/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2012, Whamcloud, Inc. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/include/lustre_lib.h * * Basic Lustre library routines. */ #ifndef _LUSTRE_LIB_H #define _LUSTRE_LIB_H /** \defgroup lib lib * * @{ */ #include #include #include #include #if defined(__linux__) #include #elif defined(__APPLE__) #include #elif defined(__WINNT__) #include #else #error Unsupported operating system. #endif /* target.c */ struct ptlrpc_request; struct obd_export; struct lu_target; struct l_wait_info; #include #include #include #ifdef HAVE_SERVER_SUPPORT void target_client_add_cb(struct obd_device *obd, __u64 transno, void *cb_data, int error); int target_handle_connect(struct ptlrpc_request *req); int target_handle_disconnect(struct ptlrpc_request *req); void target_destroy_export(struct obd_export *exp); int target_handle_ping(struct ptlrpc_request *req); void target_committed_to_req(struct ptlrpc_request *req); void target_cancel_recovery_timer(struct obd_device *obd); void target_stop_recovery_thread(struct obd_device *obd); void target_cleanup_recovery(struct obd_device *obd); int target_queue_recovery_request(struct ptlrpc_request *req, struct obd_device *obd); int target_bulk_io(struct obd_export *exp, struct ptlrpc_bulk_desc *desc, struct l_wait_info *lwi); #endif int target_pack_pool_reply(struct ptlrpc_request *req); int do_set_info_async(struct obd_import *imp, int opcode, int version, obd_count keylen, void *key, obd_count vallen, void *val, struct ptlrpc_request_set *set); #define OBD_RECOVERY_MAX_TIME (obd_timeout * 18) /* b13079 */ void target_send_reply(struct ptlrpc_request *req, int rc, int fail_id); /* client.c */ int client_sanobd_setup(struct obd_device *obddev, struct lustre_cfg* lcfg); struct client_obd *client_conn2cli(struct lustre_handle *conn); struct md_open_data; struct obd_client_handle { struct lustre_handle och_fh; struct lu_fid och_fid; struct md_open_data *och_mod; __u32 och_magic; int och_flags; }; #define OBD_CLIENT_HANDLE_MAGIC 0xd15ea5ed /* statfs_pack.c */ void statfs_pack(struct obd_statfs *osfs, cfs_kstatfs_t *sfs); void statfs_unpack(cfs_kstatfs_t *sfs, struct obd_statfs *osfs); /* l_lock.c */ struct lustre_lock { int l_depth; cfs_task_t *l_owner; struct semaphore l_sem; spinlock_t l_spin; }; void l_lock_init(struct lustre_lock *); void l_lock(struct lustre_lock *); void l_unlock(struct lustre_lock *); int l_has_lock(struct lustre_lock *); /* * For md echo client */ enum md_echo_cmd { ECHO_MD_CREATE = 1, /* Open/Create file on MDT */ ECHO_MD_MKDIR = 2, /* Mkdir on MDT */ ECHO_MD_DESTROY = 3, /* Unlink file on MDT */ ECHO_MD_RMDIR = 4, /* Rmdir on MDT */ ECHO_MD_LOOKUP = 5, /* Lookup on MDT */ ECHO_MD_GETATTR = 6, /* Getattr on MDT */ ECHO_MD_SETATTR = 7, /* Setattr on MDT */ ECHO_MD_ALLOC_FID = 8, /* Get FIDs from MDT */ }; /* * OBD IOCTLS */ #define OBD_IOCTL_VERSION 0x00010004 struct obd_ioctl_data { __u32 ioc_len; __u32 ioc_version; union { __u64 ioc_cookie; __u64 ioc_u64_1; }; union { __u32 ioc_conn1; __u32 ioc_u32_1; }; union { __u32 ioc_conn2; __u32 ioc_u32_2; }; struct obdo ioc_obdo1; struct obdo ioc_obdo2; obd_size ioc_count; obd_off ioc_offset; __u32 ioc_dev; __u32 ioc_command; __u64 ioc_nid; __u32 ioc_nal; __u32 ioc_type; /* buffers the kernel will treat as user pointers */ __u32 ioc_plen1; char *ioc_pbuf1; __u32 ioc_plen2; char *ioc_pbuf2; /* inline buffers for various arguments */ __u32 ioc_inllen1; char *ioc_inlbuf1; __u32 ioc_inllen2; char *ioc_inlbuf2; __u32 ioc_inllen3; char *ioc_inlbuf3; __u32 ioc_inllen4; char *ioc_inlbuf4; char ioc_bulk[0]; }; struct obd_ioctl_hdr { __u32 ioc_len; __u32 ioc_version; }; static inline int obd_ioctl_packlen(struct obd_ioctl_data *data) { int len = cfs_size_round(sizeof(struct obd_ioctl_data)); len += cfs_size_round(data->ioc_inllen1); len += cfs_size_round(data->ioc_inllen2); len += cfs_size_round(data->ioc_inllen3); len += cfs_size_round(data->ioc_inllen4); return len; } static inline int obd_ioctl_is_invalid(struct obd_ioctl_data *data) { if (data->ioc_len > (1<<30)) { CERROR("OBD ioctl: ioc_len larger than 1<<30\n"); return 1; } if (data->ioc_inllen1 > (1<<30)) { CERROR("OBD ioctl: ioc_inllen1 larger than 1<<30\n"); return 1; } if (data->ioc_inllen2 > (1<<30)) { CERROR("OBD ioctl: ioc_inllen2 larger than 1<<30\n"); return 1; } if (data->ioc_inllen3 > (1<<30)) { CERROR("OBD ioctl: ioc_inllen3 larger than 1<<30\n"); return 1; } if (data->ioc_inllen4 > (1<<30)) { CERROR("OBD ioctl: ioc_inllen4 larger than 1<<30\n"); return 1; } if (data->ioc_inlbuf1 && !data->ioc_inllen1) { CERROR("OBD ioctl: inlbuf1 pointer but 0 length\n"); return 1; } if (data->ioc_inlbuf2 && !data->ioc_inllen2) { CERROR("OBD ioctl: inlbuf2 pointer but 0 length\n"); return 1; } if (data->ioc_inlbuf3 && !data->ioc_inllen3) { CERROR("OBD ioctl: inlbuf3 pointer but 0 length\n"); return 1; } if (data->ioc_inlbuf4 && !data->ioc_inllen4) { CERROR("OBD ioctl: inlbuf4 pointer but 0 length\n"); return 1; } if (data->ioc_pbuf1 && !data->ioc_plen1) { CERROR("OBD ioctl: pbuf1 pointer but 0 length\n"); return 1; } if (data->ioc_pbuf2 && !data->ioc_plen2) { CERROR("OBD ioctl: pbuf2 pointer but 0 length\n"); return 1; } if (data->ioc_plen1 && !data->ioc_pbuf1) { CERROR("OBD ioctl: plen1 set but NULL pointer\n"); return 1; } if (data->ioc_plen2 && !data->ioc_pbuf2) { CERROR("OBD ioctl: plen2 set but NULL pointer\n"); return 1; } if (obd_ioctl_packlen(data) > data->ioc_len) { CERROR("OBD ioctl: packlen exceeds ioc_len (%d > %d)\n", obd_ioctl_packlen(data), data->ioc_len); return 1; } return 0; } #ifndef __KERNEL__ static inline int obd_ioctl_pack(struct obd_ioctl_data *data, char **pbuf, int max) { char *ptr; struct obd_ioctl_data *overlay; data->ioc_len = obd_ioctl_packlen(data); data->ioc_version = OBD_IOCTL_VERSION; if (*pbuf && data->ioc_len > max) { fprintf(stderr, "pbuf %p ioc_len %u max %d\n", *pbuf, data->ioc_len, max); return -EINVAL; } if (*pbuf == NULL) { *pbuf = malloc(data->ioc_len); } if (!*pbuf) return -ENOMEM; overlay = (struct obd_ioctl_data *)*pbuf; memcpy(*pbuf, data, sizeof(*data)); ptr = overlay->ioc_bulk; if (data->ioc_inlbuf1) LOGL(data->ioc_inlbuf1, data->ioc_inllen1, ptr); if (data->ioc_inlbuf2) LOGL(data->ioc_inlbuf2, data->ioc_inllen2, ptr); if (data->ioc_inlbuf3) LOGL(data->ioc_inlbuf3, data->ioc_inllen3, ptr); if (data->ioc_inlbuf4) LOGL(data->ioc_inlbuf4, data->ioc_inllen4, ptr); if (obd_ioctl_is_invalid(overlay)) { fprintf(stderr, "ioc_len %u max %d\n", data->ioc_len, max); return -EINVAL; } return 0; } static inline int obd_ioctl_unpack(struct obd_ioctl_data *data, char *pbuf, int max) { char *ptr; struct obd_ioctl_data *overlay; if (!pbuf) return 1; overlay = (struct obd_ioctl_data *)pbuf; /* Preserve the caller's buffer pointers */ overlay->ioc_inlbuf1 = data->ioc_inlbuf1; overlay->ioc_inlbuf2 = data->ioc_inlbuf2; overlay->ioc_inlbuf3 = data->ioc_inlbuf3; overlay->ioc_inlbuf4 = data->ioc_inlbuf4; memcpy(data, pbuf, sizeof(*data)); ptr = overlay->ioc_bulk; if (data->ioc_inlbuf1) LOGU(data->ioc_inlbuf1, data->ioc_inllen1, ptr); if (data->ioc_inlbuf2) LOGU(data->ioc_inlbuf2, data->ioc_inllen2, ptr); if (data->ioc_inlbuf3) LOGU(data->ioc_inlbuf3, data->ioc_inllen3, ptr); if (data->ioc_inlbuf4) LOGU(data->ioc_inlbuf4, data->ioc_inllen4, ptr); return 0; } #endif #include #ifdef __KERNEL__ /* function defined in lustre/obdclass//-module.c */ int obd_ioctl_getdata(char **buf, int *len, void *arg); int obd_ioctl_popdata(void *arg, void *data, int len); #else /* buffer MUST be at least the size of obd_ioctl_hdr */ static inline int obd_ioctl_getdata(char **buf, int *len, void *arg) { struct obd_ioctl_hdr hdr; struct obd_ioctl_data *data; int err; int offset = 0; ENTRY; err = cfs_copy_from_user(&hdr, (void *)arg, sizeof(hdr)); if (err) RETURN(err); if (hdr.ioc_version != OBD_IOCTL_VERSION) { CERROR("Version mismatch kernel vs application\n"); RETURN(-EINVAL); } if (hdr.ioc_len > OBD_MAX_IOCTL_BUFFER) { CERROR("User buffer len %d exceeds %d max buffer\n", hdr.ioc_len, OBD_MAX_IOCTL_BUFFER); RETURN(-EINVAL); } if (hdr.ioc_len < sizeof(struct obd_ioctl_data)) { CERROR("User buffer too small for ioctl (%d)\n", hdr.ioc_len); RETURN(-EINVAL); } OBD_ALLOC_LARGE(*buf, hdr.ioc_len); if (*buf == NULL) { CERROR("Cannot allocate control buffer of len %d\n", hdr.ioc_len); RETURN(-EINVAL); } *len = hdr.ioc_len; data = (struct obd_ioctl_data *)*buf; err = cfs_copy_from_user(*buf, (void *)arg, hdr.ioc_len); if (err) { OBD_FREE_LARGE(*buf, hdr.ioc_len); RETURN(err); } if (obd_ioctl_is_invalid(data)) { CERROR("ioctl not correctly formatted\n"); OBD_FREE_LARGE(*buf, hdr.ioc_len); RETURN(-EINVAL); } if (data->ioc_inllen1) { data->ioc_inlbuf1 = &data->ioc_bulk[0]; offset += cfs_size_round(data->ioc_inllen1); } if (data->ioc_inllen2) { data->ioc_inlbuf2 = &data->ioc_bulk[0] + offset; offset += cfs_size_round(data->ioc_inllen2); } if (data->ioc_inllen3) { data->ioc_inlbuf3 = &data->ioc_bulk[0] + offset; offset += cfs_size_round(data->ioc_inllen3); } if (data->ioc_inllen4) { data->ioc_inlbuf4 = &data->ioc_bulk[0] + offset; } RETURN(0); } static inline int obd_ioctl_popdata(void *arg, void *data, int len) { int err = cfs_copy_to_user(arg, data, len); if (err) err = -EFAULT; return err; } #endif static inline void obd_ioctl_freedata(char *buf, int len) { ENTRY; OBD_FREE_LARGE(buf, len); EXIT; return; } /* * BSD ioctl description: * #define IOC_V1 _IOR(g, n1, long) * #define IOC_V2 _IOW(g, n2, long) * * ioctl(f, IOC_V1, arg); * arg will be treated as a long value, * * ioctl(f, IOC_V2, arg) * arg will be treated as a pointer, bsd will call * copyin(buf, arg, sizeof(long)) * * To make BSD ioctl handles argument correctly and simplely, * we change _IOR to _IOWR so BSD will copyin obd_ioctl_data * for us. Does this change affect Linux? (XXX Liang) */ #define OBD_IOC_CREATE _IOWR('f', 101, OBD_IOC_DATA_TYPE) #define OBD_IOC_DESTROY _IOW ('f', 104, OBD_IOC_DATA_TYPE) #define OBD_IOC_PREALLOCATE _IOWR('f', 105, OBD_IOC_DATA_TYPE) #define OBD_IOC_SETATTR _IOW ('f', 107, OBD_IOC_DATA_TYPE) #define OBD_IOC_GETATTR _IOWR ('f', 108, OBD_IOC_DATA_TYPE) #define OBD_IOC_READ _IOWR('f', 109, OBD_IOC_DATA_TYPE) #define OBD_IOC_WRITE _IOWR('f', 110, OBD_IOC_DATA_TYPE) #define OBD_IOC_STATFS _IOWR('f', 113, OBD_IOC_DATA_TYPE) #define OBD_IOC_SYNC _IOW ('f', 114, OBD_IOC_DATA_TYPE) #define OBD_IOC_READ2 _IOWR('f', 115, OBD_IOC_DATA_TYPE) #define OBD_IOC_FORMAT _IOWR('f', 116, OBD_IOC_DATA_TYPE) #define OBD_IOC_PARTITION _IOWR('f', 117, OBD_IOC_DATA_TYPE) #define OBD_IOC_COPY _IOWR('f', 120, OBD_IOC_DATA_TYPE) #define OBD_IOC_MIGR _IOWR('f', 121, OBD_IOC_DATA_TYPE) #define OBD_IOC_PUNCH _IOWR('f', 122, OBD_IOC_DATA_TYPE) #define OBD_IOC_MODULE_DEBUG _IOWR('f', 124, OBD_IOC_DATA_TYPE) #define OBD_IOC_BRW_READ _IOWR('f', 125, OBD_IOC_DATA_TYPE) #define OBD_IOC_BRW_WRITE _IOWR('f', 126, OBD_IOC_DATA_TYPE) #define OBD_IOC_NAME2DEV _IOWR('f', 127, OBD_IOC_DATA_TYPE) #define OBD_IOC_UUID2DEV _IOWR('f', 130, OBD_IOC_DATA_TYPE) #define OBD_IOC_GETNAME _IOWR('f', 131, OBD_IOC_DATA_TYPE) #define OBD_IOC_GETMDNAME _IOR('f', 131, char[MAX_OBD_NAME]) #define OBD_IOC_GETDTNAME OBD_IOC_GETNAME #define OBD_IOC_LOV_GET_CONFIG _IOWR('f', 132, OBD_IOC_DATA_TYPE) #define OBD_IOC_CLIENT_RECOVER _IOW ('f', 133, OBD_IOC_DATA_TYPE) #define OBD_IOC_PING_TARGET _IOW ('f', 136, OBD_IOC_DATA_TYPE) #define OBD_IOC_DEC_FS_USE_COUNT _IO ('f', 139 ) #define OBD_IOC_NO_TRANSNO _IOW ('f', 140, OBD_IOC_DATA_TYPE) #define OBD_IOC_SET_READONLY _IOW ('f', 141, OBD_IOC_DATA_TYPE) #define OBD_IOC_ABORT_RECOVERY _IOR ('f', 142, OBD_IOC_DATA_TYPE) #define OBD_IOC_ROOT_SQUASH _IOWR('f', 143, OBD_IOC_DATA_TYPE) #define OBD_GET_VERSION _IOWR ('f', 144, OBD_IOC_DATA_TYPE) #define OBD_IOC_GSS_SUPPORT _IOWR('f', 145, OBD_IOC_DATA_TYPE) #define OBD_IOC_CLOSE_UUID _IOWR ('f', 147, OBD_IOC_DATA_TYPE) #define OBD_IOC_CHANGELOG_SEND _IOW ('f', 148, OBD_IOC_DATA_TYPE) #define OBD_IOC_GETDEVICE _IOWR ('f', 149, OBD_IOC_DATA_TYPE) #define OBD_IOC_FID2PATH _IOWR ('f', 150, OBD_IOC_DATA_TYPE) /* see also for ioctls 151-153 */ /* OBD_IOC_LOV_SETSTRIPE: See also LL_IOC_LOV_SETSTRIPE */ #define OBD_IOC_LOV_SETSTRIPE _IOW ('f', 154, OBD_IOC_DATA_TYPE) /* OBD_IOC_LOV_GETSTRIPE: See also LL_IOC_LOV_GETSTRIPE */ #define OBD_IOC_LOV_GETSTRIPE _IOW ('f', 155, OBD_IOC_DATA_TYPE) /* OBD_IOC_LOV_SETEA: See also LL_IOC_LOV_SETEA */ #define OBD_IOC_LOV_SETEA _IOW ('f', 156, OBD_IOC_DATA_TYPE) /* see for ioctls 157-159 */ /* OBD_IOC_QUOTACHECK: See also LL_IOC_QUOTACHECK */ #define OBD_IOC_QUOTACHECK _IOW ('f', 160, int) /* OBD_IOC_POLL_QUOTACHECK: See also LL_IOC_POLL_QUOTACHECK */ #define OBD_IOC_POLL_QUOTACHECK _IOR ('f', 161, struct if_quotacheck *) /* OBD_IOC_QUOTACTL: See also LL_IOC_QUOTACTL */ #define OBD_IOC_QUOTACTL _IOWR('f', 162, struct if_quotactl) /* see also for ioctls 163-176 */ #define OBD_IOC_CHANGELOG_REG _IOW ('f', 177, struct obd_ioctl_data) #define OBD_IOC_CHANGELOG_DEREG _IOW ('f', 178, struct obd_ioctl_data) #define OBD_IOC_CHANGELOG_CLEAR _IOW ('f', 179, struct obd_ioctl_data) #define OBD_IOC_RECORD _IOWR('f', 180, OBD_IOC_DATA_TYPE) #define OBD_IOC_ENDRECORD _IOWR('f', 181, OBD_IOC_DATA_TYPE) #define OBD_IOC_PARSE _IOWR('f', 182, OBD_IOC_DATA_TYPE) #define OBD_IOC_DORECORD _IOWR('f', 183, OBD_IOC_DATA_TYPE) #define OBD_IOC_PROCESS_CFG _IOWR('f', 184, OBD_IOC_DATA_TYPE) #define OBD_IOC_DUMP_LOG _IOWR('f', 185, OBD_IOC_DATA_TYPE) #define OBD_IOC_CLEAR_LOG _IOWR('f', 186, OBD_IOC_DATA_TYPE) #define OBD_IOC_PARAM _IOW ('f', 187, OBD_IOC_DATA_TYPE) #define OBD_IOC_POOL _IOWR('f', 188, OBD_IOC_DATA_TYPE) #define OBD_IOC_CATLOGLIST _IOWR('f', 190, OBD_IOC_DATA_TYPE) #define OBD_IOC_LLOG_INFO _IOWR('f', 191, OBD_IOC_DATA_TYPE) #define OBD_IOC_LLOG_PRINT _IOWR('f', 192, OBD_IOC_DATA_TYPE) #define OBD_IOC_LLOG_CANCEL _IOWR('f', 193, OBD_IOC_DATA_TYPE) #define OBD_IOC_LLOG_REMOVE _IOWR('f', 194, OBD_IOC_DATA_TYPE) #define OBD_IOC_LLOG_CHECK _IOWR('f', 195, OBD_IOC_DATA_TYPE) /* OBD_IOC_LLOG_CATINFO is deprecated */ #define OBD_IOC_LLOG_CATINFO _IOWR('f', 196, OBD_IOC_DATA_TYPE) #define ECHO_IOC_GET_STRIPE _IOWR('f', 200, OBD_IOC_DATA_TYPE) #define ECHO_IOC_SET_STRIPE _IOWR('f', 201, OBD_IOC_DATA_TYPE) #define ECHO_IOC_ENQUEUE _IOWR('f', 202, OBD_IOC_DATA_TYPE) #define ECHO_IOC_CANCEL _IOWR('f', 203, OBD_IOC_DATA_TYPE) #define OBD_IOC_GET_OBJ_VERSION _IOR('f', 210, OBD_IOC_DATA_TYPE) /* defines ioctl number 218 */ #define OBD_IOC_GET_MNTOPT _IOW('f', 220, mntopt_t) #define OBD_IOC_ECHO_MD _IOR('f', 221, struct obd_ioctl_data) #define OBD_IOC_ECHO_ALLOC_SEQ _IOWR('f', 222, struct obd_ioctl_data) #define OBD_IOC_START_LFSCK _IOWR('f', 230, OBD_IOC_DATA_TYPE) #define OBD_IOC_STOP_LFSCK _IOW('f', 231, OBD_IOC_DATA_TYPE) /* XXX _IOWR('f', 250, long) has been defined in * libcfs/include/libcfs/libcfs_private.h for debug, don't use it */ /* Until such time as we get_info the per-stripe maximum from the OST, * we define this to be 2T - 4k, which is the ext3 maxbytes. */ #define LUSTRE_STRIPE_MAXBYTES 0x1fffffff000ULL /* Special values for remove LOV EA from disk */ #define LOVEA_DELETE_VALUES(size, count, offset) (size == 0 && count == 0 && \ offset == (typeof(offset))(-1)) /* #define POISON_BULK 0 */ /* * l_wait_event is a flexible sleeping function, permitting simple caller * configuration of interrupt and timeout sensitivity along with actions to * be performed in the event of either exception. * * The first form of usage looks like this: * * struct l_wait_info lwi = LWI_TIMEOUT_INTR(timeout, timeout_handler, * intr_handler, callback_data); * rc = l_wait_event(waitq, condition, &lwi); * * l_wait_event() makes the current process wait on 'waitq' until 'condition' * is TRUE or a "killable" signal (SIGTERM, SIKGILL, SIGINT) is pending. It * returns 0 to signify 'condition' is TRUE, but if a signal wakes it before * 'condition' becomes true, it optionally calls the specified 'intr_handler' * if not NULL, and returns -EINTR. * * If a non-zero timeout is specified, signals are ignored until the timeout * has expired. At this time, if 'timeout_handler' is not NULL it is called. * If it returns FALSE l_wait_event() continues to wait as described above with * signals enabled. Otherwise it returns -ETIMEDOUT. * * LWI_INTR(intr_handler, callback_data) is shorthand for * LWI_TIMEOUT_INTR(0, NULL, intr_handler, callback_data) * * The second form of usage looks like this: * * struct l_wait_info lwi = LWI_TIMEOUT(timeout, timeout_handler); * rc = l_wait_event(waitq, condition, &lwi); * * This form is the same as the first except that it COMPLETELY IGNORES * SIGNALS. The caller must therefore beware that if 'timeout' is zero, or if * 'timeout_handler' is not NULL and returns FALSE, then the ONLY thing that * can unblock the current process is 'condition' becoming TRUE. * * Another form of usage is: * struct l_wait_info lwi = LWI_TIMEOUT_INTERVAL(timeout, interval, * timeout_handler); * rc = l_wait_event(waitq, condition, &lwi); * This is the same as previous case, but condition is checked once every * 'interval' jiffies (if non-zero). * * Subtle synchronization point: this macro does *not* necessary takes * wait-queue spin-lock before returning, and, hence, following idiom is safe * ONLY when caller provides some external locking: * * Thread1 Thread2 * * l_wait_event(&obj->wq, ....); (1) * * wake_up(&obj->wq): (2) * spin_lock(&q->lock); (2.1) * __wake_up_common(q, ...); (2.2) * spin_unlock(&q->lock, flags); (2.3) * * OBD_FREE_PTR(obj); (3) * * As l_wait_event() may "short-cut" execution and return without taking * wait-queue spin-lock, some additional synchronization is necessary to * guarantee that step (3) can begin only after (2.3) finishes. * * XXX nikita: some ptlrpc daemon threads have races of that sort. * */ static inline int back_to_sleep(void *arg) { return 0; } #define LWI_ON_SIGNAL_NOOP ((void (*)(void *))(-1)) struct l_wait_info { cfs_duration_t lwi_timeout; cfs_duration_t lwi_interval; int lwi_allow_intr; int (*lwi_on_timeout)(void *); void (*lwi_on_signal)(void *); void *lwi_cb_data; }; /* NB: LWI_TIMEOUT ignores signals completely */ #define LWI_TIMEOUT(time, cb, data) \ ((struct l_wait_info) { \ .lwi_timeout = time, \ .lwi_on_timeout = cb, \ .lwi_cb_data = data, \ .lwi_interval = 0, \ .lwi_allow_intr = 0 \ }) #define LWI_TIMEOUT_INTERVAL(time, interval, cb, data) \ ((struct l_wait_info) { \ .lwi_timeout = time, \ .lwi_on_timeout = cb, \ .lwi_cb_data = data, \ .lwi_interval = interval, \ .lwi_allow_intr = 0 \ }) #define LWI_TIMEOUT_INTR(time, time_cb, sig_cb, data) \ ((struct l_wait_info) { \ .lwi_timeout = time, \ .lwi_on_timeout = time_cb, \ .lwi_on_signal = sig_cb, \ .lwi_cb_data = data, \ .lwi_interval = 0, \ .lwi_allow_intr = 0 \ }) #define LWI_TIMEOUT_INTR_ALL(time, time_cb, sig_cb, data) \ ((struct l_wait_info) { \ .lwi_timeout = time, \ .lwi_on_timeout = time_cb, \ .lwi_on_signal = sig_cb, \ .lwi_cb_data = data, \ .lwi_interval = 0, \ .lwi_allow_intr = 1 \ }) #define LWI_INTR(cb, data) LWI_TIMEOUT_INTR(0, NULL, cb, data) #ifdef __KERNEL__ /* * wait for @condition to become true, but no longer than timeout, specified * by @info. */ #define __l_wait_event(wq, condition, info, ret, l_add_wait) \ do { \ cfs_waitlink_t __wait; \ cfs_duration_t __timeout = info->lwi_timeout; \ cfs_sigset_t __blocked; \ int __allow_intr = info->lwi_allow_intr; \ \ ret = 0; \ if (condition) \ break; \ \ cfs_waitlink_init(&__wait); \ l_add_wait(&wq, &__wait); \ \ /* Block all signals (just the non-fatal ones if no timeout). */ \ if (info->lwi_on_signal != NULL && (__timeout == 0 || __allow_intr)) \ __blocked = cfs_block_sigsinv(LUSTRE_FATAL_SIGS); \ else \ __blocked = cfs_block_sigsinv(0); \ \ for (;;) { \ unsigned __wstate; \ \ __wstate = info->lwi_on_signal != NULL && \ (__timeout == 0 || __allow_intr) ? \ CFS_TASK_INTERRUPTIBLE : CFS_TASK_UNINT; \ \ cfs_set_current_state(CFS_TASK_INTERRUPTIBLE); \ \ if (condition) \ break; \ \ if (__timeout == 0) { \ cfs_waitq_wait(&__wait, __wstate); \ } else { \ cfs_duration_t interval = info->lwi_interval? \ min_t(cfs_duration_t, \ info->lwi_interval,__timeout):\ __timeout; \ cfs_duration_t remaining = cfs_waitq_timedwait(&__wait,\ __wstate, \ interval); \ __timeout = cfs_time_sub(__timeout, \ cfs_time_sub(interval, remaining));\ if (__timeout == 0) { \ if (info->lwi_on_timeout == NULL || \ info->lwi_on_timeout(info->lwi_cb_data)) { \ ret = -ETIMEDOUT; \ break; \ } \ /* Take signals after the timeout expires. */ \ if (info->lwi_on_signal != NULL) \ (void)cfs_block_sigsinv(LUSTRE_FATAL_SIGS);\ } \ } \ \ if (condition) \ break; \ if (cfs_signal_pending()) { \ if (info->lwi_on_signal != NULL && \ (__timeout == 0 || __allow_intr)) { \ if (info->lwi_on_signal != LWI_ON_SIGNAL_NOOP) \ info->lwi_on_signal(info->lwi_cb_data);\ ret = -EINTR; \ break; \ } \ /* We have to do this here because some signals */ \ /* are not blockable - ie from strace(1). */ \ /* In these cases we want to schedule_timeout() */ \ /* again, because we don't want that to return */ \ /* -EINTR when the RPC actually succeeded. */ \ /* the RECALC_SIGPENDING below will deliver the */ \ /* signal properly. */ \ cfs_clear_sigpending(); \ } \ } \ \ cfs_restore_sigs(__blocked); \ \ cfs_set_current_state(CFS_TASK_RUNNING); \ cfs_waitq_del(&wq, &__wait); \ } while (0) #else /* !__KERNEL__ */ #define __l_wait_event(wq, condition, info, ret, l_add_wait) \ do { \ long __timeout = info->lwi_timeout; \ long __now; \ long __then = 0; \ int __timed_out = 0; \ int __interval = obd_timeout; \ \ ret = 0; \ if (condition) \ break; \ \ if (__timeout != 0) \ __then = time(NULL); \ \ if (__timeout && __timeout < __interval) \ __interval = __timeout; \ if (info->lwi_interval && info->lwi_interval < __interval) \ __interval = info->lwi_interval; \ \ while (!(condition)) { \ liblustre_wait_event(__interval); \ if (condition) \ break; \ \ if (!__timed_out && info->lwi_timeout != 0) { \ __now = time(NULL); \ __timeout -= __now - __then; \ __then = __now; \ \ if (__timeout > 0) \ continue; \ \ __timeout = 0; \ __timed_out = 1; \ if (info->lwi_on_timeout == NULL || \ info->lwi_on_timeout(info->lwi_cb_data)) { \ ret = -ETIMEDOUT; \ break; \ } \ } \ } \ SET_BUT_UNUSED(wq); \ } while (0) #endif /* __KERNEL__ */ #define l_wait_event(wq, condition, info) \ ({ \ int __ret; \ struct l_wait_info *__info = (info); \ \ __l_wait_event(wq, condition, __info, \ __ret, cfs_waitq_add); \ __ret; \ }) #define l_wait_event_exclusive(wq, condition, info) \ ({ \ int __ret; \ struct l_wait_info *__info = (info); \ \ __l_wait_event(wq, condition, __info, \ __ret, cfs_waitq_add_exclusive); \ __ret; \ }) #define l_wait_event_exclusive_head(wq, condition, info) \ ({ \ int __ret; \ struct l_wait_info *__info = (info); \ \ __l_wait_event(wq, condition, __info, \ __ret, cfs_waitq_add_exclusive_head); \ __ret; \ }) #define l_wait_condition(wq, condition) \ ({ \ struct l_wait_info lwi = { 0 }; \ l_wait_event(wq, condition, &lwi); \ }) #define l_wait_condition_exclusive(wq, condition) \ ({ \ struct l_wait_info lwi = { 0 }; \ l_wait_event_exclusive(wq, condition, &lwi); \ }) #define l_wait_condition_exclusive_head(wq, condition) \ ({ \ struct l_wait_info lwi = { 0 }; \ l_wait_event_exclusive_head(wq, condition, &lwi); \ }) #ifdef __KERNEL__ #define LIBLUSTRE_CLIENT (0) #else #define LIBLUSTRE_CLIENT (1) #endif /** @} lib */ #endif /* _LUSTRE_LIB_H */