/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * Copyright (C) 2001 Cluster File Systems, Inc. * * This file is part of Lustre, http://www.lustre.org. * * Lustre is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * Lustre is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Lustre; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Basic Lustre library routines. * */ #ifndef _LUSTRE_LIB_H #define _LUSTRE_LIB_H #ifndef __KERNEL__ # include #else # include #include /* XXX just for LASSERT! */ #endif #include #include #if BITS_PER_LONG > 32 #define LPU64 "%lu" #define LPD64 "%ld" #define LPX64 "%#lx" #else #define LPU64 "%Lu" #define LPD64 "%Ld" #define LPX64 "%#Lx" #endif #ifdef __KERNEL__ /* l_net.c */ struct ptlrpc_request; struct obd_device; struct recovd_data; struct recovd_obd; #include int target_handle_connect(struct ptlrpc_request *req); int target_handle_disconnect(struct ptlrpc_request *req); int client_obd_connect(struct lustre_handle *conn, struct obd_device *obd, obd_uuid_t cluuid, struct recovd_obd *recovd, ptlrpc_recovery_cb_t recover); int client_obd_disconnect(struct lustre_handle *conn); int client_obd_setup(struct obd_device *obddev, obd_count len, void *buf); int client_obd_cleanup(struct obd_device * obddev); struct client_obd *client_conn2cli(struct lustre_handle *conn); int target_revoke_connection(struct recovd_data *rd, int phase); /* l_lock.c */ struct lustre_lock { int l_depth; struct task_struct *l_owner; struct semaphore l_sem; spinlock_t l_spin; }; void l_lock_init(struct lustre_lock *); void l_lock(struct lustre_lock *); void l_unlock(struct lustre_lock *); /* page.c */ #define CB_PHASE_START 12 #define CB_PHASE_FINISH 13 /* * io_cb_data: io callback data merged into one struct to simplify * memory managment. This may be turn out to be too simple. */ struct io_cb_data; typedef int (*brw_callback_t)(struct io_cb_data *, int err, int phase); struct io_cb_data { wait_queue_head_t waitq; atomic_t refcount; int complete; int err; struct ptlrpc_bulk_desc *desc; brw_callback_t cb; void *data; }; int ll_sync_io_cb(struct io_cb_data *data, int err, int phase); struct io_cb_data *ll_init_cb(void); /* simple.c */ struct obd_run_ctxt; struct obd_ucred; void push_ctxt(struct obd_run_ctxt *save, struct obd_run_ctxt *new, struct obd_ucred *cred); void pop_ctxt(struct obd_run_ctxt *saved); struct dentry *simple_mkdir(struct dentry *dir, char *name, int mode); struct dentry *simple_mknod(struct dentry *dir, char *name, int mode); int lustre_fread(struct file *file, char *str, int len, loff_t *off); int lustre_fwrite(struct file *file, const char *str, int len, loff_t *off); int lustre_fsync(struct file *file); static inline void l_dput(struct dentry *de) { if (!de || IS_ERR(de)) return; shrink_dcache_parent(de); LASSERT(atomic_read(&de->d_count) > 0); dput(de); } static inline void ll_sleep(int t) { set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(t * HZ); set_current_state(TASK_RUNNING); } #endif /* FIXME: This needs to validate pointers and cookies */ static inline void *lustre_handle2object(struct lustre_handle *handle) { if (handle) return (void *)(unsigned long)(handle->addr); return NULL; } static inline void ldlm_object2handle(void *object, struct lustre_handle *handle) { handle->addr = (__u64)(unsigned long)object; } struct obd_statfs; struct statfs; void statfs_pack(struct obd_statfs *osfs, struct statfs *sfs); void statfs_unpack(struct statfs *sfs, struct obd_statfs *osfs); void obd_statfs_pack(struct obd_statfs *tgt, struct obd_statfs *src); static inline void obd_statfs_unpack(struct obd_statfs *tgt, struct obd_statfs *src) { obd_statfs_pack(tgt, src); } #include /* * OBD IOCTLS */ #define OBD_IOCTL_VERSION 0x00010001 struct obd_ioctl_data { uint32_t ioc_len; uint32_t ioc_version; uint64_t ioc_addr; uint64_t ioc_cookie; uint32_t ioc_conn1; uint32_t ioc_conn2; struct obdo ioc_obdo1; struct obdo ioc_obdo2; obd_size ioc_count; obd_off ioc_offset; uint32_t ioc_dev; uint32_t ____padding; /* buffers the kernel will treat as user pointers */ uint32_t ioc_plen1; char *ioc_pbuf1; uint32_t ioc_plen2; char *ioc_pbuf2; /* two inline buffers */ uint32_t ioc_inllen1; char *ioc_inlbuf1; uint32_t ioc_inllen2; char *ioc_inlbuf2; uint32_t ioc_inllen3; char *ioc_inlbuf3; char ioc_bulk[0]; }; struct obd_ioctl_hdr { uint32_t ioc_len; uint32_t ioc_version; }; static inline int obd_ioctl_packlen(struct obd_ioctl_data *data) { int len = size_round(sizeof(struct obd_ioctl_data)); len += size_round(data->ioc_inllen1); len += size_round(data->ioc_inllen2); len += size_round(data->ioc_inllen3); return len; } static inline int obd_ioctl_is_invalid(struct obd_ioctl_data *data) { if (data->ioc_len > (1<<30)) { printk("OBD ioctl: ioc_len larger than 1<<30\n"); return 1; } if (data->ioc_inllen1 > (1<<30)) { printk("OBD ioctl: ioc_inllen1 larger than 1<<30\n"); return 1; } if (data->ioc_inllen2 > (1<<30)) { printk("OBD ioctl: ioc_inllen2 larger than 1<<30\n"); return 1; } if (data->ioc_inllen3 > (1<<30)) { printk("OBD ioctl: ioc_inllen3 larger than 1<<30\n"); return 1; } if (data->ioc_inlbuf1 && !data->ioc_inllen1) { printk("OBD ioctl: inlbuf1 pointer but 0 length\n"); return 1; } if (data->ioc_inlbuf2 && !data->ioc_inllen2) { printk("OBD ioctl: inlbuf2 pointer but 0 length\n"); return 1; } if (data->ioc_inlbuf3 && !data->ioc_inllen3) { printk("OBD ioctl: inlbuf3 pointer but 0 length\n"); return 1; } if (data->ioc_pbuf1 && !data->ioc_plen1) { printk("OBD ioctl: pbuf1 pointer but 0 length\n"); return 1; } if (data->ioc_pbuf2 && !data->ioc_plen2) { printk("OBD ioctl: pbuf2 pointer but 0 length\n"); return 1; } /* if (data->ioc_inllen1 && !data->ioc_inlbuf1) { printk("OBD ioctl: inllen1 set but NULL pointer\n"); return 1; } if (data->ioc_inllen2 && !data->ioc_inlbuf2) { printk("OBD ioctl: inllen2 set but NULL pointer\n"); return 1; } if (data->ioc_inllen3 && !data->ioc_inlbuf3) { printk("OBD ioctl: inllen3 set but NULL pointer\n"); return 1; } */ if (data->ioc_plen1 && !data->ioc_pbuf1) { printk("OBD ioctl: plen1 set but NULL pointer\n"); return 1; } if (data->ioc_plen2 && !data->ioc_pbuf2) { printk("OBD ioctl: plen2 set but NULL pointer\n"); return 1; } if (obd_ioctl_packlen(data) != data->ioc_len ) { printk("OBD ioctl: packlen exceeds ioc_len\n"); return 1; } #if 0 if (data->ioc_inllen1 && data->ioc_bulk[data->ioc_inllen1 - 1] != '\0') { printk("OBD ioctl: inlbuf1 not 0 terminated\n"); return 1; } if (data->ioc_inllen2 && data->ioc_bulk[size_round(data->ioc_inllen1) + data->ioc_inllen2 - 1] != '\0') { printk("OBD ioctl: inlbuf2 not 0 terminated\n"); return 1; } if (data->ioc_inllen3 && data->ioc_bulk[size_round(data->ioc_inllen1) + size_round(data->ioc_inllen2) + data->ioc_inllen3 - 1] != '\0') { printk("OBD ioctl: inlbuf3 not 0 terminated\n"); return 1; } #endif return 0; } #ifndef __KERNEL__ static inline int obd_ioctl_pack(struct obd_ioctl_data *data, char **pbuf, int max) { char *ptr; struct obd_ioctl_data *overlay; data->ioc_len = obd_ioctl_packlen(data); data->ioc_version = OBD_IOCTL_VERSION; if (*pbuf && data->ioc_len > max) return 1; if (*pbuf == NULL) { *pbuf = malloc(data->ioc_len); } if (!*pbuf) return 1; overlay = (struct obd_ioctl_data *)*pbuf; memcpy(*pbuf, data, sizeof(*data)); ptr = overlay->ioc_bulk; if (data->ioc_inlbuf1) LOGL(data->ioc_inlbuf1, data->ioc_inllen1, ptr); if (data->ioc_inlbuf2) LOGL(data->ioc_inlbuf2, data->ioc_inllen2, ptr); if (data->ioc_inlbuf3) LOGL(data->ioc_inlbuf3, data->ioc_inllen3, ptr); if (obd_ioctl_is_invalid(overlay)) return 1; return 0; } static inline int obd_ioctl_unpack(struct obd_ioctl_data *data, char *pbuf, int max) { char *ptr; struct obd_ioctl_data *overlay; if (!*pbuf) return 1; overlay = (struct obd_ioctl_data *)pbuf; memcpy(data, pbuf, sizeof(*data)); ptr = overlay->ioc_bulk; if (data->ioc_inlbuf1) LOGU(data->ioc_inlbuf1, data->ioc_inllen1, ptr); if (data->ioc_inlbuf2) LOGU(data->ioc_inlbuf2, data->ioc_inllen2, ptr); if (data->ioc_inlbuf3) LOGU(data->ioc_inlbuf3, data->ioc_inllen3, ptr); return 0; } #else #include /* buffer MUST be at least the size of obd_ioctl_hdr */ static inline int obd_ioctl_getdata(char **buf, int *len, void *arg) { struct obd_ioctl_hdr hdr; struct obd_ioctl_data *data; int err; ENTRY; err = copy_from_user(&hdr, (void *)arg, sizeof(hdr)); if ( err ) { EXIT; return err; } if (hdr.ioc_version != OBD_IOCTL_VERSION) { printk("OBD: version mismatch kernel vs application\n"); return -EINVAL; } if (hdr.ioc_len > 8192) { printk("OBD: user buffer exceeds 8192 max buffer\n"); return -EINVAL; } if (hdr.ioc_len < sizeof(struct obd_ioctl_data)) { printk("OBD: user buffer too small for ioctl\n"); return -EINVAL; } OBD_ALLOC(*buf, hdr.ioc_len); if (!*buf) { CERROR("Cannot allocate control buffer of len %d\n", hdr.ioc_len); RETURN(-EINVAL); } *len = hdr.ioc_len; data = (struct obd_ioctl_data *)*buf; err = copy_from_user(*buf, (void *)arg, hdr.ioc_len); if ( err ) { EXIT; return err; } if (obd_ioctl_is_invalid(data)) { printk("OBD: ioctl not correctly formatted\n"); return -EINVAL; } if (data->ioc_inllen1) { data->ioc_inlbuf1 = &data->ioc_bulk[0]; } if (data->ioc_inllen2) { data->ioc_inlbuf2 = &data->ioc_bulk[0] + size_round(data->ioc_inllen1); } if (data->ioc_inllen3) { data->ioc_inlbuf3 = &data->ioc_bulk[0] + size_round(data->ioc_inllen1) + size_round(data->ioc_inllen2); } EXIT; return 0; } #endif #define OBD_IOC_CREATE _IOR ('f', 101, long) #define OBD_IOC_SETUP _IOW ('f', 102, long) #define OBD_IOC_CLEANUP _IO ('f', 103 ) #define OBD_IOC_DESTROY _IOW ('f', 104, long) #define OBD_IOC_PREALLOCATE _IOWR('f', 105, long) #define OBD_IOC_DEC_USE_COUNT _IO ('f', 106 ) #define OBD_IOC_SETATTR _IOW ('f', 107, long) #define OBD_IOC_GETATTR _IOR ('f', 108, long) #define OBD_IOC_READ _IOWR('f', 109, long) #define OBD_IOC_WRITE _IOWR('f', 110, long) #define OBD_IOC_CONNECT _IOR ('f', 111, long) #define OBD_IOC_DISCONNECT _IOW ('f', 112, long) #define OBD_IOC_STATFS _IOWR('f', 113, long) #define OBD_IOC_SYNC _IOR ('f', 114, long) #define OBD_IOC_READ2 _IOWR('f', 115, long) #define OBD_IOC_FORMAT _IOWR('f', 116, long) #define OBD_IOC_PARTITION _IOWR('f', 117, long) #define OBD_IOC_ATTACH _IOWR('f', 118, long) #define OBD_IOC_DETACH _IOWR('f', 119, long) #define OBD_IOC_COPY _IOWR('f', 120, long) #define OBD_IOC_MIGR _IOWR('f', 121, long) #define OBD_IOC_PUNCH _IOWR('f', 122, long) #define OBD_IOC_DEVICE _IOWR('f', 123, long) #define OBD_IOC_MODULE_DEBUG _IOWR('f', 124, long) #define OBD_IOC_BRW_READ _IOWR('f', 125, long) #define OBD_IOC_BRW_WRITE _IOWR('f', 126, long) #define OBD_IOC_NAME2DEV _IOWR('f', 127, long) #define OBD_IOC_NEWDEV _IOWR('f', 128, long) #define OBD_IOC_LIST _IOWR('f', 129, long) #define OBD_IOC_UUID2DEV _IOWR('f', 130, long) #define OBD_IOC_RECOVD_NEWCONN _IOWR('f', 131, long) #define OBD_IOC_LOV_SET_CONFIG _IOWR('f', 132, long) #define OBD_IOC_LOV_GET_CONFIG _IOWR('f', 133, long) #define OBD_IOC_LOV_CONFIG OBD_IOC_LOV_SET_CONFIG #define OBD_IOC_OPEN _IOWR('f', 134, long) #define OBD_IOC_CLOSE _IOWR('f', 135, long) #define OBD_IOC_RECOVD_FAILCONN _IOWR('f', 136, long) #define OBD_IOC_DEC_FS_USE_COUNT _IO ('f', 139 ) /* * l_wait_event is a flexible sleeping function, permitting simple caller * configuration of interrupt and timeout sensitivity along with actions to * be performed in the event of either exception. * * Common usage looks like this: * * struct l_wait_info lwi = LWI_TIMEOUT_INTR(timeout, timeout_handler, * intr_handler, callback_data); * rc = l_wait_event(waitq, condition, &lwi); * * (LWI_TIMEOUT and LWI_INTR macros are available for timeout- and * interrupt-only variants, respectively.) * * If a timeout is specified, the timeout_handler will be invoked in the event * that the timeout expires before the process is awakened. (Note that any * waking of the process will restart the timeout, even if the condition is * not satisfied and the process immediately returns to sleep. This might be * considered a bug.) If the timeout_handler returns non-zero, l_wait_event * will return -ETIMEDOUT and the caller will continue. If the handler returns * zero instead, the process will go back to sleep until it is awakened by the * waitq or some similar mechanism, or an interrupt occurs (if the caller has * asked for interrupts to be detected). The timeout will only fire once, so * callers should take care that a timeout_handler which returns zero will take * future steps to awaken the process. N.B. that these steps must include * making the provided condition become true. * * If the interrupt flag (lwi_signals) is non-zero, then the process will be * interruptible, and will be awakened by any "killable" signal (SIGTERM, * SIGKILL or SIGINT). If a timeout is also specified, then the process will * only become interruptible _after_ the timeout has expired, though it can be * awakened by a signal that was delivered before the timeout and is still * pending when the timeout expires. If a timeout is not specified, the process * will be interruptible at all times during l_wait_event. */ struct l_wait_info { long lwi_timeout; int (*lwi_on_timeout)(void *); long lwi_signals; int (*lwi_on_signal)(void *); /* XXX return is ignored for now */ void *lwi_cb_data; }; #define LWI_TIMEOUT(time, cb, data) \ ((struct l_wait_info) { \ lwi_timeout: time, \ lwi_on_timeout: cb, \ lwi_cb_data: data \ }) #define LWI_INTR(cb, data) \ ((struct l_wait_info) { \ lwi_signals: 1, \ lwi_on_signal: cb, \ lwi_cb_data: data \ }) #define LWI_TIMEOUT_INTR(time, time_cb, sig_cb, data) \ ((struct l_wait_info) { \ lwi_timeout: time, \ lwi_on_timeout: time_cb, \ lwi_signals: 1, \ lwi_on_signal: sig_cb, \ lwi_cb_data: data \ }) /* XXX this should be one mask-check */ #define l_killable_pending(task) \ (sigismember(&(task->pending.signal), SIGKILL) || \ sigismember(&(task->pending.signal), SIGINT) || \ sigismember(&(task->pending.signal), SIGTERM)) #define __l_wait_event(wq, condition, info, ret) \ do { \ wait_queue_t __wait; \ long __state; \ int __timed_out = 0; \ init_waitqueue_entry(&__wait, current); \ \ add_wait_queue(&wq, &__wait); \ if (info->lwi_signals && !info->lwi_timeout) \ __state = TASK_INTERRUPTIBLE; \ else \ __state = TASK_UNINTERRUPTIBLE; \ for (;;) { \ set_current_state(__state); \ if (condition) \ break; \ if (__state == TASK_INTERRUPTIBLE && l_killable_pending(current)) {\ CERROR("lwe: interrupt\n"); \ if (info->lwi_on_signal) \ info->lwi_on_signal(info->lwi_cb_data); \ ret = -EINTR; \ break; \ } \ if (info->lwi_timeout && !__timed_out) { \ if (schedule_timeout(info->lwi_timeout) == 0) { \ CERROR("lwe: timeout\n"); \ __timed_out = 1; \ if (!info->lwi_on_timeout || \ info->lwi_on_timeout(info->lwi_cb_data)) { \ ret = -ETIMEDOUT; \ break; \ } \ /* We'll take signals after a timeout. */ \ if (info->lwi_signals) { \ __state = TASK_INTERRUPTIBLE; \ /* Check for a pending interrupt. */ \ if (info->lwi_signals && l_killable_pending(current)) {\ CERROR("lwe: pending interrupt\n"); \ if (info->lwi_on_signal) \ info->lwi_on_signal(info->lwi_cb_data); \ ret = -EINTR; \ break; \ } \ } \ } \ } else { \ schedule(); \ } \ } \ current->state = TASK_RUNNING; \ remove_wait_queue(&wq, &__wait); \ } while(0) #define l_wait_event(wq, condition, info) \ ({ \ int __ret = 0; \ struct l_wait_info *__info = (info); \ if (!(condition)) \ __l_wait_event(wq, condition, __info, __ret); \ __ret; \ }) #endif /* _LUSTRE_LIB_H */