/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * Copyright (C) 2004 Cluster File Systems, Inc. * Author: Eric Barton * * This file is part of Lustre, http://www.lustre.org. * * Lustre is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * Lustre is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Lustre; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ #ifndef EXPORT_SYMTAB # define EXPORT_SYMTAB #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG_SUBSYSTEM S_NAL #include #include #include #include #include #define GCC_VERSION (__GNUC__ * 10000 \ + __GNUC_MINOR__ * 100 \ + __GNUC_PATCHLEVEL__) /* Test for GCC > 3.2.2 */ #if GCC_VERSION <= 30202 /* GCC 3.2.2, and presumably several versions before it, will * miscompile this driver. See * http://gcc.gnu.org/bugzilla/show_bug.cgi?id=9853. */ #error Invalid GCC version. Must use GCC >= 3.2.3 #endif #define IBNAL_SERVICE_NAME "iibnal" #define IBNAL_SERVICE_NUMBER 0x11b9a1 #if CONFIG_SMP # define IBNAL_N_SCHED num_online_cpus() /* # schedulers */ #else # define IBNAL_N_SCHED 1 /* # schedulers */ #endif #define IBNAL_MIN_RECONNECT_INTERVAL HZ /* first failed connection retry... */ #define IBNAL_MAX_RECONNECT_INTERVAL (60*HZ) /* ...exponentially increasing to this */ #define IBNAL_MSG_SIZE (4<<10) /* max size of queued messages (inc hdr) */ #define IBNAL_MSG_QUEUE_SIZE 8 /* # messages/RDMAs in-flight */ #define IBNAL_CREDIT_HIGHWATER 7 /* when to eagerly return credits */ /* 7 indicates infinite retry attempts, Infinicon recommended 5 */ #define IBNAL_RETRY 5 /* # times to retry */ #define IBNAL_RNR_RETRY 5 /* */ #define IBNAL_CM_RETRY 5 /* # times to retry connection */ #define IBNAL_FLOW_CONTROL 1 #define IBNAL_ACK_TIMEOUT 20 /* supposedly 4 secs */ #define IBNAL_NTX 64 /* # tx descs */ /* this had to be dropped down so that we only register < 255 pages per * region. this will change if we register all memory. */ #define IBNAL_NTX_NBLK 128 /* # reserved tx descs */ #define IBNAL_PEER_HASH_SIZE 101 /* # peer lists */ #define IBNAL_RESCHED 100 /* # scheduler loops before reschedule */ #define IBNAL_CONCURRENT_PEERS 1000 /* # nodes all talking at once to me */ /* default vals for runtime tunables */ #define IBNAL_IO_TIMEOUT 50 /* default comms timeout (seconds) */ /************************/ /* derived constants... */ /* TX messages (shared by all connections) */ #define IBNAL_TX_MSGS (IBNAL_NTX + IBNAL_NTX_NBLK) #define IBNAL_TX_MSG_BYTES (IBNAL_TX_MSGS * IBNAL_MSG_SIZE) #define IBNAL_TX_MSG_PAGES ((IBNAL_TX_MSG_BYTES + PAGE_SIZE - 1)/PAGE_SIZE) #define IBNAL_TX_MAX_SG (PTL_MD_MAX_IOV + 1) /* RX messages (per connection) */ #define IBNAL_RX_MSGS IBNAL_MSG_QUEUE_SIZE #define IBNAL_RX_MSG_BYTES (IBNAL_RX_MSGS * IBNAL_MSG_SIZE) #define IBNAL_RX_MSG_PAGES ((IBNAL_RX_MSG_BYTES + PAGE_SIZE - 1)/PAGE_SIZE) /* we may have up to 2 completions per transmit + 1 completion per receive, per connection */ #define IBNAL_CQ_ENTRIES ((2*IBNAL_TX_MSGS) + \ (IBNAL_RX_MSGS * IBNAL_CONCURRENT_PEERS)) #define IBNAL_RDMA_BASE 0x0eeb0000 #define IBNAL_FMR 0 #define IBNAL_WHOLE_MEM 1 #define IBNAL_CKSUM 0 //#define IBNAL_CALLBACK_CTXT IB_CQ_CALLBACK_PROCESS #define IBNAL_CALLBACK_CTXT IB_CQ_CALLBACK_INTERRUPT /* XXX I have no idea. */ #define IBNAL_STARTING_PSN 1 typedef struct { int kib_io_timeout; /* comms timeout (seconds) */ struct ctl_table_header *kib_sysctl; /* sysctl interface */ } kib_tunables_t; /* some of these have specific types in the stack that just map back * to the uFOO types, like IB_{L,R}_KEY. */ typedef struct { int ibp_npages; /* # pages */ int ibp_mapped; /* mapped? */ __u64 ibp_vaddr; /* mapped region vaddr */ __u32 ibp_lkey; /* mapped region lkey */ __u32 ibp_rkey; /* mapped region rkey */ IB_HANDLE ibp_handle; /* mapped region handle */ struct page *ibp_pages[0]; } kib_pages_t; typedef struct { IB_HANDLE md_handle; __u32 md_lkey; __u32 md_rkey; __u64 md_addr; } kib_md_t __attribute__((packed)); typedef struct { int kib_init; /* initialisation state */ __u64 kib_incarnation; /* which one am I */ int kib_shutdown; /* shut down? */ atomic_t kib_nthreads; /* # live threads */ __u64 kib_service_id; /* service number I listen on */ __u64 kib_port_guid; /* my GUID (lo 64 of GID)*/ __u16 kib_port_pkey; /* my pkey, whatever that is */ ptl_nid_t kib_nid; /* my NID */ struct semaphore kib_nid_mutex; /* serialise NID ops */ struct semaphore kib_nid_signal; /* signal completion */ IB_HANDLE kib_cep; /* connection end point */ rwlock_t kib_global_lock; /* stabilize peer/conn ops */ struct list_head *kib_peers; /* hash table of all my known peers */ int kib_peer_hash_size; /* size of kib_peers */ atomic_t kib_npeers; /* # peers extant */ atomic_t kib_nconns; /* # connections extant */ struct list_head kib_connd_conns; /* connections to progress */ struct list_head kib_connd_peers; /* peers waiting for a connection */ wait_queue_head_t kib_connd_waitq; /* connection daemons sleep here */ unsigned long kib_connd_waketime; /* when connd will wake */ spinlock_t kib_connd_lock; /* serialise */ wait_queue_head_t kib_sched_waitq; /* schedulers sleep here */ struct list_head kib_sched_txq; /* tx requiring attention */ struct list_head kib_sched_rxq; /* rx requiring attention */ spinlock_t kib_sched_lock; /* serialise */ struct kib_tx *kib_tx_descs; /* all the tx descriptors */ kib_pages_t *kib_tx_pages; /* premapped tx msg pages */ struct list_head kib_idle_txs; /* idle tx descriptors */ struct list_head kib_idle_nblk_txs; /* idle reserved tx descriptors */ wait_queue_head_t kib_idle_tx_waitq; /* block here for tx descriptor */ __u64 kib_next_tx_cookie; /* RDMA completion cookie */ spinlock_t kib_tx_lock; /* serialise */ IB_HANDLE kib_hca; /* The HCA */ int kib_port; /* port on the device */ IB_HANDLE kib_pd; /* protection domain */ IB_HANDLE kib_sd; /* SD handle */ IB_HANDLE kib_cq; /* completion queue */ kib_md_t kib_md; /* full-mem registration */ void *kib_listen_handle; /* where I listen for connections */ IBT_INTERFACE_UNION kib_interfaces; /* The Infinicon IBT interface */ uint64 kib_hca_guids[8]; /* all the HCA guids */ IB_CA_ATTRIBUTES kib_hca_attrs; /* where to get HCA attrs */ FABRIC_OPERATION_DATA kib_fabopdata; /* (un)advertise service record */ } kib_data_t; #define IBNAL_INIT_NOTHING 0 #define IBNAL_INIT_DATA 1 #define IBNAL_INIT_LIB 2 #define IBNAL_INIT_HCA 3 #define IBNAL_INIT_PORTATTRS 4 #define IBNAL_INIT_PORT 5 #define IBNAL_INIT_SD 6 #define IBNAL_INIT_PD 7 #define IBNAL_INIT_FMR 8 #define IBNAL_INIT_MR 9 #define IBNAL_INIT_TXD 10 #define IBNAL_INIT_CQ 11 #define IBNAL_INIT_ALL 12 /************************************************************************ * Wire message structs. * These are sent in sender's byte order (i.e. receiver flips). * CAVEAT EMPTOR: other structs communicated between nodes (e.g. MAD * private data and SM service info), is LE on the wire. */ /* also kib_md_t above */ typedef struct { __u32 rd_nob; /* # of bytes */ __u64 rd_addr; /* remote io vaddr */ } kib_rdma_desc_t __attribute__((packed)); typedef struct { ptl_hdr_t ibim_hdr; /* portals header */ char ibim_payload[0]; /* piggy-backed payload */ } kib_immediate_msg_t __attribute__((packed)); /* these arrays serve two purposes during rdma. they are built on the passive * side and sent to the active side as remote arguments. On the active side * the descs are used as a data structure on the way to local gather items. * the different roles result in split local/remote meaning of desc->rd_key */ typedef struct { ptl_hdr_t ibrm_hdr; /* portals header */ __u64 ibrm_cookie; /* opaque completion cookie */ __u32 ibrm_num_descs; /* how many descs */ __u32 rd_key; /* remote key */ kib_rdma_desc_t ibrm_desc[0]; /* where to suck/blow */ } kib_rdma_msg_t __attribute__((packed)); #define kib_rdma_msg_len(num_descs) \ offsetof(kib_msg_t, ibm_u.rdma.ibrm_desc[num_descs]) typedef struct { __u64 ibcm_cookie; /* opaque completion cookie */ __u32 ibcm_status; /* completion status */ } kib_completion_msg_t __attribute__((packed)); typedef struct { __u32 ibm_magic; /* I'm an openibnal message */ __u16 ibm_version; /* this is my version number */ __u8 ibm_type; /* msg type */ __u8 ibm_credits; /* returned credits */ #if IBNAL_CKSUM __u32 ibm_nob; __u32 ibm_cksum; #endif union { kib_immediate_msg_t immediate; kib_rdma_msg_t rdma; kib_completion_msg_t completion; } ibm_u __attribute__((packed)); } kib_msg_t __attribute__((packed)); #define IBNAL_MSG_MAGIC 0x0be91b91 /* unique magic */ #define IBNAL_MSG_VERSION 1 /* current protocol version */ #define IBNAL_MSG_NOOP 0xd0 /* nothing (just credits) */ #define IBNAL_MSG_IMMEDIATE 0xd1 /* portals hdr + payload */ #define IBNAL_MSG_PUT_RDMA 0xd2 /* portals PUT hdr + source rdma desc */ #define IBNAL_MSG_PUT_DONE 0xd3 /* signal PUT rdma completion */ #define IBNAL_MSG_GET_RDMA 0xd4 /* portals GET hdr + sink rdma desc */ #define IBNAL_MSG_GET_DONE 0xd5 /* signal GET rdma completion */ /***********************************************************************/ typedef struct kib_rx /* receive message */ { struct list_head rx_list; /* queue for attention */ struct kib_conn *rx_conn; /* owning conn */ int rx_rdma; /* RDMA completion posted? */ int rx_posted; /* posted? */ __u64 rx_vaddr; /* pre-mapped buffer (hca vaddr) */ kib_msg_t *rx_msg; /* pre-mapped buffer (host vaddr) */ IB_WORK_REQ rx_wrq; IB_LOCAL_DATASEGMENT rx_gl; /* and its memory */ } kib_rx_t; typedef struct kib_tx /* transmit message */ { struct list_head tx_list; /* queue on idle_txs ibc_tx_queue etc. */ int tx_isnblk; /* I'm reserved for non-blocking sends */ struct kib_conn *tx_conn; /* owning conn */ int tx_mapped; /* mapped for RDMA? */ int tx_sending; /* # tx callbacks outstanding */ int tx_status; /* completion status */ unsigned long tx_deadline; /* completion deadline */ int tx_passive_rdma; /* peer sucks/blows */ int tx_passive_rdma_wait; /* waiting for peer to complete */ __u64 tx_passive_rdma_cookie; /* completion cookie */ lib_msg_t *tx_libmsg[2]; /* lib msgs to finalize on completion */ kib_md_t tx_md; /* RDMA mapping (active/passive) */ __u64 tx_vaddr; /* pre-mapped buffer (hca vaddr) */ kib_msg_t *tx_msg; /* pre-mapped buffer (host vaddr) */ int tx_nsp; /* # send work items */ IB_WORK_REQ tx_wrq[IBNAL_TX_MAX_SG]; /* send work items... */ IB_LOCAL_DATASEGMENT tx_gl[IBNAL_TX_MAX_SG]; /* ...and their memory */ } kib_tx_t; #define KIB_TX_UNMAPPED 0 #define KIB_TX_MAPPED 1 #define KIB_TX_MAPPED_FMR 2 typedef struct kib_wire_connreq { __u32 wcr_magic; /* I'm an openibnal connreq */ __u16 wcr_version; /* this is my version number */ __u16 wcr_queue_depth; /* this is my receive queue size */ __u64 wcr_nid; /* peer's NID */ __u64 wcr_incarnation; /* peer's incarnation */ } kib_wire_connreq_t; typedef struct kib_gid { __u64 hi, lo; } kib_gid_t; typedef struct kib_connreq { /* connection-in-progress */ struct kib_conn *cr_conn; kib_wire_connreq_t cr_wcr; __u64 cr_tid; IB_SERVICE_RECORD cr_service; kib_gid_t cr_gid; IB_PATH_RECORD cr_path; CM_REQUEST_INFO cr_cmreq; CM_CONN_INFO cr_discarded; } kib_connreq_t; typedef struct kib_conn { struct kib_peer *ibc_peer; /* owning peer */ struct list_head ibc_list; /* stash on peer's conn list */ __u64 ibc_incarnation; /* which instance of the peer */ atomic_t ibc_refcount; /* # users */ int ibc_state; /* what's happening */ atomic_t ibc_nob; /* # bytes buffered */ int ibc_nsends_posted; /* # uncompleted sends */ int ibc_credits; /* # credits I have */ int ibc_outstanding_credits; /* # credits to return */ int ibc_rcvd_disconnect;/* received discon request */ int ibc_sent_disconnect;/* sent discon request */ struct list_head ibc_tx_queue; /* send queue */ struct list_head ibc_active_txs; /* active tx awaiting completion */ spinlock_t ibc_lock; /* serialise */ kib_rx_t *ibc_rxs; /* the rx descs */ kib_pages_t *ibc_rx_pages; /* premapped rx msg pages */ IB_HANDLE ibc_qp; /* queue pair */ IB_HANDLE ibc_cep; /* connection ID? */ IB_QP_ATTRIBUTES_QUERY ibc_qp_attrs; /* QP attrs */ kib_connreq_t *ibc_connreq; /* connection request state */ } kib_conn_t; #define IBNAL_CONN_INIT_NOTHING 0 /* initial state */ #define IBNAL_CONN_INIT_QP 1 /* ibc_qp set up */ #define IBNAL_CONN_CONNECTING 2 /* started to connect */ #define IBNAL_CONN_ESTABLISHED 3 /* connection established */ #define IBNAL_CONN_SEND_DREQ 4 /* to send disconnect req */ #define IBNAL_CONN_DREQ 5 /* sent disconnect req */ #define IBNAL_CONN_DREP 6 /* sent disconnect rep */ #define IBNAL_CONN_DISCONNECTED 7 /* no more QP or CM traffic */ #define KIB_ASSERT_CONN_STATE(conn, state) do { \ LASSERTF((conn)->ibc_state == state, "%d\n", conn->ibc_state); \ } while (0) #define KIB_ASSERT_CONN_STATE_RANGE(conn, low, high) do { \ LASSERTF(low <= high, "%d %d\n", low, high); \ LASSERTF((conn)->ibc_state >= low && (conn)->ibc_state <= high, \ "%d\n", conn->ibc_state); \ } while (0) typedef struct kib_peer { struct list_head ibp_list; /* stash on global peer list */ struct list_head ibp_connd_list; /* schedule on kib_connd_peers */ ptl_nid_t ibp_nid; /* who's on the other end(s) */ atomic_t ibp_refcount; /* # users */ int ibp_persistence; /* "known" peer refs */ struct list_head ibp_conns; /* all active connections */ struct list_head ibp_tx_queue; /* msgs waiting for a conn */ int ibp_connecting; /* connecting+accepting */ unsigned long ibp_reconnect_time; /* when reconnect may be attempted */ unsigned long ibp_reconnect_interval; /* exponential backoff */ } kib_peer_t; extern lib_nal_t kibnal_lib; extern kib_data_t kibnal_data; extern kib_tunables_t kibnal_tunables; /******************************************************************************/ /* Infinicon IBT interface wrappers */ #define IIBT_IF (kibnal_data.kib_interfaces.ver2) static inline FSTATUS iibt_get_hca_guids(uint32 *hca_count, EUI64 *hca_guid_list) { return IIBT_IF.GetCaGuids(hca_count, hca_guid_list); } static inline FSTATUS iibt_open_hca(EUI64 hca_guid, IB_COMPLETION_CALLBACK completion_callback, IB_ASYNC_EVENT_CALLBACK async_event_callback, void *arg, IB_HANDLE *handle) { return IIBT_IF.Vpi.OpenCA(hca_guid, completion_callback, async_event_callback, arg, handle); } static inline FSTATUS iibt_query_hca(IB_HANDLE hca_handle, IB_CA_ATTRIBUTES *attrs, void **argp) { return IIBT_IF.Vpi.QueryCA(hca_handle, attrs, argp); } static inline FSTATUS iibt_close_hca(IB_HANDLE hca_handle) { return IIBT_IF.Vpi.CloseCA(hca_handle); } static inline FSTATUS iibt_pd_allocate(IB_HANDLE hca_handle, __u32 max_avs, IB_HANDLE *pd_handle) { return IIBT_IF.Vpi.AllocatePD(hca_handle, max_avs, pd_handle); } static inline FSTATUS iibt_pd_free(IB_HANDLE pd_handle) { return IIBT_IF.Vpi.FreePD(pd_handle); } static inline FSTATUS iibt_register_physical_memory(IB_HANDLE hca_handle, IB_VIRT_ADDR requested_io_va, void *phys_buffers, uint64 nphys_buffers, uint32 io_va_offset, IB_HANDLE pd_handle, IB_ACCESS_CONTROL access, IB_HANDLE *mem_handle, IB_VIRT_ADDR *actual_io_va, IB_L_KEY *lkey, IB_R_KEY *rkey) { return IIBT_IF.Vpi.RegisterPhysMemRegion(hca_handle, requested_io_va, phys_buffers, nphys_buffers, io_va_offset, pd_handle, access, mem_handle, actual_io_va, lkey, rkey); } static inline FSTATUS iibt_register_contig_physical_memory(IB_HANDLE hca_handle, IB_VIRT_ADDR requested_io_va, IB_MR_PHYS_BUFFER *phys_buffers, uint64 nphys_buffers, uint32 io_va_offset, IB_HANDLE pd_handle, IB_ACCESS_CONTROL access, IB_HANDLE *mem_handle, IB_VIRT_ADDR *actual_io_va, IB_L_KEY *lkey, IB_R_KEY *rkey) { return IIBT_IF.Vpi.RegisterContigPhysMemRegion(hca_handle, requested_io_va, phys_buffers, nphys_buffers, io_va_offset, pd_handle, access, mem_handle, actual_io_va, lkey, rkey); } static inline FSTATUS iibt_register_memory(IB_HANDLE hca_handle, void *virt_addr, unsigned int length, IB_HANDLE pd_handle, IB_ACCESS_CONTROL access, IB_HANDLE *mem_handle, IB_L_KEY *lkey, IB_R_KEY *rkey) { return IIBT_IF.Vpi.RegisterMemRegion(hca_handle, virt_addr, length, pd_handle, access, mem_handle, lkey, rkey); } static inline FSTATUS iibt_deregister_memory(IB_HANDLE mem_handle) { return IIBT_IF.Vpi.DeregisterMemRegion(mem_handle); } static inline FSTATUS iibt_cq_create(IB_HANDLE hca_handle, uint32 requested_size, void *arg, IB_HANDLE *cq_handle, uint32 *actual_size) { return IIBT_IF.Vpi.CreateCQ(hca_handle, requested_size, arg, cq_handle, actual_size); } static inline FSTATUS iibt_cq_poll(IB_HANDLE cq_handle, IB_WORK_COMPLETION *wc) { return IIBT_IF.Vpi.PollCQ(cq_handle, wc); } static inline FSTATUS iibt_cq_rearm(IB_HANDLE cq_handle, IB_CQ_EVENT_SELECT select) { return IIBT_IF.Vpi.RearmCQ(cq_handle, select); } static inline FSTATUS iibt_cq_destroy(IB_HANDLE cq_handle) { return IIBT_IF.Vpi.DestroyCQ(cq_handle); } static inline FSTATUS iibt_qp_create(IB_HANDLE hca_handle, IB_QP_ATTRIBUTES_CREATE *create_attr, void *arg, IB_HANDLE *cq_handle, IB_QP_ATTRIBUTES_QUERY *query_attr) { return IIBT_IF.Vpi.CreateQP(hca_handle, create_attr, arg, cq_handle, query_attr); } static inline FSTATUS iibt_qp_query(IB_HANDLE qp_handle, IB_QP_ATTRIBUTES_QUERY *query_attr, void **arg_ptr) { return IIBT_IF.Vpi.QueryQP(qp_handle, query_attr, arg_ptr); } static inline FSTATUS iibt_qp_modify(IB_HANDLE qp_handle, IB_QP_ATTRIBUTES_MODIFY *modify_attr, IB_QP_ATTRIBUTES_QUERY *query_attr) { return IIBT_IF.Vpi.ModifyQP(qp_handle, modify_attr, query_attr); } static inline FSTATUS iibt_qp_destroy(IB_HANDLE qp_handle) { return IIBT_IF.Vpi.DestroyQP(qp_handle); } static inline FSTATUS iibt_postrecv(IB_HANDLE qp_handle, IB_WORK_REQ *work_req) { return IIBT_IF.Vpi.PostRecv(qp_handle, work_req); } static inline FSTATUS iibt_postsend(IB_HANDLE qp_handle, IB_WORK_REQ *work_req) { return IIBT_IF.Vpi.PostSend(qp_handle, work_req); } static inline FSTATUS iibt_sd_register(IB_HANDLE *sd_handle, CLIENT_CONTROL_PARAMETERS *p) { return IIBT_IF.Sdi.Register(sd_handle, p); } static inline FSTATUS iibt_sd_deregister(IB_HANDLE sd_handle) { return IIBT_IF.Sdi.Deregister(sd_handle); } static inline FSTATUS iibt_sd_port_fabric_operation(IB_HANDLE sd_handle, EUI64 port_guid, FABRIC_OPERATION_DATA *fod, PFABRIC_OPERATION_CALLBACK callback, COMMAND_CONTROL_PARAMETERS *p, void *arg) { return IIBT_IF.Sdi.PortFabricOperation(sd_handle, port_guid, fod, callback, p, arg); } static inline FSTATUS iibt_sd_query_port_fabric_information(IB_HANDLE sd_handle, EUI64 port_guid, QUERY *qry, PQUERY_CALLBACK callback, COMMAND_CONTROL_PARAMETERS *p, void *arg) { return IIBT_IF.Sdi.QueryPortFabricInformation(sd_handle, port_guid, qry, callback, p, arg); } static inline IB_HANDLE iibt_cm_create_cep(CM_CEP_TYPE type) { return IIBT_IF.Cmi.CmCreateCEP(type); } static inline FSTATUS iibt_cm_modify_cep(IB_HANDLE cep, uint32 attr, char* value, uint32 len, uint32 offset) { return IIBT_IF.Cmi.CmModifyCEP(cep, attr, value, len, offset); } static inline FSTATUS iibt_cm_destroy_cep(IB_HANDLE cep_handle) { return IIBT_IF.Cmi.CmDestroyCEP(cep_handle); } static inline FSTATUS iibt_cm_listen(IB_HANDLE cep, CM_LISTEN_INFO *info, PFN_CM_CALLBACK callback, void *arg) { return IIBT_IF.Cmi.CmListen(cep, info, callback, arg); } static inline FSTATUS iibt_cm_cancel(IB_HANDLE cep) { return IIBT_IF.Cmi.CmCancel(cep); } static inline FSTATUS iibt_cm_accept(IB_HANDLE cep, CM_CONN_INFO *send_info, CM_CONN_INFO *recv_info, PFN_CM_CALLBACK callback, void *arg, IB_HANDLE *new_cep) { return IIBT_IF.Cmi.CmAccept(cep, send_info, recv_info, callback, arg, new_cep); } static inline FSTATUS iibt_cm_reject(IB_HANDLE cep, CM_REJECT_INFO *rej) { return IIBT_IF.Cmi.CmReject(cep, rej); } static inline FSTATUS iibt_cm_disconnect(IB_HANDLE cep, CM_DREQUEST_INFO *req, CM_DREPLY_INFO *reply) { return IIBT_IF.Cmi.CmDisconnect(cep, req, reply); } static inline FSTATUS iibt_cm_connect (IB_HANDLE cep, CM_REQUEST_INFO *req, PFN_CM_CALLBACK callback, void *arg) { return IIBT_IF.Cmi.CmConnect (cep, req, callback, arg); } static inline int wrq_signals_completion(IB_WORK_REQ *wrq) { return wrq->Req.SendRC.Options.s.SignaledCompletion == 1; } /******************************************************************************/ /* these are purposely avoiding using local vars so they don't increase * stack consumption. */ #define kib_peer_addref(peer) do { \ LASSERTF(atomic_read(&peer->ibp_refcount) > 0, "%d\n", \ atomic_read(&peer->ibp_refcount)); \ CDEBUG(D_NET, "++peer[%p] -> "LPX64" (%d)\n", \ peer, peer->ibp_nid, atomic_read (&peer->ibp_refcount)); \ atomic_inc(&peer->ibp_refcount); \ } while (0) #define kib_peer_decref(peer) do { \ LASSERTF(atomic_read(&peer->ibp_refcount) > 0, "%d\n", \ atomic_read(&peer->ibp_refcount)); \ CDEBUG(D_NET, "--peer[%p] -> "LPX64" (%d)\n", \ peer, peer->ibp_nid, atomic_read (&peer->ibp_refcount)); \ if (atomic_dec_and_test (&peer->ibp_refcount)) { \ CDEBUG (D_NET, "destroying peer "LPX64" %p\n", \ peer->ibp_nid, peer); \ kibnal_destroy_peer (peer); \ } \ } while (0) /******************************************************************************/ static inline struct list_head * kibnal_nid2peerlist (ptl_nid_t nid) { unsigned int hash = ((unsigned int)nid) % kibnal_data.kib_peer_hash_size; return (&kibnal_data.kib_peers [hash]); } static inline int kibnal_peer_active(kib_peer_t *peer) { /* Am I in the peer hash table? */ return (!list_empty(&peer->ibp_list)); } static inline void kibnal_queue_tx_locked (kib_tx_t *tx, kib_conn_t *conn) { /* CAVEAT EMPTOR: tx takes caller's ref on conn */ LASSERT (tx->tx_nsp > 0); /* work items set up */ LASSERT (tx->tx_conn == NULL); /* only set here */ tx->tx_conn = conn; tx->tx_deadline = jiffies + kibnal_tunables.kib_io_timeout * HZ; list_add_tail(&tx->tx_list, &conn->ibc_tx_queue); } #define KIBNAL_SERVICE_KEY_MASK (IB_SERVICE_RECORD_COMP_SERVICENAME | \ IB_SERVICE_RECORD_COMP_SERVICEDATA8_1 | \ IB_SERVICE_RECORD_COMP_SERVICEDATA8_2 | \ IB_SERVICE_RECORD_COMP_SERVICEDATA8_3 | \ IB_SERVICE_RECORD_COMP_SERVICEDATA8_4 | \ IB_SERVICE_RECORD_COMP_SERVICEDATA8_5 | \ IB_SERVICE_RECORD_COMP_SERVICEDATA8_6 | \ IB_SERVICE_RECORD_COMP_SERVICEDATA8_7 | \ IB_SERVICE_RECORD_COMP_SERVICEDATA8_8) static inline __u64* kibnal_service_nid_field(IB_SERVICE_RECORD *srv) { /* must be consistent with KIBNAL_SERVICE_KEY_MASK */ return (__u64 *)srv->ServiceData8; } static inline void kibnal_set_service_keys(IB_SERVICE_RECORD *srv, ptl_nid_t nid) { LASSERT (strlen(IBNAL_SERVICE_NAME) < sizeof(srv->ServiceName)); memset (srv->ServiceName, 0, sizeof(srv->ServiceName)); strcpy (srv->ServiceName, IBNAL_SERVICE_NAME); *kibnal_service_nid_field(srv) = cpu_to_le64(nid); } #if 0 static inline void kibnal_show_rdma_attr (kib_conn_t *conn) { struct ib_qp_attribute qp_attr; int rc; memset (&qp_attr, 0, sizeof(qp_attr)); rc = ib_qp_query(conn->ibc_qp, &qp_attr); if (rc != 0) { CERROR ("Can't get qp attrs: %d\n", rc); return; } CWARN ("RDMA CAPABILITY: write %s read %s\n", (qp_attr.valid_fields & TS_IB_QP_ATTRIBUTE_RDMA_ATOMIC_ENABLE) ? (qp_attr.enable_rdma_write ? "enabled" : "disabled") : "invalid", (qp_attr.valid_fields & TS_IB_QP_ATTRIBUTE_RDMA_ATOMIC_ENABLE) ? (qp_attr.enable_rdma_read ? "enabled" : "disabled") : "invalid"); } #endif #if CONFIG_X86 static inline __u64 kibnal_page2phys (struct page *p) { __u64 page_number = p - mem_map; return (page_number << PAGE_SHIFT); } #else # error "no page->phys" #endif /* CAVEAT EMPTOR: * We rely on tx/rx descriptor alignment to allow us to use the lowest bit * of the work request id as a flag to determine if the completion is for a * transmit or a receive. It seems that that the CQ entry's 'op' field * isn't always set correctly on completions that occur after QP teardown. */ static inline __u64 kibnal_ptr2wreqid (void *ptr, int isrx) { unsigned long lptr = (unsigned long)ptr; LASSERT ((lptr & 1) == 0); return (__u64)(lptr | (isrx ? 1 : 0)); } static inline void * kibnal_wreqid2ptr (__u64 wreqid) { return (void *)(((unsigned long)wreqid) & ~1UL); } static inline int kibnal_wreqid_is_rx (__u64 wreqid) { return (wreqid & 1) != 0; } static inline int kibnal_whole_mem(void) { return kibnal_data.kib_md.md_handle != NULL; } extern kib_peer_t *kibnal_create_peer (ptl_nid_t nid); extern void kibnal_destroy_peer (kib_peer_t *peer); extern int kibnal_del_peer (ptl_nid_t nid, int single_share); extern kib_peer_t *kibnal_find_peer_locked (ptl_nid_t nid); extern void kibnal_unlink_peer_locked (kib_peer_t *peer); extern int kibnal_close_stale_conns_locked (kib_peer_t *peer, __u64 incarnation); extern kib_conn_t *kibnal_create_conn (void); extern void kibnal_put_conn (kib_conn_t *conn); extern void kibnal_destroy_conn (kib_conn_t *conn); void kibnal_listen_callback(IB_HANDLE cep, CM_CONN_INFO *info, void *arg); extern int kibnal_alloc_pages (kib_pages_t **pp, int npages, int access); extern void kibnal_free_pages (kib_pages_t *p); extern void kibnal_check_sends (kib_conn_t *conn); extern void kibnal_close_conn_locked (kib_conn_t *conn, int error); extern void kibnal_destroy_conn (kib_conn_t *conn); extern int kibnal_thread_start (int (*fn)(void *arg), void *arg); extern int kibnal_scheduler(void *arg); extern int kibnal_connd (void *arg); extern void kibnal_init_tx_msg (kib_tx_t *tx, int type, int body_nob); extern void kibnal_close_conn (kib_conn_t *conn, int why); extern void kibnal_start_active_rdma (int type, int status, kib_rx_t *rx, lib_msg_t *libmsg, unsigned int niov, struct iovec *iov, ptl_kiov_t *kiov, size_t offset, size_t nob); void kibnal_ca_async_callback (void *ca_arg, IB_EVENT_RECORD *ev); void kibnal_ca_callback (void *ca_arg, void *cq_arg);