/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2017, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/include/lustre_fid.h * * Author: Yury Umanets */ #ifndef __LUSTRE_FID_H #define __LUSTRE_FID_H /** \defgroup fid fid * * @{ * * http://wiki.lustre.org/index.php/Architecture_-_Interoperability_fids_zfs * describes the FID namespace and interoperability requirements for FIDs. * The important parts of that document are included here for reference. * * FID * File IDentifier generated by client from range allocated by the SEQuence * service and stored in struct lu_fid. The FID is composed of three parts: * SEQuence, ObjectID, and VERsion. The SEQ component is a filesystem * unique 64-bit integer, and only one client is ever assigned any SEQ value. * The first 0x400 FID_SEQ_NORMAL [2^33, 2^33 + 0x400] values are reserved * for system use. The OID component is a 32-bit value generated by the * client on a per-SEQ basis to allow creating many unique FIDs without * communication with the server. The VER component is a 32-bit value that * distinguishes between different FID instantiations, such as snapshots or * separate subtrees within the filesystem. FIDs with the same VER field * are considered part of the same namespace. * * OLD filesystems are those upgraded from Lustre 1.x that predate FIDs, and * MDTs use 32-bit ldiskfs internal inode/generation numbers (IGIFs), while * OSTs use 64-bit Lustre object IDs and generation numbers. * * NEW filesystems are those formatted since the introduction of FIDs. * * IGIF * Inode and Generation In FID, a surrogate FID used to globally identify * an existing object on OLD formatted MDT file system. This would only be * used on MDT0 in a DNE filesystem, because there cannot be more than one * MDT in an OLD formatted filesystem. Belongs to sequence in [12, 2^32 - 1] * range, where inode number is stored in SEQ, and inode generation is in OID. * NOTE: This assumes no more than 2^32-1 inodes exist in the MDT filesystem, * which is the maximum possible for an ldiskfs backend. It also assumes * that the reserved ext3/ext4/ldiskfs inode numbers [0-11] are never visible * to clients, which has always been true. * * IDIF * object ID In FID, a surrogate FID used to globally identify an existing * OST object on OLD formatted OST file system. Belongs to a sequence in * [2^32, 2^33 - 1]. Sequence number is calculated as: * * 1 << 32 | (ost_index << 16) | ((objid >> 32) & 0xffff) * * that is, SEQ consists of 16-bit OST index, and higher 16 bits of object * ID. The generation of unique SEQ values per OST allows the IDIF FIDs to * be identified in the FLD correctly. The OID field is calculated as: * * objid & 0xffffffff * * that is, it consists of lower 32 bits of object ID. For objects within * the IDIF range, object ID extraction will be: * * o_id = (fid->f_seq & 0x7fff) << 16 | fid->f_oid; * o_seq = 0; // formerly group number * * NOTE: This assumes that no more than 2^48-1 objects have ever been created * on any OST, and that no more than 65535 OSTs are in use. Both are very * reasonable assumptions, i.e. an IDIF can uniquely map all objects assuming * a maximum creation rate of 1M objects per second for a maximum of 9 years, * or combinations thereof. * * OST_MDT0 * Surrogate FID used to identify an existing object on OLD formatted OST * filesystem. Belongs to the reserved SEQuence 0, and is used prior to * the introduction of FID-on-OST, at which point IDIF will be used to * identify objects as residing on a specific OST. * * LLOG * For Lustre Log objects the object sequence 1 is used. This is compatible * with both OLD and NEW namespaces, as this SEQ number is in the * ext3/ldiskfs reserved inode range and does not conflict with IGIF * sequence numbers. * * ECHO * For testing OST IO performance the object sequence 2 is used. This is * compatible with both OLD and NEW namespaces, as this SEQ number is in * the ext3/ldiskfs reserved inode range and does not conflict with IGIF * sequence numbers. * * OST_MDT1 .. OST_MAX * For testing with multiple MDTs the object sequence 3 through 9 is used, * allowing direct mapping of MDTs 1 through 7 respectively, for a total * of 8 MDTs including OST_MDT0. This matches the legacy CMD project "group" * mappings. However, this SEQ range is only for testing prior to any * production DNE release, as the objects in this range conflict across all * OSTs, as the OST index is not part of the FID. For production DNE usage, * OST objects created by MDT1+ will use FID_SEQ_NORMAL FIDs. * * DLM OST objid to IDIF mapping * For compatibility with existing OLD OST network protocol structures, the * FID must map onto the o_id and o_seq in a manner that ensures existing * objects are identified consistently for IO, as well as onto the LDLM * namespace to ensure IDIFs there is only a single resource name for any * object in the DLM. The OLD OST object DLM resource mapping is: * * resource[] = {o_id, o_seq, 0, 0}; // o_seq == 0 for production releases * * The NEW OST object DLM resource mapping is the same for both MDT and OST: * * resource[] = {SEQ, OID, VER, HASH}; * * NOTE: for mapping IDIF values to DLM resource names the o_id may be * larger than the 2^33 reserved sequence numbers for IDIF, so it is possible * for the o_id numbers to overlap FID SEQ numbers in the resource. However, * in all production releases the OLD o_seq field is always zero, and all * valid FID OID values are non-zero, so the lock resources will not collide. * Even so, the MDT and OST resources are also in different LDLM namespaces. */ #include #include #include #include struct lu_env; struct lu_site; struct lu_context; struct obd_device; struct obd_export; /* Whole sequences space range and zero range definitions */ extern const struct lu_seq_range LUSTRE_SEQ_SPACE_RANGE; extern const struct lu_seq_range LUSTRE_SEQ_ZERO_RANGE; extern const struct lu_fid LUSTRE_BFL_FID; extern const struct lu_fid LU_OBF_FID; extern const struct lu_fid LU_LPF_FID; extern const struct lu_fid LU_DOT_LUSTRE_FID; extern const struct lu_fid LU_BACKEND_LPF_FID; enum { /* * This is how may metadata FIDs may be allocated in one sequence(128k) */ LUSTRE_METADATA_SEQ_MAX_WIDTH = 0x0000000000020000ULL, /* * This is how many data FIDs could be allocated in one sequence(4B - 1) */ LUSTRE_DATA_SEQ_MAX_WIDTH = 0x00000000FFFFFFFFULL, /* * How many sequences to allocate to a client at once. */ LUSTRE_SEQ_META_WIDTH = 0x0000000000000001ULL, /* * seq allocation pool size. */ LUSTRE_SEQ_BATCH_WIDTH = LUSTRE_SEQ_META_WIDTH * 1000, /* * This is how many sequences may be in one super-sequence allocated to * MDTs. */ LUSTRE_SEQ_SUPER_WIDTH = ((1ULL << 30ULL) * LUSTRE_SEQ_META_WIDTH) }; /** special OID for local objects */ enum local_oid { /** \see fld_mod_init */ FLD_INDEX_OID = 3UL, /** \see fid_mod_init */ FID_SEQ_CTL_OID = 4UL, FID_SEQ_SRV_OID = 5UL, /** \see mdd_mod_init */ MDD_ROOT_INDEX_OID = 6UL, /* deprecated in 2.4 */ MDD_ORPHAN_OID = 7UL, /* deprecated in 2.4 */ MDD_LOV_OBJ_OID = 8UL, MDD_CAPA_KEYS_OID = 9UL, /** \see mdt_mod_init */ LAST_RECV_OID = 11UL, OSD_FS_ROOT_OID = 13UL, ACCT_USER_OID = 15UL, ACCT_GROUP_OID = 16UL, LFSCK_BOOKMARK_OID = 17UL, OTABLE_IT_OID = 18UL, OSD_LPF_OID = 19UL, REPLY_DATA_OID = 21UL, ACCT_PROJECT_OID = 22UL, INDEX_BACKUP_OID = 4116UL, OFD_LAST_GROUP_OID = 4117UL, LLOG_CATALOGS_OID = 4118UL, MGS_CONFIGS_OID = 4119UL, OFD_HEALTH_CHECK_OID = 4120UL, MDD_LOV_OBJ_OSEQ = 4121UL, LFSCK_NAMESPACE_OID = 4122UL, REMOTE_PARENT_DIR_OID = 4123UL, /* This definition is obsolete * SLAVE_LLOG_CATALOGS_OID = 4124UL, */ BATCHID_COMMITTED_OID = 4125UL, }; static inline void lu_local_obj_fid(struct lu_fid *fid, __u32 oid) { fid->f_seq = FID_SEQ_LOCAL_FILE; fid->f_oid = oid; fid->f_ver = 0; } static inline void lu_local_name_obj_fid(struct lu_fid *fid, __u32 oid) { fid->f_seq = FID_SEQ_LOCAL_NAME; fid->f_oid = oid; fid->f_ver = 0; } /* For new FS (>= 2.4), the root FID will be changed to * [FID_SEQ_ROOT:1:0], for existing FS, (upgraded to 2.4), * the root FID will still be IGIF */ static inline int fid_is_root(const struct lu_fid *fid) { return unlikely((fid_seq(fid) == FID_SEQ_ROOT && fid_oid(fid) == FID_OID_ROOT)); } static inline int fid_is_dot_lustre(const struct lu_fid *fid) { return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE && fid_oid(fid) == FID_OID_DOT_LUSTRE); } static inline int fid_is_obf(const struct lu_fid *fid) { return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE && fid_oid(fid) == FID_OID_DOT_LUSTRE_OBF); } static inline int fid_is_otable_it(const struct lu_fid *fid) { return unlikely(fid_seq(fid) == FID_SEQ_LOCAL_FILE && fid_oid(fid) == OTABLE_IT_OID); } static inline int fid_oid_is_quota(const struct lu_fid *fid) { switch (fid_oid(fid)) { case ACCT_USER_OID: case ACCT_GROUP_OID: case ACCT_PROJECT_OID: return 1; default: return 0; } } static inline int fid_is_acct(const struct lu_fid *fid) { return fid_seq(fid) == FID_SEQ_LOCAL_FILE && fid_oid_is_quota(fid); } static inline int fid_is_quota(const struct lu_fid *fid) { return fid_seq(fid) == FID_SEQ_QUOTA || fid_seq(fid) == FID_SEQ_QUOTA_GLB; } static inline int fid_is_name_llog(const struct lu_fid *fid) { return fid_seq(fid) == FID_SEQ_LLOG_NAME; } static inline int fid_is_namespace_visible(const struct lu_fid *fid) { const __u64 seq = fid_seq(fid); /* Here, we cannot distinguish whether the normal FID is for OST * object or not. It is caller's duty to check more if needed. */ return (!fid_is_last_id(fid) && (fid_seq_is_norm(seq) || fid_seq_is_igif(seq))) || fid_is_root(fid) || fid_seq_is_dot(seq); } static inline int fid_seq_in_fldb(__u64 seq) { return fid_seq_is_igif(seq) || fid_seq_is_norm(seq) || fid_seq_is_root(seq) || fid_seq_is_dot(seq); } static inline void ost_layout_cpu_to_le(struct ost_layout *dst, const struct ost_layout *src) { dst->ol_stripe_size = __cpu_to_le32(src->ol_stripe_size); dst->ol_stripe_count = __cpu_to_le32(src->ol_stripe_count); dst->ol_comp_start = __cpu_to_le64(src->ol_comp_start); dst->ol_comp_end = __cpu_to_le64(src->ol_comp_end); dst->ol_comp_id = __cpu_to_le32(src->ol_comp_id); } static inline void ost_layout_le_to_cpu(struct ost_layout *dst, const struct ost_layout *src) { dst->ol_stripe_size = __le32_to_cpu(src->ol_stripe_size); dst->ol_stripe_count = __le32_to_cpu(src->ol_stripe_count); dst->ol_comp_start = __le64_to_cpu(src->ol_comp_start); dst->ol_comp_end = __le64_to_cpu(src->ol_comp_end); dst->ol_comp_id = __le32_to_cpu(src->ol_comp_id); } static inline void filter_fid_cpu_to_le(struct filter_fid *dst, const struct filter_fid *src, int size) { fid_cpu_to_le(&dst->ff_parent, &src->ff_parent); if (size < sizeof(struct filter_fid)) { memset(&dst->ff_layout, 0, sizeof(dst->ff_layout)); } else { ost_layout_cpu_to_le(&dst->ff_layout, &src->ff_layout); dst->ff_layout_version = cpu_to_le32(src->ff_layout_version); dst->ff_range = cpu_to_le32(src->ff_range); } /* XXX: Add more if filter_fid is enlarged in the future. */ } static inline void filter_fid_le_to_cpu(struct filter_fid *dst, const struct filter_fid *src, int size) { fid_le_to_cpu(&dst->ff_parent, &src->ff_parent); if (size < sizeof(struct filter_fid)) { memset(&dst->ff_layout, 0, sizeof(dst->ff_layout)); } else { ost_layout_le_to_cpu(&dst->ff_layout, &src->ff_layout); dst->ff_layout_version = le32_to_cpu(src->ff_layout_version); dst->ff_range = le32_to_cpu(src->ff_range); } /* XXX: Add more if filter_fid is enlarged in the future. */ } static inline void lu_last_id_fid(struct lu_fid *fid, __u64 seq, __u32 ost_idx) { if (fid_seq_is_mdt0(seq)) { fid->f_seq = fid_idif_seq(0, ost_idx); } else { LASSERTF(fid_seq_is_norm(seq) || fid_seq_is_echo(seq) || fid_seq_is_idif(seq), "%#llx\n", seq); fid->f_seq = seq; } fid->f_oid = 0; fid->f_ver = 0; } static inline bool fid_is_md_operative(const struct lu_fid *fid) { return fid_is_mdt0(fid) || fid_is_igif(fid) || fid_is_norm(fid) || fid_is_root(fid); } /* seq client type */ enum lu_cli_type { LUSTRE_SEQ_METADATA = 1, LUSTRE_SEQ_DATA }; enum lu_mgr_type { LUSTRE_SEQ_SERVER, LUSTRE_SEQ_CONTROLLER }; struct lu_server_seq; /* Client sequence manager interface. */ struct lu_client_seq { /* Sequence-controller export. */ struct obd_export *lcs_exp; struct mutex lcs_mutex; /* * Range of allowed for allocation sequeces. When using lu_client_seq on * clients, this contains meta-sequence range. And for servers this * contains super-sequence range. */ struct lu_seq_range lcs_space; /* Seq related debugfs */ struct dentry *lcs_debugfs_entry; /* This holds last allocated fid in last obtained seq */ struct lu_fid lcs_fid; /* LUSTRE_SEQ_METADATA or LUSTRE_SEQ_DATA */ enum lu_cli_type lcs_type; /* * Service uuid, passed from MDT + seq name to form unique seq name to * use it with debugfs. */ char lcs_name[80]; /* * Sequence width, that is how many objects may be allocated in one * sequence. Default value for it is LUSTRE_SEQ_MAX_WIDTH. */ __u64 lcs_width; /* Seq-server for direct talking */ struct lu_server_seq *lcs_srv; /* wait queue for fid allocation and update indicator */ wait_queue_head_t lcs_waitq; int lcs_update; }; /* server sequence manager interface */ struct lu_server_seq { /* Available sequences space */ struct lu_seq_range lss_space; /* keeps highwater in lsr_end for seq allocation algorithm */ struct lu_seq_range lss_lowater_set; struct lu_seq_range lss_hiwater_set; /* * Device for server side seq manager needs (saving sequences to backing * store). */ struct dt_device *lss_dev; /* /seq file object device */ struct dt_object *lss_obj; /* Seq related debugfs */ struct dentry *lss_debugfs_entry; /* LUSTRE_SEQ_SERVER or LUSTRE_SEQ_CONTROLLER */ enum lu_mgr_type lss_type; /* Client interface to request controller */ struct lu_client_seq *lss_cli; /* Mutex for protecting allocation */ struct mutex lss_mutex; /* * Service uuid, passed from MDT + seq name to form unique seq name to * use it with debugfs. */ char lss_name[80]; /* * Allocation chunks for super and meta sequences. Default values are * LUSTRE_SEQ_SUPER_WIDTH and LUSTRE_SEQ_META_WIDTH. */ __u64 lss_width; /* * minimum lss_alloc_set size that should be allocated from * lss_space */ __u64 lss_set_width; /* sync is needed for update operation */ __u32 lss_need_sync; /** * Pointer to site object, required to access site fld. */ struct seq_server_site *lss_site; }; struct seq_server_site { struct lu_site *ss_lu; /** * mds number of this site. */ u32 ss_node_id; /** * Fid location database */ struct lu_server_fld *ss_server_fld; struct lu_client_fld *ss_client_fld; /** * Server Seq Manager */ struct lu_server_seq *ss_server_seq; /** * Controller Seq Manager */ struct lu_server_seq *ss_control_seq; struct obd_export *ss_control_exp; /** * Client Seq Manager */ struct lu_client_seq *ss_client_seq; }; /* Server methods */ int seq_server_init(const struct lu_env *env, struct lu_server_seq *seq, struct dt_device *dev, const char *prefix, enum lu_mgr_type type, struct seq_server_site *ss); void seq_server_fini(struct lu_server_seq *seq, const struct lu_env *env); int seq_server_alloc_super(struct lu_server_seq *seq, struct lu_seq_range *out, const struct lu_env *env); int seq_server_alloc_meta(struct lu_server_seq *seq, struct lu_seq_range *out, const struct lu_env *env); int seq_server_set_cli(const struct lu_env *env, struct lu_server_seq *seq, struct lu_client_seq *cli); int seq_server_check_and_alloc_super(const struct lu_env *env, struct lu_server_seq *seq); /* Client methods */ int seq_client_init(struct lu_client_seq *seq, struct obd_export *exp, enum lu_cli_type type, const char *prefix, struct lu_server_seq *srv); void seq_client_fini(struct lu_client_seq *seq); void seq_client_flush(struct lu_client_seq *seq); int seq_client_alloc_fid(const struct lu_env *env, struct lu_client_seq *seq, struct lu_fid *fid); int seq_client_get_seq(const struct lu_env *env, struct lu_client_seq *seq, u64 *seqnr); int seq_site_fini(const struct lu_env *env, struct seq_server_site *ss); /* Fids common stuff */ int fid_is_local(const struct lu_env *env, struct lu_site *site, const struct lu_fid *fid); enum lu_cli_type; int client_fid_init(struct obd_device *obd, struct obd_export *exp, enum lu_cli_type type); int client_fid_fini(struct obd_device *obd); /* fid locking */ struct ldlm_namespace; /* * Build (DLM) resource name from FID. * * NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2], * but was moved into name[1] along with the OID to avoid consuming the * renaming name[2,3] fields that need to be used for the quota identifier. */ static inline void fid_build_reg_res_name(const struct lu_fid *fid, struct ldlm_res_id *res) { memset(res, 0, sizeof(*res)); res->name[LUSTRE_RES_ID_SEQ_OFF] = fid_seq(fid); res->name[LUSTRE_RES_ID_VER_OID_OFF] = fid_ver_oid(fid); } /* * Return true if resource is for object identified by FID. */ static inline int fid_res_name_eq(const struct lu_fid *fid, const struct ldlm_res_id *res) { return res->name[LUSTRE_RES_ID_SEQ_OFF] == fid_seq(fid) && res->name[LUSTRE_RES_ID_VER_OID_OFF] == fid_ver_oid(fid); } /* * Extract FID from LDLM resource. Reverse of fid_build_reg_res_name(). */ static inline void fid_extract_from_res_name(struct lu_fid *fid, const struct ldlm_res_id *res) { fid->f_seq = res->name[LUSTRE_RES_ID_SEQ_OFF]; fid->f_oid = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF]); fid->f_ver = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF] >> 32); LASSERT(fid_res_name_eq(fid, res)); } /* * Build (DLM) resource identifier from global quota FID and quota ID. */ static inline void fid_build_quota_res_name(const struct lu_fid *glb_fid, union lquota_id *qid, struct ldlm_res_id *res) { fid_build_reg_res_name(glb_fid, res); res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF] = fid_seq(&qid->qid_fid); res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] = fid_ver_oid(&qid->qid_fid); } /* * Extract global FID and quota ID from resource name */ static inline void fid_extract_from_quota_res(struct lu_fid *glb_fid, union lquota_id *qid, const struct ldlm_res_id *res) { fid_extract_from_res_name(glb_fid, res); qid->qid_fid.f_seq = res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF]; qid->qid_fid.f_oid = (__u32)res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF]; qid->qid_fid.f_ver = (__u32)(res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] >> 32); } static inline void fid_build_pdo_res_name(const struct lu_fid *fid, unsigned int hash, struct ldlm_res_id *res) { fid_build_reg_res_name(fid, res); res->name[LUSTRE_RES_ID_HSH_OFF] = hash; } /** * Build DLM resource name from object id & seq, which will be removed * finally, when we replace ost_id with FID in data stack. * * Currently, resid from the old client, whose res[0] = object_id, * res[1] = object_seq, is just oposite with Metatdata * resid, where, res[0] = fid->f_seq, res[1] = fid->f_oid. * To unifiy the resid identification, we will reverse the data * resid to keep it same with Metadata resid, i.e. * * For resid from the old client, * res[0] = objid, res[1] = 0, still keep the original order, * for compatiblity. * * For new resid * res will be built from normal FID directly, i.e. res[0] = f_seq, * res[1] = f_oid + f_ver. */ static inline void ostid_build_res_name(const struct ost_id *oi, struct ldlm_res_id *name) { memset(name, 0, sizeof *name); if (fid_seq_is_mdt0(ostid_seq(oi))) { name->name[LUSTRE_RES_ID_SEQ_OFF] = ostid_id(oi); name->name[LUSTRE_RES_ID_VER_OID_OFF] = ostid_seq(oi); } else { fid_build_reg_res_name(&oi->oi_fid, name); } } /** * Return true if the resource is for the object identified by this id & group. */ static inline bool ostid_res_name_eq(const struct ost_id *oi, const struct ldlm_res_id *name) { /* Note: it is just a trick here to save some effort, probably the * correct way would be turn them into the FID and compare */ if (fid_seq_is_mdt0(ostid_seq(oi))) { return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_id(oi) && name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_seq(oi); } else { return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_seq(oi) && name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_id(oi); } } /** * Note: we need check oi_seq to decide where to set oi_id, * so oi_seq should always be set ahead of oi_id. */ static inline int ostid_set_id(struct ost_id *oi, __u64 oid) { if (fid_seq_is_mdt0(oi->oi.oi_seq)) { if (oid >= IDIF_MAX_OID) return -E2BIG; oi->oi.oi_id = oid; } else if (fid_is_idif(&oi->oi_fid)) { if (oid >= IDIF_MAX_OID) return -E2BIG; oi->oi_fid.f_seq = fid_idif_seq(oid, fid_idif_ost_idx(&oi->oi_fid)); oi->oi_fid.f_oid = oid; oi->oi_fid.f_ver = oid >> 48; } else { if (oid >= OBIF_MAX_OID) return -E2BIG; oi->oi_fid.f_oid = oid; } return 0; } /* pack any OST FID into an ostid (id/seq) for the wire/disk */ static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid) { int rc = 0; if (fid_seq_is_igif(fid->f_seq)) return -EBADF; if (fid_is_idif(fid)) { ostid_set_seq_mdt0(ostid); rc = ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid), fid_ver(fid))); } else { ostid->oi_fid = *fid; } return rc; } /* The same as osc_build_res_name() */ static inline void ost_fid_build_resid(const struct lu_fid *fid, struct ldlm_res_id *resname) { if (fid_is_mdt0(fid) || fid_is_idif(fid)) { struct ost_id oi; oi.oi.oi_id = 0; /* gcc 4.7.2 complains otherwise */ if (fid_to_ostid(fid, &oi) != 0) return; ostid_build_res_name(&oi, resname); } else { fid_build_reg_res_name(fid, resname); } } static inline void ost_fid_from_resid(struct lu_fid *fid, const struct ldlm_res_id *name, int ost_idx) { if (fid_seq_is_mdt0(name->name[LUSTRE_RES_ID_VER_OID_OFF])) { /* old resid */ struct ost_id oi; memset(&oi, 0, sizeof(oi)); ostid_set_seq(&oi, name->name[LUSTRE_RES_ID_VER_OID_OFF]); if (ostid_set_id(&oi, name->name[LUSTRE_RES_ID_SEQ_OFF])) { CERROR("Bad %llu to set " DOSTID "\n", name->name[LUSTRE_RES_ID_SEQ_OFF], POSTID(&oi)); } ostid_to_fid(fid, &oi, ost_idx); } else { /* new resid */ fid_extract_from_res_name(fid, name); } } /** * Flatten 128-bit FID values into a 64-bit value for use as an inode number. * For non-IGIF FIDs this starts just over 2^32, and continues without * conflict until 2^64, at which point we wrap the high 24 bits of the SEQ * into the range where there may not be many OID values in use, to minimize * the risk of conflict. * * Suppose LUSTRE_SEQ_MAX_WIDTH less than (1 << 24) which is currently true, * the time between re-used inode numbers is very long - 2^40 SEQ numbers, * or about 2^40 client mounts, if clients create less than 2^24 files/mount. */ static inline __u64 fid_flatten(const struct lu_fid *fid) { __u64 ino; __u64 seq; if (fid_is_igif(fid)) { ino = lu_igif_ino(fid); return ino; } seq = fid_seq(fid); ino = (seq << 24) + ((seq >> 24) & 0xffffff0000ULL) + fid_oid(fid); return ino ?: fid_oid(fid); } static inline __u32 fid_hash(const struct lu_fid *f, int bits) { /* all objects with same id and different versions will belong to same * collisions list. */ return hash_long(fid_flatten(f), bits); } /** * map fid to 32 bit value for ino on 32bit systems. */ static inline __u32 fid_flatten32(const struct lu_fid *fid) { __u32 ino; __u64 seq; if (fid_is_igif(fid)) { ino = lu_igif_ino(fid); return ino; } seq = fid_seq(fid) - FID_SEQ_START; /* Map the high bits of the OID into higher bits of the inode number so * that inodes generated at about the same time have a reduced chance * of collisions. This will give a period of 2^12 = 1024 unique clients * (from SEQ) and up to min(LUSTRE_SEQ_MAX_WIDTH, 2^20) = 128k objects * (from OID), or up to 128M inodes without collisions for new files. */ ino = ((seq & 0x000fffffULL) << 12) + ((seq >> 8) & 0xfffff000) + (seq >> (64 - (40-8)) & 0xffffff00) + (fid_oid(fid) & 0xff000fff) + ((fid_oid(fid) & 0x00fff000) << 8); return ino ?: fid_oid(fid); } static inline int lu_fid_diff(const struct lu_fid *fid1, const struct lu_fid *fid2) { LASSERTF(fid_seq(fid1) == fid_seq(fid2), "fid1:"DFID", fid2:"DFID"\n", PFID(fid1), PFID(fid2)); if (fid_is_idif(fid1) && fid_is_idif(fid2)) return fid_idif_id(fid1->f_seq, fid1->f_oid, fid1->f_ver) - fid_idif_id(fid2->f_seq, fid2->f_oid, fid2->f_ver); return fid_oid(fid1) - fid_oid(fid2); } static inline int fid_set_id(struct lu_fid *fid, u64 oid) { if (unlikely(fid_seq_is_igif(fid->f_seq))) { CERROR("bad IGIF, "DFID"\n", PFID(fid)); return -EBADF; } if (fid_is_idif(fid)) { if (oid >= IDIF_MAX_OID) { CERROR("Too large OID %#llx to set IDIF "DFID"\n", (unsigned long long)oid, PFID(fid)); return -EBADF; } fid->f_seq = fid_idif_seq(oid, fid_idif_ost_idx(fid)); fid->f_oid = oid; fid->f_ver = oid >> 48; } else { if (oid > OBIF_MAX_OID) { CERROR("Too large OID %#llx to set REG "DFID"\n", (unsigned long long)oid, PFID(fid)); return -EBADF; } fid->f_oid = oid; } return 0; } #define LUSTRE_SEQ_SRV_NAME "seq_srv" #define LUSTRE_SEQ_CTL_NAME "seq_ctl" /* Range common stuff */ static inline void range_cpu_to_le(struct lu_seq_range *dst, const struct lu_seq_range *src) { dst->lsr_start = cpu_to_le64(src->lsr_start); dst->lsr_end = cpu_to_le64(src->lsr_end); dst->lsr_index = cpu_to_le32(src->lsr_index); dst->lsr_flags = cpu_to_le32(src->lsr_flags); } static inline void range_le_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src) { dst->lsr_start = le64_to_cpu(src->lsr_start); dst->lsr_end = le64_to_cpu(src->lsr_end); dst->lsr_index = le32_to_cpu(src->lsr_index); dst->lsr_flags = le32_to_cpu(src->lsr_flags); } static inline void range_cpu_to_be(struct lu_seq_range *dst, const struct lu_seq_range *src) { dst->lsr_start = cpu_to_be64(src->lsr_start); dst->lsr_end = cpu_to_be64(src->lsr_end); dst->lsr_index = cpu_to_be32(src->lsr_index); dst->lsr_flags = cpu_to_be32(src->lsr_flags); } static inline void range_be_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src) { dst->lsr_start = be64_to_cpu(src->lsr_start); dst->lsr_end = be64_to_cpu(src->lsr_end); dst->lsr_index = be32_to_cpu(src->lsr_index); dst->lsr_flags = be32_to_cpu(src->lsr_flags); } static inline void range_array_cpu_to_le(struct lu_seq_range_array *dst, const struct lu_seq_range_array *src) { __u32 i; for (i = 0; i < src->lsra_count; i++) range_cpu_to_le(&dst->lsra_lsr[i], &src->lsra_lsr[i]); dst->lsra_count = cpu_to_le32(src->lsra_count); } static inline void range_array_le_to_cpu(struct lu_seq_range_array *dst, const struct lu_seq_range_array *src) { __u32 i; dst->lsra_count = le32_to_cpu(src->lsra_count); for (i = 0; i < dst->lsra_count; i++) range_le_to_cpu(&dst->lsra_lsr[i], &src->lsra_lsr[i]); } /** @} fid */ #endif /* __LUSTRE_FID_H */