/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA * * GPL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. * * Copyright (c) 2012, 2014, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * Author: liang@whamcloud.com */ #define DEBUG_SUBSYSTEM S_LNET #include #include #include #ifdef CONFIG_SMP /** * modparam for setting number of partitions * * 0 : estimate best value based on cores or NUMA nodes * 1 : disable multiple partitions * >1 : specify number of partitions */ static int cpu_npartitions; CFS_MODULE_PARM(cpu_npartitions, "i", int, 0444, "# of CPU partitions"); /** * modparam for setting CPU partitions patterns: * * i.e: "0[0,1,2,3] 1[4,5,6,7]", number before bracket is CPU partition ID, * number in bracket is processor ID (core or HT) * * i.e: "N 0[0,1] 1[2,3]" the first character 'N' means numbers in bracket * are NUMA node ID, number before bracket is CPU partition ID. * * i.e: "N", shortcut expression to create CPT from NUMA & CPU topology * * NB: If user specified cpu_pattern, cpu_npartitions will be ignored */ static char *cpu_pattern = ""; CFS_MODULE_PARM(cpu_pattern, "s", charp, 0444, "CPU partitions pattern"); struct cfs_cpt_data { /* serialize hotplug etc */ spinlock_t cpt_lock; /* reserved for hotplug */ unsigned long cpt_version; /* mutex to protect cpt_cpumask */ struct mutex cpt_mutex; /* scratch buffer for set/unset_node */ cpumask_t *cpt_cpumask; }; static struct cfs_cpt_data cpt_data; void cfs_cpu_core_siblings(int cpu, cpumask_t *mask) { /* return cpumask of cores in the same socket */ cpumask_copy(mask, topology_core_cpumask(cpu)); } EXPORT_SYMBOL(cfs_cpu_core_siblings); /* return number of cores in the same socket of \a cpu */ int cfs_cpu_core_nsiblings(int cpu) { int num; mutex_lock(&cpt_data.cpt_mutex); cfs_cpu_core_siblings(cpu, cpt_data.cpt_cpumask); num = cpumask_weight(cpt_data.cpt_cpumask); mutex_unlock(&cpt_data.cpt_mutex); return num; } EXPORT_SYMBOL(cfs_cpu_core_nsiblings); /* return cpumask of HTs in the same core */ void cfs_cpu_ht_siblings(int cpu, cpumask_t *mask) { cpumask_copy(mask, topology_thread_cpumask(cpu)); } EXPORT_SYMBOL(cfs_cpu_ht_siblings); /* return number of HTs in the same core of \a cpu */ int cfs_cpu_ht_nsiblings(int cpu) { int num; num = cpumask_weight(topology_thread_cpumask(cpu)); return num; } EXPORT_SYMBOL(cfs_cpu_ht_nsiblings); void cfs_node_to_cpumask(int node, cpumask_t *mask) { const cpumask_t *tmp = cpumask_of_node(node); if (tmp != NULL) cpumask_copy(mask, tmp); else cpumask_clear(mask); } EXPORT_SYMBOL(cfs_node_to_cpumask); void cfs_cpt_table_free(struct cfs_cpt_table *cptab) { int i; if (cptab->ctb_cpu2cpt != NULL) { LIBCFS_FREE(cptab->ctb_cpu2cpt, num_possible_cpus() * sizeof(cptab->ctb_cpu2cpt[0])); } for (i = 0; cptab->ctb_parts != NULL && i < cptab->ctb_nparts; i++) { struct cfs_cpu_partition *part = &cptab->ctb_parts[i]; if (part->cpt_nodemask != NULL) { LIBCFS_FREE(part->cpt_nodemask, sizeof(*part->cpt_nodemask)); } if (part->cpt_cpumask != NULL) LIBCFS_FREE(part->cpt_cpumask, cpumask_size()); } if (cptab->ctb_parts != NULL) { LIBCFS_FREE(cptab->ctb_parts, cptab->ctb_nparts * sizeof(cptab->ctb_parts[0])); } if (cptab->ctb_nodemask != NULL) LIBCFS_FREE(cptab->ctb_nodemask, sizeof(*cptab->ctb_nodemask)); if (cptab->ctb_cpumask != NULL) LIBCFS_FREE(cptab->ctb_cpumask, cpumask_size()); LIBCFS_FREE(cptab, sizeof(*cptab)); } EXPORT_SYMBOL(cfs_cpt_table_free); struct cfs_cpt_table * cfs_cpt_table_alloc(unsigned int ncpt) { struct cfs_cpt_table *cptab; int i; LIBCFS_ALLOC(cptab, sizeof(*cptab)); if (cptab == NULL) return NULL; cptab->ctb_nparts = ncpt; LIBCFS_ALLOC(cptab->ctb_cpumask, cpumask_size()); LIBCFS_ALLOC(cptab->ctb_nodemask, sizeof(*cptab->ctb_nodemask)); if (cptab->ctb_cpumask == NULL || cptab->ctb_nodemask == NULL) goto failed; LIBCFS_ALLOC(cptab->ctb_cpu2cpt, num_possible_cpus() * sizeof(cptab->ctb_cpu2cpt[0])); if (cptab->ctb_cpu2cpt == NULL) goto failed; memset(cptab->ctb_cpu2cpt, -1, num_possible_cpus() * sizeof(cptab->ctb_cpu2cpt[0])); LIBCFS_ALLOC(cptab->ctb_parts, ncpt * sizeof(cptab->ctb_parts[0])); if (cptab->ctb_parts == NULL) goto failed; for (i = 0; i < ncpt; i++) { struct cfs_cpu_partition *part = &cptab->ctb_parts[i]; LIBCFS_ALLOC(part->cpt_cpumask, cpumask_size()); LIBCFS_ALLOC(part->cpt_nodemask, sizeof(*part->cpt_nodemask)); if (part->cpt_cpumask == NULL || part->cpt_nodemask == NULL) goto failed; } spin_lock(&cpt_data.cpt_lock); /* Reserved for hotplug */ cptab->ctb_version = cpt_data.cpt_version; spin_unlock(&cpt_data.cpt_lock); return cptab; failed: cfs_cpt_table_free(cptab); return NULL; } EXPORT_SYMBOL(cfs_cpt_table_alloc); int cfs_cpt_table_print(struct cfs_cpt_table *cptab, char *buf, int len) { char *tmp = buf; int rc = 0; int i; int j; for (i = 0; i < cptab->ctb_nparts; i++) { if (len > 0) { rc = snprintf(tmp, len, "%d\t: ", i); len -= rc; } if (len <= 0) { rc = -EFBIG; goto out; } tmp += rc; for_each_cpu(j, cptab->ctb_parts[i].cpt_cpumask) { rc = snprintf(tmp, len, "%d ", j); len -= rc; if (len <= 0) { rc = -EFBIG; goto out; } tmp += rc; } *tmp = '\n'; tmp++; len--; } out: if (rc < 0) return rc; return tmp - buf; } EXPORT_SYMBOL(cfs_cpt_table_print); int cfs_cpt_number(struct cfs_cpt_table *cptab) { return cptab->ctb_nparts; } EXPORT_SYMBOL(cfs_cpt_number); int cfs_cpt_weight(struct cfs_cpt_table *cptab, int cpt) { LASSERT(cpt == CFS_CPT_ANY || (cpt >= 0 && cpt < cptab->ctb_nparts)); return cpt == CFS_CPT_ANY ? cpumask_weight(cptab->ctb_cpumask) : cpumask_weight(cptab->ctb_parts[cpt].cpt_cpumask); } EXPORT_SYMBOL(cfs_cpt_weight); int cfs_cpt_online(struct cfs_cpt_table *cptab, int cpt) { LASSERT(cpt == CFS_CPT_ANY || (cpt >= 0 && cpt < cptab->ctb_nparts)); return cpt == CFS_CPT_ANY ? cpumask_any_and(cptab->ctb_cpumask, cpu_online_mask) < nr_cpu_ids : cpumask_any_and(cptab->ctb_parts[cpt].cpt_cpumask, cpu_online_mask) < nr_cpu_ids; } EXPORT_SYMBOL(cfs_cpt_online); cpumask_t * cfs_cpt_cpumask(struct cfs_cpt_table *cptab, int cpt) { LASSERT(cpt == CFS_CPT_ANY || (cpt >= 0 && cpt < cptab->ctb_nparts)); return cpt == CFS_CPT_ANY ? cptab->ctb_cpumask : cptab->ctb_parts[cpt].cpt_cpumask; } EXPORT_SYMBOL(cfs_cpt_cpumask); nodemask_t * cfs_cpt_nodemask(struct cfs_cpt_table *cptab, int cpt) { LASSERT(cpt == CFS_CPT_ANY || (cpt >= 0 && cpt < cptab->ctb_nparts)); return cpt == CFS_CPT_ANY ? cptab->ctb_nodemask : cptab->ctb_parts[cpt].cpt_nodemask; } EXPORT_SYMBOL(cfs_cpt_nodemask); int cfs_cpt_set_cpu(struct cfs_cpt_table *cptab, int cpt, int cpu) { int node; LASSERT(cpt >= 0 && cpt < cptab->ctb_nparts); if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_online(cpu)) { CDEBUG(D_INFO, "CPU %d is invalid or it's offline\n", cpu); return 0; } if (cptab->ctb_cpu2cpt[cpu] != -1) { CDEBUG(D_INFO, "CPU %d is already in partition %d\n", cpu, cptab->ctb_cpu2cpt[cpu]); return 0; } cptab->ctb_cpu2cpt[cpu] = cpt; LASSERT(!cpumask_test_cpu(cpu, cptab->ctb_cpumask)); LASSERT(!cpumask_test_cpu(cpu, cptab->ctb_parts[cpt].cpt_cpumask)); cpumask_set_cpu(cpu, cptab->ctb_cpumask); cpumask_set_cpu(cpu, cptab->ctb_parts[cpt].cpt_cpumask); node = cpu_to_node(cpu); /* first CPU of @node in this CPT table */ if (!node_isset(node, *cptab->ctb_nodemask)) node_set(node, *cptab->ctb_nodemask); /* first CPU of @node in this partition */ if (!node_isset(node, *cptab->ctb_parts[cpt].cpt_nodemask)) node_set(node, *cptab->ctb_parts[cpt].cpt_nodemask); return 1; } EXPORT_SYMBOL(cfs_cpt_set_cpu); void cfs_cpt_unset_cpu(struct cfs_cpt_table *cptab, int cpt, int cpu) { int node; int i; LASSERT(cpt == CFS_CPT_ANY || (cpt >= 0 && cpt < cptab->ctb_nparts)); if (cpu < 0 || cpu >= nr_cpu_ids) { CDEBUG(D_INFO, "Invalid CPU id %d\n", cpu); return; } if (cpt == CFS_CPT_ANY) { /* caller doesn't know the partition ID */ cpt = cptab->ctb_cpu2cpt[cpu]; if (cpt < 0) { /* not set in this CPT-table */ CDEBUG(D_INFO, "Try to unset cpu %d which is " "not in CPT-table %p\n", cpt, cptab); return; } } else if (cpt != cptab->ctb_cpu2cpt[cpu]) { CDEBUG(D_INFO, "CPU %d is not in cpu-partition %d\n", cpu, cpt); return; } LASSERT(cpumask_test_cpu(cpu, cptab->ctb_parts[cpt].cpt_cpumask)); LASSERT(cpumask_test_cpu(cpu, cptab->ctb_cpumask)); cpumask_clear_cpu(cpu, cptab->ctb_parts[cpt].cpt_cpumask); cpumask_clear_cpu(cpu, cptab->ctb_cpumask); cptab->ctb_cpu2cpt[cpu] = -1; node = cpu_to_node(cpu); LASSERT(node_isset(node, *cptab->ctb_parts[cpt].cpt_nodemask)); LASSERT(node_isset(node, *cptab->ctb_nodemask)); for_each_cpu(i, cptab->ctb_parts[cpt].cpt_cpumask) { /* this CPT has other CPU belonging to this node? */ if (cpu_to_node(i) == node) break; } if (i >= nr_cpu_ids) node_clear(node, *cptab->ctb_parts[cpt].cpt_nodemask); for_each_cpu(i, cptab->ctb_cpumask) { /* this CPT-table has other CPU belonging to this node? */ if (cpu_to_node(i) == node) break; } if (i >= nr_cpu_ids) node_clear(node, *cptab->ctb_nodemask); return; } EXPORT_SYMBOL(cfs_cpt_unset_cpu); int cfs_cpt_set_cpumask(struct cfs_cpt_table *cptab, int cpt, cpumask_t *mask) { int i; if (cpumask_weight(mask) == 0 || cpumask_any_and(mask, cpu_online_mask) >= nr_cpu_ids) { CDEBUG(D_INFO, "No online CPU is found in the CPU mask " "for CPU partition %d\n", cpt); return 0; } for_each_cpu(i, mask) { if (!cfs_cpt_set_cpu(cptab, cpt, i)) return 0; } return 1; } EXPORT_SYMBOL(cfs_cpt_set_cpumask); void cfs_cpt_unset_cpumask(struct cfs_cpt_table *cptab, int cpt, cpumask_t *mask) { int i; for_each_cpu(i, mask) cfs_cpt_unset_cpu(cptab, cpt, i); } EXPORT_SYMBOL(cfs_cpt_unset_cpumask); int cfs_cpt_set_node(struct cfs_cpt_table *cptab, int cpt, int node) { cpumask_t *mask; int rc; if (node < 0 || node >= MAX_NUMNODES) { CDEBUG(D_INFO, "Invalid NUMA id %d for CPU partition %d\n", node, cpt); return 0; } mutex_lock(&cpt_data.cpt_mutex); mask = cpt_data.cpt_cpumask; cfs_node_to_cpumask(node, mask); rc = cfs_cpt_set_cpumask(cptab, cpt, mask); mutex_unlock(&cpt_data.cpt_mutex); return rc; } EXPORT_SYMBOL(cfs_cpt_set_node); void cfs_cpt_unset_node(struct cfs_cpt_table *cptab, int cpt, int node) { cpumask_t *mask; if (node < 0 || node >= MAX_NUMNODES) { CDEBUG(D_INFO, "Invalid NUMA id %d for CPU partition %d\n", node, cpt); return; } mutex_lock(&cpt_data.cpt_mutex); mask = cpt_data.cpt_cpumask; cfs_node_to_cpumask(node, mask); cfs_cpt_unset_cpumask(cptab, cpt, mask); mutex_unlock(&cpt_data.cpt_mutex); } EXPORT_SYMBOL(cfs_cpt_unset_node); int cfs_cpt_set_nodemask(struct cfs_cpt_table *cptab, int cpt, nodemask_t *mask) { int i; for_each_node_mask(i, *mask) { if (!cfs_cpt_set_node(cptab, cpt, i)) return 0; } return 1; } EXPORT_SYMBOL(cfs_cpt_set_nodemask); void cfs_cpt_unset_nodemask(struct cfs_cpt_table *cptab, int cpt, nodemask_t *mask) { int i; for_each_node_mask(i, *mask) cfs_cpt_unset_node(cptab, cpt, i); } EXPORT_SYMBOL(cfs_cpt_unset_nodemask); void cfs_cpt_clear(struct cfs_cpt_table *cptab, int cpt) { int last; int i; if (cpt == CFS_CPT_ANY) { last = cptab->ctb_nparts - 1; cpt = 0; } else { last = cpt; } for (; cpt <= last; cpt++) { for_each_cpu(i, cptab->ctb_parts[cpt].cpt_cpumask) cfs_cpt_unset_cpu(cptab, cpt, i); } } EXPORT_SYMBOL(cfs_cpt_clear); int cfs_cpt_spread_node(struct cfs_cpt_table *cptab, int cpt) { nodemask_t *mask; int weight; int rotor; int node; /* convert CPU partition ID to HW node id */ if (cpt < 0 || cpt >= cptab->ctb_nparts) { mask = cptab->ctb_nodemask; rotor = cptab->ctb_spread_rotor++; } else { mask = cptab->ctb_parts[cpt].cpt_nodemask; rotor = cptab->ctb_parts[cpt].cpt_spread_rotor++; } weight = nodes_weight(*mask); LASSERT(weight > 0); rotor %= weight; for_each_node_mask(node, *mask) { if (rotor-- == 0) return node; } LBUG(); return 0; } EXPORT_SYMBOL(cfs_cpt_spread_node); int cfs_cpt_current(struct cfs_cpt_table *cptab, int remap) { int cpu = smp_processor_id(); int cpt = cptab->ctb_cpu2cpt[cpu]; if (cpt < 0) { if (!remap) return cpt; /* don't return negative value for safety of upper layer, * instead we shadow the unknown cpu to a valid partition ID */ cpt = cpu % cptab->ctb_nparts; } return cpt; } EXPORT_SYMBOL(cfs_cpt_current); int cfs_cpt_of_cpu(struct cfs_cpt_table *cptab, int cpu) { LASSERT(cpu >= 0 && cpu < nr_cpu_ids); return cptab->ctb_cpu2cpt[cpu]; } EXPORT_SYMBOL(cfs_cpt_of_cpu); int cfs_cpt_bind(struct cfs_cpt_table *cptab, int cpt) { cpumask_t *cpumask; nodemask_t *nodemask; int rc; int i; LASSERT(cpt == CFS_CPT_ANY || (cpt >= 0 && cpt < cptab->ctb_nparts)); if (cpt == CFS_CPT_ANY) { cpumask = cptab->ctb_cpumask; nodemask = cptab->ctb_nodemask; } else { cpumask = cptab->ctb_parts[cpt].cpt_cpumask; nodemask = cptab->ctb_parts[cpt].cpt_nodemask; } if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) { CERROR("No online CPU found in CPU partition %d, did someone " "do CPU hotplug on system? You might need to reload " "Lustre modules to keep system working well.\n", cpt); return -EINVAL; } for_each_online_cpu(i) { if (cpumask_test_cpu(i, cpumask)) continue; rc = set_cpus_allowed_ptr(current, cpumask); set_mems_allowed(*nodemask); if (rc == 0) schedule(); /* switch to allowed CPU */ return rc; } /* don't need to set affinity because all online CPUs are covered */ return 0; } EXPORT_SYMBOL(cfs_cpt_bind); /** * Choose max to \a number CPUs from \a node and set them in \a cpt. * We always prefer to choose CPU in the same core/socket. */ static int cfs_cpt_choose_ncpus(struct cfs_cpt_table *cptab, int cpt, cpumask_t *node, int number) { cpumask_t *socket = NULL; cpumask_t *core = NULL; int rc = 0; int cpu; LASSERT(number > 0); if (number >= cpumask_weight(node)) { while (!cpumask_empty(node)) { cpu = cpumask_first(node); rc = cfs_cpt_set_cpu(cptab, cpt, cpu); if (!rc) return -EINVAL; cpumask_clear_cpu(cpu, node); } return 0; } /* allocate scratch buffer */ LIBCFS_ALLOC(socket, cpumask_size()); LIBCFS_ALLOC(core, cpumask_size()); if (socket == NULL || core == NULL) { rc = -ENOMEM; goto out; } while (!cpumask_empty(node)) { cpu = cpumask_first(node); /* get cpumask for cores in the same socket */ cfs_cpu_core_siblings(cpu, socket); cpumask_and(socket, socket, node); LASSERT(!cpumask_empty(socket)); while (!cpumask_empty(socket)) { int i; /* get cpumask for hts in the same core */ cfs_cpu_ht_siblings(cpu, core); cpumask_and(core, core, node); LASSERT(!cpumask_empty(core)); for_each_cpu(i, core) { cpumask_clear_cpu(i, socket); cpumask_clear_cpu(i, node); rc = cfs_cpt_set_cpu(cptab, cpt, i); if (!rc) { rc = -EINVAL; goto out; } if (--number == 0) goto out; } cpu = cpumask_first(socket); } } out: if (socket != NULL) LIBCFS_FREE(socket, cpumask_size()); if (core != NULL) LIBCFS_FREE(core, cpumask_size()); return rc; } #define CPT_WEIGHT_MIN 4u static unsigned int cfs_cpt_num_estimate(void) { unsigned nnode = num_online_nodes(); unsigned ncpu = num_online_cpus(); unsigned ncpt; if (ncpu <= CPT_WEIGHT_MIN) { ncpt = 1; goto out; } /* generate reasonable number of CPU partitions based on total number * of CPUs, Preferred N should be power2 and match this condition: * 2 * (N - 1)^2 < NCPUS <= 2 * N^2 */ for (ncpt = 2; ncpu > 2 * ncpt * ncpt; ncpt <<= 1) {} if (ncpt <= nnode) { /* fat numa system */ while (nnode > ncpt) nnode >>= 1; } else { /* ncpt > nnode */ while ((nnode << 1) <= ncpt) nnode <<= 1; } ncpt = nnode; out: #if (BITS_PER_LONG == 32) /* config many CPU partitions on 32-bit system could consume * too much memory */ ncpt = min(2U, ncpt); #endif while (ncpu % ncpt != 0) ncpt--; /* worst case is 1 */ return ncpt; } static struct cfs_cpt_table * cfs_cpt_table_create(int ncpt) { struct cfs_cpt_table *cptab = NULL; cpumask_t *mask = NULL; int cpt = 0; int num; int rc; int i; rc = cfs_cpt_num_estimate(); if (ncpt <= 0) ncpt = rc; if (ncpt > num_online_cpus() || ncpt > 4 * rc) { CWARN("CPU partition number %d is larger than suggested " "value (%d), your system may have performance" "issue or run out of memory while under pressure\n", ncpt, rc); } if (num_online_cpus() % ncpt != 0) { CERROR("CPU number %d is not multiple of cpu_npartition %d, " "please try different cpu_npartitions value or" "set pattern string by cpu_pattern=STRING\n", (int)num_online_cpus(), ncpt); goto failed; } cptab = cfs_cpt_table_alloc(ncpt); if (cptab == NULL) { CERROR("Failed to allocate CPU map(%d)\n", ncpt); goto failed; } num = num_online_cpus() / ncpt; if (num == 0) { CERROR("CPU changed while setting CPU partition\n"); goto failed; } LIBCFS_ALLOC(mask, cpumask_size()); if (mask == NULL) { CERROR("Failed to allocate scratch cpumask\n"); goto failed; } for_each_online_node(i) { cfs_node_to_cpumask(i, mask); while (!cpumask_empty(mask)) { struct cfs_cpu_partition *part; int n; /* Each emulated NUMA node has all allowed CPUs in * the mask. * End loop when all partitions have assigned CPUs. */ if (cpt == ncpt) break; part = &cptab->ctb_parts[cpt]; n = num - cpumask_weight(part->cpt_cpumask); LASSERT(n > 0); rc = cfs_cpt_choose_ncpus(cptab, cpt, mask, n); if (rc < 0) goto failed; LASSERT(num >= cpumask_weight(part->cpt_cpumask)); if (num == cpumask_weight(part->cpt_cpumask)) cpt++; } } if (cpt != ncpt || num != cpumask_weight(cptab->ctb_parts[ncpt - 1].cpt_cpumask)) { CERROR("Expect %d(%d) CPU partitions but got %d(%d), " "CPU hotplug/unplug while setting?\n", cptab->ctb_nparts, num, cpt, cpumask_weight(cptab->ctb_parts[ncpt - 1].cpt_cpumask)); goto failed; } LIBCFS_FREE(mask, cpumask_size()); return cptab; failed: CERROR("Failed to setup CPU-partition-table with %d " "CPU-partitions, online HW nodes: %d, HW cpus: %d.\n", ncpt, num_online_nodes(), num_online_cpus()); if (mask != NULL) LIBCFS_FREE(mask, cpumask_size()); if (cptab != NULL) cfs_cpt_table_free(cptab); return NULL; } static struct cfs_cpt_table * cfs_cpt_table_create_pattern(char *pattern) { struct cfs_cpt_table *cptab; char *str; int node = 0; int ncpt = 0; int high; int cpt; int rc; int c; int i; str = cfs_trimwhite(pattern); if (*str == 'n' || *str == 'N') { pattern = str + 1; if (*pattern != '\0') { node = 1; /* numa pattern */ } else { /* shortcut to create CPT from NUMA & CPU topology */ node = -1; ncpt = num_online_nodes(); } } if (ncpt == 0) { /* scanning bracket which is mark of partition */ for (str = pattern;; str++, ncpt++) { str = strchr(str, '['); if (str == NULL) break; } } if (ncpt == 0 || (node && ncpt > num_online_nodes()) || (!node && ncpt > num_online_cpus())) { CERROR("Invalid pattern %s, or too many partitions %d\n", pattern, ncpt); return NULL; } cptab = cfs_cpt_table_alloc(ncpt); if (cptab == NULL) { CERROR("Failed to allocate cpu partition table\n"); return NULL; } if (node < 0) { /* shortcut to create CPT from NUMA & CPU topology */ cpt = 0; for_each_online_node(i) { if (cpt >= ncpt) { CERROR("CPU changed while setting CPU " "partition table, %d/%d\n", cpt, ncpt); goto failed; } rc = cfs_cpt_set_node(cptab, cpt++, i); if (!rc) goto failed; } return cptab; } high = node ? MAX_NUMNODES - 1 : nr_cpu_ids - 1; for (str = cfs_trimwhite(pattern), c = 0;; c++) { struct cfs_range_expr *range; struct cfs_expr_list *el; char *bracket = strchr(str, '['); int n; if (bracket == NULL) { if (*str != 0) { CERROR("Invalid pattern %s\n", str); goto failed; } else if (c != ncpt) { CERROR("expect %d partitions but found %d\n", ncpt, c); goto failed; } break; } if (sscanf(str, "%d%n", &cpt, &n) < 1) { CERROR("Invalid cpu pattern %s\n", str); goto failed; } if (cpt < 0 || cpt >= ncpt) { CERROR("Invalid partition id %d, total partitions %d\n", cpt, ncpt); goto failed; } if (cfs_cpt_weight(cptab, cpt) != 0) { CERROR("Partition %d has already been set.\n", cpt); goto failed; } str = cfs_trimwhite(str + n); if (str != bracket) { CERROR("Invalid pattern %s\n", str); goto failed; } bracket = strchr(str, ']'); if (bracket == NULL) { CERROR("missing right bracket for cpt %d, %s\n", cpt, str); goto failed; } if (cfs_expr_list_parse(str, (bracket - str) + 1, 0, high, &el) != 0) { CERROR("Can't parse number range: %s\n", str); goto failed; } list_for_each_entry(range, &el->el_exprs, re_link) { for (i = range->re_lo; i <= range->re_hi; i++) { if ((i - range->re_lo) % range->re_stride != 0) continue; rc = node ? cfs_cpt_set_node(cptab, cpt, i) : cfs_cpt_set_cpu(cptab, cpt, i); if (!rc) { cfs_expr_list_free(el); goto failed; } } } cfs_expr_list_free(el); if (!cfs_cpt_online(cptab, cpt)) { CERROR("No online CPU is found on partition %d\n", cpt); goto failed; } str = cfs_trimwhite(bracket + 1); } return cptab; failed: cfs_cpt_table_free(cptab); return NULL; } #ifdef CONFIG_HOTPLUG_CPU static int cfs_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; bool warn; switch (action) { case CPU_DEAD: case CPU_DEAD_FROZEN: case CPU_ONLINE: case CPU_ONLINE_FROZEN: spin_lock(&cpt_data.cpt_lock); cpt_data.cpt_version++; spin_unlock(&cpt_data.cpt_lock); default: if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) { CDEBUG(D_INFO, "CPU changed [cpu %u action %lx]\n", cpu, action); break; } mutex_lock(&cpt_data.cpt_mutex); /* if all HTs in a core are offline, it may break affinity */ cfs_cpu_ht_siblings(cpu, cpt_data.cpt_cpumask); warn = cpumask_any_and(cpt_data.cpt_cpumask, cpu_online_mask) >= nr_cpu_ids; mutex_unlock(&cpt_data.cpt_mutex); CDEBUG(warn ? D_WARNING : D_INFO, "Lustre: can't support CPU plug-out well now, " "performance and stability could be impacted" "[CPU %u action: %lx]\n", cpu, action); } return NOTIFY_OK; } static struct notifier_block cfs_cpu_notifier = { .notifier_call = cfs_cpu_notify, .priority = 0 }; #endif void cfs_cpu_fini(void) { if (cfs_cpt_table != NULL) cfs_cpt_table_free(cfs_cpt_table); #ifdef CONFIG_HOTPLUG_CPU unregister_hotcpu_notifier(&cfs_cpu_notifier); #endif if (cpt_data.cpt_cpumask != NULL) LIBCFS_FREE(cpt_data.cpt_cpumask, cpumask_size()); } int cfs_cpu_init(void) { LASSERT(cfs_cpt_table == NULL); memset(&cpt_data, 0, sizeof(cpt_data)); LIBCFS_ALLOC(cpt_data.cpt_cpumask, cpumask_size()); if (cpt_data.cpt_cpumask == NULL) { CERROR("Failed to allocate scratch buffer\n"); return -1; } spin_lock_init(&cpt_data.cpt_lock); mutex_init(&cpt_data.cpt_mutex); #ifdef CONFIG_HOTPLUG_CPU register_hotcpu_notifier(&cfs_cpu_notifier); #endif if (*cpu_pattern != 0) { cfs_cpt_table = cfs_cpt_table_create_pattern(cpu_pattern); if (cfs_cpt_table == NULL) { CERROR("Failed to create cptab from pattern %s\n", cpu_pattern); goto failed; } } else { cfs_cpt_table = cfs_cpt_table_create(cpu_npartitions); if (cfs_cpt_table == NULL) { CERROR("Failed to create ptable with npartitions %d\n", cpu_npartitions); goto failed; } } spin_lock(&cpt_data.cpt_lock); if (cfs_cpt_table->ctb_version != cpt_data.cpt_version) { spin_unlock(&cpt_data.cpt_lock); CERROR("CPU hotplug/unplug during setup\n"); goto failed; } spin_unlock(&cpt_data.cpt_lock); LCONSOLE(0, "HW CPU cores: %d, npartitions: %d\n", num_online_cpus(), cfs_cpt_number(cfs_cpt_table)); return 0; failed: cfs_cpu_fini(); return -1; } #endif