/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2010, 2012, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. */ /** \defgroup PtlRPC Portal RPC and networking module. * * PortalRPC is the layer used by rest of lustre code to achieve network * communications: establish connections with corresponding export and import * states, listen for a service, send and receive RPCs. * PortalRPC also includes base recovery framework: packet resending and * replaying, reconnections, pinger. * * PortalRPC utilizes LNet as its transport layer. * * @{ */ #ifndef _LUSTRE_NET_H #define _LUSTRE_NET_H /** \defgroup net net * * @{ */ #if defined(__linux__) #include #elif defined(__APPLE__) #include #elif defined(__WINNT__) #include #else #error Unsupported operating system. #endif #include // #include #include #include #include #include #include #include #include #include #include #include /* MD flags we _always_ use */ #define PTLRPC_MD_OPTIONS 0 /** * Max # of bulk operations in one request. * In order for the client and server to properly negotiate the maximum * possible transfer size, PTLRPC_BULK_OPS_COUNT must be a power-of-two * value. The client is free to limit the actual RPC size for any bulk * transfer via cl_max_pages_per_rpc to some non-power-of-two value. */ #define PTLRPC_BULK_OPS_BITS 2 #define PTLRPC_BULK_OPS_COUNT (1U << PTLRPC_BULK_OPS_BITS) /** * PTLRPC_BULK_OPS_MASK is for the convenience of the client only, and * should not be used on the server at all. Otherwise, it imposes a * protocol limitation on the maximum RPC size that can be used by any * RPC sent to that server in the future. Instead, the server should * use the negotiated per-client ocd_brw_size to determine the bulk * RPC count. */ #define PTLRPC_BULK_OPS_MASK (~((__u64)PTLRPC_BULK_OPS_COUNT - 1)) /** * Define maxima for bulk I/O. * * A single PTLRPC BRW request is sent via up to PTLRPC_BULK_OPS_COUNT * of LNET_MTU sized RDMA transfers. Clients and servers negotiate the * currently supported maximum between peers at connect via ocd_brw_size. */ #define PTLRPC_MAX_BRW_BITS (LNET_MTU_BITS + PTLRPC_BULK_OPS_BITS) #define PTLRPC_MAX_BRW_SIZE (1 << PTLRPC_MAX_BRW_BITS) #define PTLRPC_MAX_BRW_PAGES (PTLRPC_MAX_BRW_SIZE >> CFS_PAGE_SHIFT) #define ONE_MB_BRW_SIZE (1 << LNET_MTU_BITS) #define MD_MAX_BRW_SIZE (1 << LNET_MTU_BITS) #define MD_MAX_BRW_PAGES (MD_MAX_BRW_SIZE >> CFS_PAGE_SHIFT) #define DT_MAX_BRW_SIZE PTLRPC_MAX_BRW_SIZE #define DT_MAX_BRW_PAGES (DT_MAX_BRW_SIZE >> CFS_PAGE_SHIFT) #define OFD_MAX_BRW_SIZE (1 << LNET_MTU_BITS) /* When PAGE_SIZE is a constant, we can check our arithmetic here with cpp! */ #ifdef __KERNEL__ # if ((PTLRPC_MAX_BRW_PAGES & (PTLRPC_MAX_BRW_PAGES - 1)) != 0) # error "PTLRPC_MAX_BRW_PAGES isn't a power of two" # endif # if (PTLRPC_MAX_BRW_SIZE != (PTLRPC_MAX_BRW_PAGES * CFS_PAGE_SIZE)) # error "PTLRPC_MAX_BRW_SIZE isn't PTLRPC_MAX_BRW_PAGES * CFS_PAGE_SIZE" # endif # if (PTLRPC_MAX_BRW_SIZE > LNET_MTU * PTLRPC_BULK_OPS_COUNT) # error "PTLRPC_MAX_BRW_SIZE too big" # endif # if (PTLRPC_MAX_BRW_PAGES > LNET_MAX_IOV * PTLRPC_BULK_OPS_COUNT) # error "PTLRPC_MAX_BRW_PAGES too big" # endif #endif /* __KERNEL__ */ #define PTLRPC_NTHRS_INIT 2 /** * Buffer Constants * * Constants determine how memory is used to buffer incoming service requests. * * ?_NBUFS # buffers to allocate when growing the pool * ?_BUFSIZE # bytes in a single request buffer * ?_MAXREQSIZE # maximum request service will receive * * When fewer than ?_NBUFS/2 buffers are posted for receive, another chunk * of ?_NBUFS is added to the pool. * * Messages larger than ?_MAXREQSIZE are dropped. Request buffers are * considered full when less than ?_MAXREQSIZE is left in them. */ /** * Thread Constants * * Constants determine how threads are created for ptlrpc service. * * ?_NTHRS_INIT # threads to create for each service partition on * initializing. If it's non-affinity service and * there is only one partition, it's the overall # * threads for the service while initializing. * ?_NTHRS_BASE # threads should be created at least for each * ptlrpc partition to keep the service healthy. * It's the low-water mark of threads upper-limit * for each partition. * ?_THR_FACTOR # threads can be added on threads upper-limit for * each CPU core. This factor is only for reference, * we might decrease value of factor if number of cores * per CPT is above a limit. * ?_NTHRS_MAX # overall threads can be created for a service, * it's a soft limit because if service is running * on machine with hundreds of cores and tens of * CPU partitions, we need to guarantee each partition * has ?_NTHRS_BASE threads, which means total threads * will be ?_NTHRS_BASE * number_of_cpts which can * exceed ?_NTHRS_MAX. * * Examples * * #define MDS_NTHRS_INIT 2 * #define MDS_NTHRS_BASE 64 * #define MDS_NTHRS_FACTOR 8 * #define MDS_NTHRS_MAX 1024 * * Example 1): * --------------------------------------------------------------------- * Server(A) has 16 cores, user configured it to 4 partitions so each * partition has 4 cores, then actual number of service threads on each * partition is: * MDS_NTHRS_BASE(64) + cores(4) * MDS_NTHRS_FACTOR(8) = 96 * * Total number of threads for the service is: * 96 * partitions(4) = 384 * * Example 2): * --------------------------------------------------------------------- * Server(B) has 32 cores, user configured it to 4 partitions so each * partition has 8 cores, then actual number of service threads on each * partition is: * MDS_NTHRS_BASE(64) + cores(8) * MDS_NTHRS_FACTOR(8) = 128 * * Total number of threads for the service is: * 128 * partitions(4) = 512 * * Example 3): * --------------------------------------------------------------------- * Server(B) has 96 cores, user configured it to 8 partitions so each * partition has 12 cores, then actual number of service threads on each * partition is: * MDS_NTHRS_BASE(64) + cores(12) * MDS_NTHRS_FACTOR(8) = 160 * * Total number of threads for the service is: * 160 * partitions(8) = 1280 * * However, it's above the soft limit MDS_NTHRS_MAX, so we choose this number * as upper limit of threads number for each partition: * MDS_NTHRS_MAX(1024) / partitions(8) = 128 * * Example 4): * --------------------------------------------------------------------- * Server(C) have a thousand of cores and user configured it to 32 partitions * MDS_NTHRS_BASE(64) * 32 = 2048 * * which is already above soft limit MDS_NTHRS_MAX(1024), but we still need * to guarantee that each partition has at least MDS_NTHRS_BASE(64) threads * to keep service healthy, so total number of threads will just be 2048. * * NB: we don't suggest to choose server with that many cores because backend * filesystem itself, buffer cache, or underlying network stack might * have some SMP scalability issues at that large scale. * * If user already has a fat machine with hundreds or thousands of cores, * there are two choices for configuration: * a) create CPU table from subset of all CPUs and run Lustre on * top of this subset * b) bind service threads on a few partitions, see modparameters of * MDS and OSS for details * * NB: these calculations (and examples below) are simplified to help * understanding, the real implementation is a little more complex, * please see ptlrpc_server_nthreads_check() for details. * */ /* * LDLM threads constants: * * Given 8 as factor and 24 as base threads number * * example 1) * On 4-core machine we will have 24 + 8 * 4 = 56 threads. * * example 2) * On 8-core machine with 2 partitions we will have 24 + 4 * 8 = 56 * threads for each partition and total threads number will be 112. * * example 3) * On 64-core machine with 8 partitions we will need LDLM_NTHRS_BASE(24) * threads for each partition to keep service healthy, so total threads * number should be 24 * 8 = 192. * * So with these constants, threads number wil be at the similar level * of old versions, unless target machine has over a hundred cores */ #define LDLM_THR_FACTOR 8 #define LDLM_NTHRS_INIT PTLRPC_NTHRS_INIT #define LDLM_NTHRS_BASE 24 #define LDLM_NTHRS_MAX (cfs_num_online_cpus() == 1 ? 64 : 128) #define LDLM_BL_THREADS LDLM_NTHRS_AUTO_INIT #define LDLM_NBUFS 64 #define LDLM_BUFSIZE (8 * 1024) #define LDLM_MAXREQSIZE (5 * 1024) #define LDLM_MAXREPSIZE (1024) /* * MDS threads constants: * * Please see examples in "Thread Constants", MDS threads number will be at * the comparable level of old versions, unless the server has many cores. */ #ifndef MDS_MAX_THREADS #define MDS_MAX_THREADS 1024 #define MDS_MAX_OTHR_THREADS 256 #else /* MDS_MAX_THREADS */ #if MDS_MAX_THREADS < PTLRPC_NTHRS_INIT #undef MDS_MAX_THREADS #define MDS_MAX_THREADS PTLRPC_NTHRS_INIT #endif #define MDS_MAX_OTHR_THREADS max(PTLRPC_NTHRS_INIT, MDS_MAX_THREADS / 2) #endif /* default service */ #define MDS_THR_FACTOR 8 #define MDS_NTHRS_INIT PTLRPC_NTHRS_INIT #define MDS_NTHRS_MAX MDS_MAX_THREADS #define MDS_NTHRS_BASE min(64, MDS_NTHRS_MAX) /* read-page service */ #define MDS_RDPG_THR_FACTOR 4 #define MDS_RDPG_NTHRS_INIT PTLRPC_NTHRS_INIT #define MDS_RDPG_NTHRS_MAX MDS_MAX_OTHR_THREADS #define MDS_RDPG_NTHRS_BASE min(48, MDS_RDPG_NTHRS_MAX) /* these should be removed when we remove setattr service in the future */ #define MDS_SETA_THR_FACTOR 4 #define MDS_SETA_NTHRS_INIT PTLRPC_NTHRS_INIT #define MDS_SETA_NTHRS_MAX MDS_MAX_OTHR_THREADS #define MDS_SETA_NTHRS_BASE min(48, MDS_SETA_NTHRS_MAX) /* non-affinity threads */ #define MDS_OTHR_NTHRS_INIT PTLRPC_NTHRS_INIT #define MDS_OTHR_NTHRS_MAX MDS_MAX_OTHR_THREADS #define MDS_NBUFS 64 /** * Assume file name length = FNAME_MAX = 256 (true for ext3). * path name length = PATH_MAX = 4096 * LOV MD size max = EA_MAX = 24 * 2000 * (NB: 24 is size of lov_ost_data) * LOV LOGCOOKIE size max = 32 * 2000 * (NB: 32 is size of llog_cookie) * symlink: FNAME_MAX + PATH_MAX <- largest * link: FNAME_MAX + PATH_MAX (mds_rec_link < mds_rec_create) * rename: FNAME_MAX + FNAME_MAX * open: FNAME_MAX + EA_MAX * * MDS_MAXREQSIZE ~= 4736 bytes = * lustre_msg + ldlm_request + mdt_body + mds_rec_create + FNAME_MAX + PATH_MAX * MDS_MAXREPSIZE ~= 8300 bytes = lustre_msg + llog_header * * Realistic size is about 512 bytes (20 character name + 128 char symlink), * except in the open case where there are a large number of OSTs in a LOV. */ #define MDS_MAXREQSIZE (5 * 1024) /* >= 4736 */ #define MDS_MAXREPSIZE (9 * 1024) /* >= 8300 */ /** * MDS incoming request with LOV EA * 24 = sizeof(struct lov_ost_data), i.e: replay of opencreate */ #define MDS_LOV_MAXREQSIZE max(MDS_MAXREQSIZE, \ 362 + LOV_MAX_STRIPE_COUNT * 24) /** * MDS outgoing reply with LOV EA * * NB: max reply size Lustre 2.4+ client can get from old MDS is: * LOV_MAX_STRIPE_COUNT * (llog_cookie + lov_ost_data) + extra bytes * * but 2.4 or later MDS will never send reply with llog_cookie to any * version client. This macro is defined for server side reply buffer size. */ #define MDS_LOV_MAXREPSIZE MDS_LOV_MAXREQSIZE /** * The update request includes all of updates from the create, which might * include linkea (4K maxim), together with other updates, we set it to 9K: * lustre_msg + ptlrpc_body + UPDATE_BUF_SIZE (8K) */ #define MDS_OUT_MAXREQSIZE (9 * 1024) #define MDS_OUT_MAXREPSIZE MDS_MAXREPSIZE /** MDS_BUFSIZE = max_reqsize (w/o LOV EA) + max sptlrpc payload size */ #define MDS_BUFSIZE max_t(int, MDS_MAXREQSIZE + 1024, 8 * 1024) /** * MDS_LOV_BUFSIZE should be at least max_reqsize (with LOV EA) + * max sptlrpc payload size, however, we need to allocate a much larger buffer * for it because LNet requires each MD(rqbd) has at least MDS_LOVE_MAXREQSIZE * bytes left to avoid dropping of maximum-sized incoming request. * So if MDS_LOV_BUFSIZE is only a little larger than MDS_LOV_MAXREQSIZE, * then it can only fit in one request even there are 48K bytes left in * a rqbd, and memory utilization is very low. * * In the meanwhile, size of rqbd can't be too large, because rqbd can't be * reused until all requests fit in it have been processed and released, * which means one long blocked request can prevent the rqbd be reused. * Now we set request buffer size to 128K, so even each rqbd is unlinked * from LNet with unused 48K, buffer utilization will be about 62%. * Please check LU-2432 for details. */ /** MDS_LOV_BUFSIZE = max_reqsize (w/ LOV EA) + max sptlrpc payload size */ #define MDS_LOV_BUFSIZE max_t(int, MDS_LOV_MAXREQSIZE + 1024, \ 128 * 1024) /** * MDS_OUT_BUFSIZE = max_out_reqsize + max sptlrpc payload (~1K) which is * about 10K, for the same reason as MDS_LOV_BUFSIZE, we also give some * extra bytes to each request buffer to improve buffer utilization rate. */ #define MDS_OUT_BUFSIZE max_t(int, MDS_OUT_MAXREQSIZE + 1024, \ 24 * 1024) /** FLD_MAXREQSIZE == lustre_msg + __u32 padding + ptlrpc_body + opc */ #define FLD_MAXREQSIZE (160) /** FLD_MAXREPSIZE == lustre_msg + ptlrpc_body */ #define FLD_MAXREPSIZE (152) #define FLD_BUFSIZE (1 << 12) /** * SEQ_MAXREQSIZE == lustre_msg + __u32 padding + ptlrpc_body + opc + lu_range + * __u32 padding */ #define SEQ_MAXREQSIZE (160) /** SEQ_MAXREPSIZE == lustre_msg + ptlrpc_body + lu_range */ #define SEQ_MAXREPSIZE (152) #define SEQ_BUFSIZE (1 << 12) /** MGS threads must be >= 3, see bug 22458 comment #28 */ #define MGS_NTHRS_INIT (PTLRPC_NTHRS_INIT + 1) #define MGS_NTHRS_MAX 32 #define MGS_NBUFS 64 #define MGS_BUFSIZE (8 * 1024) #define MGS_MAXREQSIZE (7 * 1024) #define MGS_MAXREPSIZE (9 * 1024) /* * OSS threads constants: * * Given 8 as factor and 64 as base threads number * * example 1): * On 8-core server configured to 2 partitions, we will have * 64 + 8 * 4 = 96 threads for each partition, 192 total threads. * * example 2): * On 32-core machine configured to 4 partitions, we will have * 64 + 8 * 8 = 112 threads for each partition, so total threads number * will be 112 * 4 = 448. * * example 3): * On 64-core machine configured to 4 partitions, we will have * 64 + 16 * 8 = 192 threads for each partition, so total threads number * will be 192 * 4 = 768 which is above limit OSS_NTHRS_MAX(512), so we * cut off the value to OSS_NTHRS_MAX(512) / 4 which is 128 threads * for each partition. * * So we can see that with these constants, threads number wil be at the * similar level of old versions, unless the server has many cores. */ /* depress threads factor for VM with small memory size */ #define OSS_THR_FACTOR min_t(int, 8, \ CFS_NUM_CACHEPAGES >> (28 - CFS_PAGE_SHIFT)) #define OSS_NTHRS_INIT (PTLRPC_NTHRS_INIT + 1) #define OSS_NTHRS_BASE 64 #define OSS_NTHRS_MAX 512 /* threads for handling "create" request */ #define OSS_CR_THR_FACTOR 1 #define OSS_CR_NTHRS_INIT PTLRPC_NTHRS_INIT #define OSS_CR_NTHRS_BASE 8 #define OSS_CR_NTHRS_MAX 64 /** * OST_MAXREQSIZE ~= * lustre_msg + obdo + obd_ioobj + DT_MAX_BRW_PAGES * niobuf_remote * * - single object with 16 pages is 512 bytes * - OST_MAXREQSIZE must be at least 1 page of cookies plus some spillover * - Must be a multiple of 1024 */ #define _OST_MAXREQSIZE_SUM (sizeof(struct lustre_msg) + sizeof(struct obdo) + \ sizeof(struct obd_ioobj) + DT_MAX_BRW_PAGES * \ sizeof(struct niobuf_remote)) #define OST_MAXREQSIZE (((_OST_MAXREQSIZE_SUM - 1) | (1024 - 1)) + 1) #define OST_MAXREPSIZE (9 * 1024) #define OST_NBUFS 64 #define OST_BUFSIZE (OST_MAXREQSIZE + 1024) /* Macro to hide a typecast. */ #define ptlrpc_req_async_args(req) ((void *)&req->rq_async_args) /** * Structure to single define portal connection. */ struct ptlrpc_connection { /** linkage for connections hash table */ cfs_hlist_node_t c_hash; /** Our own lnet nid for this connection */ lnet_nid_t c_self; /** Remote side nid for this connection */ lnet_process_id_t c_peer; /** UUID of the other side */ struct obd_uuid c_remote_uuid; /** reference counter for this connection */ cfs_atomic_t c_refcount; }; /** Client definition for PortalRPC */ struct ptlrpc_client { /** What lnet portal does this client send messages to by default */ __u32 cli_request_portal; /** What portal do we expect replies on */ __u32 cli_reply_portal; /** Name of the client */ char *cli_name; }; /** state flags of requests */ /* XXX only ones left are those used by the bulk descs as well! */ #define PTL_RPC_FL_INTR (1 << 0) /* reply wait was interrupted by user */ #define PTL_RPC_FL_TIMEOUT (1 << 7) /* request timed out waiting for reply */ #define REQ_MAX_ACK_LOCKS 8 union ptlrpc_async_args { /** * Scratchpad for passing args to completion interpreter. Users * cast to the struct of their choosing, and CLASSERT that this is * big enough. For _tons_ of context, OBD_ALLOC a struct and store * a pointer to it here. The pointer_arg ensures this struct is at * least big enough for that. */ void *pointer_arg[11]; __u64 space[7]; }; struct ptlrpc_request_set; typedef int (*set_interpreter_func)(struct ptlrpc_request_set *, void *, int); typedef int (*set_producer_func)(struct ptlrpc_request_set *, void *); /** * Definition of request set structure. * Request set is a list of requests (not necessary to the same target) that * once populated with RPCs could be sent in parallel. * There are two kinds of request sets. General purpose and with dedicated * serving thread. Example of the latter is ptlrpcd set. * For general purpose sets once request set started sending it is impossible * to add new requests to such set. * Provides a way to call "completion callbacks" when all requests in the set * returned. */ struct ptlrpc_request_set { cfs_atomic_t set_refcount; /** number of in queue requests */ cfs_atomic_t set_new_count; /** number of uncompleted requests */ cfs_atomic_t set_remaining; /** wait queue to wait on for request events */ cfs_waitq_t set_waitq; cfs_waitq_t *set_wakeup_ptr; /** List of requests in the set */ cfs_list_t set_requests; /** * List of completion callbacks to be called when the set is completed * This is only used if \a set_interpret is NULL. * Links struct ptlrpc_set_cbdata. */ cfs_list_t set_cblist; /** Completion callback, if only one. */ set_interpreter_func set_interpret; /** opaq argument passed to completion \a set_interpret callback. */ void *set_arg; /** * Lock for \a set_new_requests manipulations * locked so that any old caller can communicate requests to * the set holder who can then fold them into the lock-free set */ spinlock_t set_new_req_lock; /** List of new yet unsent requests. Only used with ptlrpcd now. */ cfs_list_t set_new_requests; /** rq_status of requests that have been freed already */ int set_rc; /** Additional fields used by the flow control extension */ /** Maximum number of RPCs in flight */ int set_max_inflight; /** Callback function used to generate RPCs */ set_producer_func set_producer; /** opaq argument passed to the producer callback */ void *set_producer_arg; }; /** * Description of a single ptrlrpc_set callback */ struct ptlrpc_set_cbdata { /** List linkage item */ cfs_list_t psc_item; /** Pointer to interpreting function */ set_interpreter_func psc_interpret; /** Opaq argument to pass to the callback */ void *psc_data; }; struct ptlrpc_bulk_desc; struct ptlrpc_service_part; struct ptlrpc_service; /** * ptlrpc callback & work item stuff */ struct ptlrpc_cb_id { void (*cbid_fn)(lnet_event_t *ev); /* specific callback fn */ void *cbid_arg; /* additional arg */ }; /** Maximum number of locks to fit into reply state */ #define RS_MAX_LOCKS 8 #define RS_DEBUG 0 /** * Structure to define reply state on the server * Reply state holds various reply message information. Also for "difficult" * replies (rep-ack case) we store the state after sending reply and wait * for the client to acknowledge the reception. In these cases locks could be * added to the state for replay/failover consistency guarantees. */ struct ptlrpc_reply_state { /** Callback description */ struct ptlrpc_cb_id rs_cb_id; /** Linkage for list of all reply states in a system */ cfs_list_t rs_list; /** Linkage for list of all reply states on same export */ cfs_list_t rs_exp_list; /** Linkage for list of all reply states for same obd */ cfs_list_t rs_obd_list; #if RS_DEBUG cfs_list_t rs_debug_list; #endif /** A spinlock to protect the reply state flags */ spinlock_t rs_lock; /** Reply state flags */ unsigned long rs_difficult:1; /* ACK/commit stuff */ unsigned long rs_no_ack:1; /* no ACK, even for difficult requests */ unsigned long rs_scheduled:1; /* being handled? */ unsigned long rs_scheduled_ever:1;/* any schedule attempts? */ unsigned long rs_handled:1; /* been handled yet? */ unsigned long rs_on_net:1; /* reply_out_callback pending? */ unsigned long rs_prealloc:1; /* rs from prealloc list */ unsigned long rs_committed:1;/* the transaction was committed and the rs was dispatched by ptlrpc_commit_replies */ /** Size of the state */ int rs_size; /** opcode */ __u32 rs_opc; /** Transaction number */ __u64 rs_transno; /** xid */ __u64 rs_xid; struct obd_export *rs_export; struct ptlrpc_service_part *rs_svcpt; /** Lnet metadata handle for the reply */ lnet_handle_md_t rs_md_h; cfs_atomic_t rs_refcount; /** Context for the sevice thread */ struct ptlrpc_svc_ctx *rs_svc_ctx; /** Reply buffer (actually sent to the client), encoded if needed */ struct lustre_msg *rs_repbuf; /* wrapper */ /** Size of the reply buffer */ int rs_repbuf_len; /* wrapper buf length */ /** Size of the reply message */ int rs_repdata_len; /* wrapper msg length */ /** * Actual reply message. Its content is encrupted (if needed) to * produce reply buffer for actual sending. In simple case * of no network encryption we jus set \a rs_repbuf to \a rs_msg */ struct lustre_msg *rs_msg; /* reply message */ /** Number of locks awaiting client ACK */ int rs_nlocks; /** Handles of locks awaiting client reply ACK */ struct lustre_handle rs_locks[RS_MAX_LOCKS]; /** Lock modes of locks in \a rs_locks */ ldlm_mode_t rs_modes[RS_MAX_LOCKS]; }; struct ptlrpc_thread; /** RPC stages */ enum rq_phase { RQ_PHASE_NEW = 0xebc0de00, RQ_PHASE_RPC = 0xebc0de01, RQ_PHASE_BULK = 0xebc0de02, RQ_PHASE_INTERPRET = 0xebc0de03, RQ_PHASE_COMPLETE = 0xebc0de04, RQ_PHASE_UNREGISTERING = 0xebc0de05, RQ_PHASE_UNDEFINED = 0xebc0de06 }; /** Type of request interpreter call-back */ typedef int (*ptlrpc_interpterer_t)(const struct lu_env *env, struct ptlrpc_request *req, void *arg, int rc); /** * Definition of request pool structure. * The pool is used to store empty preallocated requests for the case * when we would actually need to send something without performing * any allocations (to avoid e.g. OOM). */ struct ptlrpc_request_pool { /** Locks the list */ spinlock_t prp_lock; /** list of ptlrpc_request structs */ cfs_list_t prp_req_list; /** Maximum message size that would fit into a rquest from this pool */ int prp_rq_size; /** Function to allocate more requests for this pool */ void (*prp_populate)(struct ptlrpc_request_pool *, int); }; struct lu_context; struct lu_env; struct ldlm_lock; /** * \defgroup nrs Network Request Scheduler * @{ */ struct ptlrpc_nrs_policy; struct ptlrpc_nrs_resource; struct ptlrpc_nrs_request; /** * NRS control operations. * * These are common for all policies. */ enum ptlrpc_nrs_ctl { /** * Activate the policy. */ PTLRPC_NRS_CTL_START, /** * Reserved for multiple primary policies, which may be a possibility * in the future. */ PTLRPC_NRS_CTL_STOP, /** * Recycle resources for inactive policies. */ PTLRPC_NRS_CTL_SHRINK, /** * Not a valid opcode. */ PTLRPC_NRS_CTL_INVALID, /** * Policies can start using opcodes from this value and onwards for * their own purposes; the assigned value itself is arbitrary. */ PTLRPC_NRS_CTL_1ST_POL_SPEC = 0x20, }; /** * NRS policy operations. * * These determine the behaviour of a policy, and are called in response to * NRS core events. */ struct ptlrpc_nrs_pol_ops { /** * Called during policy registration; this operation is optional. * * \param[in] policy The policy being initialized */ int (*op_policy_init) (struct ptlrpc_nrs_policy *policy); /** * Called during policy unregistration; this operation is optional. * * \param[in] policy The policy being unregistered/finalized */ void (*op_policy_fini) (struct ptlrpc_nrs_policy *policy); /** * Called when activating a policy via lprocfs; policies allocate and * initialize their resources here; this operation is optional. * * \param[in] policy The policy being started * * \see nrs_policy_start_locked() */ int (*op_policy_start) (struct ptlrpc_nrs_policy *policy); /** * Called when deactivating a policy via lprocfs; policies deallocate * their resources here; this operation is optional * * \param[in] policy The policy being stopped * * \see nrs_policy_stop_final() */ void (*op_policy_stop) (struct ptlrpc_nrs_policy *policy); /** * Used for policy-specific operations; i.e. not generic ones like * \e PTLRPC_NRS_CTL_START and \e PTLRPC_NRS_CTL_GET_INFO; analogous * to an ioctl; this operation is optional. * * \param[in] policy The policy carrying out operation \a opc * \param[in] opc The command operation being carried out * \param[in,out] arg An generic buffer for communication between the * user and the control operation * * \retval -ve error * \retval 0 success * * \see ptlrpc_nrs_policy_control() */ int (*op_policy_ctl) (struct ptlrpc_nrs_policy *policy, enum ptlrpc_nrs_ctl opc, void *arg); /** * Called when obtaining references to the resources of the resource * hierarchy for a request that has arrived for handling at the PTLRPC * service. Policies should return -ve for requests they do not wish * to handle. This operation is mandatory. * * \param[in] policy The policy we're getting resources for. * \param[in] nrq The request we are getting resources for. * \param[in] parent The parent resource of the resource being * requested; set to NULL if none. * \param[out] resp The resource is to be returned here; the * fallback policy in an NRS head should * \e always return a non-NULL pointer value. * \param[in] moving_req When set, signifies that this is an attempt * to obtain resources for a request being moved * to the high-priority NRS head by * ldlm_lock_reorder_req(). * This implies two things: * 1. We are under obd_export::exp_rpc_lock and * so should not sleep. * 2. We should not perform non-idempotent or can * skip performing idempotent operations that * were carried out when resources were first * taken for the request when it was initialized * in ptlrpc_nrs_req_initialize(). * * \retval 0, +ve The level of the returned resource in the resource * hierarchy; currently only 0 (for a non-leaf resource) * and 1 (for a leaf resource) are supported by the * framework. * \retval -ve error * * \see ptlrpc_nrs_req_initialize() * \see ptlrpc_nrs_hpreq_add_nolock() * \see ptlrpc_nrs_req_hp_move() */ int (*op_res_get) (struct ptlrpc_nrs_policy *policy, struct ptlrpc_nrs_request *nrq, struct ptlrpc_nrs_resource *parent, struct ptlrpc_nrs_resource **resp, bool moving_req); /** * Called when releasing references taken for resources in the resource * hierarchy for the request; this operation is optional. * * \param[in] policy The policy the resource belongs to * \param[in] res The resource to be freed * * \see ptlrpc_nrs_req_finalize() * \see ptlrpc_nrs_hpreq_add_nolock() * \see ptlrpc_nrs_req_hp_move() */ void (*op_res_put) (struct ptlrpc_nrs_policy *policy, struct ptlrpc_nrs_resource *res); /** * Obtain a request for handling from the policy via polling; this * operation is mandatory. * * \param[in] policy The policy to poll * * \retval NULL No erquest available for handling * \retval valid-pointer The request polled for handling * * \see ptlrpc_nrs_req_poll_nolock() */ struct ptlrpc_nrs_request * (*op_req_poll) (struct ptlrpc_nrs_policy *policy); /** * Called when attempting to add a request to a policy for later * handling; this operation is mandatory. * * \param[in] policy The policy on which to enqueue \a nrq * \param[in] nrq The request to enqueue * * \retval 0 success * \retval != 0 error * * \see ptlrpc_nrs_req_add_nolock() */ int (*op_req_enqueue) (struct ptlrpc_nrs_policy *policy, struct ptlrpc_nrs_request *nrq); /** * Removes a request from the policy's set of pending requests. Normally * called after a request has been polled successfully from the policy * for handling; this operation is mandatory. * * \param[in] policy The policy the request \a nrq belongs to * \param[in] nrq The request to dequeue * * \see ptlrpc_nrs_req_del_nolock() */ void (*op_req_dequeue) (struct ptlrpc_nrs_policy *policy, struct ptlrpc_nrs_request *nrq); /** * Called before carrying out the request; should not block. Could be * used for job/resource control; this operation is optional. * * \param[in] policy The policy which is starting to handle request * \a nrq * \param[in] nrq The request * * \pre spin_is_locked(&svcpt->scp_req_lock) * * \see ptlrpc_nrs_req_start_nolock() */ void (*op_req_start) (struct ptlrpc_nrs_policy *policy, struct ptlrpc_nrs_request *nrq); /** * Called after the request being carried out. Could be used for * job/resource control; this operation is optional. * * \param[in] policy The policy which is stopping to handle request * \a nrq * \param[in] nrq The request * * \pre spin_is_locked(&svcpt->scp_req_lock) * * \see ptlrpc_nrs_req_stop_nolock() */ void (*op_req_stop) (struct ptlrpc_nrs_policy *policy, struct ptlrpc_nrs_request *nrq); /** * Registers the policy's lprocfs interface with a PTLRPC service. * * \param[in] svc The service * * \retval 0 success * \retval != 0 error */ int (*op_lprocfs_init) (struct ptlrpc_service *svc); /** * Unegisters the policy's lprocfs interface with a PTLRPC service. * * \param[in] svc The service */ void (*op_lprocfs_fini) (struct ptlrpc_service *svc); }; /** * Policy flags */ enum nrs_policy_flags { /** * Fallback policy, use this flag only on a single supported policy per * service. Do not use this flag for policies registering using * ptlrpc_nrs_policy_register() (i.e. ones that are not in * \e nrs_pols_builtin). */ PTLRPC_NRS_FL_FALLBACK = (1 << 0), /** * Start policy immediately after registering. */ PTLRPC_NRS_FL_REG_START = (1 << 1), /** * This is a polciy registering externally with NRS core, via * ptlrpc_nrs_policy_register(), (i.e. one that is not in * \e nrs_pols_builtin. Used to avoid ptlrpc_nrs_policy_register() * racing with a policy start operation issued by the user via lprocfs. */ PTLRPC_NRS_FL_REG_EXTERN = (1 << 2), }; /** * NRS queue type. * * Denotes whether an NRS instance is for handling normal or high-priority * RPCs, or whether an operation pertains to one or both of the NRS instances * in a service. */ enum ptlrpc_nrs_queue_type { PTLRPC_NRS_QUEUE_REG, PTLRPC_NRS_QUEUE_HP, PTLRPC_NRS_QUEUE_BOTH, }; /** * NRS head * * A PTLRPC service has at least one NRS head instance for handling normal * priority RPCs, and may optionally have a second NRS head instance for * handling high-priority RPCs. Each NRS head maintains a list of available * policies, of which one and only one policy is acting as the fallback policy, * and optionally a different policy may be acting as the primary policy. For * all RPCs handled by this NRS head instance, NRS core will first attempt to * enqueue the RPC using the primary policy (if any). The fallback policy is * used in the following cases: * - when there was no primary policy in the * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state at the time the request * was initialized. * - when the primary policy that was at the * ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the * RPC was initialized, denoted it did not wish, or for some other reason was * not able to handle the request, by returning a non-valid NRS resource * reference. * - when the primary policy that was at the * ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the * RPC was initialized, fails later during the request enqueueing stage. * * \see nrs_resource_get_safe() * \see nrs_request_enqueue() */ struct ptlrpc_nrs { spinlock_t nrs_lock; /** XXX Possibly replace svcpt->scp_req_lock with another lock here. */ /** * Linkage into nrs_core_heads_list */ cfs_list_t nrs_heads; /** * List of registered policies */ cfs_list_t nrs_policy_list; /** * List of policies with queued requests. Policies that have any * outstanding requests are queued here, and this list is queried * in a round-robin manner from NRS core when obtaining a request * for handling. This ensures that requests from policies that at some * point transition away from the * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state are drained. */ cfs_list_t nrs_policy_queued; /** * Service partition for this NRS head */ struct ptlrpc_service_part *nrs_svcpt; /** * Primary policy, which is the preferred policy for handling RPCs */ struct ptlrpc_nrs_policy *nrs_policy_primary; /** * Fallback policy, which is the backup policy for handling RPCs */ struct ptlrpc_nrs_policy *nrs_policy_fallback; /** * This NRS head handles either HP or regular requests */ enum ptlrpc_nrs_queue_type nrs_queue_type; /** * # queued requests from all policies in this NRS head */ unsigned long nrs_req_queued; /** * # scheduled requests from all policies in this NRS head */ unsigned long nrs_req_started; /** * # policies on this NRS * TODO: Can we avoid having this? */ unsigned nrs_num_pols; /** * This NRS head is in progress of starting a policy */ unsigned nrs_policy_starting:1; /** * In progress of shutting down the whole NRS head; used during * unregistration */ unsigned nrs_stopping:1; }; #define NRS_POL_NAME_MAX 16 /** * NRS policy registering descriptor * * Is used to hold a description of a policy that can be passed to NRS core in * order to register the policy with NRS heads in different PTLRPC services. */ struct ptlrpc_nrs_pol_desc { /** * Human-readable policy name */ char pd_name[NRS_POL_NAME_MAX]; /** * NRS operations for this policy */ struct ptlrpc_nrs_pol_ops *pd_ops; /** * Service Compatibility function; this determines whether a policy is * adequate for handling RPCs of a particular PTLRPC service. * * XXX:This should give the same result during policy * registration and unregistration, and for all partitions of a * service; so the result should not depend on temporal service * or other properties, that may influence the result. */ bool (*pd_compat) (struct ptlrpc_service *svc, const struct ptlrpc_nrs_pol_desc *desc); /** * Optionally set for policies that support a single ptlrpc service, * i.e. ones that have \a pd_compat set to nrs_policy_compat_one() */ char *pd_compat_svc_name; /** * Bitmask of nrs_policy_flags */ unsigned pd_flags; /** * Link into nrs_core::nrs_policies */ cfs_list_t pd_list; }; /** * NRS policy state * * Policies transition from one state to the other during their lifetime */ enum ptlrpc_nrs_pol_state { /** * Not a valid policy state. */ NRS_POL_STATE_INVALID, /** * For now, this state is used exclusively for policies that register * externally to NRS core, i.e. ones that do so via * ptlrpc_nrs_policy_register() and are not part of nrs_pols_builtin; * it is used to prevent a race condition between the policy registering * with more than one service partition while service is operational, * and the user starting the policy via lprocfs. * * \see nrs_pol_make_avail() */ NRS_POL_STATE_UNAVAIL, /** * Policies are at this state either at the start of their life, or * transition here when the user selects a different policy to act * as the primary one. */ NRS_POL_STATE_STOPPED, /** * Policy is progress of stopping */ NRS_POL_STATE_STOPPING, /** * Policy is in progress of starting */ NRS_POL_STATE_STARTING, /** * A policy is in this state in two cases: * - it is the fallback policy, which is always in this state. * - it has been activated by the user; i.e. it is the primary policy, */ NRS_POL_STATE_STARTED, }; /** * NRS policy information * * Used for obtaining information for the status of a policy via lprocfs */ struct ptlrpc_nrs_pol_info { /** * Policy name */ char pi_name[NRS_POL_NAME_MAX]; /** * Current policy state */ enum ptlrpc_nrs_pol_state pi_state; /** * # RPCs enqueued for later dispatching by the policy */ long pi_req_queued; /** * # RPCs started for dispatch by the policy */ long pi_req_started; /** * Is this a fallback policy? */ unsigned pi_fallback:1; }; /** * NRS policy * * There is one instance of this for each policy in each NRS head of each * PTLRPC service partition. */ struct ptlrpc_nrs_policy { /** * Linkage into the NRS head's list of policies, * ptlrpc_nrs:nrs_policy_list */ cfs_list_t pol_list; /** * Linkage into the NRS head's list of policies with enqueued * requests ptlrpc_nrs:nrs_policy_queued */ cfs_list_t pol_list_queued; /** * Current state of this policy */ enum ptlrpc_nrs_pol_state pol_state; /** * Bitmask of nrs_policy_flags */ unsigned pol_flags; /** * # RPCs enqueued for later dispatching by the policy */ long pol_req_queued; /** * # RPCs started for dispatch by the policy */ long pol_req_started; /** * Usage Reference count taken on the policy instance */ long pol_ref; /** * The NRS head this policy has been created at */ struct ptlrpc_nrs *pol_nrs; /** * NRS operations for this policy; points to ptlrpc_nrs_pol_desc::pd_ops */ struct ptlrpc_nrs_pol_ops *pol_ops; /** * Private policy data; varies by policy type */ void *pol_private; /** * Human-readable policy name; point to ptlrpc_nrs_pol_desc::pd_name */ char *pol_name; }; /** * NRS resource * * Resources are embedded into two types of NRS entities: * - Inside NRS policies, in the policy's private data in * ptlrpc_nrs_policy::pol_private * - In objects that act as prime-level scheduling entities in different NRS * policies; e.g. on a policy that performs round robin or similar order * scheduling across client NIDs, there would be one NRS resource per unique * client NID. On a policy which performs round robin scheduling across * backend filesystem objects, there would be one resource associated with * each of the backend filesystem objects partaking in the scheduling * performed by the policy. * * NRS resources share a parent-child relationship, in which resources embedded * in policy instances are the parent entities, with all scheduling entities * a policy schedules across being the children, thus forming a simple resource * hierarchy. This hierarchy may be extended with one or more levels in the * future if the ability to have more than one primary policy is added. * * Upon request initialization, references to the then active NRS policies are * taken and used to later handle the dispatching of the request with one of * these policies. * * \see nrs_resource_get_safe() * \see ptlrpc_nrs_req_add() */ struct ptlrpc_nrs_resource { /** * This NRS resource's parent; is NULL for resources embedded in NRS * policy instances; i.e. those are top-level ones. */ struct ptlrpc_nrs_resource *res_parent; /** * The policy associated with this resource. */ struct ptlrpc_nrs_policy *res_policy; }; enum { NRS_RES_FALLBACK, NRS_RES_PRIMARY, NRS_RES_MAX }; /* \name fifo * * FIFO policy * * This policy is a logical wrapper around previous, non-NRS functionality. * It dispatches RPCs in the same order as they arrive from the network. This * policy is currently used as the fallback policy, and the only enabled policy * on all NRS heads of all PTLRPC service partitions. * @{ */ /** * Private data structure for the FIFO policy */ struct nrs_fifo_head { /** * Resource object for policy instance. */ struct ptlrpc_nrs_resource fh_res; /** * List of queued requests. */ cfs_list_t fh_list; /** * For debugging purposes. */ __u64 fh_sequence; }; struct nrs_fifo_req { /** request header, must be the first member of structure */ cfs_list_t fr_list; __u64 fr_sequence; }; /** @} fifo */ /** * NRS request * * Instances of this object exist embedded within ptlrpc_request; the main * purpose of this object is to hold references to the request's resources * for the lifetime of the request, and to hold properties that policies use * use for determining the request's scheduling priority. * */ struct ptlrpc_nrs_request { /** * The request's resource hierarchy. */ struct ptlrpc_nrs_resource *nr_res_ptrs[NRS_RES_MAX]; /** * Index into ptlrpc_nrs_request::nr_res_ptrs of the resource of the * policy that was used to enqueue the request. * * \see nrs_request_enqueue() */ unsigned nr_res_idx; unsigned nr_initialized:1; unsigned nr_enqueued:1; unsigned nr_dequeued:1; unsigned nr_started:1; unsigned nr_finalized:1; cfs_binheap_node_t nr_node; /** * Policy-specific fields, used for determining a request's scheduling * priority, and other supporting functionality. */ union { /** * Fields for the FIFO policy */ struct nrs_fifo_req fifo; } nr_u; /** * Externally-registering policies may want to use this to allocate * their own request properties. */ void *ext; }; /** @} nrs */ /** * Basic request prioritization operations structure. * The whole idea is centered around locks and RPCs that might affect locks. * When a lock is contended we try to give priority to RPCs that might lead * to fastest release of that lock. * Currently only implemented for OSTs only in a way that makes all * IO and truncate RPCs that are coming from a locked region where a lock is * contended a priority over other requests. */ struct ptlrpc_hpreq_ops { /** * Check if the lock handle of the given lock is the same as * taken from the request. */ int (*hpreq_lock_match)(struct ptlrpc_request *, struct ldlm_lock *); /** * Check if the request is a high priority one. */ int (*hpreq_check)(struct ptlrpc_request *); /** * Called after the request has been handled. */ void (*hpreq_fini)(struct ptlrpc_request *); }; /** * Represents remote procedure call. * * This is a staple structure used by everybody wanting to send a request * in Lustre. */ struct ptlrpc_request { /* Request type: one of PTL_RPC_MSG_* */ int rq_type; /** Result of request processing */ int rq_status; /** * Linkage item through which this request is included into * sending/delayed lists on client and into rqbd list on server */ cfs_list_t rq_list; /** * Server side list of incoming unserved requests sorted by arrival * time. Traversed from time to time to notice about to expire * requests and sent back "early replies" to clients to let them * know server is alive and well, just very busy to service their * requests in time */ cfs_list_t rq_timed_list; /** server-side history, used for debuging purposes. */ cfs_list_t rq_history_list; /** server-side per-export list */ cfs_list_t rq_exp_list; /** server-side hp handlers */ struct ptlrpc_hpreq_ops *rq_ops; /** initial thread servicing this request */ struct ptlrpc_thread *rq_svc_thread; /** history sequence # */ __u64 rq_history_seq; /** \addtogroup nrs * @{ */ /** stub for NRS request */ struct ptlrpc_nrs_request rq_nrq; /** @} nrs */ /** the index of service's srv_at_array into which request is linked */ time_t rq_at_index; /** Lock to protect request flags and some other important bits, like * rq_list */ spinlock_t rq_lock; /** client-side flags are serialized by rq_lock */ unsigned int rq_intr:1, rq_replied:1, rq_err:1, rq_timedout:1, rq_resend:1, rq_restart:1, /** * when ->rq_replay is set, request is kept by the client even * after server commits corresponding transaction. This is * used for operations that require sequence of multiple * requests to be replayed. The only example currently is file * open/close. When last request in such a sequence is * committed, ->rq_replay is cleared on all requests in the * sequence. */ rq_replay:1, rq_no_resend:1, rq_waiting:1, rq_receiving_reply:1, rq_no_delay:1, rq_net_err:1, rq_wait_ctx:1, rq_early:1, rq_must_unlink:1, rq_memalloc:1, /* req originated from "kswapd" */ /* server-side flags */ rq_packed_final:1, /* packed final reply */ rq_hp:1, /* high priority RPC */ rq_at_linked:1, /* link into service's srv_at_array */ rq_reply_truncate:1, rq_committed:1, /* whether the "rq_set" is a valid one */ rq_invalid_rqset:1, rq_generation_set:1, /* do not resend request on -EINPROGRESS */ rq_no_retry_einprogress:1, /* allow the req to be sent if the import is in recovery * status */ rq_allow_replay:1; unsigned int rq_nr_resend; enum rq_phase rq_phase; /* one of RQ_PHASE_* */ enum rq_phase rq_next_phase; /* one of RQ_PHASE_* to be used next */ cfs_atomic_t rq_refcount;/* client-side refcount for SENT race, server-side refcounf for multiple replies */ /** Portal to which this request would be sent */ short rq_request_portal; /* XXX FIXME bug 249 */ /** Portal where to wait for reply and where reply would be sent */ short rq_reply_portal; /* XXX FIXME bug 249 */ /** * client-side: * !rq_truncate : # reply bytes actually received, * rq_truncate : required repbuf_len for resend */ int rq_nob_received; /** Request length */ int rq_reqlen; /** Reply length */ int rq_replen; /** Request message - what client sent */ struct lustre_msg *rq_reqmsg; /** Reply message - server response */ struct lustre_msg *rq_repmsg; /** Transaction number */ __u64 rq_transno; /** xid */ __u64 rq_xid; /** * List item to for replay list. Not yet commited requests get linked * there. * Also see \a rq_replay comment above. */ cfs_list_t rq_replay_list; /** * security and encryption data * @{ */ struct ptlrpc_cli_ctx *rq_cli_ctx; /**< client's half ctx */ struct ptlrpc_svc_ctx *rq_svc_ctx; /**< server's half ctx */ cfs_list_t rq_ctx_chain; /**< link to waited ctx */ struct sptlrpc_flavor rq_flvr; /**< for client & server */ enum lustre_sec_part rq_sp_from; /* client/server security flags */ unsigned int rq_ctx_init:1, /* context initiation */ rq_ctx_fini:1, /* context destroy */ rq_bulk_read:1, /* request bulk read */ rq_bulk_write:1, /* request bulk write */ /* server authentication flags */ rq_auth_gss:1, /* authenticated by gss */ rq_auth_remote:1, /* authed as remote user */ rq_auth_usr_root:1, /* authed as root */ rq_auth_usr_mdt:1, /* authed as mdt */ rq_auth_usr_ost:1, /* authed as ost */ /* security tfm flags */ rq_pack_udesc:1, rq_pack_bulk:1, /* doesn't expect reply FIXME */ rq_no_reply:1, rq_pill_init:1; /* pill initialized */ uid_t rq_auth_uid; /* authed uid */ uid_t rq_auth_mapped_uid; /* authed uid mapped to */ /* (server side), pointed directly into req buffer */ struct ptlrpc_user_desc *rq_user_desc; /* various buffer pointers */ struct lustre_msg *rq_reqbuf; /* req wrapper */ char *rq_repbuf; /* rep buffer */ struct lustre_msg *rq_repdata; /* rep wrapper msg */ struct lustre_msg *rq_clrbuf; /* only in priv mode */ int rq_reqbuf_len; /* req wrapper buf len */ int rq_reqdata_len; /* req wrapper msg len */ int rq_repbuf_len; /* rep buffer len */ int rq_repdata_len; /* rep wrapper msg len */ int rq_clrbuf_len; /* only in priv mode */ int rq_clrdata_len; /* only in priv mode */ /** early replies go to offset 0, regular replies go after that */ unsigned int rq_reply_off; /** @} */ /** Fields that help to see if request and reply were swabbed or not */ __u32 rq_req_swab_mask; __u32 rq_rep_swab_mask; /** What was import generation when this request was sent */ int rq_import_generation; enum lustre_imp_state rq_send_state; /** how many early replies (for stats) */ int rq_early_count; /** client+server request */ lnet_handle_md_t rq_req_md_h; struct ptlrpc_cb_id rq_req_cbid; /** optional time limit for send attempts */ cfs_duration_t rq_delay_limit; /** time request was first queued */ cfs_time_t rq_queued_time; /* server-side... */ /** request arrival time */ struct timeval rq_arrival_time; /** separated reply state */ struct ptlrpc_reply_state *rq_reply_state; /** incoming request buffer */ struct ptlrpc_request_buffer_desc *rq_rqbd; /** client-only incoming reply */ lnet_handle_md_t rq_reply_md_h; cfs_waitq_t rq_reply_waitq; struct ptlrpc_cb_id rq_reply_cbid; /** our LNet NID */ lnet_nid_t rq_self; /** Peer description (the other side) */ lnet_process_id_t rq_peer; /** Server-side, export on which request was received */ struct obd_export *rq_export; /** Client side, import where request is being sent */ struct obd_import *rq_import; /** Replay callback, called after request is replayed at recovery */ void (*rq_replay_cb)(struct ptlrpc_request *); /** * Commit callback, called when request is committed and about to be * freed. */ void (*rq_commit_cb)(struct ptlrpc_request *); /** Opaq data for replay and commit callbacks. */ void *rq_cb_data; /** For bulk requests on client only: bulk descriptor */ struct ptlrpc_bulk_desc *rq_bulk; /** client outgoing req */ /** * when request/reply sent (secs), or time when request should be sent */ time_t rq_sent; /** time for request really sent out */ time_t rq_real_sent; /** when request must finish. volatile * so that servers' early reply updates to the deadline aren't * kept in per-cpu cache */ volatile time_t rq_deadline; /** when req reply unlink must finish. */ time_t rq_reply_deadline; /** when req bulk unlink must finish. */ time_t rq_bulk_deadline; /** * service time estimate (secs) * If the requestsis not served by this time, it is marked as timed out. */ int rq_timeout; /** Multi-rpc bits */ /** Per-request waitq introduced by bug 21938 for recovery waiting */ cfs_waitq_t rq_set_waitq; /** Link item for request set lists */ cfs_list_t rq_set_chain; /** Link back to the request set */ struct ptlrpc_request_set *rq_set; /** Async completion handler, called when reply is received */ ptlrpc_interpterer_t rq_interpret_reply; /** Async completion context */ union ptlrpc_async_args rq_async_args; /** Pool if request is from preallocated list */ struct ptlrpc_request_pool *rq_pool; struct lu_context rq_session; struct lu_context rq_recov_session; /** request format description */ struct req_capsule rq_pill; }; /** * Call completion handler for rpc if any, return it's status or original * rc if there was no handler defined for this request. */ static inline int ptlrpc_req_interpret(const struct lu_env *env, struct ptlrpc_request *req, int rc) { if (req->rq_interpret_reply != NULL) { req->rq_status = req->rq_interpret_reply(env, req, &req->rq_async_args, rc); return req->rq_status; } return rc; } /** \addtogroup nrs * @{ */ int ptlrpc_nrs_policy_register(struct ptlrpc_nrs_pol_desc *desc); int ptlrpc_nrs_policy_unregister(struct ptlrpc_nrs_pol_desc *desc); void ptlrpc_nrs_req_hp_move(struct ptlrpc_request *req); void nrs_policy_get_info_locked(struct ptlrpc_nrs_policy *policy, struct ptlrpc_nrs_pol_info *info); /* * Can the request be moved from the regular NRS head to the high-priority NRS * head (of the same PTLRPC service partition), if any? * * For a reliable result, this should be checked under svcpt->scp_req lock. */ static inline bool ptlrpc_nrs_req_can_move(struct ptlrpc_request *req) { struct ptlrpc_nrs_request *nrq = &req->rq_nrq; /** * LU-898: Check ptlrpc_nrs_request::nr_enqueued to make sure the * request has been enqueued first, and ptlrpc_nrs_request::nr_started * to make sure it has not been scheduled yet (analogous to previous * (non-NRS) checking of !list_empty(&ptlrpc_request::rq_list). */ return nrq->nr_enqueued && !nrq->nr_started && !req->rq_hp; } /** @} nrs */ /** * Returns 1 if request buffer at offset \a index was already swabbed */ static inline int lustre_req_swabbed(struct ptlrpc_request *req, int index) { LASSERT(index < sizeof(req->rq_req_swab_mask) * 8); return req->rq_req_swab_mask & (1 << index); } /** * Returns 1 if request reply buffer at offset \a index was already swabbed */ static inline int lustre_rep_swabbed(struct ptlrpc_request *req, int index) { LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8); return req->rq_rep_swab_mask & (1 << index); } /** * Returns 1 if request needs to be swabbed into local cpu byteorder */ static inline int ptlrpc_req_need_swab(struct ptlrpc_request *req) { return lustre_req_swabbed(req, MSG_PTLRPC_HEADER_OFF); } /** * Returns 1 if request reply needs to be swabbed into local cpu byteorder */ static inline int ptlrpc_rep_need_swab(struct ptlrpc_request *req) { return lustre_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF); } /** * Mark request buffer at offset \a index that it was already swabbed */ static inline void lustre_set_req_swabbed(struct ptlrpc_request *req, int index) { LASSERT(index < sizeof(req->rq_req_swab_mask) * 8); LASSERT((req->rq_req_swab_mask & (1 << index)) == 0); req->rq_req_swab_mask |= 1 << index; } /** * Mark request reply buffer at offset \a index that it was already swabbed */ static inline void lustre_set_rep_swabbed(struct ptlrpc_request *req, int index) { LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8); LASSERT((req->rq_rep_swab_mask & (1 << index)) == 0); req->rq_rep_swab_mask |= 1 << index; } /** * Convert numerical request phase value \a phase into text string description */ static inline const char * ptlrpc_phase2str(enum rq_phase phase) { switch (phase) { case RQ_PHASE_NEW: return "New"; case RQ_PHASE_RPC: return "Rpc"; case RQ_PHASE_BULK: return "Bulk"; case RQ_PHASE_INTERPRET: return "Interpret"; case RQ_PHASE_COMPLETE: return "Complete"; case RQ_PHASE_UNREGISTERING: return "Unregistering"; default: return "?Phase?"; } } /** * Convert numerical request phase of the request \a req into text stringi * description */ static inline const char * ptlrpc_rqphase2str(struct ptlrpc_request *req) { return ptlrpc_phase2str(req->rq_phase); } /** * Debugging functions and helpers to print request structure into debug log * @{ */ /* Spare the preprocessor, spoil the bugs. */ #define FLAG(field, str) (field ? str : "") /** Convert bit flags into a string */ #define DEBUG_REQ_FLAGS(req) \ ptlrpc_rqphase2str(req), \ FLAG(req->rq_intr, "I"), FLAG(req->rq_replied, "R"), \ FLAG(req->rq_err, "E"), \ FLAG(req->rq_timedout, "X") /* eXpired */, FLAG(req->rq_resend, "S"), \ FLAG(req->rq_restart, "T"), FLAG(req->rq_replay, "P"), \ FLAG(req->rq_no_resend, "N"), \ FLAG(req->rq_waiting, "W"), \ FLAG(req->rq_wait_ctx, "C"), FLAG(req->rq_hp, "H"), \ FLAG(req->rq_committed, "M") #define REQ_FLAGS_FMT "%s:%s%s%s%s%s%s%s%s%s%s%s%s" void _debug_req(struct ptlrpc_request *req, struct libcfs_debug_msg_data *data, const char *fmt, ...) __attribute__ ((format (printf, 3, 4))); /** * Helper that decides if we need to print request accordig to current debug * level settings */ #define debug_req(msgdata, mask, cdls, req, fmt, a...) \ do { \ CFS_CHECK_STACK(msgdata, mask, cdls); \ \ if (((mask) & D_CANTMASK) != 0 || \ ((libcfs_debug & (mask)) != 0 && \ (libcfs_subsystem_debug & DEBUG_SUBSYSTEM) != 0)) \ _debug_req((req), msgdata, fmt, ##a); \ } while(0) /** * This is the debug print function you need to use to print request sturucture * content into lustre debug log. * for most callers (level is a constant) this is resolved at compile time */ #define DEBUG_REQ(level, req, fmt, args...) \ do { \ if ((level) & (D_ERROR | D_WARNING)) { \ static cfs_debug_limit_state_t cdls; \ LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, &cdls); \ debug_req(&msgdata, level, &cdls, req, "@@@ "fmt" ", ## args);\ } else { \ LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, NULL); \ debug_req(&msgdata, level, NULL, req, "@@@ "fmt" ", ## args); \ } \ } while (0) /** @} */ /** * Structure that defines a single page of a bulk transfer */ struct ptlrpc_bulk_page { /** Linkage to list of pages in a bulk */ cfs_list_t bp_link; /** * Number of bytes in a page to transfer starting from \a bp_pageoffset */ int bp_buflen; /** offset within a page */ int bp_pageoffset; /** The page itself */ struct page *bp_page; }; #define BULK_GET_SOURCE 0 #define BULK_PUT_SINK 1 #define BULK_GET_SINK 2 #define BULK_PUT_SOURCE 3 /** * Definition of bulk descriptor. * Bulks are special "Two phase" RPCs where initial request message * is sent first and it is followed bt a transfer (o receiving) of a large * amount of data to be settled into pages referenced from the bulk descriptors. * Bulks transfers (the actual data following the small requests) are done * on separate LNet portals. * In lustre we use bulk transfers for READ and WRITE transfers from/to OSTs. * Another user is readpage for MDT. */ struct ptlrpc_bulk_desc { /** completed with failure */ unsigned long bd_failure:1; /** {put,get}{source,sink} */ unsigned long bd_type:2; /** client side */ unsigned long bd_registered:1; /** For serialization with callback */ spinlock_t bd_lock; /** Import generation when request for this bulk was sent */ int bd_import_generation; /** LNet portal for this bulk */ __u32 bd_portal; /** Server side - export this bulk created for */ struct obd_export *bd_export; /** Client side - import this bulk was sent on */ struct obd_import *bd_import; /** Back pointer to the request */ struct ptlrpc_request *bd_req; cfs_waitq_t bd_waitq; /* server side only WQ */ int bd_iov_count; /* # entries in bd_iov */ int bd_max_iov; /* allocated size of bd_iov */ int bd_nob; /* # bytes covered */ int bd_nob_transferred; /* # bytes GOT/PUT */ __u64 bd_last_xid; struct ptlrpc_cb_id bd_cbid; /* network callback info */ lnet_nid_t bd_sender; /* stash event::sender */ int bd_md_count; /* # valid entries in bd_mds */ int bd_md_max_brw; /* max entries in bd_mds */ /** array of associated MDs */ lnet_handle_md_t bd_mds[PTLRPC_BULK_OPS_COUNT]; #if defined(__KERNEL__) /* * encrypt iov, size is either 0 or bd_iov_count. */ lnet_kiov_t *bd_enc_iov; lnet_kiov_t bd_iov[0]; #else lnet_md_iovec_t bd_iov[0]; #endif }; enum { SVC_STOPPED = 1 << 0, SVC_STOPPING = 1 << 1, SVC_STARTING = 1 << 2, SVC_RUNNING = 1 << 3, SVC_EVENT = 1 << 4, SVC_SIGNAL = 1 << 5, }; #define PTLRPC_THR_NAME_LEN 32 /** * Definition of server service thread structure */ struct ptlrpc_thread { /** * List of active threads in svc->srv_threads */ cfs_list_t t_link; /** * thread-private data (preallocated memory) */ void *t_data; __u32 t_flags; /** * service thread index, from ptlrpc_start_threads */ unsigned int t_id; /** * service thread pid */ pid_t t_pid; /** * put watchdog in the structure per thread b=14840 */ struct lc_watchdog *t_watchdog; /** * the svc this thread belonged to b=18582 */ struct ptlrpc_service_part *t_svcpt; cfs_waitq_t t_ctl_waitq; struct lu_env *t_env; char t_name[PTLRPC_THR_NAME_LEN]; }; static inline int thread_is_init(struct ptlrpc_thread *thread) { return thread->t_flags == 0; } static inline int thread_is_stopped(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_STOPPED); } static inline int thread_is_stopping(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_STOPPING); } static inline int thread_is_starting(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_STARTING); } static inline int thread_is_running(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_RUNNING); } static inline int thread_is_event(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_EVENT); } static inline int thread_is_signal(struct ptlrpc_thread *thread) { return !!(thread->t_flags & SVC_SIGNAL); } static inline void thread_clear_flags(struct ptlrpc_thread *thread, __u32 flags) { thread->t_flags &= ~flags; } static inline void thread_set_flags(struct ptlrpc_thread *thread, __u32 flags) { thread->t_flags = flags; } static inline void thread_add_flags(struct ptlrpc_thread *thread, __u32 flags) { thread->t_flags |= flags; } static inline int thread_test_and_clear_flags(struct ptlrpc_thread *thread, __u32 flags) { if (thread->t_flags & flags) { thread->t_flags &= ~flags; return 1; } return 0; } /** * Request buffer descriptor structure. * This is a structure that contains one posted request buffer for service. * Once data land into a buffer, event callback creates actual request and * notifies wakes one of the service threads to process new incoming request. * More than one request can fit into the buffer. */ struct ptlrpc_request_buffer_desc { /** Link item for rqbds on a service */ cfs_list_t rqbd_list; /** History of requests for this buffer */ cfs_list_t rqbd_reqs; /** Back pointer to service for which this buffer is registered */ struct ptlrpc_service_part *rqbd_svcpt; /** LNet descriptor */ lnet_handle_md_t rqbd_md_h; int rqbd_refcount; /** The buffer itself */ char *rqbd_buffer; struct ptlrpc_cb_id rqbd_cbid; /** * This "embedded" request structure is only used for the * last request to fit into the buffer */ struct ptlrpc_request rqbd_req; }; typedef int (*svc_handler_t)(struct ptlrpc_request *req); struct ptlrpc_service_ops { /** * if non-NULL called during thread creation (ptlrpc_start_thread()) * to initialize service specific per-thread state. */ int (*so_thr_init)(struct ptlrpc_thread *thr); /** * if non-NULL called during thread shutdown (ptlrpc_main()) to * destruct state created by ->srv_init(). */ void (*so_thr_done)(struct ptlrpc_thread *thr); /** * Handler function for incoming requests for this service */ int (*so_req_handler)(struct ptlrpc_request *req); /** * function to determine priority of the request, it's called * on every new request */ int (*so_hpreq_handler)(struct ptlrpc_request *); /** * service-specific print fn */ void (*so_req_printer)(void *, struct ptlrpc_request *); }; #ifndef __cfs_cacheline_aligned /* NB: put it here for reducing patche dependence */ # define __cfs_cacheline_aligned #endif /** * How many high priority requests to serve before serving one normal * priority request */ #define PTLRPC_SVC_HP_RATIO 10 /** * Definition of PortalRPC service. * The service is listening on a particular portal (like tcp port) * and perform actions for a specific server like IO service for OST * or general metadata service for MDS. */ struct ptlrpc_service { /** serialize /proc operations */ spinlock_t srv_lock; /** most often accessed fields */ /** chain thru all services */ cfs_list_t srv_list; /** service operations table */ struct ptlrpc_service_ops srv_ops; /** only statically allocated strings here; we don't clean them */ char *srv_name; /** only statically allocated strings here; we don't clean them */ char *srv_thread_name; /** service thread list */ cfs_list_t srv_threads; /** threads # should be created for each partition on initializing */ int srv_nthrs_cpt_init; /** limit of threads number for each partition */ int srv_nthrs_cpt_limit; /** Root of /proc dir tree for this service */ cfs_proc_dir_entry_t *srv_procroot; /** Pointer to statistic data for this service */ struct lprocfs_stats *srv_stats; /** # hp per lp reqs to handle */ int srv_hpreq_ratio; /** biggest request to receive */ int srv_max_req_size; /** biggest reply to send */ int srv_max_reply_size; /** size of individual buffers */ int srv_buf_size; /** # buffers to allocate in 1 group */ int srv_nbuf_per_group; /** Local portal on which to receive requests */ __u32 srv_req_portal; /** Portal on the client to send replies to */ __u32 srv_rep_portal; /** * Tags for lu_context associated with this thread, see struct * lu_context. */ __u32 srv_ctx_tags; /** soft watchdog timeout multiplier */ int srv_watchdog_factor; /** under unregister_service */ unsigned srv_is_stopping:1; /** max # request buffers in history per partition */ int srv_hist_nrqbds_cpt_max; /** number of CPTs this service bound on */ int srv_ncpts; /** CPTs array this service bound on */ __u32 *srv_cpts; /** 2^srv_cptab_bits >= cfs_cpt_numbert(srv_cptable) */ int srv_cpt_bits; /** CPT table this service is running over */ struct cfs_cpt_table *srv_cptable; /** * partition data for ptlrpc service */ struct ptlrpc_service_part *srv_parts[0]; }; /** * Definition of PortalRPC service partition data. * Although a service only has one instance of it right now, but we * will have multiple instances very soon (instance per CPT). * * it has four locks: * \a scp_lock * serialize operations on rqbd and requests waiting for preprocess * \a scp_req_lock * serialize operations active requests sent to this portal * \a scp_at_lock * serialize adaptive timeout stuff * \a scp_rep_lock * serialize operations on RS list (reply states) * * We don't have any use-case to take two or more locks at the same time * for now, so there is no lock order issue. */ struct ptlrpc_service_part { /** back reference to owner */ struct ptlrpc_service *scp_service __cfs_cacheline_aligned; /* CPT id, reserved */ int scp_cpt; /** always increasing number */ int scp_thr_nextid; /** # of starting threads */ int scp_nthrs_starting; /** # of stopping threads, reserved for shrinking threads */ int scp_nthrs_stopping; /** # running threads */ int scp_nthrs_running; /** service threads list */ cfs_list_t scp_threads; /** * serialize the following fields, used for protecting * rqbd list and incoming requests waiting for preprocess, * threads starting & stopping are also protected by this lock. */ spinlock_t scp_lock __cfs_cacheline_aligned; /** total # req buffer descs allocated */ int scp_nrqbds_total; /** # posted request buffers for receiving */ int scp_nrqbds_posted; /** in progress of allocating rqbd */ int scp_rqbd_allocating; /** # incoming reqs */ int scp_nreqs_incoming; /** request buffers to be reposted */ cfs_list_t scp_rqbd_idle; /** req buffers receiving */ cfs_list_t scp_rqbd_posted; /** incoming reqs */ cfs_list_t scp_req_incoming; /** timeout before re-posting reqs, in tick */ cfs_duration_t scp_rqbd_timeout; /** * all threads sleep on this. This wait-queue is signalled when new * incoming request arrives and when difficult reply has to be handled. */ cfs_waitq_t scp_waitq; /** request history */ cfs_list_t scp_hist_reqs; /** request buffer history */ cfs_list_t scp_hist_rqbds; /** # request buffers in history */ int scp_hist_nrqbds; /** sequence number for request */ __u64 scp_hist_seq; /** highest seq culled from history */ __u64 scp_hist_seq_culled; /** * serialize the following fields, used for processing requests * sent to this portal */ spinlock_t scp_req_lock __cfs_cacheline_aligned; /** # reqs in either of the NRS heads below */ /** # reqs being served */ int scp_nreqs_active; /** # HPreqs being served */ int scp_nhreqs_active; /** # hp requests handled */ int scp_hreq_count; /** NRS head for regular requests */ struct ptlrpc_nrs scp_nrs_reg; /** NRS head for HP requests; this is only valid for services that can * handle HP requests */ struct ptlrpc_nrs *scp_nrs_hp; /** AT stuff */ /** @{ */ /** * serialize the following fields, used for changes on * adaptive timeout */ spinlock_t scp_at_lock __cfs_cacheline_aligned; /** estimated rpc service time */ struct adaptive_timeout scp_at_estimate; /** reqs waiting for replies */ struct ptlrpc_at_array scp_at_array; /** early reply timer */ cfs_timer_t scp_at_timer; /** debug */ cfs_time_t scp_at_checktime; /** check early replies */ unsigned scp_at_check; /** @} */ /** * serialize the following fields, used for processing * replies for this portal */ spinlock_t scp_rep_lock __cfs_cacheline_aligned; /** all the active replies */ cfs_list_t scp_rep_active; #ifndef __KERNEL__ /** replies waiting for service */ cfs_list_t scp_rep_queue; #endif /** List of free reply_states */ cfs_list_t scp_rep_idle; /** waitq to run, when adding stuff to srv_free_rs_list */ cfs_waitq_t scp_rep_waitq; /** # 'difficult' replies */ cfs_atomic_t scp_nreps_difficult; }; #define ptlrpc_service_for_each_part(part, i, svc) \ for (i = 0; \ i < (svc)->srv_ncpts && \ (svc)->srv_parts != NULL && \ ((part) = (svc)->srv_parts[i]) != NULL; i++) /** * Declaration of ptlrpcd control structure */ struct ptlrpcd_ctl { /** * Ptlrpc thread control flags (LIOD_START, LIOD_STOP, LIOD_FORCE) */ unsigned long pc_flags; /** * Thread lock protecting structure fields. */ spinlock_t pc_lock; /** * Start completion. */ struct completion pc_starting; /** * Stop completion. */ struct completion pc_finishing; /** * Thread requests set. */ struct ptlrpc_request_set *pc_set; /** * Thread name used in cfs_daemonize() */ char pc_name[16]; /** * Environment for request interpreters to run in. */ struct lu_env pc_env; /** * Index of ptlrpcd thread in the array. */ int pc_index; /** * Number of the ptlrpcd's partners. */ int pc_npartners; /** * Pointer to the array of partners' ptlrpcd_ctl structure. */ struct ptlrpcd_ctl **pc_partners; /** * Record the partner index to be processed next. */ int pc_cursor; #ifndef __KERNEL__ /** * Async rpcs flag to make sure that ptlrpcd_check() is called only * once. */ int pc_recurred; /** * Currently not used. */ void *pc_callback; /** * User-space async rpcs callback. */ void *pc_wait_callback; /** * User-space check idle rpcs callback. */ void *pc_idle_callback; #endif }; /* Bits for pc_flags */ enum ptlrpcd_ctl_flags { /** * Ptlrpc thread start flag. */ LIOD_START = 1 << 0, /** * Ptlrpc thread stop flag. */ LIOD_STOP = 1 << 1, /** * Ptlrpc thread force flag (only stop force so far). * This will cause aborting any inflight rpcs handled * by thread if LIOD_STOP is specified. */ LIOD_FORCE = 1 << 2, /** * This is a recovery ptlrpc thread. */ LIOD_RECOVERY = 1 << 3, /** * The ptlrpcd is bound to some CPU core. */ LIOD_BIND = 1 << 4, }; /** * \addtogroup nrs * @{ * * Service compatibility function; policy is compatible with all services. * * \param[in] svc The service the policy is attempting to register with. * \param[in] desc The policy descriptor * * \retval true The policy is compatible with the NRS head * * \see ptlrpc_nrs_pol_desc::pd_compat() */ static inline bool nrs_policy_compat_all(struct ptlrpc_service *svc, const struct ptlrpc_nrs_pol_desc *desc) { return true; } /** * Service compatibility function; policy is compatible with only a specific * service which is identified by its human-readable name at * ptlrpc_service::srv_name. * * \param[in] svc The service the policy is attempting to register with. * \param[in] desc The policy descriptor * * \retval false The policy is not compatible with the NRS head * \retval true The policy is compatible with the NRS head * * \see ptlrpc_nrs_pol_desc::pd_compat() */ static inline bool nrs_policy_compat_one(struct ptlrpc_service *svc, const struct ptlrpc_nrs_pol_desc *desc) { LASSERT(desc->pd_compat_svc_name != NULL); return strcmp(svc->srv_name, desc->pd_compat_svc_name) == 0; } /** @} nrs */ /* ptlrpc/events.c */ extern lnet_handle_eq_t ptlrpc_eq_h; extern int ptlrpc_uuid_to_peer(struct obd_uuid *uuid, lnet_process_id_t *peer, lnet_nid_t *self); /** * These callbacks are invoked by LNet when something happened to * underlying buffer * @{ */ extern void request_out_callback(lnet_event_t *ev); extern void reply_in_callback(lnet_event_t *ev); extern void client_bulk_callback(lnet_event_t *ev); extern void request_in_callback(lnet_event_t *ev); extern void reply_out_callback(lnet_event_t *ev); #ifdef HAVE_SERVER_SUPPORT extern void server_bulk_callback(lnet_event_t *ev); #endif /** @} */ /* ptlrpc/connection.c */ struct ptlrpc_connection *ptlrpc_connection_get(lnet_process_id_t peer, lnet_nid_t self, struct obd_uuid *uuid); int ptlrpc_connection_put(struct ptlrpc_connection *c); struct ptlrpc_connection *ptlrpc_connection_addref(struct ptlrpc_connection *); int ptlrpc_connection_init(void); void ptlrpc_connection_fini(void); extern lnet_pid_t ptl_get_pid(void); /* ptlrpc/niobuf.c */ /** * Actual interfacing with LNet to put/get/register/unregister stuff * @{ */ #ifdef HAVE_SERVER_SUPPORT struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_exp(struct ptlrpc_request *req, unsigned npages, unsigned max_brw, unsigned type, unsigned portal); int ptlrpc_start_bulk_transfer(struct ptlrpc_bulk_desc *desc); void ptlrpc_abort_bulk(struct ptlrpc_bulk_desc *desc); static inline int ptlrpc_server_bulk_active(struct ptlrpc_bulk_desc *desc) { int rc; LASSERT(desc != NULL); spin_lock(&desc->bd_lock); rc = desc->bd_md_count; spin_unlock(&desc->bd_lock); return rc; } #endif int ptlrpc_register_bulk(struct ptlrpc_request *req); int ptlrpc_unregister_bulk(struct ptlrpc_request *req, int async); static inline int ptlrpc_client_bulk_active(struct ptlrpc_request *req) { struct ptlrpc_bulk_desc *desc; int rc; LASSERT(req != NULL); desc = req->rq_bulk; if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK) && req->rq_bulk_deadline > cfs_time_current_sec()) return 1; if (!desc) return 0; spin_lock(&desc->bd_lock); rc = desc->bd_md_count; spin_unlock(&desc->bd_lock); return rc; } #define PTLRPC_REPLY_MAYBE_DIFFICULT 0x01 #define PTLRPC_REPLY_EARLY 0x02 int ptlrpc_send_reply(struct ptlrpc_request *req, int flags); int ptlrpc_reply(struct ptlrpc_request *req); int ptlrpc_send_error(struct ptlrpc_request *req, int difficult); int ptlrpc_error(struct ptlrpc_request *req); void ptlrpc_resend_req(struct ptlrpc_request *request); int ptlrpc_at_get_net_latency(struct ptlrpc_request *req); int ptl_send_rpc(struct ptlrpc_request *request, int noreply); int ptlrpc_register_rqbd(struct ptlrpc_request_buffer_desc *rqbd); /** @} */ /* ptlrpc/client.c */ /** * Client-side portals API. Everything to send requests, receive replies, * request queues, request management, etc. * @{ */ void ptlrpc_init_client(int req_portal, int rep_portal, char *name, struct ptlrpc_client *); void ptlrpc_cleanup_client(struct obd_import *imp); struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid); int ptlrpc_queue_wait(struct ptlrpc_request *req); int ptlrpc_replay_req(struct ptlrpc_request *req); int ptlrpc_unregister_reply(struct ptlrpc_request *req, int async); void ptlrpc_restart_req(struct ptlrpc_request *req); void ptlrpc_abort_inflight(struct obd_import *imp); void ptlrpc_cleanup_imp(struct obd_import *imp); void ptlrpc_abort_set(struct ptlrpc_request_set *set); struct ptlrpc_request_set *ptlrpc_prep_set(void); struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func, void *arg); int ptlrpc_set_add_cb(struct ptlrpc_request_set *set, set_interpreter_func fn, void *data); int ptlrpc_set_next_timeout(struct ptlrpc_request_set *); int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set); int ptlrpc_set_wait(struct ptlrpc_request_set *); int ptlrpc_expired_set(void *data); void ptlrpc_interrupted_set(void *data); void ptlrpc_mark_interrupted(struct ptlrpc_request *req); void ptlrpc_set_destroy(struct ptlrpc_request_set *); void ptlrpc_set_add_req(struct ptlrpc_request_set *, struct ptlrpc_request *); void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc, struct ptlrpc_request *req); void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool); void ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq); struct ptlrpc_request_pool * ptlrpc_init_rq_pool(int, int, void (*populate_pool)(struct ptlrpc_request_pool *, int)); void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req); struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp, const struct req_format *format); struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp, struct ptlrpc_request_pool *, const struct req_format *format); void ptlrpc_request_free(struct ptlrpc_request *request); int ptlrpc_request_pack(struct ptlrpc_request *request, __u32 version, int opcode); struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp, const struct req_format *format, __u32 version, int opcode); int ptlrpc_request_bufs_pack(struct ptlrpc_request *request, __u32 version, int opcode, char **bufs, struct ptlrpc_cli_ctx *ctx); struct ptlrpc_request *ptlrpc_prep_req(struct obd_import *imp, __u32 version, int opcode, int count, __u32 *lengths, char **bufs); struct ptlrpc_request *ptlrpc_prep_req_pool(struct obd_import *imp, __u32 version, int opcode, int count, __u32 *lengths, char **bufs, struct ptlrpc_request_pool *pool); void ptlrpc_req_finished(struct ptlrpc_request *request); void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request); struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req); struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req, unsigned npages, unsigned max_brw, unsigned type, unsigned portal); void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *bulk, int pin); static inline void ptlrpc_free_bulk_pin(struct ptlrpc_bulk_desc *bulk) { __ptlrpc_free_bulk(bulk, 1); } static inline void ptlrpc_free_bulk_nopin(struct ptlrpc_bulk_desc *bulk) { __ptlrpc_free_bulk(bulk, 0); } void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc, cfs_page_t *page, int pageoffset, int len, int); static inline void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc, cfs_page_t *page, int pageoffset, int len) { __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1); } static inline void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc, cfs_page_t *page, int pageoffset, int len) { __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0); } void ptlrpc_retain_replayable_request(struct ptlrpc_request *req, struct obd_import *imp); __u64 ptlrpc_next_xid(void); __u64 ptlrpc_sample_next_xid(void); __u64 ptlrpc_req_xid(struct ptlrpc_request *request); /* Set of routines to run a function in ptlrpcd context */ void *ptlrpcd_alloc_work(struct obd_import *imp, int (*cb)(const struct lu_env *, void *), void *data); void ptlrpcd_destroy_work(void *handler); int ptlrpcd_queue_work(void *handler); /** @} */ struct ptlrpc_service_buf_conf { /* nbufs is buffers # to allocate when growing the pool */ unsigned int bc_nbufs; /* buffer size to post */ unsigned int bc_buf_size; /* portal to listed for requests on */ unsigned int bc_req_portal; /* portal of where to send replies to */ unsigned int bc_rep_portal; /* maximum request size to be accepted for this service */ unsigned int bc_req_max_size; /* maximum reply size this service can ever send */ unsigned int bc_rep_max_size; }; struct ptlrpc_service_thr_conf { /* threadname should be 8 characters or less - 6 will be added on */ char *tc_thr_name; /* threads increasing factor for each CPU */ unsigned int tc_thr_factor; /* service threads # to start on each partition while initializing */ unsigned int tc_nthrs_init; /* * low water of threads # upper-limit on each partition while running, * service availability may be impacted if threads number is lower * than this value. It can be ZERO if the service doesn't require * CPU affinity or there is only one partition. */ unsigned int tc_nthrs_base; /* "soft" limit for total threads number */ unsigned int tc_nthrs_max; /* user specified threads number, it will be validated due to * other members of this structure. */ unsigned int tc_nthrs_user; /* set NUMA node affinity for service threads */ unsigned int tc_cpu_affinity; /* Tags for lu_context associated with service thread */ __u32 tc_ctx_tags; }; struct ptlrpc_service_cpt_conf { struct cfs_cpt_table *cc_cptable; /* string pattern to describe CPTs for a service */ char *cc_pattern; }; struct ptlrpc_service_conf { /* service name */ char *psc_name; /* soft watchdog timeout multiplifier to print stuck service traces */ unsigned int psc_watchdog_factor; /* buffer information */ struct ptlrpc_service_buf_conf psc_buf; /* thread information */ struct ptlrpc_service_thr_conf psc_thr; /* CPU partition information */ struct ptlrpc_service_cpt_conf psc_cpt; /* function table */ struct ptlrpc_service_ops psc_ops; }; /* ptlrpc/service.c */ /** * Server-side services API. Register/unregister service, request state * management, service thread management * * @{ */ void ptlrpc_save_lock(struct ptlrpc_request *req, struct lustre_handle *lock, int mode, int no_ack); void ptlrpc_commit_replies(struct obd_export *exp); void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs); void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs); int ptlrpc_hpreq_handler(struct ptlrpc_request *req); struct ptlrpc_service *ptlrpc_register_service( struct ptlrpc_service_conf *conf, struct proc_dir_entry *proc_entry); void ptlrpc_stop_all_threads(struct ptlrpc_service *svc); int ptlrpc_start_threads(struct ptlrpc_service *svc); int ptlrpc_unregister_service(struct ptlrpc_service *service); int liblustre_check_services(void *arg); void ptlrpc_daemonize(char *name); int ptlrpc_service_health_check(struct ptlrpc_service *); void ptlrpc_server_drop_request(struct ptlrpc_request *req); #ifdef __KERNEL__ int ptlrpc_hr_init(void); void ptlrpc_hr_fini(void); #else # define ptlrpc_hr_init() (0) # define ptlrpc_hr_fini() do {} while(0) #endif /** @} */ /* ptlrpc/import.c */ /** * Import API * @{ */ int ptlrpc_connect_import(struct obd_import *imp); int ptlrpc_init_import(struct obd_import *imp); int ptlrpc_disconnect_import(struct obd_import *imp, int noclose); int ptlrpc_import_recovery_state_machine(struct obd_import *imp); void deuuidify(char *uuid, const char *prefix, char **uuid_start, int *uuid_len); /* ptlrpc/pack_generic.c */ int ptlrpc_reconnect_import(struct obd_import *imp); /** @} */ /** * ptlrpc msg buffer and swab interface * * @{ */ int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout, int index); void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout, int index); int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len); int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len); int lustre_msg_check_version(struct lustre_msg *msg, __u32 version); void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens, char **bufs); int lustre_pack_request(struct ptlrpc_request *, __u32 magic, int count, __u32 *lens, char **bufs); int lustre_pack_reply(struct ptlrpc_request *, int count, __u32 *lens, char **bufs); int lustre_pack_reply_v2(struct ptlrpc_request *req, int count, __u32 *lens, char **bufs, int flags); #define LPRFL_EARLY_REPLY 1 int lustre_pack_reply_flags(struct ptlrpc_request *, int count, __u32 *lens, char **bufs, int flags); int lustre_shrink_msg(struct lustre_msg *msg, int segment, unsigned int newlen, int move_data); void lustre_free_reply_state(struct ptlrpc_reply_state *rs); int __lustre_unpack_msg(struct lustre_msg *m, int len); int lustre_msg_hdr_size(__u32 magic, int count); int lustre_msg_size(__u32 magic, int count, __u32 *lengths); int lustre_msg_size_v2(int count, __u32 *lengths); int lustre_packed_msg_size(struct lustre_msg *msg); int lustre_msg_early_size(void); void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, int n, int min_size); void *lustre_msg_buf(struct lustre_msg *m, int n, int minlen); int lustre_msg_buflen(struct lustre_msg *m, int n); void lustre_msg_set_buflen(struct lustre_msg *m, int n, int len); int lustre_msg_bufcount(struct lustre_msg *m); char *lustre_msg_string(struct lustre_msg *m, int n, int max_len); __u32 lustre_msghdr_get_flags(struct lustre_msg *msg); void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags); __u32 lustre_msg_get_flags(struct lustre_msg *msg); void lustre_msg_add_flags(struct lustre_msg *msg, int flags); void lustre_msg_set_flags(struct lustre_msg *msg, int flags); void lustre_msg_clear_flags(struct lustre_msg *msg, int flags); __u32 lustre_msg_get_op_flags(struct lustre_msg *msg); void lustre_msg_add_op_flags(struct lustre_msg *msg, int flags); void lustre_msg_set_op_flags(struct lustre_msg *msg, int flags); struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg); __u32 lustre_msg_get_type(struct lustre_msg *msg); __u32 lustre_msg_get_version(struct lustre_msg *msg); void lustre_msg_add_version(struct lustre_msg *msg, int version); __u32 lustre_msg_get_opc(struct lustre_msg *msg); __u64 lustre_msg_get_last_xid(struct lustre_msg *msg); __u64 lustre_msg_get_last_committed(struct lustre_msg *msg); __u64 *lustre_msg_get_versions(struct lustre_msg *msg); __u64 lustre_msg_get_transno(struct lustre_msg *msg); __u64 lustre_msg_get_slv(struct lustre_msg *msg); __u32 lustre_msg_get_limit(struct lustre_msg *msg); void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv); void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit); int lustre_msg_get_status(struct lustre_msg *msg); __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg); int lustre_msg_is_v1(struct lustre_msg *msg); __u32 lustre_msg_get_magic(struct lustre_msg *msg); __u32 lustre_msg_get_timeout(struct lustre_msg *msg); __u32 lustre_msg_get_service_time(struct lustre_msg *msg); char *lustre_msg_get_jobid(struct lustre_msg *msg); __u32 lustre_msg_get_cksum(struct lustre_msg *msg); #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 50, 0) __u32 lustre_msg_calc_cksum(struct lustre_msg *msg, int compat18); #else # warning "remove checksum compatibility support for b1_8" __u32 lustre_msg_calc_cksum(struct lustre_msg *msg); #endif void lustre_msg_set_handle(struct lustre_msg *msg,struct lustre_handle *handle); void lustre_msg_set_type(struct lustre_msg *msg, __u32 type); void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc); void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid); void lustre_msg_set_last_committed(struct lustre_msg *msg,__u64 last_committed); void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions); void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno); void lustre_msg_set_status(struct lustre_msg *msg, __u32 status); void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt); void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *sizes); void ptlrpc_request_set_replen(struct ptlrpc_request *req); void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout); void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time); void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid); void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum); static inline void lustre_shrink_reply(struct ptlrpc_request *req, int segment, unsigned int newlen, int move_data) { LASSERT(req->rq_reply_state); LASSERT(req->rq_repmsg); req->rq_replen = lustre_shrink_msg(req->rq_repmsg, segment, newlen, move_data); } /** @} */ /** Change request phase of \a req to \a new_phase */ static inline void ptlrpc_rqphase_move(struct ptlrpc_request *req, enum rq_phase new_phase) { if (req->rq_phase == new_phase) return; if (new_phase == RQ_PHASE_UNREGISTERING) { req->rq_next_phase = req->rq_phase; if (req->rq_import) cfs_atomic_inc(&req->rq_import->imp_unregistering); } if (req->rq_phase == RQ_PHASE_UNREGISTERING) { if (req->rq_import) cfs_atomic_dec(&req->rq_import->imp_unregistering); } DEBUG_REQ(D_INFO, req, "move req \"%s\" -> \"%s\"", ptlrpc_rqphase2str(req), ptlrpc_phase2str(new_phase)); req->rq_phase = new_phase; } /** * Returns true if request \a req got early reply and hard deadline is not met */ static inline int ptlrpc_client_early(struct ptlrpc_request *req) { if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) && req->rq_reply_deadline > cfs_time_current_sec()) return 0; return req->rq_early; } /** * Returns true if we got real reply from server for this request */ static inline int ptlrpc_client_replied(struct ptlrpc_request *req) { if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) && req->rq_reply_deadline > cfs_time_current_sec()) return 0; return req->rq_replied; } /** Returns true if request \a req is in process of receiving server reply */ static inline int ptlrpc_client_recv(struct ptlrpc_request *req) { if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) && req->rq_reply_deadline > cfs_time_current_sec()) return 1; return req->rq_receiving_reply; } static inline int ptlrpc_client_recv_or_unlink(struct ptlrpc_request *req) { int rc; spin_lock(&req->rq_lock); if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) && req->rq_reply_deadline > cfs_time_current_sec()) { spin_unlock(&req->rq_lock); return 1; } rc = req->rq_receiving_reply || req->rq_must_unlink; spin_unlock(&req->rq_lock); return rc; } static inline void ptlrpc_client_wake_req(struct ptlrpc_request *req) { if (req->rq_set == NULL) cfs_waitq_signal(&req->rq_reply_waitq); else cfs_waitq_signal(&req->rq_set->set_waitq); } static inline void ptlrpc_rs_addref(struct ptlrpc_reply_state *rs) { LASSERT(cfs_atomic_read(&rs->rs_refcount) > 0); cfs_atomic_inc(&rs->rs_refcount); } static inline void ptlrpc_rs_decref(struct ptlrpc_reply_state *rs) { LASSERT(cfs_atomic_read(&rs->rs_refcount) > 0); if (cfs_atomic_dec_and_test(&rs->rs_refcount)) lustre_free_reply_state(rs); } /* Should only be called once per req */ static inline void ptlrpc_req_drop_rs(struct ptlrpc_request *req) { if (req->rq_reply_state == NULL) return; /* shouldn't occur */ ptlrpc_rs_decref(req->rq_reply_state); req->rq_reply_state = NULL; req->rq_repmsg = NULL; } static inline __u32 lustre_request_magic(struct ptlrpc_request *req) { return lustre_msg_get_magic(req->rq_reqmsg); } static inline int ptlrpc_req_get_repsize(struct ptlrpc_request *req) { switch (req->rq_reqmsg->lm_magic) { case LUSTRE_MSG_MAGIC_V2: return req->rq_reqmsg->lm_repsize; default: LASSERTF(0, "incorrect message magic: %08x\n", req->rq_reqmsg->lm_magic); return -EFAULT; } } static inline int ptlrpc_send_limit_expired(struct ptlrpc_request *req) { if (req->rq_delay_limit != 0 && cfs_time_before(cfs_time_add(req->rq_queued_time, cfs_time_seconds(req->rq_delay_limit)), cfs_time_current())) { return 1; } return 0; } static inline int ptlrpc_no_resend(struct ptlrpc_request *req) { if (!req->rq_no_resend && ptlrpc_send_limit_expired(req)) { spin_lock(&req->rq_lock); req->rq_no_resend = 1; spin_unlock(&req->rq_lock); } return req->rq_no_resend; } static inline int ptlrpc_server_get_timeout(struct ptlrpc_service_part *svcpt) { int at = AT_OFF ? 0 : at_get(&svcpt->scp_at_estimate); return svcpt->scp_service->srv_watchdog_factor * max_t(int, at, obd_timeout); } static inline struct ptlrpc_service * ptlrpc_req2svc(struct ptlrpc_request *req) { LASSERT(req->rq_rqbd != NULL); return req->rq_rqbd->rqbd_svcpt->scp_service; } /* ldlm/ldlm_lib.c */ /** * Target client logic * @{ */ int client_obd_setup(struct obd_device *obddev, struct lustre_cfg *lcfg); int client_obd_cleanup(struct obd_device *obddev); int client_connect_import(const struct lu_env *env, struct obd_export **exp, struct obd_device *obd, struct obd_uuid *cluuid, struct obd_connect_data *, void *localdata); int client_disconnect_export(struct obd_export *exp); int client_import_add_conn(struct obd_import *imp, struct obd_uuid *uuid, int priority); int client_import_del_conn(struct obd_import *imp, struct obd_uuid *uuid); int client_import_find_conn(struct obd_import *imp, lnet_nid_t peer, struct obd_uuid *uuid); int import_set_conn_priority(struct obd_import *imp, struct obd_uuid *uuid); void client_destroy_import(struct obd_import *imp); /** @} */ #ifdef HAVE_SERVER_SUPPORT int server_disconnect_export(struct obd_export *exp); #endif /* ptlrpc/pinger.c */ /** * Pinger API (client side only) * @{ */ extern int suppress_pings; enum timeout_event { TIMEOUT_GRANT = 1 }; struct timeout_item; typedef int (*timeout_cb_t)(struct timeout_item *, void *); int ptlrpc_pinger_add_import(struct obd_import *imp); int ptlrpc_pinger_del_import(struct obd_import *imp); int ptlrpc_add_timeout_client(int time, enum timeout_event event, timeout_cb_t cb, void *data, cfs_list_t *obd_list); int ptlrpc_del_timeout_client(cfs_list_t *obd_list, enum timeout_event event); struct ptlrpc_request * ptlrpc_prep_ping(struct obd_import *imp); int ptlrpc_obd_ping(struct obd_device *obd); cfs_time_t ptlrpc_suspend_wakeup_time(void); #ifdef __KERNEL__ void ping_evictor_start(void); void ping_evictor_stop(void); #else #define ping_evictor_start() do {} while (0) #define ping_evictor_stop() do {} while (0) #endif int ptlrpc_check_and_wait_suspend(struct ptlrpc_request *req); /** @} */ /* ptlrpc daemon bind policy */ typedef enum { /* all ptlrpcd threads are free mode */ PDB_POLICY_NONE = 1, /* all ptlrpcd threads are bound mode */ PDB_POLICY_FULL = 2, /* ... */ PDB_POLICY_PAIR = 3, /* ... , * means each ptlrpcd[X] has two partners: thread[X-1] and thread[X+1]. * If kernel supports NUMA, pthrpcd threads are binded and * grouped by NUMA node */ PDB_POLICY_NEIGHBOR = 4, } pdb_policy_t; /* ptlrpc daemon load policy * It is caller's duty to specify how to push the async RPC into some ptlrpcd * queue, but it is not enforced, affected by "ptlrpcd_bind_policy". If it is * "PDB_POLICY_FULL", then the RPC will be processed by the selected ptlrpcd, * Otherwise, the RPC may be processed by the selected ptlrpcd or its partner, * depends on which is scheduled firstly, to accelerate the RPC processing. */ typedef enum { /* on the same CPU core as the caller */ PDL_POLICY_SAME = 1, /* within the same CPU partition, but not the same core as the caller */ PDL_POLICY_LOCAL = 2, /* round-robin on all CPU cores, but not the same core as the caller */ PDL_POLICY_ROUND = 3, /* the specified CPU core is preferred, but not enforced */ PDL_POLICY_PREFERRED = 4, } pdl_policy_t; /* ptlrpc/ptlrpcd.c */ void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force); void ptlrpcd_free(struct ptlrpcd_ctl *pc); void ptlrpcd_wake(struct ptlrpc_request *req); void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx); void ptlrpcd_add_rqset(struct ptlrpc_request_set *set); int ptlrpcd_addref(void); void ptlrpcd_decref(void); /* ptlrpc/lproc_ptlrpc.c */ /** * procfs output related functions * @{ */ const char* ll_opcode2str(__u32 opcode); #ifdef LPROCFS void ptlrpc_lprocfs_register_obd(struct obd_device *obd); void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd); void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes); #else static inline void ptlrpc_lprocfs_register_obd(struct obd_device *obd) {} static inline void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd) {} static inline void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes) {} #endif /** @} */ /* ptlrpc/llog_server.c */ int llog_origin_handle_open(struct ptlrpc_request *req); int llog_origin_handle_destroy(struct ptlrpc_request *req); int llog_origin_handle_prev_block(struct ptlrpc_request *req); int llog_origin_handle_next_block(struct ptlrpc_request *req); int llog_origin_handle_read_header(struct ptlrpc_request *req); int llog_origin_handle_close(struct ptlrpc_request *req); int llog_origin_handle_cancel(struct ptlrpc_request *req); /* ptlrpc/llog_client.c */ extern struct llog_operations llog_client_ops; /** @} net */ #endif /** @} PtlRPC */