, MDS_RDPG_NTHRS_MAX) /* these should be removed when we remove setattr service in the future */ #define MDS_SETA_THR_FACTOR 4 #define MDS_SETA_NTHRS_INIT PTLRPC_NTHRS_INIT #define MDS_SETA_NTHRS_MAX MDS_MAX_OTHR_THREADS #define MDS_SETA_NTHRS_BASE min(48, MDS_SETA_NTHRS_MAX) /* non-affinity threads */ #define MDS_OTHR_NTHRS_INIT PTLRPC_NTHRS_INIT #define MDS_OTHR_NTHRS_MAX MDS_MAX_OTHR_THREADS #define MDS_NBUFS 64 /** * Assume file name length = FNAME_MAX = 256 (true for ext3). * path name length = PATH_MAX = 4096 * LOV MD size max = EA_MAX = 24 * 2000 * (NB: 24 is size of lov_ost_data) * LOV LOGCOOKIE size max = 32 * 2000 * (NB: 32 is size of llog_cookie) * symlink: FNAME_MAX + PATH_MAX <- largest * link: FNAME_MAX + PATH_MAX (mds_rec_link < mds_rec_create) * rename: FNAME_MAX + FNAME_MAX * open: FNAME_MAX + EA_MAX * * MDS_MAXREQSIZE ~= 4736 bytes = * lustre_msg + ldlm_request + mdt_body + mds_rec_create + FNAME_MAX + PATH_MAX * MDS_MAXREPSIZE ~= 8300 bytes = lustre_msg + llog_header * * Realistic size is about 512 bytes (20 character name + 128 char symlink), * except in the open case where there are a large number of OSTs in a LOV. */ #define MDS_MAXREQSIZE (5 * 1024) /* >= 4736 */ #define MDS_MAXREPSIZE (9 * 1024) /* >= 8300 */ /** * MDS incoming request with LOV EA * 24 = sizeof(struct lov_ost_data), i.e: replay of opencreate */ #define MDS_LOV_MAXREQSIZE max(MDS_MAXREQSIZE, \ 362 + LOV_MAX_STRIPE_COUNT * 24) /** * MDS outgoing reply with LOV EA * * NB: max reply size Lustre 2.4+ client can get from old MDS is: * LOV_MAX_STRIPE_COUNT * (llog_cookie + lov_ost_data) + extra bytes * * but 2.4 or later MDS will never send reply with llog_cookie to any * version client. This macro is defined for server side reply buffer size. */ #define MDS_LOV_MAXREPSIZE MDS_LOV_MAXREQSIZE /** * This is the size of a maximum REINT_SETXATTR request: * * lustre_msg 56 (32 + 4 x 5 + 4) * ptlrpc_body 184 * mdt_rec_setxattr 136 * lustre_capa 120 * name 256 (XATTR_NAME_MAX) * value 65536 (XATTR_SIZE_MAX) */ #define MDS_EA_MAXREQSIZE 66288 /** * These are the maximum request and reply sizes (rounded up to 1 KB * boundaries) for the "regular" MDS_REQUEST_PORTAL and MDS_REPLY_PORTAL. */ #define MDS_REG_MAXREQSIZE (((max(MDS_EA_MAXREQSIZE, \ MDS_LOV_MAXREQSIZE) + 1023) >> 10) << 10) #define MDS_REG_MAXREPSIZE MDS_REG_MAXREQSIZE /** * The update request includes all of updates from the create, which might * include linkea (4K maxim), together with other updates, we set it to 1000K: * lustre_msg + ptlrpc_body + OUT_UPDATE_BUFFER_SIZE_MAX */ #define OUT_MAXREQSIZE (1000 * 1024) #define OUT_MAXREPSIZE MDS_MAXREPSIZE /** MDS_BUFSIZE = max_reqsize (w/o LOV EA) + max sptlrpc payload size */ #define MDS_BUFSIZE max(MDS_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \ 8 * 1024) /** * MDS_REG_BUFSIZE should at least be MDS_REG_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD. * However, we need to allocate a much larger buffer for it because LNet * requires each MD(rqbd) has at least MDS_REQ_MAXREQSIZE bytes left to avoid * dropping of maximum-sized incoming request. So if MDS_REG_BUFSIZE is only a * little larger than MDS_REG_MAXREQSIZE, then it can only fit in one request * even there are about MDS_REG_MAX_REQSIZE bytes left in a rqbd, and memory * utilization is very low. * * In the meanwhile, size of rqbd can't be too large, because rqbd can't be * reused until all requests fit in it have been processed and released, * which means one long blocked request can prevent the rqbd be reused. * Now we set request buffer size to 160 KB, so even each rqbd is unlinked * from LNet with unused 65 KB, buffer utilization will be about 59%. * Please check LU-2432 for details. */ #define MDS_REG_BUFSIZE max(MDS_REG_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \ 160 * 1024) /** * OUT_BUFSIZE = max_out_reqsize + max sptlrpc payload (~1K) which is * about 10K, for the same reason as MDS_REG_BUFSIZE, we also give some * extra bytes to each request buffer to improve buffer utilization rate. */ #define OUT_BUFSIZE max(OUT_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \ 24 * 1024) /** FLD_MAXREQSIZE == lustre_msg + __u32 padding + ptlrpc_body + opc */ #define FLD_MAXREQSIZE (160) /** FLD_MAXREPSIZE == lustre_msg + ptlrpc_body */ #define FLD_MAXREPSIZE (152) #define FLD_BUFSIZE (1 << 12) /** * SEQ_MAXREQSIZE == lustre_msg + __u32 padding + ptlrpc_body + opc + lu_range + * __u32 padding */ #define SEQ_MAXREQSIZE (160) /** SEQ_MAXREPSIZE == lustre_msg + ptlrpc_body + lu_range */ #define SEQ_MAXREPSIZE (152) #define SEQ_BUFSIZE (1 << 12) /** MGS threads must be >= 3, see bug 22458 comment #28 */ #define MGS_NTHRS_INIT (PTLRPC_NTHRS_INIT + 1) #define MGS_NTHRS_MAX 32 #define MGS_NBUFS 64 #define MGS_BUFSIZE (8 * 1024) #define MGS_MAXREQSIZE (7 * 1024) #define MGS_MAXREPSIZE (9 * 1024) /* * OSS threads constants: * * Given 8 as factor and 64 as base threads number * * example 1): * On 8-core server configured to 2 partitions, we will have * 64 + 8 * 4 = 96 threads for each partition, 192 total threads. * * example 2): * On 32-core machine configured to 4 partitions, we will have * 64 + 8 * 8 = 112 threads for each partition, so total threads number * will be 112 * 4 = 448. * * example 3): * On 64-core machine configured to 4 partitions, we will have * 64 + 16 * 8 = 192 threads for each partition, so total threads number * will be 192 * 4 = 768 which is above limit OSS_NTHRS_MAX(512), so we * cut off the value to OSS_NTHRS_MAX(512) / 4 which is 128 threads * for each partition. * * So we can see that with these constants, threads number wil be at the * similar level of old versions, unless the server has many cores. */ /* depress threads factor for VM with small memory size */ #define OSS_THR_FACTOR min_t(int, 8, \ NUM_CACHEPAGES >> (28 - PAGE_SHIFT)) #define OSS_NTHRS_INIT (PTLRPC_NTHRS_INIT + 1) #define OSS_NTHRS_BASE 64 /* threads for handling "create" request */ #define OSS_CR_THR_FACTOR 1 #define OSS_CR_NTHRS_INIT PTLRPC_NTHRS_INIT #define OSS_CR_NTHRS_BASE 8 #define OSS_CR_NTHRS_MAX 64 /** * OST_IO_MAXREQSIZE ~= * lustre_msg + ptlrpc_body + obdo + obd_ioobj + * DT_MAX_BRW_PAGES * niobuf_remote * * - single object with 16 pages is 512 bytes * - OST_IO_MAXREQSIZE must be at least 1 page of cookies plus some spillover * - Must be a multiple of 1024 */ #define _OST_MAXREQSIZE_BASE ((unsigned long)(sizeof(struct lustre_msg) + \ sizeof(struct ptlrpc_body) + \ sizeof(struct obdo) + \ sizeof(struct obd_ioobj) + \ sizeof(struct niobuf_remote))) #define _OST_MAXREQSIZE_SUM ((unsigned long)(_OST_MAXREQSIZE_BASE + \ sizeof(struct niobuf_remote) * \ (DT_MAX_BRW_PAGES - 1))) /** * FIEMAP request can be 4K+ for now */ #define OST_MAXREQSIZE (16UL * 1024UL) #define OST_IO_MAXREQSIZE max(OST_MAXREQSIZE, \ ((_OST_MAXREQSIZE_SUM - 1) | \ (1024UL - 1)) + 1) /* Safe estimate of free space in standard RPC, provides upper limit for # of * bytes of i/o to pack in RPC (skipping bulk transfer). */ #define OST_SHORT_IO_SPACE (OST_IO_MAXREQSIZE - _OST_MAXREQSIZE_BASE) /* Actual size used for short i/o buffer. Calculation means this: * At least one page (for large PAGE_SIZE), or 16 KiB, but not more * than the available space aligned to a page boundary. */ #define OBD_MAX_SHORT_IO_BYTES min(max(PAGE_SIZE, 16UL * 1024UL), \ OST_SHORT_IO_SPACE & PAGE_MASK) #define OST_MAXREPSIZE (9 * 1024) #define OST_IO_MAXREPSIZE OST_MAXREPSIZE #define OST_NBUFS 64 /** OST_BUFSIZE = max_reqsize + max sptlrpc payload size */ #define OST_BUFSIZE max_t(int, OST_MAXREQSIZE + 1024, 32 * 1024) /** * OST_IO_MAXREQSIZE is 18K, giving extra 46K can increase buffer utilization * rate of request buffer, please check comment of MDS_LOV_BUFSIZE for details. */ #define OST_IO_BUFSIZE max_t(int, OST_IO_MAXREQSIZE + 1024, 64 * 1024) /* Macro to hide a typecast and BUILD_BUG. */ #define ptlrpc_req_async_args(_var, req) ({ \ BUILD_BUG_ON(sizeof(*_var) > sizeof(req->rq_async_args)); \ (typeof(_var))&req->rq_async_args; \ }) struct ptlrpc_replay_async_args { int praa_old_state; int praa_old_status; }; /** * Structure to single define portal connection. */ struct ptlrpc_connection { /** linkage for connections hash table */ struct hlist_node c_hash; /** Our own lnet nid for this connection */ lnet_nid_t c_self; /** Remote side nid for this connection */ struct lnet_process_id c_peer; /** UUID of the other side */ struct obd_uuid c_remote_uuid; /** reference counter for this connection */ atomic_t c_refcount; }; /** Client definition for PortalRPC */ struct ptlrpc_client { /** What lnet portal does this client send messages to by default */ __u32 cli_request_portal; /** What portal do we expect replies on */ __u32 cli_reply_portal; /** Name of the client */ const char *cli_name; }; /** state flags of requests */ /* XXX only ones left are those used by the bulk descs as well! */ #define PTL_RPC_FL_INTR (1 << 0) /* reply wait was interrupted by user */ #define PTL_RPC_FL_TIMEOUT (1 << 7) /* request timed out waiting for reply */ #define REQ_MAX_ACK_LOCKS 8 union ptlrpc_async_args { /** * Scratchpad for passing args to completion interpreter. Users * cast to the struct of their choosing, and CLASSERT that this is * big enough. For _tons_ of context, OBD_ALLOC a struct and store * a pointer to it here. The pointer_arg ensures this struct is at * least big enough for that. */ void *pointer_arg[11]; __u64 space[7]; }; struct ptlrpc_request_set; typedef int (*set_producer_func)(struct ptlrpc_request_set *, void *); /** * Definition of request set structure. * Request set is a list of requests (not necessary to the same target) that * once populated with RPCs could be sent in parallel. * There are two kinds of request sets. General purpose and with dedicated * serving thread. Example of the latter is ptlrpcd set. * For general purpose sets once request set started sending it is impossible * to add new requests to such set. * Provides a way to call "completion callbacks" when all requests in the set * returned. */ struct ptlrpc_request_set { atomic_t set_refcount; /** number of in queue requests */ atomic_t set_new_count; /** number of uncompleted requests */ atomic_t set_remaining; /** wait queue to wait on for request events */ wait_queue_head_t set_waitq; /** List of requests in the set */ struct list_head set_requests; /** * Lock for \a set_new_requests manipulations * locked so that any old caller can communicate requests to * the set holder who can then fold them into the lock-free set */ spinlock_t set_new_req_lock; /** List of new yet unsent requests. Only used with ptlrpcd now. */ struct list_head set_new_requests; /** rq_status of requests that have been freed already */ int set_rc; /** Additional fields used by the flow control extension */ /** Maximum number of RPCs in flight */ int set_max_inflight; /** Callback function used to generate RPCs */ set_producer_func set_producer; /** opaq argument passed to the producer callback */ void *set_producer_arg; unsigned int set_allow_intr:1; }; struct ptlrpc_bulk_desc; struct ptlrpc_service_part; struct ptlrpc_service; /** * ptlrpc callback & work item stuff */ struct ptlrpc_cb_id { void (*cbid_fn)(struct lnet_event *ev); /* specific callback fn */ void *cbid_arg; /* additional arg */ }; /** Maximum number of locks to fit into reply state */ #define RS_MAX_LOCKS 8 #define RS_DEBUG 0 /** * Structure to define reply state on the server * Reply state holds various reply message information. Also for "difficult" * replies (rep-ack case) we store the state after sending reply and wait * for the client to acknowledge the reception. In these cases locks could be * added to the state for replay/failover consistency guarantees. */ struct ptlrpc_reply_state { /** Callback description */ struct ptlrpc_cb_id rs_cb_id; /** Linkage for list of all reply states in a system */ struct list_head rs_list; /** Linkage for list of all reply states on same export */ struct list_head rs_exp_list; /** Linkage for list of all reply states for same obd */ struct list_head rs_obd_list; #if RS_DEBUG struct list_head rs_debug_list; #endif /** A spinlock to protect the reply state flags */ spinlock_t rs_lock; /** Reply state flags */ unsigned long rs_difficult:1; /* ACK/commit stuff */ unsigned long rs_no_ack:1; /* no ACK, even for difficult requests */ unsigned long rs_scheduled:1; /* being handled? */ unsigned long rs_scheduled_ever:1;/* any schedule attempts? */ unsigned long rs_handled:1; /* been handled yet? */ unsigned long rs_on_net:1; /* reply_out_callback pending? */ unsigned long rs_prealloc:1; /* rs from prealloc list */ unsigned long rs_committed:1;/* the transaction was committed and the rs was dispatched by ptlrpc_commit_replies */ unsigned long rs_convert_lock:1; /* need to convert saved * locks to COS mode */ atomic_t rs_refcount; /* number of users */ /** Number of locks awaiting client ACK */ int rs_nlocks; /** Size of the state */ int rs_size; /** opcode */ __u32 rs_opc; /** Transaction number */ __u64 rs_transno; /** xid */ __u64 rs_xid; struct obd_export *rs_export; struct ptlrpc_service_part *rs_svcpt; /** Lnet metadata handle for the reply */ struct lnet_handle_md rs_md_h; /** Context for the sevice thread */ struct ptlrpc_svc_ctx *rs_svc_ctx; /** Reply buffer (actually sent to the client), encoded if needed */ struct lustre_msg *rs_repbuf; /* wrapper */ /** Size of the reply buffer */ int rs_repbuf_len; /* wrapper buf length */ /** Size of the reply message */ int rs_repdata_len; /* wrapper msg length */ /** * Actual reply message. Its content is encrupted (if needed) to * produce reply buffer for actual sending. In simple case * of no network encryption we jus set \a rs_repbuf to \a rs_msg */ struct lustre_msg *rs_msg; /* reply message */ /** Handles of locks awaiting client reply ACK */ struct lustre_handle rs_locks[RS_MAX_LOCKS]; /** Lock modes of locks in \a rs_locks */ enum ldlm_mode rs_modes[RS_MAX_LOCKS]; }; struct ptlrpc_thread; /** RPC stages */ enum rq_phase { RQ_PHASE_NEW = 0xebc0de00, RQ_PHASE_RPC = 0xebc0de01, RQ_PHASE_BULK = 0xebc0de02, RQ_PHASE_INTERPRET = 0xebc0de03, RQ_PHASE_COMPLETE = 0xebc0de04, RQ_PHASE_UNREG_RPC = 0xebc0de05, RQ_PHASE_UNREG_BULK = 0xebc0de06, RQ_PHASE_UNDEFINED = 0xebc0de07 }; /** Type of request interpreter call-back */ typedef int (*ptlrpc_interpterer_t)(const struct lu_env *env, struct ptlrpc_request *req, void *arg, int rc); /** Type of request resend call-back */ typedef void (*ptlrpc_resend_cb_t)(struct ptlrpc_request *req, void *arg); /** * Definition of request pool structure. * The pool is used to store empty preallocated requests for the case * when we would actually need to send something without performing * any allocations (to avoid e.g. OOM). */ struct ptlrpc_request_pool { /** Locks the list */ spinlock_t prp_lock; /** list of ptlrpc_request structs */ struct list_head prp_req_list; /** Maximum message size that would fit into a rquest from this pool */ int prp_rq_size; /** Function to allocate more requests for this pool */ int (*prp_populate)(struct ptlrpc_request_pool *, int); }; struct lu_context; struct lu_env; struct ldlm_lock; #include /** * Basic request prioritization operations structure. * The whole idea is centered around locks and RPCs that might affect locks. * When a lock is contended we try to give priority to RPCs that might lead * to fastest release of that lock. * Currently only implemented for OSTs only in a way that makes all * IO and truncate RPCs that are coming from a locked region where a lock is * contended a priority over other requests. */ struct ptlrpc_hpreq_ops { /** * Check if the lock handle of the given lock is the same as * taken from the request. */ int (*hpreq_lock_match)(struct ptlrpc_request *, struct ldlm_lock *); /** * Check if the request is a high priority one. */ int (*hpreq_check)(struct ptlrpc_request *); /** * Called after the request has been handled. */ void (*hpreq_fini)(struct ptlrpc_request *); }; struct ptlrpc_cli_req { /** For bulk requests on client only: bulk descriptor */ struct ptlrpc_bulk_desc *cr_bulk; /** optional time limit for send attempts */ time64_t cr_delay_limit; /** time request was first queued */ time64_t cr_queued_time; /** request sent in nanoseconds */ ktime_t cr_sent_ns; /** time for request really sent out */ time64_t cr_sent_out; /** when req reply unlink must finish. */ time64_t cr_reply_deadline; /** when req bulk unlink must finish. */ time64_t cr_bulk_deadline; /** when req unlink must finish. */ time64_t cr_req_deadline; /** Portal to which this request would be sent */ short cr_req_ptl; /** Portal where to wait for reply and where reply would be sent */ short cr_rep_ptl; /** request resending number */ unsigned int cr_resend_nr; /** What was import generation when this request was sent */ int cr_imp_gen; enum lustre_imp_state cr_send_state; /** Per-request waitq introduced by bug 21938 for recovery waiting */ wait_queue_head_t cr_set_waitq; /** Link item for request set lists */ struct list_head cr_set_chain; /** link to waited ctx */ struct list_head cr_ctx_chain; /** client's half ctx */ struct ptlrpc_cli_ctx *cr_cli_ctx; /** Link back to the request set */ struct ptlrpc_request_set *cr_set; /** outgoing request MD handle */ struct lnet_handle_md cr_req_md_h; /** request-out callback parameter */ struct ptlrpc_cb_id cr_req_cbid; /** incoming reply MD handle */ struct lnet_handle_md cr_reply_md_h; wait_queue_head_t cr_reply_waitq; /** reply callback parameter */ struct ptlrpc_cb_id cr_reply_cbid; /** Async completion handler, called when reply is received */ ptlrpc_interpterer_t cr_reply_interp; /** Resend handler, called when request is resend to update RPC data */ ptlrpc_resend_cb_t cr_resend_cb; /** Async completion context */ union ptlrpc_async_args cr_async_args; /** Opaq data for replay and commit callbacks. */ void *cr_cb_data; /** Link to the imp->imp_unreplied_list */ struct list_head cr_unreplied_list; /** * Commit callback, called when request is committed and about to be * freed. */ void (*cr_commit_cb)(struct ptlrpc_request *); /** Replay callback, called after request is replayed at recovery */ void (*cr_replay_cb)(struct ptlrpc_request *); }; /** client request member alias */ /* NB: these alias should NOT be used by any new code, instead they should * be removed step by step to avoid potential abuse */ #define rq_bulk rq_cli.cr_bulk #define rq_delay_limit rq_cli.cr_delay_limit #define rq_queued_time rq_cli.cr_queued_time #define rq_sent_ns rq_cli.cr_sent_ns #define rq_real_sent rq_cli.cr_sent_out #define rq_reply_deadline rq_cli.cr_reply_deadline #define rq_bulk_deadline rq_cli.cr_bulk_deadline #define rq_req_deadline rq_cli.cr_req_deadline #define rq_nr_resend rq_cli.cr_resend_nr #define rq_request_portal rq_cli.cr_req_ptl #define rq_reply_portal rq_cli.cr_rep_ptl #define rq_import_generation rq_cli.cr_imp_gen #define rq_send_state rq_cli.cr_send_state #define rq_set_chain rq_cli.cr_set_chain #define rq_ctx_chain rq_cli.cr_ctx_chain #define rq_set rq_cli.cr_set #define rq_set_waitq rq_cli.cr_set_waitq #define rq_cli_ctx rq_cli.cr_cli_ctx #define rq_req_md_h rq_cli.cr_req_md_h #define rq_req_cbid rq_cli.cr_req_cbid #define rq_reply_md_h rq_cli.cr_reply_md_h #define rq_reply_waitq rq_cli.cr_reply_waitq #define rq_reply_cbid rq_cli.cr_reply_cbid #define rq_interpret_reply rq_cli.cr_reply_interp #define rq_resend_cb rq_cli.cr_resend_cb #define rq_async_args rq_cli.cr_async_args #define rq_cb_data rq_cli.cr_cb_data #define rq_unreplied_list rq_cli.cr_unreplied_list #define rq_commit_cb rq_cli.cr_commit_cb #define rq_replay_cb rq_cli.cr_replay_cb struct ptlrpc_srv_req { /** initial thread servicing this request */ struct ptlrpc_thread *sr_svc_thread; /** * Server side list of incoming unserved requests sorted by arrival * time. Traversed from time to time to notice about to expire * requests and sent back "early replies" to clients to let them * know server is alive and well, just very busy to service their * requests in time */ struct list_head sr_timed_list; /** server-side per-export list */ struct list_head sr_exp_list; /** server-side history, used for debuging purposes. */ struct list_head sr_hist_list; /** history sequence # */ __u64 sr_hist_seq; /** the index of service's srv_at_array into which request is linked */ __u32 sr_at_index; /** authed uid */ uid_t sr_auth_uid; /** authed uid mapped to */ uid_t sr_auth_mapped_uid; /** RPC is generated from what part of Lustre */ enum lustre_sec_part sr_sp_from; /** request session context */ struct lu_context sr_ses; /** \addtogroup nrs * @{ */ /** stub for NRS request */ struct ptlrpc_nrs_request sr_nrq; /** @} nrs */ /** request arrival time */ struct timespec64 sr_arrival_time; /** server's half ctx */ struct ptlrpc_svc_ctx *sr_svc_ctx; /** (server side), pointed directly into req buffer */ struct ptlrpc_user_desc *sr_user_desc; /** separated reply state, may be vmalloc'd */ struct ptlrpc_reply_state *sr_reply_state; /** server-side hp handlers */ struct ptlrpc_hpreq_ops *sr_ops; /** incoming request buffer */ struct ptlrpc_request_buffer_desc *sr_rqbd; }; /** server request member alias */ /* NB: these alias should NOT be used by any new code, instead they should * be removed step by step to avoid potential abuse */ #define rq_svc_thread rq_srv.sr_svc_thread #define rq_timed_list rq_srv.sr_timed_list #define rq_exp_list rq_srv.sr_exp_list #define rq_history_list rq_srv.sr_hist_list #define rq_history_seq rq_srv.sr_hist_seq #define rq_at_index rq_srv.sr_at_index #define rq_auth_uid rq_srv.sr_auth_uid #define rq_auth_mapped_uid rq_srv.sr_auth_mapped_uid #define rq_sp_from rq_srv.sr_sp_from #define rq_session rq_srv.sr_ses #define rq_nrq rq_srv.sr_nrq #define rq_arrival_time rq_srv.sr_arrival_time #define rq_reply_state rq_srv.sr_reply_state #define rq_svc_ctx rq_srv.sr_svc_ctx #define rq_user_desc rq_srv.sr_user_desc #define rq_ops rq_srv.sr_ops #define rq_rqbd rq_srv.sr_rqbd /** * Represents remote procedure call. * * This is a staple structure used by everybody wanting to send a request * in Lustre. */ struct ptlrpc_request { /* Request type: one of PTL_RPC_MSG_* */ int rq_type; /** Result of request processing */ int rq_status; /** * Linkage item through which this request is included into * sending/delayed lists on client and into rqbd list on server */ struct list_head rq_list; /** Lock to protect request flags and some other important bits, like * rq_list */ spinlock_t rq_lock; spinlock_t rq_early_free_lock; /** client-side flags are serialized by rq_lock @{ */ unsigned int rq_intr:1, rq_replied:1, rq_err:1, rq_timedout:1, rq_resend:1, rq_restart:1, /** * when ->rq_replay is set, request is kept by the client even * after server commits corresponding transaction. This is * used for operations that require sequence of multiple * requests to be replayed. The only example currently is file * open/close. When last request in such a sequence is * committed, ->rq_replay is cleared on all requests in the * sequence. */ rq_replay:1, rq_no_resend:1, rq_waiting:1, rq_receiving_reply:1, rq_no_delay:1, rq_net_err:1, rq_wait_ctx:1, rq_early:1, rq_req_unlinked:1, /* unlinked request buffer from lnet */ rq_reply_unlinked:1, /* unlinked reply buffer from lnet */ rq_memalloc:1, /* req originated from "kswapd" */ rq_committed:1, rq_reply_truncated:1, /** whether the "rq_set" is a valid one */ rq_invalid_rqset:1, rq_generation_set:1, /** do not resend request on -EINPROGRESS */ rq_no_retry_einprogress:1, /* allow the req to be sent if the import is in recovery * status */ rq_allow_replay:1, /* bulk request, sent to server, but uncommitted */ rq_unstable:1, rq_early_free_repbuf:1, /* free reply buffer in advance */ rq_allow_intr:1; /** @} */ /** server-side flags @{ */ unsigned int rq_hp:1, /**< high priority RPC */ rq_at_linked:1, /**< link into service's srv_at_array */ rq_packed_final:1, /**< packed final reply */ rq_obsolete:1; /* aborted by a signal on a client */ /** @} */ /** one of RQ_PHASE_* */ enum rq_phase rq_phase; /** one of RQ_PHASE_* to be used next */ enum rq_phase rq_next_phase; /** * client-side refcount for SENT race, server-side refcounf * for multiple replies */ atomic_t rq_refcount; /** * client-side: * !rq_truncate : # reply bytes actually received, * rq_truncate : required repbuf_len for resend */ int rq_nob_received; /** Request length */ int rq_reqlen; /** Reply length */ int rq_replen; /** Pool if request is from preallocated list */ struct ptlrpc_request_pool *rq_pool; /** Request message - what client sent */ struct lustre_msg *rq_reqmsg; /** Reply message - server response */ struct lustre_msg *rq_repmsg; /** Transaction number */ __u64 rq_transno; /** xid */ __u64 rq_xid; /** bulk match bits */ __u64 rq_mbits; /** * List item to for replay list. Not yet committed requests get linked * there. * Also see \a rq_replay comment above. * It's also link chain on obd_export::exp_req_replay_queue */ struct list_head rq_replay_list; /** non-shared members for client & server request*/ union { struct ptlrpc_cli_req rq_cli; struct ptlrpc_srv_req rq_srv; }; /** * security and encryption data * @{ */ /** description of flavors for client & server */ struct sptlrpc_flavor rq_flvr; /** * SELinux policy info at the time of the request * sepol string format is: * ::: */ char rq_sepol[LUSTRE_NODEMAP_SEPOL_LENGTH + 1]; /* client/server security flags */ unsigned int rq_ctx_init:1, /* context initiation */ rq_ctx_fini:1, /* context destroy */ rq_bulk_read:1, /* request bulk read */ rq_bulk_write:1, /* request bulk write */ /* server authentication flags */ rq_auth_gss:1, /* authenticated by gss */ rq_auth_usr_root:1, /* authed as root */ rq_auth_usr_mdt:1, /* authed as mdt */ rq_auth_usr_ost:1, /* authed as ost */ /* security tfm flags */ rq_pack_udesc:1, rq_pack_bulk:1, /* doesn't expect reply FIXME */ rq_no_reply:1, rq_pill_init:1, /* pill initialized */ rq_srv_req:1; /* server request */ /** various buffer pointers */ struct lustre_msg *rq_reqbuf; /**< req wrapper, vmalloc*/ char *rq_repbuf; /**< rep buffer, vmalloc */ struct lustre_msg *rq_repdata; /**< rep wrapper msg */ /** only in priv mode */ struct lustre_msg *rq_clrbuf; int rq_reqbuf_len; /* req wrapper buf len */ int rq_reqdata_len; /* req wrapper msg len */ int rq_repbuf_len; /* rep buffer len */ int rq_repdata_len; /* rep wrapper msg len */ int rq_clrbuf_len; /* only in priv mode */ int rq_clrdata_len; /* only in priv mode */ /** early replies go to offset 0, regular replies go after that */ unsigned int rq_reply_off; /** @} */ /** Fields that help to see if request and reply were swabbed or not */ __u32 rq_req_swab_mask; __u32 rq_rep_swab_mask; /** how many early replies (for stats) */ int rq_early_count; /** Server-side, export on which request was received */ struct obd_export *rq_export; /** import where request is being sent */ struct obd_import *rq_import; /** our LNet NID */ lnet_nid_t rq_self; /** Peer description (the other side) */ struct lnet_process_id rq_peer; /** Descriptor for the NID from which the peer sent the request. */ struct lnet_process_id rq_source; /** * service time estimate (secs) * If the request is not served by this time, it is marked as timed out. * Do not change to time64_t since this is transmitted over the wire. */ time_t rq_timeout; /** * when request/reply sent (secs), or time when request should be sent */ time64_t rq_sent; /** when request must finish. */ time64_t rq_deadline; /** request format description */ struct req_capsule rq_pill; }; /** * Call completion handler for rpc if any, return it's status or original * rc if there was no handler defined for this request. */ static inline int ptlrpc_req_interpret(const struct lu_env *env, struct ptlrpc_request *req, int rc) { if (req->rq_interpret_reply != NULL) { req->rq_status = req->rq_interpret_reply(env, req, &req->rq_async_args, rc); return req->rq_status; } return rc; } /** \addtogroup nrs * @{ */ int ptlrpc_nrs_policy_register(struct ptlrpc_nrs_pol_conf *conf); int ptlrpc_nrs_policy_unregister(struct ptlrpc_nrs_pol_conf *conf); void ptlrpc_nrs_req_hp_move(struct ptlrpc_request *req); void nrs_policy_get_info_locked(struct ptlrpc_nrs_policy *policy, struct ptlrpc_nrs_pol_info *info); /* * Can the request be moved from the regular NRS head to the high-priority NRS * head (of the same PTLRPC service partition), if any? * * For a reliable result, this should be checked under svcpt->scp_req lock. */ static inline bool ptlrpc_nrs_req_can_move(struct ptlrpc_request *req) { struct ptlrpc_nrs_request *nrq = &req->rq_nrq; /** * LU-898: Check ptlrpc_nrs_request::nr_enqueued to make sure the * request has been enqueued first, and ptlrpc_nrs_request::nr_started * to make sure it has not been scheduled yet (analogous to previous * (non-NRS) checking of !list_empty(&ptlrpc_request::rq_list). */ return nrq->nr_enqueued && !nrq->nr_started && !req->rq_hp; } /** @} nrs */ /** * Returns true if request buffer at offset \a index was already swabbed */ static inline bool lustre_req_swabbed(struct ptlrpc_request *req, size_t index) { LASSERT(index < sizeof(req->rq_req_swab_mask) * 8); return req->rq_req_swab_mask & (1 << index); } /** * Returns true if request reply buffer at offset \a index was already swabbed */ static inline bool lustre_rep_swabbed(struct ptlrpc_request *req, size_t index) { LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8); return req->rq_rep_swab_mask & (1 << index); } /** * Returns true if request needs to be swabbed into local cpu byteorder */ static inline bool ptlrpc_req_need_swab(struct ptlrpc_request *req) { return lustre_req_swabbed(req, MSG_PTLRPC_HEADER_OFF); } /** * Returns true if request reply needs to be swabbed into local cpu byteorder */ static inline bool ptlrpc_rep_need_swab(struct ptlrpc_request *req) { return lustre_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF); } /** * Mark request buffer at offset \a index that it was already swabbed */ static inline void lustre_set_req_swabbed(struct ptlrpc_request *req, size_t index) { LASSERT(index < sizeof(req->rq_req_swab_mask) * 8); LASSERT((req->rq_req_swab_mask & (1 << index)) == 0); req->rq_req_swab_mask |= 1 << index; } /** * Mark request reply buffer at offset \a index that it was already swabbed */ static inline void lustre_set_rep_swabbed(struct ptlrpc_request *req, size_t index) { LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8); LASSERT((req->rq_rep_swab_mask & (1 << index)) == 0); req->rq_rep_swab_mask |= 1 << index; } /** * Convert numerical request phase value \a phase into text string description */ static inline const char * ptlrpc_phase2str(enum rq_phase phase) { switch (phase) { case RQ_PHASE_NEW: return "New"; case RQ_PHASE_RPC: return "Rpc"; case RQ_PHASE_BULK: return "Bulk"; case RQ_PHASE_INTERPRET: return "Interpret"; case RQ_PHASE_COMPLETE: return "Complete"; case RQ_PHASE_UNREG_RPC: return "UnregRPC"; case RQ_PHASE_UNREG_BULK: return "UnregBULK"; default: return "?Phase?"; } } /** * Convert numerical request phase of the request \a req into text stringi * description */ static inline const char * ptlrpc_rqphase2str(struct ptlrpc_request *req) { return ptlrpc_phase2str(req->rq_phase); } /** * Debugging functions and helpers to print request structure into debug log * @{ */ /* Spare the preprocessor, spoil the bugs. */ #define FLAG(field, str) (field ? str : "") /** Convert bit flags into a string */ #define DEBUG_REQ_FLAGS(req) \ ptlrpc_rqphase2str(req), \ FLAG(req->rq_intr, "I"), FLAG(req->rq_replied, "R"), \ FLAG(req->rq_err, "E"), FLAG(req->rq_net_err, "e"), \ FLAG(req->rq_timedout, "X") /* eXpired */, FLAG(req->rq_resend, "S"), \ FLAG(req->rq_restart, "T"), FLAG(req->rq_replay, "P"), \ FLAG(req->rq_no_resend, "N"), FLAG(req->rq_no_reply, "n"), \ FLAG(req->rq_waiting, "W"), \ FLAG(req->rq_wait_ctx, "C"), FLAG(req->rq_hp, "H"), \ FLAG(req->rq_committed, "M"), \ FLAG(req->rq_req_unlinked, "Q"), \ FLAG(req->rq_reply_unlinked, "U"), \ FLAG(req->rq_receiving_reply, "r") #define REQ_FLAGS_FMT "%s:%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" void _debug_req(struct ptlrpc_request *req, struct libcfs_debug_msg_data *data, const char *fmt, ...) __attribute__ ((format (printf, 3, 4))); /** * Helper that decides if we need to print request accordig to current debug * level settings */ #define debug_req(msgdata, mask, cdls, req, fmt, a...) \ do { \ CFS_CHECK_STACK(msgdata, mask, cdls); \ \ if (((mask) & D_CANTMASK) != 0 || \ ((libcfs_debug & (mask)) != 0 && \ (libcfs_subsystem_debug & DEBUG_SUBSYSTEM) != 0)) \ _debug_req((req), msgdata, fmt, ##a); \ } while(0) /** * This is the debug print function you need to use to print request sturucture * content into lustre debug log. * for most callers (level is a constant) this is resolved at compile time */ #define DEBUG_REQ(level, req, fmt, args...) \ do { \ if ((level) & (D_ERROR | D_WARNING)) { \ static struct cfs_debug_limit_state cdls; \ LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, &cdls); \ debug_req(&msgdata, level, &cdls, req, "@@@ "fmt" ", ## args);\ } else { \ LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, NULL); \ debug_req(&msgdata, level, NULL, req, "@@@ "fmt" ", ## args); \ } \ } while (0) /** @} */ enum ptlrpc_bulk_op_type { PTLRPC_BULK_OP_ACTIVE = 0x00000001, PTLRPC_BULK_OP_PASSIVE = 0x00000002, PTLRPC_BULK_OP_PUT = 0x00000004, PTLRPC_BULK_OP_GET = 0x00000008, PTLRPC_BULK_BUF_KVEC = 0x00000010, PTLRPC_BULK_BUF_KIOV = 0x00000020, PTLRPC_BULK_GET_SOURCE = PTLRPC_BULK_OP_PASSIVE | PTLRPC_BULK_OP_GET, PTLRPC_BULK_PUT_SINK = PTLRPC_BULK_OP_PASSIVE | PTLRPC_BULK_OP_PUT, PTLRPC_BULK_GET_SINK = PTLRPC_BULK_OP_ACTIVE | PTLRPC_BULK_OP_GET, PTLRPC_BULK_PUT_SOURCE = PTLRPC_BULK_OP_ACTIVE | PTLRPC_BULK_OP_PUT, }; static inline bool ptlrpc_is_bulk_op_get(enum ptlrpc_bulk_op_type type) { return (type & PTLRPC_BULK_OP_GET) == PTLRPC_BULK_OP_GET; } static inline bool ptlrpc_is_bulk_get_source(enum ptlrpc_bulk_op_type type) { return (type & PTLRPC_BULK_GET_SOURCE) == PTLRPC_BULK_GET_SOURCE; } static inline bool ptlrpc_is_bulk_put_sink(enum ptlrpc_bulk_op_type type) { return (type & PTLRPC_BULK_PUT_SINK) == PTLRPC_BULK_PUT_SINK; } static inline bool ptlrpc_is_bulk_get_sink(enum ptlrpc_bulk_op_type type) { return (type & PTLRPC_BULK_GET_SINK) == PTLRPC_BULK_GET_SINK; } static inline bool ptlrpc_is_bulk_put_source(enum ptlrpc_bulk_op_type type) { return (type & PTLRPC_BULK_PUT_SOURCE) == PTLRPC_BULK_PUT_SOURCE; } static inline bool ptlrpc_is_bulk_desc_kvec(enum ptlrpc_bulk_op_type type) { return ((type & PTLRPC_BULK_BUF_KVEC) | (type & PTLRPC_BULK_BUF_KIOV)) == PTLRPC_BULK_BUF_KVEC; } static inline bool ptlrpc_is_bulk_desc_kiov(enum ptlrpc_bulk_op_type type) { return ((type & PTLRPC_BULK_BUF_KVEC) | (type & PTLRPC_BULK_BUF_KIOV)) == PTLRPC_BULK_BUF_KIOV; } static inline bool ptlrpc_is_bulk_op_active(enum ptlrpc_bulk_op_type type) { return ((type & PTLRPC_BULK_OP_ACTIVE) | (type & PTLRPC_BULK_OP_PASSIVE)) == PTLRPC_BULK_OP_ACTIVE; } static inline bool ptlrpc_is_bulk_op_passive(enum ptlrpc_bulk_op_type type) { return ((type & PTLRPC_BULK_OP_ACTIVE) | (type & PTLRPC_BULK_OP_PASSIVE)) == PTLRPC_BULK_OP_PASSIVE; } struct ptlrpc_bulk_frag_ops { /** * Add a page \a page to the bulk descriptor \a desc * Data to transfer in the page starts at offset \a pageoffset and * amount of data to transfer from the page is \a len */ void (*add_kiov_frag)(struct ptlrpc_bulk_desc *desc, struct page *page, int pageoffset, int len); /* * Add a \a fragment to the bulk descriptor \a desc. * Data to transfer in the fragment is pointed to by \a frag * The size of the fragment is \a len */ int (*add_iov_frag)(struct ptlrpc_bulk_desc *desc, void *frag, int len); /** * Uninitialize and free bulk descriptor \a desc. * Works on bulk descriptors both from server and client side. */ void (*release_frags)(struct ptlrpc_bulk_desc *desc); }; extern const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_pin_ops; extern const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_nopin_ops; extern const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kvec_ops; /* * Definition of bulk descriptor. * Bulks are special "Two phase" RPCs where initial request message * is sent first and it is followed bt a transfer (o receiving) of a large * amount of data to be settled into pages referenced from the bulk descriptors. * Bulks transfers (the actual data following the small requests) are done * on separate LNet portals. * In lustre we use bulk transfers for READ and WRITE transfers from/to OSTs. * Another user is readpage for MDT. */ struct ptlrpc_bulk_desc { /** completed with failure */ unsigned long bd_failure:1; /** client side */ unsigned long bd_registered:1; /** For serialization with callback */ spinlock_t bd_lock; /** {put,get}{source,sink}{kvec,kiov} */ enum ptlrpc_bulk_op_type bd_type; /** LNet portal for this bulk */ __u32 bd_portal; /** Server side - export this bulk created for */ struct obd_export *bd_export; /** Client side - import this bulk was sent on */ struct obd_import *bd_import; /** Back pointer to the request */ struct ptlrpc_request *bd_req; const struct ptlrpc_bulk_frag_ops *bd_frag_ops; wait_queue_head_t bd_waitq; /* server side only WQ */ int bd_iov_count; /* # entries in bd_iov */ int bd_max_iov; /* allocated size of bd_iov */ int bd_nob; /* # bytes covered */ int bd_nob_transferred; /* # bytes GOT/PUT */ __u64 bd_last_mbits; struct ptlrpc_cb_id bd_cbid; /* network callback info */ lnet_nid_t bd_sender; /* stash event::sender */ int bd_md_count; /* # valid entries in bd_mds */ int bd_md_max_brw; /* max entries in bd_mds */ /** array of associated MDs */ struct lnet_handle_md bd_mds[PTLRPC_BULK_OPS_COUNT]; union { struct { /* * encrypt iov, size is either 0 or bd_iov_count. */ lnet_kiov_t *bd_enc_vec; lnet_kiov_t *bd_vec; } bd_kiov; struct { struct kvec *bd_enc_kvec; struct kvec *bd_kvec; } bd_kvec; } bd_u; }; #define GET_KIOV(desc) ((desc)->bd_u.bd_kiov.bd_vec) #define BD_GET_KIOV(desc, i) ((desc)->bd_u.bd_kiov.bd_vec[i]) #define GET_ENC_KIOV(desc) ((desc)->bd_u.bd_kiov.bd_enc_vec) #define BD_GET_ENC_KIOV(desc, i) ((desc)->bd_u.bd_kiov.bd_enc_vec[i]) #define GET_KVEC(desc) ((desc)->bd_u.bd_kvec.bd_kvec) #define BD_GET_KVEC(desc, i) ((desc)->bd_u.bd_kvec.bd_kvec[i]) #define GET_ENC_KVEC(desc) ((desc)->bd_u.bd_kvec.bd_enc_kvec) #define BD_GET_ENC_KVEC(desc, i) ((desc)->bd_u.bd_kvec.bd_enc_kvec[i]) enum { SVC_INIT = 0, SVC_STOPPED = 1 << 0, SVC_STOPPING = 1 << 1, SVC_STARTING = 1 << 2, SVC_RUNNING = 1 << 3, SVC_EVENT = 1 << 4, }; #define PTLRPC_THR_NAME_LEN 32 /** * Definition of server service thread structure */ struct ptlrpc_thread { /** * List of active threads in svcpt->scp_threads */ struct list_head t_link; /** * thread-private data (preallocated vmalloc'd memory) */ void *t_data; __u32 t_flags; /** * service thread index, from ptlrpc_start_threads */ unsigned int t_id; /** * service thread */ struct task_struct *t_task; pid_t t_pid; ktime_t t_touched; /** * put watchdog in the structure per thread b=14840 */ struct delayed_work t_watchdog; /** * the svc this thread belonged to b=18582 */ struct ptlrpc_service_part *t_svcpt; wait_queue_head_t t_ctl_waitq; struct lu_env *t_env; char t_name[PTLRPC_THR_NAME_LEN]; }; static inline int thread_is_init(struct ptlrpc_thread *thread) { return thread->t_flags == 0; } static inline int thread_is_stopped(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_STOPPED); } static inline int thread_is_stopping(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_STOPPING); } static inline int thread_is_starting(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_STARTING); } static inline int thread_is_running(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_RUNNING); } static inline int thread_is_event(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_EVENT); } static inline void thread_clear_flags(struct ptlrpc_thread *thread, __u32 flags) { thread->t_flags &= ~flags; } static inline void thread_set_flags(struct ptlrpc_thread *thread, __u32 flags) { thread->t_flags = flags; } static inline void thread_add_flags(struct ptlrpc_thread *thread, __u32 flags) { thread->t_flags |= flags; } static inline int thread_test_and_clear_flags(struct ptlrpc_thread *thread, __u32 flags) { if (thread->t_flags & flags) { thread->t_flags &= ~flags; return 1; } return 0; } /** * Request buffer descriptor structure. * This is a structure that contains one posted request buffer for service. * Once data land into a buffer, event callback creates actual request and * notifies wakes one of the service threads to process new incoming request. * More than one request can fit into the buffer. */ struct ptlrpc_request_buffer_desc { /** Link item for rqbds on a service */ struct list_head rqbd_list; /** History of requests for this buffer */ struct list_head rqbd_reqs; /** Back pointer to service for which this buffer is registered */ struct ptlrpc_service_part *rqbd_svcpt; /** LNet descriptor */ struct lnet_handle_md rqbd_md_h; int rqbd_refcount; /** The buffer itself */ char *rqbd_buffer; struct ptlrpc_cb_id rqbd_cbid; /** * This "embedded" request structure is only used for the * last request to fit into the buffer */ struct ptlrpc_request rqbd_req; }; typedef int (*svc_handler_t)(struct ptlrpc_request *req); struct ptlrpc_service_ops { /** * if non-NULL called during thread creation (ptlrpc_start_thread()) * to initialize service specific per-thread state. */ int (*so_thr_init)(struct ptlrpc_thread *thr); /** * if non-NULL called during thread shutdown (ptlrpc_main()) to * destruct state created by ->srv_init(). */ void (*so_thr_done)(struct ptlrpc_thread *thr); /** * Handler function for incoming requests for this service */ int (*so_req_handler)(struct ptlrpc_request *req); /** * function to determine priority of the request, it's called * on every new request */ int (*so_hpreq_handler)(struct ptlrpc_request *); /** * service-specific print fn */ void (*so_req_printer)(void *, struct ptlrpc_request *); }; #ifndef __cfs_cacheline_aligned /* NB: put it here for reducing patche dependence */ # define __cfs_cacheline_aligned #endif /** * How many high priority requests to serve before serving one normal * priority request */ #define PTLRPC_SVC_HP_RATIO 10 /** * Definition of PortalRPC service. * The service is listening on a particular portal (like tcp port) * and perform actions for a specific server like IO service for OST * or general metadata service for MDS. */ struct ptlrpc_service { /** serialize /proc operations */ spinlock_t srv_lock; /** most often accessed fields */ /** chain thru all services */ struct list_head srv_list; /** service operations table */ struct ptlrpc_service_ops srv_ops; /** only statically allocated strings here; we don't clean them */ char *srv_name; /** only statically allocated strings here; we don't clean them */ char *srv_thread_name; /** threads # should be created for each partition on initializing */ int srv_nthrs_cpt_init; /** limit of threads number for each partition */ int srv_nthrs_cpt_limit; /** Root of debugfs dir tree for this service */ struct dentry *srv_debugfs_entry; /** Pointer to statistic data for this service */ struct lprocfs_stats *srv_stats; /** # hp per lp reqs to handle */ int srv_hpreq_ratio; /** biggest request to receive */ int srv_max_req_size; /** biggest reply to send */ int srv_max_reply_size; /** size of individual buffers */ int srv_buf_size; /** # buffers to allocate in 1 group */ int srv_nbuf_per_group; /** Local portal on which to receive requests */ __u32 srv_req_portal; /** Portal on the client to send replies to */ __u32 srv_rep_portal; /** * Tags for lu_context associated with this thread, see struct * lu_context. */ __u32 srv_ctx_tags; /** soft watchdog timeout multiplier */ int srv_watchdog_factor; /** under unregister_service */ unsigned srv_is_stopping:1; /** Whether or not to restrict service threads to CPUs in this CPT */ unsigned srv_cpt_bind:1; /** max # request buffers */ int srv_nrqbds_max; /** max # request buffers in history per partition */ int srv_hist_nrqbds_cpt_max; /** number of CPTs this service associated with */ int srv_ncpts; /** CPTs array this service associated with */ __u32 *srv_cpts; /** 2^srv_cptab_bits >= cfs_cpt_numbert(srv_cptable) */ int srv_cpt_bits; /** CPT table this service is running over */ struct cfs_cpt_table *srv_cptable; /* sysfs object */ struct kobject srv_kobj; struct completion srv_kobj_unregister; /** * partition data for ptlrpc service */ struct ptlrpc_service_part *srv_parts[0]; }; /** * Definition of PortalRPC service partition data. * Although a service only has one instance of it right now, but we * will have multiple instances very soon (instance per CPT). * * it has four locks: * \a scp_lock * serialize operations on rqbd and requests waiting for preprocess * \a scp_req_lock * serialize operations active requests sent to this portal * \a scp_at_lock * serialize adaptive timeout stuff * \a scp_rep_lock * serialize operations on RS list (reply states) * * We don't have any use-case to take two or more locks at the same time * for now, so there is no lock order issue. */ struct ptlrpc_service_part { /** back reference to owner */ struct ptlrpc_service *scp_service __cfs_cacheline_aligned; /* CPT id, reserved */ int scp_cpt; /** always increasing number */ int scp_thr_nextid; /** # of starting threads */ int scp_nthrs_starting; /** # running threads */ int scp_nthrs_running; /** service threads list */ struct list_head scp_threads; /** * serialize the following fields, used for protecting * rqbd list and incoming requests waiting for preprocess, * threads starting & stopping are also protected by this lock. */ spinlock_t scp_lock __cfs_cacheline_aligned; /** userland serialization */ struct mutex scp_mutex; /** total # req buffer descs allocated */ int scp_nrqbds_total; /** # posted request buffers for receiving */ int scp_nrqbds_posted; /** in progress of allocating rqbd */ int scp_rqbd_allocating; /** # incoming reqs */ int scp_nreqs_incoming; /** request buffers to be reposted */ struct list_head scp_rqbd_idle; /** req buffers receiving */ struct list_head scp_rqbd_posted; /** incoming reqs */ struct list_head scp_req_incoming; /** timeout before re-posting reqs, in jiffies */ long scp_rqbd_timeout; /** * all threads sleep on this. This wait-queue is signalled when new * incoming request arrives and when difficult reply has to be handled. */ wait_queue_head_t scp_waitq; /** request history */ struct list_head scp_hist_reqs; /** request buffer history */ struct list_head scp_hist_rqbds; /** # request buffers in history */ int scp_hist_nrqbds; /** sequence number for request */ __u64 scp_hist_seq; /** highest seq culled from history */ __u64 scp_hist_seq_culled; /** * serialize the following fields, used for processing requests * sent to this portal */ spinlock_t scp_req_lock __cfs_cacheline_aligned; /** # reqs in either of the NRS heads below */ /** # reqs being served */ int scp_nreqs_active; /** # HPreqs being served */ int scp_nhreqs_active; /** # hp requests handled */ int scp_hreq_count; /** NRS head for regular requests */ struct ptlrpc_nrs scp_nrs_reg; /** NRS head for HP requests; this is only valid for services that can * handle HP requests */ struct ptlrpc_nrs *scp_nrs_hp; /** AT stuff */ /** @{ */ /** * serialize the following fields, used for changes on * adaptive timeout */ spinlock_t scp_at_lock __cfs_cacheline_aligned; /** estimated rpc service time */ struct adaptive_timeout scp_at_estimate; /** reqs waiting for replies */ struct ptlrpc_at_array scp_at_array; /** early reply timer */ struct timer_list scp_at_timer; /** debug */ ktime_t scp_at_checktime; /** check early replies */ unsigned scp_at_check; /** @} */ /** * serialize the following fields, used for processing * replies for this portal */ spinlock_t scp_rep_lock __cfs_cacheline_aligned; /** all the active replies */ struct list_head scp_rep_active; /** List of free reply_states */ struct list_head scp_rep_idle; /** waitq to run, when adding stuff to srv_free_rs_list */ wait_queue_head_t scp_rep_waitq; /** # 'difficult' replies */ atomic_t scp_nreps_difficult; }; #define ptlrpc_service_for_each_part(part, i, svc) \ for (i = 0; \ i < (svc)->srv_ncpts && \ (svc)->srv_parts != NULL && \ ((part) = (svc)->srv_parts[i]) != NULL; i++) /** * Declaration of ptlrpcd control structure */ struct ptlrpcd_ctl { /** * Ptlrpc thread control flags (LIOD_START, LIOD_STOP, LIOD_FORCE) */ unsigned long pc_flags; /** * Thread lock protecting structure fields. */ spinlock_t pc_lock; /** * Start completion. */ struct completion pc_starting; /** * Stop completion. */ struct completion pc_finishing; /** * Thread requests set. */ struct ptlrpc_request_set *pc_set; /** * Thread name used in kthread_run() */ char pc_name[16]; /** * CPT the thread is bound on. */ int pc_cpt; /** * Index of ptlrpcd thread in the array. */ int pc_index; /** * Pointer to the array of partners' ptlrpcd_ctl structure. */ struct ptlrpcd_ctl **pc_partners; /** * Number of the ptlrpcd's partners. */ int pc_npartners; /** * Record the partner index to be processed next. */ int pc_cursor; /** * Error code if the thread failed to fully start. */ int pc_error; }; /* Bits for pc_flags */ enum ptlrpcd_ctl_flags { /** * Ptlrpc thread start flag. */ LIOD_START = 1 << 0, /** * Ptlrpc thread stop flag. */ LIOD_STOP = 1 << 1, /** * Ptlrpc thread force flag (only stop force so far). * This will cause aborting any inflight rpcs handled * by thread if LIOD_STOP is specified. */ LIOD_FORCE = 1 << 2, /** * This is a recovery ptlrpc thread. */ LIOD_RECOVERY = 1 << 3, }; /** * \addtogroup nrs * @{ * * Service compatibility function; the policy is compatible with all services. * * \param[in] svc The service the policy is attempting to register with. * \param[in] desc The policy descriptor * * \retval true The policy is compatible with the service * * \see ptlrpc_nrs_pol_desc::pd_compat() */ static inline bool nrs_policy_compat_all(const struct ptlrpc_service *svc, const struct ptlrpc_nrs_pol_desc *desc) { return true; } /** * Service compatibility function; the policy is compatible with only a specific * service which is identified by its human-readable name at * ptlrpc_service::srv_name. * * \param[in] svc The service the policy is attempting to register with. * \param[in] desc The policy descriptor * * \retval false The policy is not compatible with the service * \retval true The policy is compatible with the service * * \see ptlrpc_nrs_pol_desc::pd_compat() */ static inline bool nrs_policy_compat_one(const struct ptlrpc_service *svc, const struct ptlrpc_nrs_pol_desc *desc) { LASSERT(desc->pd_compat_svc_name != NULL); return strcmp(svc->srv_name, desc->pd_compat_svc_name) == 0; } /** @} nrs */ /* ptlrpc/events.c */ extern struct lnet_handle_eq ptlrpc_eq_h; extern int ptlrpc_uuid_to_peer(struct obd_uuid *uuid, struct lnet_process_id *peer, lnet_nid_t *self); /** * These callbacks are invoked by LNet when something happened to * underlying buffer * @{ */ extern void request_out_callback(struct lnet_event *ev); extern void reply_in_callback(struct lnet_event *ev); extern void client_bulk_callback(struct lnet_event *ev); extern void request_in_callback(struct lnet_event *ev); extern void reply_out_callback(struct lnet_event *ev); #ifdef HAVE_SERVER_SUPPORT extern void server_bulk_callback(struct lnet_event *ev); #endif /** @} */ /* ptlrpc/connection.c */ struct ptlrpc_connection *ptlrpc_connection_get(struct lnet_process_id peer, lnet_nid_t self, struct obd_uuid *uuid); int ptlrpc_connection_put(struct ptlrpc_connection *c); struct ptlrpc_connection *ptlrpc_connection_addref(struct ptlrpc_connection *); int ptlrpc_connection_init(void); void ptlrpc_connection_fini(void); extern lnet_pid_t ptl_get_pid(void); /* * Check if the peer connection is on the local node. We need to use GFP_NOFS * for requests from a local client to avoid recursing into the filesystem * as we might end up waiting on a page sent in the request we're serving. * * Use __GFP_HIGHMEM so that the pages can use all of the available memory * on 32-bit machines. Use more aggressive GFP_HIGHUSER flags from non-local * clients to be able to generate more memory pressure on the OSS and allow * inactive pages to be reclaimed, since it doesn't have any other processes * or allocations that generate memory reclaim pressure. * * See b=17576 (bdf50dc9) and b=19529 (3dcf18d3) for details. */ static inline bool ptlrpc_connection_is_local(struct ptlrpc_connection *conn) { if (!conn) return false; if (conn->c_peer.nid == conn->c_self) return true; RETURN(LNetIsPeerLocal(conn->c_peer.nid)); } /* ptlrpc/niobuf.c */ /** * Actual interfacing with LNet to put/get/register/unregister stuff * @{ */ #ifdef HAVE_SERVER_SUPPORT struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_exp(struct ptlrpc_request *req, unsigned nfrags, unsigned max_brw, unsigned int type, unsigned portal, const struct ptlrpc_bulk_frag_ops *ops); int ptlrpc_start_bulk_transfer(struct ptlrpc_bulk_desc *desc); void ptlrpc_abort_bulk(struct ptlrpc_bulk_desc *desc); static inline int ptlrpc_server_bulk_active(struct ptlrpc_bulk_desc *desc) { int rc; LASSERT(desc != NULL); spin_lock(&desc->bd_lock); rc = desc->bd_md_count; spin_unlock(&desc->bd_lock); return rc; } #endif int ptlrpc_register_bulk(struct ptlrpc_request *req); int ptlrpc_unregister_bulk(struct ptlrpc_request *req, int async); static inline int ptlrpc_client_bulk_active(struct ptlrpc_request *req) { struct ptlrpc_bulk_desc *desc; int rc; LASSERT(req != NULL); desc = req->rq_bulk; if (!desc) return 0; if (req->rq_bulk_deadline > ktime_get_real_seconds()) return 1; spin_lock(&desc->bd_lock); rc = desc->bd_md_count; spin_unlock(&desc->bd_lock); return rc; } #define PTLRPC_REPLY_MAYBE_DIFFICULT 0x01 #define PTLRPC_REPLY_EARLY 0x02 int ptlrpc_send_reply(struct ptlrpc_request *req, int flags); int ptlrpc_reply(struct ptlrpc_request *req); int ptlrpc_send_error(struct ptlrpc_request *req, int difficult); int ptlrpc_error(struct ptlrpc_request *req); int ptlrpc_at_get_net_latency(struct ptlrpc_request *req); int ptl_send_rpc(struct ptlrpc_request *request, int noreply); int ptlrpc_register_rqbd(struct ptlrpc_request_buffer_desc *rqbd); /** @} */ /* ptlrpc/client.c */ /** * Client-side portals API. Everything to send requests, receive replies, * request queues, request management, etc. * @{ */ void ptlrpc_request_committed(struct ptlrpc_request *req, int force); void ptlrpc_init_client(int req_portal, int rep_portal, const char *name, struct ptlrpc_client *); void ptlrpc_cleanup_client(struct obd_import *imp); struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid, lnet_nid_t nid4refnet); int ptlrpc_queue_wait(struct ptlrpc_request *req); int ptlrpc_replay_req(struct ptlrpc_request *req); void ptlrpc_restart_req(struct ptlrpc_request *req); void ptlrpc_abort_inflight(struct obd_import *imp); void ptlrpc_cleanup_imp(struct obd_import *imp); void ptlrpc_abort_set(struct ptlrpc_request_set *set); struct ptlrpc_request_set *ptlrpc_prep_set(void); struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func, void *arg); int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set); int ptlrpc_set_wait(const struct lu_env *env, struct ptlrpc_request_set *); void ptlrpc_mark_interrupted(struct ptlrpc_request *req); void ptlrpc_set_destroy(struct ptlrpc_request_set *); void ptlrpc_set_add_req(struct ptlrpc_request_set *, struct ptlrpc_request *); void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool); int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq); struct ptlrpc_request_pool * ptlrpc_init_rq_pool(int, int, int (*populate_pool)(struct ptlrpc_request_pool *, int)); void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req); struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp, const struct req_format *format); struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp, struct ptlrpc_request_pool *, const struct req_format *format); void ptlrpc_request_free(struct ptlrpc_request *request); int ptlrpc_request_pack(struct ptlrpc_request *request, __u32 version, int opcode); struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp, const struct req_format *format, __u32 version, int opcode); int ptlrpc_request_bufs_pack(struct ptlrpc_request *request, __u32 version, int opcode, char **bufs, struct ptlrpc_cli_ctx *ctx); void ptlrpc_req_finished(struct ptlrpc_request *request); void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request); struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req); struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req, unsigned nfrags, unsigned max_brw, unsigned int type, unsigned portal, const struct ptlrpc_bulk_frag_ops *ops); int ptlrpc_prep_bulk_frag(struct ptlrpc_bulk_desc *desc, void *frag, int len); void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc, struct page *page, int pageoffset, int len, int pin); void ptlrpc_free_bulk(struct ptlrpc_bulk_desc *bulk); static inline void ptlrpc_release_bulk_noop(struct ptlrpc_bulk_desc *desc) { } void ptlrpc_retain_replayable_request(struct ptlrpc_request *req, struct obd_import *imp); __u64 ptlrpc_next_xid(void); __u64 ptlrpc_sample_next_xid(void); __u64 ptlrpc_req_xid(struct ptlrpc_request *request); void ptlrpc_reassign_next_xid(struct ptlrpc_request *req); /* Set of routines to run a function in ptlrpcd context */ void *ptlrpcd_alloc_work(struct obd_import *imp, int (*cb)(const struct lu_env *, void *), void *data); void ptlrpcd_destroy_work(void *handler); int ptlrpcd_queue_work(void *handler); /** @} */ struct ptlrpc_service_buf_conf { /* nbufs is buffers # to allocate when growing the pool */ unsigned int bc_nbufs; /* buffer size to post */ unsigned int bc_buf_size; /* portal to listed for requests on */ unsigned int bc_req_portal; /* portal of where to send replies to */ unsigned int bc_rep_portal; /* maximum request size to be accepted for this service */ unsigned int bc_req_max_size; /* maximum reply size this service can ever send */ unsigned int bc_rep_max_size; }; struct ptlrpc_service_thr_conf { /* threadname should be 8 characters or less - 6 will be added on */ char *tc_thr_name; /* threads increasing factor for each CPU */ unsigned int tc_thr_factor; /* service threads # to start on each partition while initializing */ unsigned int tc_nthrs_init; /* * low water of threads # upper-limit on each partition while running, * service availability may be impacted if threads number is lower * than this value. It can be ZERO if the service doesn't require * CPU affinity or there is only one partition. */ unsigned int tc_nthrs_base; /* "soft" limit for total threads number */ unsigned int tc_nthrs_max; /* user specified threads number, it will be validated due to * other members of this structure. */ unsigned int tc_nthrs_user; /* bind service threads to only CPUs in their associated CPT */ unsigned int tc_cpu_bind; /* Tags for lu_context associated with service thread */ __u32 tc_ctx_tags; }; struct ptlrpc_service_cpt_conf { struct cfs_cpt_table *cc_cptable; /* string pattern to describe CPTs for a service */ char *cc_pattern; /* whether or not to have per-CPT service partitions */ bool cc_affinity; }; struct ptlrpc_service_conf { /* service name */ char *psc_name; /* soft watchdog timeout multiplifier to print stuck service traces */ unsigned int psc_watchdog_factor; /* buffer information */ struct ptlrpc_service_buf_conf psc_buf; /* thread information */ struct ptlrpc_service_thr_conf psc_thr; /* CPU partition information */ struct ptlrpc_service_cpt_conf psc_cpt; /* function table */ struct ptlrpc_service_ops psc_ops; }; /* ptlrpc/service.c */ /** * Server-side services API. Register/unregister service, request state * management, service thread management * * @{ */ void ptlrpc_save_lock(struct ptlrpc_request *req, struct lustre_handle *lock, int mode, bool no_ack, bool convert_lock); void ptlrpc_commit_replies(struct obd_export *exp); void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs); void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs); int ptlrpc_hpreq_handler(struct ptlrpc_request *req); struct ptlrpc_service *ptlrpc_register_service( struct ptlrpc_service_conf *conf, struct kset *parent, struct dentry *debugfs_entry); void ptlrpc_stop_all_threads(struct ptlrpc_service *svc); int ptlrpc_start_threads(struct ptlrpc_service *svc); int ptlrpc_unregister_service(struct ptlrpc_service *service); int ptlrpc_service_health_check(struct ptlrpc_service *); void ptlrpc_server_drop_request(struct ptlrpc_request *req); void ptlrpc_request_change_export(struct ptlrpc_request *req, struct obd_export *export); void ptlrpc_update_export_timer(struct obd_export *exp, time64_t extra_delay); int ptlrpc_hr_init(void); void ptlrpc_hr_fini(void); /** @} */ /* ptlrpc/import.c */ /** * Import API * @{ */ int ptlrpc_connect_import(struct obd_import *imp); int ptlrpc_connect_import_locked(struct obd_import *imp); int ptlrpc_init_import(struct obd_import *imp); int ptlrpc_disconnect_import(struct obd_import *imp, int noclose); int ptlrpc_disconnect_and_idle_import(struct obd_import *imp); int ptlrpc_import_recovery_state_machine(struct obd_import *imp); void deuuidify(char *uuid, const char *prefix, char **uuid_start, int *uuid_len); void ptlrpc_import_enter_resend(struct obd_import *imp); /* ptlrpc/pack_generic.c */ int ptlrpc_reconnect_import(struct obd_import *imp); /** @} */ /** * ptlrpc msg buffer and swab interface * * @{ */ #define PTLRPC_MAX_BUFCOUNT \ (sizeof(((struct ptlrpc_request *)0)->rq_req_swab_mask) * 8) #define MD_MAX_BUFLEN (MDS_REG_MAXREQSIZE > OUT_MAXREQSIZE ? \ MDS_REG_MAXREQSIZE : OUT_MAXREQSIZE) #define PTLRPC_MAX_BUFLEN (OST_IO_MAXREQSIZE > MD_MAX_BUFLEN ? \ OST_IO_MAXREQSIZE : MD_MAX_BUFLEN) bool ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout, __u32 index); void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout, __u32 index); int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len); int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len); int lustre_msg_check_version(struct lustre_msg *msg, __u32 version); void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens, char **bufs); int lustre_pack_request(struct ptlrpc_request *, __u32 magic, int count, __u32 *lens, char **bufs); int lustre_pack_reply(struct ptlrpc_request *, int count, __u32 *lens, char **bufs); int lustre_pack_reply_v2(struct ptlrpc_request *req, int count, __u32 *lens, char **bufs, int flags); #define LPRFL_EARLY_REPLY 1 int lustre_pack_reply_flags(struct ptlrpc_request *, int count, __u32 *lens, char **bufs, int flags); int lustre_shrink_msg(struct lustre_msg *msg, int segment, unsigned int newlen, int move_data); int lustre_grow_msg(struct lustre_msg *msg, int segment, unsigned int newlen); void lustre_free_reply_state(struct ptlrpc_reply_state *rs); int __lustre_unpack_msg(struct lustre_msg *m, int len); __u32 lustre_msg_hdr_size(__u32 magic, __u32 count); __u32 lustre_msg_size(__u32 magic, int count, __u32 *lengths); __u32 lustre_msg_size_v2(int count, __u32 *lengths); __u32 lustre_packed_msg_size(struct lustre_msg *msg); __u32 lustre_msg_early_size(void); void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size); void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 minlen); __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n); void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len); __u32 lustre_msg_bufcount(struct lustre_msg *m); char *lustre_msg_string(struct lustre_msg *m, __u32 n, __u32 max_len); __u32 lustre_msghdr_get_flags(struct lustre_msg *msg); void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags); __u32 lustre_msg_get_flags(struct lustre_msg *msg); void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags); void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags); void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags); __u32 lustre_msg_get_op_flags(struct lustre_msg *msg); void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags); struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg); __u32 lustre_msg_get_type(struct lustre_msg *msg); enum lustre_msg_version lustre_msg_get_version(struct lustre_msg *msg); void lustre_msg_add_version(struct lustre_msg *msg, __u32 version); __u32 lustre_msg_get_opc(struct lustre_msg *msg); __u64 lustre_msg_get_last_xid(struct lustre_msg *msg); __u16 lustre_msg_get_tag(struct lustre_msg *msg); __u64 lustre_msg_get_last_committed(struct lustre_msg *msg); __u64 *lustre_msg_get_versions(struct lustre_msg *msg); __u64 lustre_msg_get_transno(struct lustre_msg *msg); __u64 lustre_msg_get_slv(struct lustre_msg *msg); __u32 lustre_msg_get_limit(struct lustre_msg *msg); void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv); void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit); int lustre_msg_get_status(struct lustre_msg *msg); __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg); __u32 lustre_msg_get_magic(struct lustre_msg *msg); __u32 lustre_msg_get_timeout(struct lustre_msg *msg); __u32 lustre_msg_get_service_time(struct lustre_msg *msg); char *lustre_msg_get_jobid(struct lustre_msg *msg); __u32 lustre_msg_get_cksum(struct lustre_msg *msg); __u64 lustre_msg_get_mbits(struct lustre_msg *msg); __u32 lustre_msg_calc_cksum(struct lustre_msg *msg); void lustre_msg_set_handle(struct lustre_msg *msg,struct lustre_handle *handle); void lustre_msg_set_type(struct lustre_msg *msg, __u32 type); void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc); void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid); void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag); void lustre_msg_set_last_committed(struct lustre_msg *msg,__u64 last_committed); void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions); void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno); void lustre_msg_set_status(struct lustre_msg *msg, __u32 status); void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt); void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *sizes); void ptlrpc_request_set_replen(struct ptlrpc_request *req); void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout); void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time); void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid); void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum); void lustre_msg_set_mbits(struct lustre_msg *msg, __u64 mbits); static inline void lustre_shrink_reply(struct ptlrpc_request *req, int segment, unsigned int newlen, int move_data) { LASSERT(req->rq_reply_state); LASSERT(req->rq_repmsg); req->rq_replen = lustre_shrink_msg(req->rq_repmsg, segment, newlen, move_data); } #ifdef LUSTRE_TRANSLATE_ERRNOS static inline int ptlrpc_status_hton(int h) { /* * Positive errnos must be network errnos, such as LUSTRE_EDEADLK, * ELDLM_LOCK_ABORTED, etc. */ if (h < 0) return -lustre_errno_hton(-h); else return h; } static inline int ptlrpc_status_ntoh(int n) { /* * See the comment in ptlrpc_status_hton(). */ if (n < 0) return -lustre_errno_ntoh(-n); else return n; } #else #define ptlrpc_status_hton(h) (h) #define ptlrpc_status_ntoh(n) (n) #endif /** @} */ /** Change request phase of \a req to \a new_phase */ static inline void ptlrpc_rqphase_move(struct ptlrpc_request *req, enum rq_phase new_phase) { if (req->rq_phase == new_phase) return; if (new_phase == RQ_PHASE_UNREG_RPC || new_phase == RQ_PHASE_UNREG_BULK) { /* No embedded unregistering phases */ if (req->rq_phase == RQ_PHASE_UNREG_RPC || req->rq_phase == RQ_PHASE_UNREG_BULK) return; req->rq_next_phase = req->rq_phase; if (req->rq_import) atomic_inc(&req->rq_import->imp_unregistering); } if (req->rq_phase == RQ_PHASE_UNREG_RPC || req->rq_phase == RQ_PHASE_UNREG_BULK) { if (req->rq_import) atomic_dec(&req->rq_import->imp_unregistering); } DEBUG_REQ(D_INFO, req, "move request phase from %s to %s", ptlrpc_rqphase2str(req), ptlrpc_phase2str(new_phase)); req->rq_phase = new_phase; } /** * Returns true if request \a req got early reply and hard deadline is not met */ static inline int ptlrpc_client_early(struct ptlrpc_request *req) { return req->rq_early; } /** * Returns true if we got real reply from server for this request */ static inline int ptlrpc_client_replied(struct ptlrpc_request *req) { if (req->rq_reply_deadline > ktime_get_real_seconds()) return 0; return req->rq_replied; } /** Returns true if request \a req is in process of receiving server reply */ static inline int ptlrpc_client_recv(struct ptlrpc_request *req) { if (req->rq_reply_deadline > ktime_get_real_seconds()) return 1; return req->rq_receiving_reply; } static inline int ptlrpc_client_recv_or_unlink(struct ptlrpc_request *req) { int rc; spin_lock(&req->rq_lock); if (req->rq_reply_deadline > ktime_get_real_seconds()) { spin_unlock(&req->rq_lock); return 1; } if (req->rq_req_deadline > ktime_get_real_seconds()) { spin_unlock(&req->rq_lock); return 1; } rc = !req->rq_req_unlinked || !req->rq_reply_unlinked || req->rq_receiving_reply; spin_unlock(&req->rq_lock); return rc; } static inline void ptlrpc_client_wake_req(struct ptlrpc_request *req) { smp_mb(); if (req->rq_set == NULL) wake_up(&req->rq_reply_waitq); else wake_up(&req->rq_set->set_waitq); } static inline void ptlrpc_rs_addref(struct ptlrpc_reply_state *rs) { LASSERT(atomic_read(&rs->rs_refcount) > 0); atomic_inc(&rs->rs_refcount); } static inline void ptlrpc_rs_decref(struct ptlrpc_reply_state *rs) { LASSERT(atomic_read(&rs->rs_refcount) > 0); if (atomic_dec_and_test(&rs->rs_refcount)) lustre_free_reply_state(rs); } /* Should only be called once per req */ static inline void ptlrpc_req_drop_rs(struct ptlrpc_request *req) { if (req->rq_reply_state == NULL) return; /* shouldn't occur */ ptlrpc_rs_decref(req->rq_reply_state); req->rq_reply_state = NULL; req->rq_repmsg = NULL; } static inline __u32 lustre_request_magic(struct ptlrpc_request *req) { return lustre_msg_get_magic(req->rq_reqmsg); } static inline int ptlrpc_req_get_repsize(struct ptlrpc_request *req) { switch (req->rq_reqmsg->lm_magic) { case LUSTRE_MSG_MAGIC_V2: return req->rq_reqmsg->lm_repsize; default: LASSERTF(0, "incorrect message magic: %08x\n", req->rq_reqmsg->lm_magic); return -EFAULT; } } static inline int ptlrpc_send_limit_expired(struct ptlrpc_request *req) { if (req->rq_delay_limit != 0 && req->rq_queued_time + req->rq_delay_limit < ktime_get_seconds()) return 1; return 0; } static inline int ptlrpc_no_resend(struct ptlrpc_request *req) { if (!req->rq_no_resend && ptlrpc_send_limit_expired(req)) { spin_lock(&req->rq_lock); req->rq_no_resend = 1; spin_unlock(&req->rq_lock); } return req->rq_no_resend; } static inline int ptlrpc_server_get_timeout(struct ptlrpc_service_part *svcpt) { int at = AT_OFF ? 0 : at_get(&svcpt->scp_at_estimate); return svcpt->scp_service->srv_watchdog_factor * max_t(int, at, obd_timeout); } static inline struct ptlrpc_service * ptlrpc_req2svc(struct ptlrpc_request *req) { LASSERT(req->rq_rqbd != NULL); return req->rq_rqbd->rqbd_svcpt->scp_service; } /* ldlm/ldlm_lib.c */ /** * Target client logic * @{ */ int client_obd_setup(struct obd_device *obddev, struct lustre_cfg *lcfg); int client_obd_cleanup(struct obd_device *obddev); int client_connect_import(const struct lu_env *env, struct obd_export **exp, struct obd_device *obd, struct obd_uuid *cluuid, struct obd_connect_data *, void *localdata); int client_disconnect_export(struct obd_export *exp); int client_import_add_conn(struct obd_import *imp, struct obd_uuid *uuid, int priority); int client_import_del_conn(struct obd_import *imp, struct obd_uuid *uuid); int client_import_find_conn(struct obd_import *imp, lnet_nid_t peer, struct obd_uuid *uuid); int import_set_conn_priority(struct obd_import *imp, struct obd_uuid *uuid); void client_destroy_import(struct obd_import *imp); /** @} */ #ifdef HAVE_SERVER_SUPPORT int server_disconnect_export(struct obd_export *exp); #endif /* ptlrpc/pinger.c */ /** * Pinger API (client side only) * @{ */ enum timeout_event { TIMEOUT_GRANT = 1 }; struct timeout_item; typedef int (*timeout_cb_t)(struct timeout_item *, void *); int ptlrpc_pinger_add_import(struct obd_import *imp); int ptlrpc_pinger_del_import(struct obd_import *imp); int ptlrpc_add_timeout_client(time64_t time, enum timeout_event event, timeout_cb_t cb, void *data, struct list_head *obd_list); int ptlrpc_del_timeout_client(struct list_head *obd_list, enum timeout_event event); struct ptlrpc_request * ptlrpc_prep_ping(struct obd_import *imp); int ptlrpc_obd_ping(struct obd_device *obd); void ping_evictor_start(void); void ping_evictor_stop(void); void ptlrpc_pinger_ir_up(void); void ptlrpc_pinger_ir_down(void); /** @} */ int ptlrpc_pinger_suppress_pings(void); /* ptlrpc/ptlrpcd.c */ void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force); void ptlrpcd_free(struct ptlrpcd_ctl *pc); void ptlrpcd_wake(struct ptlrpc_request *req); void ptlrpcd_add_req(struct ptlrpc_request *req); void ptlrpcd_add_rqset(struct ptlrpc_request_set *set); int ptlrpcd_addref(void); void ptlrpcd_decref(void); /* ptlrpc/lproc_ptlrpc.c */ /** * procfs output related functions * @{ */ const char* ll_opcode2str(__u32 opcode); const int ll_str2opcode(const char *ops); #ifdef CONFIG_PROC_FS void ptlrpc_lprocfs_register_obd(struct obd_device *obd); void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd); void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes); #else static inline void ptlrpc_lprocfs_register_obd(struct obd_device *obd) {} static inline void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd) {} static inline void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes) {} #endif /** @} */ /* ptlrpc/llog_server.c */ int llog_origin_handle_open(struct ptlrpc_request *req); int llog_origin_handle_prev_block(struct ptlrpc_request *req); int llog_origin_handle_next_block(struct ptlrpc_request *req); int llog_origin_handle_read_header(struct ptlrpc_request *req); /* ptlrpc/llog_client.c */ extern struct llog_operations llog_client_ops; /** @} net */ #endif /** @} PtlRPC */