Whamcloud - gitweb
LU-2799 ptlrpc: reduce verbosity of warning
[fs/lustre-release.git] / lustre / ptlrpc / service.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2010, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  */
36
37 #define DEBUG_SUBSYSTEM S_RPC
38 #ifndef __KERNEL__
39 #include <liblustre.h>
40 #endif
41 #include <obd_support.h>
42 #include <obd_class.h>
43 #include <lustre_net.h>
44 #include <lu_object.h>
45 #include <lnet/types.h>
46 #include "ptlrpc_internal.h"
47
48 /* The following are visible and mutable through /sys/module/ptlrpc */
49 int test_req_buffer_pressure = 0;
50 CFS_MODULE_PARM(test_req_buffer_pressure, "i", int, 0444,
51                 "set non-zero to put pressure on request buffer pools");
52 CFS_MODULE_PARM(at_min, "i", int, 0644,
53                 "Adaptive timeout minimum (sec)");
54 CFS_MODULE_PARM(at_max, "i", int, 0644,
55                 "Adaptive timeout maximum (sec)");
56 CFS_MODULE_PARM(at_history, "i", int, 0644,
57                 "Adaptive timeouts remember the slowest event that took place "
58                 "within this period (sec)");
59 CFS_MODULE_PARM(at_early_margin, "i", int, 0644,
60                 "How soon before an RPC deadline to send an early reply");
61 CFS_MODULE_PARM(at_extra, "i", int, 0644,
62                 "How much extra time to give with each early reply");
63
64
65 /* forward ref */
66 static int ptlrpc_server_post_idle_rqbds(struct ptlrpc_service_part *svcpt);
67 static void ptlrpc_server_hpreq_fini(struct ptlrpc_request *req);
68 static void ptlrpc_at_remove_timed(struct ptlrpc_request *req);
69
70 /** Holds a list of all PTLRPC services */
71 CFS_LIST_HEAD(ptlrpc_all_services);
72 /** Used to protect the \e ptlrpc_all_services list */
73 struct mutex ptlrpc_all_services_mutex;
74
75 struct ptlrpc_request_buffer_desc *
76 ptlrpc_alloc_rqbd(struct ptlrpc_service_part *svcpt)
77 {
78         struct ptlrpc_service             *svc = svcpt->scp_service;
79         struct ptlrpc_request_buffer_desc *rqbd;
80
81         OBD_CPT_ALLOC_PTR(rqbd, svc->srv_cptable, svcpt->scp_cpt);
82         if (rqbd == NULL)
83                 return NULL;
84
85         rqbd->rqbd_svcpt = svcpt;
86         rqbd->rqbd_refcount = 0;
87         rqbd->rqbd_cbid.cbid_fn = request_in_callback;
88         rqbd->rqbd_cbid.cbid_arg = rqbd;
89         CFS_INIT_LIST_HEAD(&rqbd->rqbd_reqs);
90         OBD_CPT_ALLOC_LARGE(rqbd->rqbd_buffer, svc->srv_cptable,
91                             svcpt->scp_cpt, svc->srv_buf_size);
92         if (rqbd->rqbd_buffer == NULL) {
93                 OBD_FREE_PTR(rqbd);
94                 return NULL;
95         }
96
97         spin_lock(&svcpt->scp_lock);
98         cfs_list_add(&rqbd->rqbd_list, &svcpt->scp_rqbd_idle);
99         svcpt->scp_nrqbds_total++;
100         spin_unlock(&svcpt->scp_lock);
101
102         return rqbd;
103 }
104
105 void
106 ptlrpc_free_rqbd(struct ptlrpc_request_buffer_desc *rqbd)
107 {
108         struct ptlrpc_service_part *svcpt = rqbd->rqbd_svcpt;
109
110         LASSERT(rqbd->rqbd_refcount == 0);
111         LASSERT(cfs_list_empty(&rqbd->rqbd_reqs));
112
113         spin_lock(&svcpt->scp_lock);
114         cfs_list_del(&rqbd->rqbd_list);
115         svcpt->scp_nrqbds_total--;
116         spin_unlock(&svcpt->scp_lock);
117
118         OBD_FREE_LARGE(rqbd->rqbd_buffer, svcpt->scp_service->srv_buf_size);
119         OBD_FREE_PTR(rqbd);
120 }
121
122 int
123 ptlrpc_grow_req_bufs(struct ptlrpc_service_part *svcpt, int post)
124 {
125         struct ptlrpc_service             *svc = svcpt->scp_service;
126         struct ptlrpc_request_buffer_desc *rqbd;
127         int                                rc = 0;
128         int                                i;
129
130         if (svcpt->scp_rqbd_allocating)
131                 goto try_post;
132
133         spin_lock(&svcpt->scp_lock);
134         /* check again with lock */
135         if (svcpt->scp_rqbd_allocating) {
136                 /* NB: we might allow more than one thread in the future */
137                 LASSERT(svcpt->scp_rqbd_allocating == 1);
138                 spin_unlock(&svcpt->scp_lock);
139                 goto try_post;
140         }
141
142         svcpt->scp_rqbd_allocating++;
143         spin_unlock(&svcpt->scp_lock);
144
145
146         for (i = 0; i < svc->srv_nbuf_per_group; i++) {
147                 /* NB: another thread might have recycled enough rqbds, we
148                  * need to make sure it wouldn't over-allocate, see LU-1212. */
149                 if (svcpt->scp_nrqbds_posted >= svc->srv_nbuf_per_group)
150                         break;
151
152                 rqbd = ptlrpc_alloc_rqbd(svcpt);
153
154                 if (rqbd == NULL) {
155                         CERROR("%s: Can't allocate request buffer\n",
156                                svc->srv_name);
157                         rc = -ENOMEM;
158                         break;
159                 }
160         }
161
162         spin_lock(&svcpt->scp_lock);
163
164         LASSERT(svcpt->scp_rqbd_allocating == 1);
165         svcpt->scp_rqbd_allocating--;
166
167         spin_unlock(&svcpt->scp_lock);
168
169         CDEBUG(D_RPCTRACE,
170                "%s: allocate %d new %d-byte reqbufs (%d/%d left), rc = %d\n",
171                svc->srv_name, i, svc->srv_buf_size, svcpt->scp_nrqbds_posted,
172                svcpt->scp_nrqbds_total, rc);
173
174  try_post:
175         if (post && rc == 0)
176                 rc = ptlrpc_server_post_idle_rqbds(svcpt);
177
178         return rc;
179 }
180
181 /**
182  * Part of Rep-Ack logic.
183  * Puts a lock and its mode into reply state assotiated to request reply.
184  */
185 void
186 ptlrpc_save_lock(struct ptlrpc_request *req,
187                  struct lustre_handle *lock, int mode, int no_ack)
188 {
189         struct ptlrpc_reply_state *rs = req->rq_reply_state;
190         int                        idx;
191
192         LASSERT(rs != NULL);
193         LASSERT(rs->rs_nlocks < RS_MAX_LOCKS);
194
195         if (req->rq_export->exp_disconnected) {
196                 ldlm_lock_decref(lock, mode);
197         } else {
198                 idx = rs->rs_nlocks++;
199                 rs->rs_locks[idx] = *lock;
200                 rs->rs_modes[idx] = mode;
201                 rs->rs_difficult = 1;
202                 rs->rs_no_ack = !!no_ack;
203         }
204 }
205 EXPORT_SYMBOL(ptlrpc_save_lock);
206
207 #ifdef __KERNEL__
208
209 struct ptlrpc_hr_partition;
210
211 struct ptlrpc_hr_thread {
212         int                             hrt_id;         /* thread ID */
213         spinlock_t                      hrt_lock;
214         cfs_waitq_t                     hrt_waitq;
215         cfs_list_t                      hrt_queue;      /* RS queue */
216         struct ptlrpc_hr_partition      *hrt_partition;
217 };
218
219 struct ptlrpc_hr_partition {
220         /* # of started threads */
221         cfs_atomic_t                    hrp_nstarted;
222         /* # of stopped threads */
223         cfs_atomic_t                    hrp_nstopped;
224         /* cpu partition id */
225         int                             hrp_cpt;
226         /* round-robin rotor for choosing thread */
227         int                             hrp_rotor;
228         /* total number of threads on this partition */
229         int                             hrp_nthrs;
230         /* threads table */
231         struct ptlrpc_hr_thread         *hrp_thrs;
232 };
233
234 #define HRT_RUNNING 0
235 #define HRT_STOPPING 1
236
237 struct ptlrpc_hr_service {
238         /* CPU partition table, it's just cfs_cpt_table for now */
239         struct cfs_cpt_table            *hr_cpt_table;
240         /** controller sleep waitq */
241         cfs_waitq_t                     hr_waitq;
242         unsigned int                    hr_stopping;
243         /** roundrobin rotor for non-affinity service */
244         unsigned int                    hr_rotor;
245         /* partition data */
246         struct ptlrpc_hr_partition      **hr_partitions;
247 };
248
249 struct rs_batch {
250         cfs_list_t                      rsb_replies;
251         unsigned int                    rsb_n_replies;
252         struct ptlrpc_service_part      *rsb_svcpt;
253 };
254
255 /** reply handling service. */
256 static struct ptlrpc_hr_service         ptlrpc_hr;
257
258 /**
259  * maximum mumber of replies scheduled in one batch
260  */
261 #define MAX_SCHEDULED 256
262
263 /**
264  * Initialize a reply batch.
265  *
266  * \param b batch
267  */
268 static void rs_batch_init(struct rs_batch *b)
269 {
270         memset(b, 0, sizeof *b);
271         CFS_INIT_LIST_HEAD(&b->rsb_replies);
272 }
273
274 /**
275  * Choose an hr thread to dispatch requests to.
276  */
277 static struct ptlrpc_hr_thread *
278 ptlrpc_hr_select(struct ptlrpc_service_part *svcpt)
279 {
280         struct ptlrpc_hr_partition      *hrp;
281         unsigned int                    rotor;
282
283         if (svcpt->scp_cpt >= 0 &&
284             svcpt->scp_service->srv_cptable == ptlrpc_hr.hr_cpt_table) {
285                 /* directly match partition */
286                 hrp = ptlrpc_hr.hr_partitions[svcpt->scp_cpt];
287
288         } else {
289                 rotor = ptlrpc_hr.hr_rotor++;
290                 rotor %= cfs_cpt_number(ptlrpc_hr.hr_cpt_table);
291
292                 hrp = ptlrpc_hr.hr_partitions[rotor];
293         }
294
295         rotor = hrp->hrp_rotor++;
296         return &hrp->hrp_thrs[rotor % hrp->hrp_nthrs];
297 }
298
299 /**
300  * Dispatch all replies accumulated in the batch to one from
301  * dedicated reply handling threads.
302  *
303  * \param b batch
304  */
305 static void rs_batch_dispatch(struct rs_batch *b)
306 {
307         if (b->rsb_n_replies != 0) {
308                 struct ptlrpc_hr_thread *hrt;
309
310                 hrt = ptlrpc_hr_select(b->rsb_svcpt);
311
312                 spin_lock(&hrt->hrt_lock);
313                 cfs_list_splice_init(&b->rsb_replies, &hrt->hrt_queue);
314                 spin_unlock(&hrt->hrt_lock);
315
316                 cfs_waitq_signal(&hrt->hrt_waitq);
317                 b->rsb_n_replies = 0;
318         }
319 }
320
321 /**
322  * Add a reply to a batch.
323  * Add one reply object to a batch, schedule batched replies if overload.
324  *
325  * \param b batch
326  * \param rs reply
327  */
328 static void rs_batch_add(struct rs_batch *b, struct ptlrpc_reply_state *rs)
329 {
330         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
331
332         if (svcpt != b->rsb_svcpt || b->rsb_n_replies >= MAX_SCHEDULED) {
333                 if (b->rsb_svcpt != NULL) {
334                         rs_batch_dispatch(b);
335                         spin_unlock(&b->rsb_svcpt->scp_rep_lock);
336                 }
337                 spin_lock(&svcpt->scp_rep_lock);
338                 b->rsb_svcpt = svcpt;
339         }
340         spin_lock(&rs->rs_lock);
341         rs->rs_scheduled_ever = 1;
342         if (rs->rs_scheduled == 0) {
343                 cfs_list_move(&rs->rs_list, &b->rsb_replies);
344                 rs->rs_scheduled = 1;
345                 b->rsb_n_replies++;
346         }
347         rs->rs_committed = 1;
348         spin_unlock(&rs->rs_lock);
349 }
350
351 /**
352  * Reply batch finalization.
353  * Dispatch remaining replies from the batch
354  * and release remaining spinlock.
355  *
356  * \param b batch
357  */
358 static void rs_batch_fini(struct rs_batch *b)
359 {
360         if (b->rsb_svcpt != NULL) {
361                 rs_batch_dispatch(b);
362                 spin_unlock(&b->rsb_svcpt->scp_rep_lock);
363         }
364 }
365
366 #define DECLARE_RS_BATCH(b)     struct rs_batch b
367
368 #else /* __KERNEL__ */
369
370 #define rs_batch_init(b)        do{}while(0)
371 #define rs_batch_fini(b)        do{}while(0)
372 #define rs_batch_add(b, r)      ptlrpc_schedule_difficult_reply(r)
373 #define DECLARE_RS_BATCH(b)
374
375 #endif /* __KERNEL__ */
376
377 /**
378  * Put reply state into a queue for processing because we received
379  * ACK from the client
380  */
381 void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs)
382 {
383 #ifdef __KERNEL__
384         struct ptlrpc_hr_thread *hrt;
385         ENTRY;
386
387         LASSERT(cfs_list_empty(&rs->rs_list));
388
389         hrt = ptlrpc_hr_select(rs->rs_svcpt);
390
391         spin_lock(&hrt->hrt_lock);
392         cfs_list_add_tail(&rs->rs_list, &hrt->hrt_queue);
393         spin_unlock(&hrt->hrt_lock);
394
395         cfs_waitq_signal(&hrt->hrt_waitq);
396         EXIT;
397 #else
398         cfs_list_add_tail(&rs->rs_list, &rs->rs_svcpt->scp_rep_queue);
399 #endif
400 }
401
402 void
403 ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs)
404 {
405         ENTRY;
406
407         LASSERT_SPIN_LOCKED(&rs->rs_svcpt->scp_rep_lock);
408         LASSERT_SPIN_LOCKED(&rs->rs_lock);
409         LASSERT (rs->rs_difficult);
410         rs->rs_scheduled_ever = 1;  /* flag any notification attempt */
411
412         if (rs->rs_scheduled) {     /* being set up or already notified */
413                 EXIT;
414                 return;
415         }
416
417         rs->rs_scheduled = 1;
418         cfs_list_del_init(&rs->rs_list);
419         ptlrpc_dispatch_difficult_reply(rs);
420         EXIT;
421 }
422 EXPORT_SYMBOL(ptlrpc_schedule_difficult_reply);
423
424 void ptlrpc_commit_replies(struct obd_export *exp)
425 {
426         struct ptlrpc_reply_state *rs, *nxt;
427         DECLARE_RS_BATCH(batch);
428         ENTRY;
429
430         rs_batch_init(&batch);
431         /* Find any replies that have been committed and get their service
432          * to attend to complete them. */
433
434         /* CAVEAT EMPTOR: spinlock ordering!!! */
435         spin_lock(&exp->exp_uncommitted_replies_lock);
436         cfs_list_for_each_entry_safe(rs, nxt, &exp->exp_uncommitted_replies,
437                                      rs_obd_list) {
438                 LASSERT (rs->rs_difficult);
439                 /* VBR: per-export last_committed */
440                 LASSERT(rs->rs_export);
441                 if (rs->rs_transno <= exp->exp_last_committed) {
442                         cfs_list_del_init(&rs->rs_obd_list);
443                         rs_batch_add(&batch, rs);
444                 }
445         }
446         spin_unlock(&exp->exp_uncommitted_replies_lock);
447         rs_batch_fini(&batch);
448         EXIT;
449 }
450 EXPORT_SYMBOL(ptlrpc_commit_replies);
451
452 static int
453 ptlrpc_server_post_idle_rqbds(struct ptlrpc_service_part *svcpt)
454 {
455         struct ptlrpc_request_buffer_desc *rqbd;
456         int                               rc;
457         int                               posted = 0;
458
459         for (;;) {
460                 spin_lock(&svcpt->scp_lock);
461
462                 if (cfs_list_empty(&svcpt->scp_rqbd_idle)) {
463                         spin_unlock(&svcpt->scp_lock);
464                         return posted;
465                 }
466
467                 rqbd = cfs_list_entry(svcpt->scp_rqbd_idle.next,
468                                       struct ptlrpc_request_buffer_desc,
469                                       rqbd_list);
470                 cfs_list_del(&rqbd->rqbd_list);
471
472                 /* assume we will post successfully */
473                 svcpt->scp_nrqbds_posted++;
474                 cfs_list_add(&rqbd->rqbd_list, &svcpt->scp_rqbd_posted);
475
476                 spin_unlock(&svcpt->scp_lock);
477
478                 rc = ptlrpc_register_rqbd(rqbd);
479                 if (rc != 0)
480                         break;
481
482                 posted = 1;
483         }
484
485         spin_lock(&svcpt->scp_lock);
486
487         svcpt->scp_nrqbds_posted--;
488         cfs_list_del(&rqbd->rqbd_list);
489         cfs_list_add_tail(&rqbd->rqbd_list, &svcpt->scp_rqbd_idle);
490
491         /* Don't complain if no request buffers are posted right now; LNET
492          * won't drop requests because we set the portal lazy! */
493
494         spin_unlock(&svcpt->scp_lock);
495
496         return -1;
497 }
498
499 static void ptlrpc_at_timer(unsigned long castmeharder)
500 {
501         struct ptlrpc_service_part *svcpt;
502
503         svcpt = (struct ptlrpc_service_part *)castmeharder;
504
505         svcpt->scp_at_check = 1;
506         svcpt->scp_at_checktime = cfs_time_current();
507         cfs_waitq_signal(&svcpt->scp_waitq);
508 }
509
510 static void
511 ptlrpc_server_nthreads_check(struct ptlrpc_service *svc,
512                              struct ptlrpc_service_conf *conf)
513 {
514 #ifdef __KERNEL__
515         struct ptlrpc_service_thr_conf  *tc = &conf->psc_thr;
516         unsigned                        init;
517         unsigned                        total;
518         unsigned                        nthrs;
519         int                             weight;
520
521         /*
522          * Common code for estimating & validating threads number.
523          * CPT affinity service could have percpt thread-pool instead
524          * of a global thread-pool, which means user might not always
525          * get the threads number they give it in conf::tc_nthrs_user
526          * even they did set. It's because we need to validate threads
527          * number for each CPT to guarantee each pool will have enough
528          * threads to keep the service healthy.
529          */
530         init = PTLRPC_NTHRS_INIT + (svc->srv_ops.so_hpreq_handler != NULL);
531         init = max_t(int, init, tc->tc_nthrs_init);
532
533         /* NB: please see comments in lustre_lnet.h for definition
534          * details of these members */
535         LASSERT(tc->tc_nthrs_max != 0);
536
537         if (tc->tc_nthrs_user != 0) {
538                 /* In case there is a reason to test a service with many
539                  * threads, we give a less strict check here, it can
540                  * be up to 8 * nthrs_max */
541                 total = min(tc->tc_nthrs_max * 8, tc->tc_nthrs_user);
542                 nthrs = total / svc->srv_ncpts;
543                 init  = max(init, nthrs);
544                 goto out;
545         }
546
547         total = tc->tc_nthrs_max;
548         if (tc->tc_nthrs_base == 0) {
549                 /* don't care about base threads number per partition,
550                  * this is most for non-affinity service */
551                 nthrs = total / svc->srv_ncpts;
552                 goto out;
553         }
554
555         nthrs = tc->tc_nthrs_base;
556         if (svc->srv_ncpts == 1) {
557                 int     i;
558
559                 /* NB: Increase the base number if it's single partition
560                  * and total number of cores/HTs is larger or equal to 4.
561                  * result will always < 2 * nthrs_base */
562                 weight = cfs_cpt_weight(svc->srv_cptable, CFS_CPT_ANY);
563                 for (i = 1; (weight >> (i + 1)) != 0 && /* >= 4 cores/HTs */
564                             (tc->tc_nthrs_base >> i) != 0; i++)
565                         nthrs += tc->tc_nthrs_base >> i;
566         }
567
568         if (tc->tc_thr_factor != 0) {
569                 int       factor = tc->tc_thr_factor;
570                 const int fade = 4;
571
572                 /*
573                  * User wants to increase number of threads with for
574                  * each CPU core/HT, most likely the factor is larger then
575                  * one thread/core because service threads are supposed to
576                  * be blocked by lock or wait for IO.
577                  */
578                 /*
579                  * Amdahl's law says that adding processors wouldn't give
580                  * a linear increasing of parallelism, so it's nonsense to
581                  * have too many threads no matter how many cores/HTs
582                  * there are.
583                  */
584                 if (cfs_cpu_ht_nsiblings(0) > 1) { /* weight is # of HTs */
585                         /* depress thread factor for hyper-thread */
586                         factor = factor - (factor >> 1) + (factor >> 3);
587                 }
588
589                 weight = cfs_cpt_weight(svc->srv_cptable, 0);
590                 LASSERT(weight > 0);
591
592                 for (; factor > 0 && weight > 0; factor--, weight -= fade)
593                         nthrs += min(weight, fade) * factor;
594         }
595
596         if (nthrs * svc->srv_ncpts > tc->tc_nthrs_max) {
597                 nthrs = max(tc->tc_nthrs_base,
598                             tc->tc_nthrs_max / svc->srv_ncpts);
599         }
600  out:
601         nthrs = max(nthrs, tc->tc_nthrs_init);
602         svc->srv_nthrs_cpt_limit = nthrs;
603         svc->srv_nthrs_cpt_init = init;
604
605         if (nthrs * svc->srv_ncpts > tc->tc_nthrs_max) {
606                 CDEBUG(D_OTHER, "%s: This service may have more threads (%d) "
607                        "than the given soft limit (%d)\n",
608                        svc->srv_name, nthrs * svc->srv_ncpts,
609                        tc->tc_nthrs_max);
610         }
611 #endif
612 }
613
614 /**
615  * Initialize percpt data for a service
616  */
617 static int
618 ptlrpc_service_part_init(struct ptlrpc_service *svc,
619                          struct ptlrpc_service_part *svcpt, int cpt)
620 {
621         struct ptlrpc_at_array  *array;
622         int                     size;
623         int                     index;
624         int                     rc;
625
626         svcpt->scp_cpt = cpt;
627         CFS_INIT_LIST_HEAD(&svcpt->scp_threads);
628
629         /* rqbd and incoming request queue */
630         spin_lock_init(&svcpt->scp_lock);
631         CFS_INIT_LIST_HEAD(&svcpt->scp_rqbd_idle);
632         CFS_INIT_LIST_HEAD(&svcpt->scp_rqbd_posted);
633         CFS_INIT_LIST_HEAD(&svcpt->scp_req_incoming);
634         cfs_waitq_init(&svcpt->scp_waitq);
635         /* history request & rqbd list */
636         CFS_INIT_LIST_HEAD(&svcpt->scp_hist_reqs);
637         CFS_INIT_LIST_HEAD(&svcpt->scp_hist_rqbds);
638
639         /* acitve requests and hp requests */
640         spin_lock_init(&svcpt->scp_req_lock);
641
642         /* reply states */
643         spin_lock_init(&svcpt->scp_rep_lock);
644         CFS_INIT_LIST_HEAD(&svcpt->scp_rep_active);
645 #ifndef __KERNEL__
646         CFS_INIT_LIST_HEAD(&svcpt->scp_rep_queue);
647 #endif
648         CFS_INIT_LIST_HEAD(&svcpt->scp_rep_idle);
649         cfs_waitq_init(&svcpt->scp_rep_waitq);
650         cfs_atomic_set(&svcpt->scp_nreps_difficult, 0);
651
652         /* adaptive timeout */
653         spin_lock_init(&svcpt->scp_at_lock);
654         array = &svcpt->scp_at_array;
655
656         size = at_est2timeout(at_max);
657         array->paa_size     = size;
658         array->paa_count    = 0;
659         array->paa_deadline = -1;
660
661         /* allocate memory for scp_at_array (ptlrpc_at_array) */
662         OBD_CPT_ALLOC(array->paa_reqs_array,
663                       svc->srv_cptable, cpt, sizeof(cfs_list_t) * size);
664         if (array->paa_reqs_array == NULL)
665                 return -ENOMEM;
666
667         for (index = 0; index < size; index++)
668                 CFS_INIT_LIST_HEAD(&array->paa_reqs_array[index]);
669
670         OBD_CPT_ALLOC(array->paa_reqs_count,
671                       svc->srv_cptable, cpt, sizeof(__u32) * size);
672         if (array->paa_reqs_count == NULL)
673                 goto failed;
674
675         cfs_timer_init(&svcpt->scp_at_timer, ptlrpc_at_timer, svcpt);
676         /* At SOW, service time should be quick; 10s seems generous. If client
677          * timeout is less than this, we'll be sending an early reply. */
678         at_init(&svcpt->scp_at_estimate, 10, 0);
679
680         /* assign this before call ptlrpc_grow_req_bufs */
681         svcpt->scp_service = svc;
682         /* Now allocate the request buffers, but don't post them now */
683         rc = ptlrpc_grow_req_bufs(svcpt, 0);
684         /* We shouldn't be under memory pressure at startup, so
685          * fail if we can't allocate all our buffers at this time. */
686         if (rc != 0)
687                 goto failed;
688
689         return 0;
690
691  failed:
692         if (array->paa_reqs_count != NULL) {
693                 OBD_FREE(array->paa_reqs_count, sizeof(__u32) * size);
694                 array->paa_reqs_count = NULL;
695         }
696
697         if (array->paa_reqs_array != NULL) {
698                 OBD_FREE(array->paa_reqs_array,
699                          sizeof(cfs_list_t) * array->paa_size);
700                 array->paa_reqs_array = NULL;
701         }
702
703         return -ENOMEM;
704 }
705
706 /**
707  * Initialize service on a given portal.
708  * This includes starting serving threads , allocating and posting rqbds and
709  * so on.
710  */
711 struct ptlrpc_service *
712 ptlrpc_register_service(struct ptlrpc_service_conf *conf,
713                         cfs_proc_dir_entry_t *proc_entry)
714 {
715         struct ptlrpc_service_cpt_conf  *cconf = &conf->psc_cpt;
716         struct ptlrpc_service           *service;
717         struct ptlrpc_service_part      *svcpt;
718         struct cfs_cpt_table            *cptable;
719         __u32                           *cpts = NULL;
720         int                             ncpts;
721         int                             cpt;
722         int                             rc;
723         int                             i;
724         ENTRY;
725
726         LASSERT(conf->psc_buf.bc_nbufs > 0);
727         LASSERT(conf->psc_buf.bc_buf_size >=
728                 conf->psc_buf.bc_req_max_size + SPTLRPC_MAX_PAYLOAD);
729         LASSERT(conf->psc_thr.tc_ctx_tags != 0);
730
731         cptable = cconf->cc_cptable;
732         if (cptable == NULL)
733                 cptable = cfs_cpt_table;
734
735         if (!conf->psc_thr.tc_cpu_affinity) {
736                 ncpts = 1;
737         } else {
738                 ncpts = cfs_cpt_number(cptable);
739                 if (cconf->cc_pattern != NULL) {
740                         struct cfs_expr_list    *el;
741
742                         rc = cfs_expr_list_parse(cconf->cc_pattern,
743                                                  strlen(cconf->cc_pattern),
744                                                  0, ncpts - 1, &el);
745                         if (rc != 0) {
746                                 CERROR("%s: invalid CPT pattern string: %s",
747                                        conf->psc_name, cconf->cc_pattern);
748                                 RETURN(ERR_PTR(-EINVAL));
749                         }
750
751                         rc = cfs_expr_list_values(el, ncpts, &cpts);
752                         cfs_expr_list_free(el);
753                         if (rc <= 0) {
754                                 CERROR("%s: failed to parse CPT array %s: %d\n",
755                                        conf->psc_name, cconf->cc_pattern, rc);
756                                 if (cpts != NULL)
757                                         OBD_FREE(cpts, sizeof(*cpts) * ncpts);
758                                 RETURN(ERR_PTR(rc < 0 ? rc : -EINVAL));
759                         }
760                         ncpts = rc;
761                 }
762         }
763
764         OBD_ALLOC(service, offsetof(struct ptlrpc_service, srv_parts[ncpts]));
765         if (service == NULL) {
766                 if (cpts != NULL)
767                         OBD_FREE(cpts, sizeof(*cpts) * ncpts);
768                 RETURN(ERR_PTR(-ENOMEM));
769         }
770
771         service->srv_cptable            = cptable;
772         service->srv_cpts               = cpts;
773         service->srv_ncpts              = ncpts;
774
775         service->srv_cpt_bits = 0; /* it's zero already, easy to read... */
776         while ((1 << service->srv_cpt_bits) < cfs_cpt_number(cptable))
777                 service->srv_cpt_bits++;
778
779         /* public members */
780         spin_lock_init(&service->srv_lock);
781         service->srv_name               = conf->psc_name;
782         service->srv_watchdog_factor    = conf->psc_watchdog_factor;
783         CFS_INIT_LIST_HEAD(&service->srv_list); /* for safty of cleanup */
784
785         /* buffer configuration */
786         service->srv_nbuf_per_group     = test_req_buffer_pressure ?
787                                           1 : conf->psc_buf.bc_nbufs;
788         service->srv_max_req_size       = conf->psc_buf.bc_req_max_size +
789                                           SPTLRPC_MAX_PAYLOAD;
790         service->srv_buf_size           = conf->psc_buf.bc_buf_size;
791         service->srv_rep_portal         = conf->psc_buf.bc_rep_portal;
792         service->srv_req_portal         = conf->psc_buf.bc_req_portal;
793
794         /* Increase max reply size to next power of two */
795         service->srv_max_reply_size = 1;
796         while (service->srv_max_reply_size <
797                conf->psc_buf.bc_rep_max_size + SPTLRPC_MAX_PAYLOAD)
798                 service->srv_max_reply_size <<= 1;
799
800         service->srv_thread_name        = conf->psc_thr.tc_thr_name;
801         service->srv_ctx_tags           = conf->psc_thr.tc_ctx_tags;
802         service->srv_hpreq_ratio        = PTLRPC_SVC_HP_RATIO;
803         service->srv_ops                = conf->psc_ops;
804
805         for (i = 0; i < ncpts; i++) {
806                 if (!conf->psc_thr.tc_cpu_affinity)
807                         cpt = CFS_CPT_ANY;
808                 else
809                         cpt = cpts != NULL ? cpts[i] : i;
810
811                 OBD_CPT_ALLOC(svcpt, cptable, cpt, sizeof(*svcpt));
812                 if (svcpt == NULL)
813                         GOTO(failed, rc = -ENOMEM);
814
815                 service->srv_parts[i] = svcpt;
816                 rc = ptlrpc_service_part_init(service, svcpt, cpt);
817                 if (rc != 0)
818                         GOTO(failed, rc);
819         }
820
821         ptlrpc_server_nthreads_check(service, conf);
822
823         rc = LNetSetLazyPortal(service->srv_req_portal);
824         LASSERT(rc == 0);
825
826         mutex_lock(&ptlrpc_all_services_mutex);
827         cfs_list_add (&service->srv_list, &ptlrpc_all_services);
828         mutex_unlock(&ptlrpc_all_services_mutex);
829
830         if (proc_entry != NULL)
831                 ptlrpc_lprocfs_register_service(proc_entry, service);
832
833         rc = ptlrpc_service_nrs_setup(service);
834         if (rc != 0)
835                 GOTO(failed, rc);
836
837         CDEBUG(D_NET, "%s: Started, listening on portal %d\n",
838                service->srv_name, service->srv_req_portal);
839
840 #ifdef __KERNEL__
841         rc = ptlrpc_start_threads(service);
842         if (rc != 0) {
843                 CERROR("Failed to start threads for service %s: %d\n",
844                        service->srv_name, rc);
845                 GOTO(failed, rc);
846         }
847 #endif
848
849         RETURN(service);
850 failed:
851         ptlrpc_unregister_service(service);
852         RETURN(ERR_PTR(rc));
853 }
854 EXPORT_SYMBOL(ptlrpc_register_service);
855
856 /**
857  * to actually free the request, must be called without holding svc_lock.
858  * note it's caller's responsibility to unlink req->rq_list.
859  */
860 static void ptlrpc_server_free_request(struct ptlrpc_request *req)
861 {
862         LASSERT(cfs_atomic_read(&req->rq_refcount) == 0);
863         LASSERT(cfs_list_empty(&req->rq_timed_list));
864
865          /* DEBUG_REQ() assumes the reply state of a request with a valid
866           * ref will not be destroyed until that reference is dropped. */
867         ptlrpc_req_drop_rs(req);
868
869         sptlrpc_svc_ctx_decref(req);
870
871         if (req != &req->rq_rqbd->rqbd_req) {
872                 /* NB request buffers use an embedded
873                  * req if the incoming req unlinked the
874                  * MD; this isn't one of them! */
875                 OBD_FREE(req, sizeof(*req));
876         }
877 }
878
879 /**
880  * drop a reference count of the request. if it reaches 0, we either
881  * put it into history list, or free it immediately.
882  */
883 void ptlrpc_server_drop_request(struct ptlrpc_request *req)
884 {
885         struct ptlrpc_request_buffer_desc *rqbd = req->rq_rqbd;
886         struct ptlrpc_service_part        *svcpt = rqbd->rqbd_svcpt;
887         struct ptlrpc_service             *svc = svcpt->scp_service;
888         int                                refcount;
889         cfs_list_t                        *tmp;
890         cfs_list_t                        *nxt;
891
892         if (!cfs_atomic_dec_and_test(&req->rq_refcount))
893                 return;
894
895         if (req->rq_at_linked) {
896                 spin_lock(&svcpt->scp_at_lock);
897                 /* recheck with lock, in case it's unlinked by
898                  * ptlrpc_at_check_timed() */
899                 if (likely(req->rq_at_linked))
900                         ptlrpc_at_remove_timed(req);
901                 spin_unlock(&svcpt->scp_at_lock);
902         }
903
904         LASSERT(cfs_list_empty(&req->rq_timed_list));
905
906         /* finalize request */
907         if (req->rq_export) {
908                 class_export_put(req->rq_export);
909                 req->rq_export = NULL;
910         }
911
912         spin_lock(&svcpt->scp_lock);
913
914         cfs_list_add(&req->rq_list, &rqbd->rqbd_reqs);
915
916         refcount = --(rqbd->rqbd_refcount);
917         if (refcount == 0) {
918                 /* request buffer is now idle: add to history */
919                 cfs_list_del(&rqbd->rqbd_list);
920
921                 cfs_list_add_tail(&rqbd->rqbd_list, &svcpt->scp_hist_rqbds);
922                 svcpt->scp_hist_nrqbds++;
923
924                 /* cull some history?
925                  * I expect only about 1 or 2 rqbds need to be recycled here */
926                 while (svcpt->scp_hist_nrqbds > svc->srv_hist_nrqbds_cpt_max) {
927                         rqbd = cfs_list_entry(svcpt->scp_hist_rqbds.next,
928                                               struct ptlrpc_request_buffer_desc,
929                                               rqbd_list);
930
931                         cfs_list_del(&rqbd->rqbd_list);
932                         svcpt->scp_hist_nrqbds--;
933
934                         /* remove rqbd's reqs from svc's req history while
935                          * I've got the service lock */
936                         cfs_list_for_each(tmp, &rqbd->rqbd_reqs) {
937                                 req = cfs_list_entry(tmp, struct ptlrpc_request,
938                                                      rq_list);
939                                 /* Track the highest culled req seq */
940                                 if (req->rq_history_seq >
941                                     svcpt->scp_hist_seq_culled) {
942                                         svcpt->scp_hist_seq_culled =
943                                                 req->rq_history_seq;
944                                 }
945                                 cfs_list_del(&req->rq_history_list);
946                         }
947
948                         spin_unlock(&svcpt->scp_lock);
949
950                         cfs_list_for_each_safe(tmp, nxt, &rqbd->rqbd_reqs) {
951                                 req = cfs_list_entry(rqbd->rqbd_reqs.next,
952                                                      struct ptlrpc_request,
953                                                      rq_list);
954                                 cfs_list_del(&req->rq_list);
955                                 ptlrpc_server_free_request(req);
956                         }
957
958                         spin_lock(&svcpt->scp_lock);
959                         /*
960                          * now all reqs including the embedded req has been
961                          * disposed, schedule request buffer for re-use.
962                          */
963                         LASSERT(cfs_atomic_read(&rqbd->rqbd_req.rq_refcount) ==
964                                 0);
965                         cfs_list_add_tail(&rqbd->rqbd_list,
966                                           &svcpt->scp_rqbd_idle);
967                 }
968
969                 spin_unlock(&svcpt->scp_lock);
970         } else if (req->rq_reply_state && req->rq_reply_state->rs_prealloc) {
971                 /* If we are low on memory, we are not interested in history */
972                 cfs_list_del(&req->rq_list);
973                 cfs_list_del_init(&req->rq_history_list);
974
975                 /* Track the highest culled req seq */
976                 if (req->rq_history_seq > svcpt->scp_hist_seq_culled)
977                         svcpt->scp_hist_seq_culled = req->rq_history_seq;
978
979                 spin_unlock(&svcpt->scp_lock);
980
981                 ptlrpc_server_free_request(req);
982         } else {
983                 spin_unlock(&svcpt->scp_lock);
984         }
985 }
986
987 /** Change request export and move hp request from old export to new */
988 void ptlrpc_request_change_export(struct ptlrpc_request *req,
989                                   struct obd_export *export)
990 {
991         if (req->rq_export != NULL) {
992                 if (!cfs_list_empty(&req->rq_exp_list)) {
993                         /* remove rq_exp_list from last export */
994                         spin_lock_bh(&req->rq_export->exp_rpc_lock);
995                         cfs_list_del_init(&req->rq_exp_list);
996                         spin_unlock_bh(&req->rq_export->exp_rpc_lock);
997
998                         /* export has one reference already, so it`s safe to
999                          * add req to export queue here and get another
1000                          * reference for request later */
1001                         spin_lock_bh(&export->exp_rpc_lock);
1002                         cfs_list_add(&req->rq_exp_list, &export->exp_hp_rpcs);
1003                         spin_unlock_bh(&export->exp_rpc_lock);
1004                 }
1005                 class_export_rpc_dec(req->rq_export);
1006                 class_export_put(req->rq_export);
1007         }
1008
1009         /* request takes one export refcount */
1010         req->rq_export = class_export_get(export);
1011         class_export_rpc_inc(export);
1012
1013         return;
1014 }
1015
1016 /**
1017  * to finish a request: stop sending more early replies, and release
1018  * the request.
1019  */
1020 static void ptlrpc_server_finish_request(struct ptlrpc_service_part *svcpt,
1021                                          struct ptlrpc_request *req)
1022 {
1023         ptlrpc_server_hpreq_fini(req);
1024
1025         ptlrpc_server_drop_request(req);
1026 }
1027
1028 /**
1029  * to finish a active request: stop sending more early replies, and release
1030  * the request. should be called after we finished handling the request.
1031  */
1032 static void ptlrpc_server_finish_active_request(
1033                                         struct ptlrpc_service_part *svcpt,
1034                                         struct ptlrpc_request *req)
1035 {
1036         spin_lock(&svcpt->scp_req_lock);
1037         ptlrpc_nrs_req_stop_nolock(req);
1038         svcpt->scp_nreqs_active--;
1039         if (req->rq_hp)
1040                 svcpt->scp_nhreqs_active--;
1041         spin_unlock(&svcpt->scp_req_lock);
1042
1043         ptlrpc_nrs_req_finalize(req);
1044
1045         if (req->rq_export != NULL)
1046                 class_export_rpc_dec(req->rq_export);
1047
1048         ptlrpc_server_finish_request(svcpt, req);
1049 }
1050
1051 /**
1052  * This function makes sure dead exports are evicted in a timely manner.
1053  * This function is only called when some export receives a message (i.e.,
1054  * the network is up.)
1055  */
1056 static void ptlrpc_update_export_timer(struct obd_export *exp, long extra_delay)
1057 {
1058         struct obd_export *oldest_exp;
1059         time_t oldest_time, new_time;
1060
1061         ENTRY;
1062
1063         LASSERT(exp);
1064
1065         /* Compensate for slow machines, etc, by faking our request time
1066            into the future.  Although this can break the strict time-ordering
1067            of the list, we can be really lazy here - we don't have to evict
1068            at the exact right moment.  Eventually, all silent exports
1069            will make it to the top of the list. */
1070
1071         /* Do not pay attention on 1sec or smaller renewals. */
1072         new_time = cfs_time_current_sec() + extra_delay;
1073         if (exp->exp_last_request_time + 1 /*second */ >= new_time)
1074                 RETURN_EXIT;
1075
1076         exp->exp_last_request_time = new_time;
1077         CDEBUG(D_HA, "updating export %s at "CFS_TIME_T" exp %p\n",
1078                exp->exp_client_uuid.uuid,
1079                exp->exp_last_request_time, exp);
1080
1081         /* exports may get disconnected from the chain even though the
1082            export has references, so we must keep the spin lock while
1083            manipulating the lists */
1084         spin_lock(&exp->exp_obd->obd_dev_lock);
1085
1086         if (cfs_list_empty(&exp->exp_obd_chain_timed)) {
1087                 /* this one is not timed */
1088                 spin_unlock(&exp->exp_obd->obd_dev_lock);
1089                 RETURN_EXIT;
1090         }
1091
1092         cfs_list_move_tail(&exp->exp_obd_chain_timed,
1093                            &exp->exp_obd->obd_exports_timed);
1094
1095         oldest_exp = cfs_list_entry(exp->exp_obd->obd_exports_timed.next,
1096                                     struct obd_export, exp_obd_chain_timed);
1097         oldest_time = oldest_exp->exp_last_request_time;
1098         spin_unlock(&exp->exp_obd->obd_dev_lock);
1099
1100         if (exp->exp_obd->obd_recovering) {
1101                 /* be nice to everyone during recovery */
1102                 EXIT;
1103                 return;
1104         }
1105
1106         /* Note - racing to start/reset the obd_eviction timer is safe */
1107         if (exp->exp_obd->obd_eviction_timer == 0) {
1108                 /* Check if the oldest entry is expired. */
1109                 if (cfs_time_current_sec() > (oldest_time + PING_EVICT_TIMEOUT +
1110                                               extra_delay)) {
1111                         /* We need a second timer, in case the net was down and
1112                          * it just came back. Since the pinger may skip every
1113                          * other PING_INTERVAL (see note in ptlrpc_pinger_main),
1114                          * we better wait for 3. */
1115                         exp->exp_obd->obd_eviction_timer =
1116                                 cfs_time_current_sec() + 3 * PING_INTERVAL;
1117                         CDEBUG(D_HA, "%s: Think about evicting %s from "CFS_TIME_T"\n",
1118                                exp->exp_obd->obd_name, 
1119                                obd_export_nid2str(oldest_exp), oldest_time);
1120                 }
1121         } else {
1122                 if (cfs_time_current_sec() >
1123                     (exp->exp_obd->obd_eviction_timer + extra_delay)) {
1124                         /* The evictor won't evict anyone who we've heard from
1125                          * recently, so we don't have to check before we start
1126                          * it. */
1127                         if (!ping_evictor_wake(exp))
1128                                 exp->exp_obd->obd_eviction_timer = 0;
1129                 }
1130         }
1131
1132         EXIT;
1133 }
1134
1135 /**
1136  * Sanity check request \a req.
1137  * Return 0 if all is ok, error code otherwise.
1138  */
1139 static int ptlrpc_check_req(struct ptlrpc_request *req)
1140 {
1141         int rc = 0;
1142
1143         if (unlikely(lustre_msg_get_conn_cnt(req->rq_reqmsg) <
1144                      req->rq_export->exp_conn_cnt)) {
1145                 DEBUG_REQ(D_RPCTRACE, req,
1146                           "DROPPING req from old connection %d < %d",
1147                           lustre_msg_get_conn_cnt(req->rq_reqmsg),
1148                           req->rq_export->exp_conn_cnt);
1149                 return -EEXIST;
1150         }
1151         if (unlikely(req->rq_export->exp_obd &&
1152                      req->rq_export->exp_obd->obd_fail)) {
1153              /* Failing over, don't handle any more reqs, send
1154                 error response instead. */
1155                 CDEBUG(D_RPCTRACE, "Dropping req %p for failed obd %s\n",
1156                        req, req->rq_export->exp_obd->obd_name);
1157                 rc = -ENODEV;
1158         } else if (lustre_msg_get_flags(req->rq_reqmsg) &
1159                    (MSG_REPLAY | MSG_REQ_REPLAY_DONE) &&
1160                    !(req->rq_export->exp_obd->obd_recovering)) {
1161                         DEBUG_REQ(D_ERROR, req,
1162                                   "Invalid replay without recovery");
1163                         class_fail_export(req->rq_export);
1164                         rc = -ENODEV;
1165         } else if (lustre_msg_get_transno(req->rq_reqmsg) != 0 &&
1166                    !(req->rq_export->exp_obd->obd_recovering)) {
1167                         DEBUG_REQ(D_ERROR, req, "Invalid req with transno "
1168                                   LPU64" without recovery",
1169                                   lustre_msg_get_transno(req->rq_reqmsg));
1170                         class_fail_export(req->rq_export);
1171                         rc = -ENODEV;
1172         }
1173
1174         if (unlikely(rc < 0)) {
1175                 req->rq_status = rc;
1176                 ptlrpc_error(req);
1177         }
1178         return rc;
1179 }
1180
1181 static void ptlrpc_at_set_timer(struct ptlrpc_service_part *svcpt)
1182 {
1183         struct ptlrpc_at_array *array = &svcpt->scp_at_array;
1184         __s32 next;
1185
1186         if (array->paa_count == 0) {
1187                 cfs_timer_disarm(&svcpt->scp_at_timer);
1188                 return;
1189         }
1190
1191         /* Set timer for closest deadline */
1192         next = (__s32)(array->paa_deadline - cfs_time_current_sec() -
1193                        at_early_margin);
1194         if (next <= 0) {
1195                 ptlrpc_at_timer((unsigned long)svcpt);
1196         } else {
1197                 cfs_timer_arm(&svcpt->scp_at_timer, cfs_time_shift(next));
1198                 CDEBUG(D_INFO, "armed %s at %+ds\n",
1199                        svcpt->scp_service->srv_name, next);
1200         }
1201 }
1202
1203 /* Add rpc to early reply check list */
1204 static int ptlrpc_at_add_timed(struct ptlrpc_request *req)
1205 {
1206         struct ptlrpc_service_part *svcpt = req->rq_rqbd->rqbd_svcpt;
1207         struct ptlrpc_at_array *array = &svcpt->scp_at_array;
1208         struct ptlrpc_request *rq = NULL;
1209         __u32 index;
1210
1211         if (AT_OFF)
1212                 return(0);
1213
1214         if (req->rq_no_reply)
1215                 return 0;
1216
1217         if ((lustre_msghdr_get_flags(req->rq_reqmsg) & MSGHDR_AT_SUPPORT) == 0)
1218                 return(-ENOSYS);
1219
1220         spin_lock(&svcpt->scp_at_lock);
1221         LASSERT(cfs_list_empty(&req->rq_timed_list));
1222
1223         index = (unsigned long)req->rq_deadline % array->paa_size;
1224         if (array->paa_reqs_count[index] > 0) {
1225                 /* latest rpcs will have the latest deadlines in the list,
1226                  * so search backward. */
1227                 cfs_list_for_each_entry_reverse(rq,
1228                                                 &array->paa_reqs_array[index],
1229                                                 rq_timed_list) {
1230                         if (req->rq_deadline >= rq->rq_deadline) {
1231                                 cfs_list_add(&req->rq_timed_list,
1232                                              &rq->rq_timed_list);
1233                                 break;
1234                         }
1235                 }
1236         }
1237
1238         /* Add the request at the head of the list */
1239         if (cfs_list_empty(&req->rq_timed_list))
1240                 cfs_list_add(&req->rq_timed_list,
1241                              &array->paa_reqs_array[index]);
1242
1243         spin_lock(&req->rq_lock);
1244         req->rq_at_linked = 1;
1245         spin_unlock(&req->rq_lock);
1246         req->rq_at_index = index;
1247         array->paa_reqs_count[index]++;
1248         array->paa_count++;
1249         if (array->paa_count == 1 || array->paa_deadline > req->rq_deadline) {
1250                 array->paa_deadline = req->rq_deadline;
1251                 ptlrpc_at_set_timer(svcpt);
1252         }
1253         spin_unlock(&svcpt->scp_at_lock);
1254
1255         return 0;
1256 }
1257
1258 static void
1259 ptlrpc_at_remove_timed(struct ptlrpc_request *req)
1260 {
1261         struct ptlrpc_at_array *array;
1262
1263         array = &req->rq_rqbd->rqbd_svcpt->scp_at_array;
1264
1265         /* NB: must call with hold svcpt::scp_at_lock */
1266         LASSERT(!cfs_list_empty(&req->rq_timed_list));
1267         cfs_list_del_init(&req->rq_timed_list);
1268
1269         spin_lock(&req->rq_lock);
1270         req->rq_at_linked = 0;
1271         spin_unlock(&req->rq_lock);
1272
1273         array->paa_reqs_count[req->rq_at_index]--;
1274         array->paa_count--;
1275 }
1276
1277 static int ptlrpc_at_send_early_reply(struct ptlrpc_request *req)
1278 {
1279         struct ptlrpc_service_part *svcpt = req->rq_rqbd->rqbd_svcpt;
1280         struct ptlrpc_request *reqcopy;
1281         struct lustre_msg *reqmsg;
1282         cfs_duration_t olddl = req->rq_deadline - cfs_time_current_sec();
1283         time_t newdl;
1284         int rc;
1285         ENTRY;
1286
1287         /* deadline is when the client expects us to reply, margin is the
1288            difference between clients' and servers' expectations */
1289         DEBUG_REQ(D_ADAPTTO, req,
1290                   "%ssending early reply (deadline %+lds, margin %+lds) for "
1291                   "%d+%d", AT_OFF ? "AT off - not " : "",
1292                   olddl, olddl - at_get(&svcpt->scp_at_estimate),
1293                   at_get(&svcpt->scp_at_estimate), at_extra);
1294
1295         if (AT_OFF)
1296                 RETURN(0);
1297
1298         if (olddl < 0) {
1299                 DEBUG_REQ(D_WARNING, req, "Already past deadline (%+lds), "
1300                           "not sending early reply. Consider increasing "
1301                           "at_early_margin (%d)?", olddl, at_early_margin);
1302
1303                 /* Return an error so we're not re-added to the timed list. */
1304                 RETURN(-ETIMEDOUT);
1305         }
1306
1307         if ((lustre_msghdr_get_flags(req->rq_reqmsg) & MSGHDR_AT_SUPPORT) == 0){
1308                 DEBUG_REQ(D_INFO, req, "Wanted to ask client for more time, "
1309                           "but no AT support");
1310                 RETURN(-ENOSYS);
1311         }
1312
1313         if (req->rq_export &&
1314             lustre_msg_get_flags(req->rq_reqmsg) &
1315             (MSG_REPLAY | MSG_REQ_REPLAY_DONE | MSG_LOCK_REPLAY_DONE)) {
1316                 /* During recovery, we don't want to send too many early
1317                  * replies, but on the other hand we want to make sure the
1318                  * client has enough time to resend if the rpc is lost. So
1319                  * during the recovery period send at least 4 early replies,
1320                  * spacing them every at_extra if we can. at_estimate should
1321                  * always equal this fixed value during recovery. */
1322                 at_measured(&svcpt->scp_at_estimate, min(at_extra,
1323                             req->rq_export->exp_obd->obd_recovery_timeout / 4));
1324         } else {
1325                 /* Fake our processing time into the future to ask the clients
1326                  * for some extra amount of time */
1327                 at_measured(&svcpt->scp_at_estimate, at_extra +
1328                             cfs_time_current_sec() -
1329                             req->rq_arrival_time.tv_sec);
1330
1331                 /* Check to see if we've actually increased the deadline -
1332                  * we may be past adaptive_max */
1333                 if (req->rq_deadline >= req->rq_arrival_time.tv_sec +
1334                     at_get(&svcpt->scp_at_estimate)) {
1335                         DEBUG_REQ(D_WARNING, req, "Couldn't add any time "
1336                                   "(%ld/%ld), not sending early reply\n",
1337                                   olddl, req->rq_arrival_time.tv_sec +
1338                                   at_get(&svcpt->scp_at_estimate) -
1339                                   cfs_time_current_sec());
1340                         RETURN(-ETIMEDOUT);
1341                 }
1342         }
1343         newdl = cfs_time_current_sec() + at_get(&svcpt->scp_at_estimate);
1344
1345         OBD_ALLOC(reqcopy, sizeof *reqcopy);
1346         if (reqcopy == NULL)
1347                 RETURN(-ENOMEM);
1348         OBD_ALLOC_LARGE(reqmsg, req->rq_reqlen);
1349         if (!reqmsg) {
1350                 OBD_FREE(reqcopy, sizeof *reqcopy);
1351                 RETURN(-ENOMEM);
1352         }
1353
1354         *reqcopy = *req;
1355         reqcopy->rq_reply_state = NULL;
1356         reqcopy->rq_rep_swab_mask = 0;
1357         reqcopy->rq_pack_bulk = 0;
1358         reqcopy->rq_pack_udesc = 0;
1359         reqcopy->rq_packed_final = 0;
1360         sptlrpc_svc_ctx_addref(reqcopy);
1361         /* We only need the reqmsg for the magic */
1362         reqcopy->rq_reqmsg = reqmsg;
1363         memcpy(reqmsg, req->rq_reqmsg, req->rq_reqlen);
1364
1365         LASSERT(cfs_atomic_read(&req->rq_refcount));
1366         /** if it is last refcount then early reply isn't needed */
1367         if (cfs_atomic_read(&req->rq_refcount) == 1) {
1368                 DEBUG_REQ(D_ADAPTTO, reqcopy, "Normal reply already sent out, "
1369                           "abort sending early reply\n");
1370                 GOTO(out, rc = -EINVAL);
1371         }
1372
1373         /* Connection ref */
1374         reqcopy->rq_export = class_conn2export(
1375                                      lustre_msg_get_handle(reqcopy->rq_reqmsg));
1376         if (reqcopy->rq_export == NULL)
1377                 GOTO(out, rc = -ENODEV);
1378
1379         /* RPC ref */
1380         class_export_rpc_inc(reqcopy->rq_export);
1381         if (reqcopy->rq_export->exp_obd &&
1382             reqcopy->rq_export->exp_obd->obd_fail)
1383                 GOTO(out_put, rc = -ENODEV);
1384
1385         rc = lustre_pack_reply_flags(reqcopy, 1, NULL, NULL, LPRFL_EARLY_REPLY);
1386         if (rc)
1387                 GOTO(out_put, rc);
1388
1389         rc = ptlrpc_send_reply(reqcopy, PTLRPC_REPLY_EARLY);
1390
1391         if (!rc) {
1392                 /* Adjust our own deadline to what we told the client */
1393                 req->rq_deadline = newdl;
1394                 req->rq_early_count++; /* number sent, server side */
1395         } else {
1396                 DEBUG_REQ(D_ERROR, req, "Early reply send failed %d", rc);
1397         }
1398
1399         /* Free the (early) reply state from lustre_pack_reply.
1400            (ptlrpc_send_reply takes it's own rs ref, so this is safe here) */
1401         ptlrpc_req_drop_rs(reqcopy);
1402
1403 out_put:
1404         class_export_rpc_dec(reqcopy->rq_export);
1405         class_export_put(reqcopy->rq_export);
1406 out:
1407         sptlrpc_svc_ctx_decref(reqcopy);
1408         OBD_FREE_LARGE(reqmsg, req->rq_reqlen);
1409         OBD_FREE(reqcopy, sizeof *reqcopy);
1410         RETURN(rc);
1411 }
1412
1413 /* Send early replies to everybody expiring within at_early_margin
1414    asking for at_extra time */
1415 static int ptlrpc_at_check_timed(struct ptlrpc_service_part *svcpt)
1416 {
1417         struct ptlrpc_at_array *array = &svcpt->scp_at_array;
1418         struct ptlrpc_request *rq, *n;
1419         cfs_list_t work_list;
1420         __u32  index, count;
1421         time_t deadline;
1422         time_t now = cfs_time_current_sec();
1423         cfs_duration_t delay;
1424         int first, counter = 0;
1425         ENTRY;
1426
1427         spin_lock(&svcpt->scp_at_lock);
1428         if (svcpt->scp_at_check == 0) {
1429                 spin_unlock(&svcpt->scp_at_lock);
1430                 RETURN(0);
1431         }
1432         delay = cfs_time_sub(cfs_time_current(), svcpt->scp_at_checktime);
1433         svcpt->scp_at_check = 0;
1434
1435         if (array->paa_count == 0) {
1436                 spin_unlock(&svcpt->scp_at_lock);
1437                 RETURN(0);
1438         }
1439
1440         /* The timer went off, but maybe the nearest rpc already completed. */
1441         first = array->paa_deadline - now;
1442         if (first > at_early_margin) {
1443                 /* We've still got plenty of time.  Reset the timer. */
1444                 ptlrpc_at_set_timer(svcpt);
1445                 spin_unlock(&svcpt->scp_at_lock);
1446                 RETURN(0);
1447         }
1448
1449         /* We're close to a timeout, and we don't know how much longer the
1450            server will take. Send early replies to everyone expiring soon. */
1451         CFS_INIT_LIST_HEAD(&work_list);
1452         deadline = -1;
1453         index = (unsigned long)array->paa_deadline % array->paa_size;
1454         count = array->paa_count;
1455         while (count > 0) {
1456                 count -= array->paa_reqs_count[index];
1457                 cfs_list_for_each_entry_safe(rq, n,
1458                                              &array->paa_reqs_array[index],
1459                                              rq_timed_list) {
1460                         if (rq->rq_deadline > now + at_early_margin) {
1461                                 /* update the earliest deadline */
1462                                 if (deadline == -1 ||
1463                                     rq->rq_deadline < deadline)
1464                                         deadline = rq->rq_deadline;
1465                                 break;
1466                         }
1467
1468                         ptlrpc_at_remove_timed(rq);
1469                         /**
1470                          * ptlrpc_server_drop_request() may drop
1471                          * refcount to 0 already. Let's check this and
1472                          * don't add entry to work_list
1473                          */
1474                         if (likely(cfs_atomic_inc_not_zero(&rq->rq_refcount)))
1475                                 cfs_list_add(&rq->rq_timed_list, &work_list);
1476                         counter++;
1477                 }
1478
1479                 if (++index >= array->paa_size)
1480                         index = 0;
1481         }
1482         array->paa_deadline = deadline;
1483         /* we have a new earliest deadline, restart the timer */
1484         ptlrpc_at_set_timer(svcpt);
1485
1486         spin_unlock(&svcpt->scp_at_lock);
1487
1488         CDEBUG(D_ADAPTTO, "timeout in %+ds, asking for %d secs on %d early "
1489                "replies\n", first, at_extra, counter);
1490         if (first < 0) {
1491                 /* We're already past request deadlines before we even get a
1492                    chance to send early replies */
1493                 LCONSOLE_WARN("%s: This server is not able to keep up with "
1494                               "request traffic (cpu-bound).\n",
1495                               svcpt->scp_service->srv_name);
1496                 CWARN("earlyQ=%d reqQ=%d recA=%d, svcEst=%d, "
1497                       "delay="CFS_DURATION_T"(jiff)\n",
1498                       counter, svcpt->scp_nreqs_incoming,
1499                       svcpt->scp_nreqs_active,
1500                       at_get(&svcpt->scp_at_estimate), delay);
1501         }
1502
1503         /* we took additional refcount so entries can't be deleted from list, no
1504          * locking is needed */
1505         while (!cfs_list_empty(&work_list)) {
1506                 rq = cfs_list_entry(work_list.next, struct ptlrpc_request,
1507                                     rq_timed_list);
1508                 cfs_list_del_init(&rq->rq_timed_list);
1509
1510                 if (ptlrpc_at_send_early_reply(rq) == 0)
1511                         ptlrpc_at_add_timed(rq);
1512
1513                 ptlrpc_server_drop_request(rq);
1514         }
1515
1516         RETURN(1); /* return "did_something" for liblustre */
1517 }
1518
1519 /**
1520  * Put the request to the export list if the request may become
1521  * a high priority one.
1522  */
1523 static int ptlrpc_server_hpreq_init(struct ptlrpc_service_part *svcpt,
1524                                     struct ptlrpc_request *req)
1525 {
1526         int rc = 0;
1527         ENTRY;
1528
1529         if (svcpt->scp_service->srv_ops.so_hpreq_handler) {
1530                 rc = svcpt->scp_service->srv_ops.so_hpreq_handler(req);
1531                 if (rc < 0)
1532                         RETURN(rc);
1533                 LASSERT(rc == 0);
1534         }
1535         if (req->rq_export && req->rq_ops) {
1536                 /* Perform request specific check. We should do this check
1537                  * before the request is added into exp_hp_rpcs list otherwise
1538                  * it may hit swab race at LU-1044. */
1539                 if (req->rq_ops->hpreq_check) {
1540                         rc = req->rq_ops->hpreq_check(req);
1541                         /**
1542                          * XXX: Out of all current
1543                          * ptlrpc_hpreq_ops::hpreq_check(), only
1544                          * ldlm_cancel_hpreq_check() can return an error code;
1545                          * other functions assert in similar places, which seems
1546                          * odd. What also does not seem right is that handlers
1547                          * for those RPCs do not assert on the same checks, but
1548                          * rather handle the error cases. e.g. see
1549                          * ost_rw_hpreq_check(), and ost_brw_read(),
1550                          * ost_brw_write().
1551                          */
1552                         if (rc < 0)
1553                                 RETURN(rc);
1554                         LASSERT(rc == 0 || rc == 1);
1555                 }
1556
1557                 spin_lock_bh(&req->rq_export->exp_rpc_lock);
1558                 cfs_list_add(&req->rq_exp_list,
1559                              &req->rq_export->exp_hp_rpcs);
1560                 spin_unlock_bh(&req->rq_export->exp_rpc_lock);
1561         }
1562
1563         ptlrpc_nrs_req_initialize(svcpt, req, rc);
1564
1565         RETURN(rc);
1566 }
1567
1568 /** Remove the request from the export list. */
1569 static void ptlrpc_server_hpreq_fini(struct ptlrpc_request *req)
1570 {
1571         ENTRY;
1572         if (req->rq_export && req->rq_ops) {
1573                 /* refresh lock timeout again so that client has more
1574                  * room to send lock cancel RPC. */
1575                 if (req->rq_ops->hpreq_fini)
1576                         req->rq_ops->hpreq_fini(req);
1577
1578                 spin_lock_bh(&req->rq_export->exp_rpc_lock);
1579                 cfs_list_del_init(&req->rq_exp_list);
1580                 spin_unlock_bh(&req->rq_export->exp_rpc_lock);
1581         }
1582         EXIT;
1583 }
1584
1585 static int ptlrpc_hpreq_check(struct ptlrpc_request *req)
1586 {
1587         return 1;
1588 }
1589
1590 static struct ptlrpc_hpreq_ops ptlrpc_hpreq_common = {
1591         .hpreq_check       = ptlrpc_hpreq_check,
1592 };
1593
1594 /* Hi-Priority RPC check by RPC operation code. */
1595 int ptlrpc_hpreq_handler(struct ptlrpc_request *req)
1596 {
1597         int opc = lustre_msg_get_opc(req->rq_reqmsg);
1598
1599         /* Check for export to let only reconnects for not yet evicted
1600          * export to become a HP rpc. */
1601         if ((req->rq_export != NULL) &&
1602             (opc == OBD_PING || opc == MDS_CONNECT || opc == OST_CONNECT))
1603                 req->rq_ops = &ptlrpc_hpreq_common;
1604
1605         return 0;
1606 }
1607 EXPORT_SYMBOL(ptlrpc_hpreq_handler);
1608
1609 static int ptlrpc_server_request_add(struct ptlrpc_service_part *svcpt,
1610                                      struct ptlrpc_request *req)
1611 {
1612         int     rc;
1613         ENTRY;
1614
1615         rc = ptlrpc_server_hpreq_init(svcpt, req);
1616         if (rc < 0)
1617                 RETURN(rc);
1618
1619         ptlrpc_nrs_req_add(svcpt, req, !!rc);
1620
1621         RETURN(0);
1622 }
1623
1624 /**
1625  * Allow to handle high priority request
1626  * User can call it w/o any lock but need to hold
1627  * ptlrpc_service_part::scp_req_lock to get reliable result
1628  */
1629 static bool ptlrpc_server_allow_high(struct ptlrpc_service_part *svcpt,
1630                                      bool force)
1631 {
1632         int running = svcpt->scp_nthrs_running;
1633
1634         if (!nrs_svcpt_has_hp(svcpt))
1635                 return false;
1636
1637         if (force)
1638                 return true;
1639
1640         if (unlikely(svcpt->scp_service->srv_req_portal == MDS_REQUEST_PORTAL &&
1641                      CFS_FAIL_PRECHECK(OBD_FAIL_PTLRPC_CANCEL_RESEND))) {
1642                 /* leave just 1 thread for normal RPCs */
1643                 running = PTLRPC_NTHRS_INIT;
1644                 if (svcpt->scp_service->srv_ops.so_hpreq_handler != NULL)
1645                         running += 1;
1646         }
1647
1648         if (svcpt->scp_nreqs_active >= running - 1)
1649                 return false;
1650
1651         if (svcpt->scp_nhreqs_active == 0)
1652                 return true;
1653
1654         return !ptlrpc_nrs_req_pending_nolock(svcpt, false) ||
1655                svcpt->scp_hreq_count < svcpt->scp_service->srv_hpreq_ratio;
1656 }
1657
1658 static bool ptlrpc_server_high_pending(struct ptlrpc_service_part *svcpt,
1659                                        bool force)
1660 {
1661         return ptlrpc_server_allow_high(svcpt, force) &&
1662                ptlrpc_nrs_req_pending_nolock(svcpt, true);
1663 }
1664
1665 /**
1666  * Only allow normal priority requests on a service that has a high-priority
1667  * queue if forced (i.e. cleanup), if there are other high priority requests
1668  * already being processed (i.e. those threads can service more high-priority
1669  * requests), or if there are enough idle threads that a later thread can do
1670  * a high priority request.
1671  * User can call it w/o any lock but need to hold
1672  * ptlrpc_service_part::scp_req_lock to get reliable result
1673  */
1674 static bool ptlrpc_server_allow_normal(struct ptlrpc_service_part *svcpt,
1675                                        bool force)
1676 {
1677         int running = svcpt->scp_nthrs_running;
1678 #ifndef __KERNEL__
1679         if (1) /* always allow to handle normal request for liblustre */
1680                 return true;
1681 #endif
1682         if (unlikely(svcpt->scp_service->srv_req_portal == MDS_REQUEST_PORTAL &&
1683                      CFS_FAIL_PRECHECK(OBD_FAIL_PTLRPC_CANCEL_RESEND))) {
1684                 /* leave just 1 thread for normal RPCs */
1685                 running = PTLRPC_NTHRS_INIT;
1686                 if (svcpt->scp_service->srv_ops.so_hpreq_handler != NULL)
1687                         running += 1;
1688         }
1689
1690         if (force ||
1691             svcpt->scp_nreqs_active < running - 2)
1692                 return true;
1693
1694         if (svcpt->scp_nreqs_active >= running - 1)
1695                 return false;
1696
1697         return svcpt->scp_nhreqs_active > 0 || !nrs_svcpt_has_hp(svcpt);
1698 }
1699
1700 static bool ptlrpc_server_normal_pending(struct ptlrpc_service_part *svcpt,
1701                                          bool force)
1702 {
1703         return ptlrpc_server_allow_normal(svcpt, force) &&
1704                ptlrpc_nrs_req_pending_nolock(svcpt, false);
1705 }
1706
1707 /**
1708  * Returns true if there are requests available in incoming
1709  * request queue for processing and it is allowed to fetch them.
1710  * User can call it w/o any lock but need to hold ptlrpc_service::scp_req_lock
1711  * to get reliable result
1712  * \see ptlrpc_server_allow_normal
1713  * \see ptlrpc_server_allow high
1714  */
1715 static inline bool
1716 ptlrpc_server_request_pending(struct ptlrpc_service_part *svcpt, bool force)
1717 {
1718         return ptlrpc_server_high_pending(svcpt, force) ||
1719                ptlrpc_server_normal_pending(svcpt, force);
1720 }
1721
1722 /**
1723  * Fetch a request for processing from queue of unprocessed requests.
1724  * Favors high-priority requests.
1725  * Returns a pointer to fetched request.
1726  */
1727 static struct ptlrpc_request *
1728 ptlrpc_server_request_get(struct ptlrpc_service_part *svcpt, bool force)
1729 {
1730         struct ptlrpc_request *req = NULL;
1731         ENTRY;
1732
1733         spin_lock(&svcpt->scp_req_lock);
1734 #ifndef __KERNEL__
1735         /* !@%$# liblustre only has 1 thread */
1736         if (cfs_atomic_read(&svcpt->scp_nreps_difficult) != 0) {
1737                 spin_unlock(&svcpt->scp_req_lock);
1738                 RETURN(NULL);
1739         }
1740 #endif
1741
1742         if (ptlrpc_server_high_pending(svcpt, force)) {
1743                 req = ptlrpc_nrs_req_get_nolock(svcpt, true, force);
1744                 if (req != NULL) {
1745                         svcpt->scp_hreq_count++;
1746                         goto got_request;
1747                 }
1748         }
1749
1750         if (ptlrpc_server_normal_pending(svcpt, force)) {
1751                 req = ptlrpc_nrs_req_get_nolock(svcpt, false, force);
1752                 if (req != NULL) {
1753                         svcpt->scp_hreq_count = 0;
1754                         goto got_request;
1755                 }
1756         }
1757
1758         spin_unlock(&svcpt->scp_req_lock);
1759         RETURN(NULL);
1760
1761 got_request:
1762         svcpt->scp_nreqs_active++;
1763         if (req->rq_hp)
1764                 svcpt->scp_nhreqs_active++;
1765
1766         spin_unlock(&svcpt->scp_req_lock);
1767
1768         if (likely(req->rq_export))
1769                 class_export_rpc_inc(req->rq_export);
1770
1771         RETURN(req);
1772 }
1773
1774 /**
1775  * Handle freshly incoming reqs, add to timed early reply list,
1776  * pass on to regular request queue.
1777  * All incoming requests pass through here before getting into
1778  * ptlrpc_server_handle_req later on.
1779  */
1780 static int
1781 ptlrpc_server_handle_req_in(struct ptlrpc_service_part *svcpt)
1782 {
1783         struct ptlrpc_service   *svc = svcpt->scp_service;
1784         struct ptlrpc_request   *req;
1785         __u32                   deadline;
1786         int                     rc;
1787         ENTRY;
1788
1789         spin_lock(&svcpt->scp_lock);
1790         if (cfs_list_empty(&svcpt->scp_req_incoming)) {
1791                 spin_unlock(&svcpt->scp_lock);
1792                 RETURN(0);
1793         }
1794
1795         req = cfs_list_entry(svcpt->scp_req_incoming.next,
1796                              struct ptlrpc_request, rq_list);
1797         cfs_list_del_init(&req->rq_list);
1798         svcpt->scp_nreqs_incoming--;
1799         /* Consider this still a "queued" request as far as stats are
1800          * concerned */
1801         spin_unlock(&svcpt->scp_lock);
1802
1803         /* go through security check/transform */
1804         rc = sptlrpc_svc_unwrap_request(req);
1805         switch (rc) {
1806         case SECSVC_OK:
1807                 break;
1808         case SECSVC_COMPLETE:
1809                 target_send_reply(req, 0, OBD_FAIL_MDS_ALL_REPLY_NET);
1810                 goto err_req;
1811         case SECSVC_DROP:
1812                 goto err_req;
1813         default:
1814                 LBUG();
1815         }
1816
1817         /*
1818          * for null-flavored rpc, msg has been unpacked by sptlrpc, although
1819          * redo it wouldn't be harmful.
1820          */
1821         if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
1822                 rc = ptlrpc_unpack_req_msg(req, req->rq_reqlen);
1823                 if (rc != 0) {
1824                         CERROR("error unpacking request: ptl %d from %s "
1825                                "x"LPU64"\n", svc->srv_req_portal,
1826                                libcfs_id2str(req->rq_peer), req->rq_xid);
1827                         goto err_req;
1828                 }
1829         }
1830
1831         rc = lustre_unpack_req_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
1832         if (rc) {
1833                 CERROR ("error unpacking ptlrpc body: ptl %d from %s x"
1834                         LPU64"\n", svc->srv_req_portal,
1835                         libcfs_id2str(req->rq_peer), req->rq_xid);
1836                 goto err_req;
1837         }
1838
1839         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_DROP_REQ_OPC) &&
1840             lustre_msg_get_opc(req->rq_reqmsg) == cfs_fail_val) {
1841                 CERROR("drop incoming rpc opc %u, x"LPU64"\n",
1842                        cfs_fail_val, req->rq_xid);
1843                 goto err_req;
1844         }
1845
1846         rc = -EINVAL;
1847         if (lustre_msg_get_type(req->rq_reqmsg) != PTL_RPC_MSG_REQUEST) {
1848                 CERROR("wrong packet type received (type=%u) from %s\n",
1849                        lustre_msg_get_type(req->rq_reqmsg),
1850                        libcfs_id2str(req->rq_peer));
1851                 goto err_req;
1852         }
1853
1854         switch(lustre_msg_get_opc(req->rq_reqmsg)) {
1855         case MDS_WRITEPAGE:
1856         case OST_WRITE:
1857                 req->rq_bulk_write = 1;
1858                 break;
1859         case MDS_READPAGE:
1860         case OST_READ:
1861         case MGS_CONFIG_READ:
1862                 req->rq_bulk_read = 1;
1863                 break;
1864         }
1865
1866         CDEBUG(D_RPCTRACE, "got req x"LPU64"\n", req->rq_xid);
1867
1868         req->rq_export = class_conn2export(
1869                 lustre_msg_get_handle(req->rq_reqmsg));
1870         if (req->rq_export) {
1871                 rc = ptlrpc_check_req(req);
1872                 if (rc == 0) {
1873                         rc = sptlrpc_target_export_check(req->rq_export, req);
1874                         if (rc)
1875                                 DEBUG_REQ(D_ERROR, req, "DROPPING req with "
1876                                           "illegal security flavor,");
1877                 }
1878
1879                 if (rc)
1880                         goto err_req;
1881                 ptlrpc_update_export_timer(req->rq_export, 0);
1882         }
1883
1884         /* req_in handling should/must be fast */
1885         if (cfs_time_current_sec() - req->rq_arrival_time.tv_sec > 5)
1886                 DEBUG_REQ(D_WARNING, req, "Slow req_in handling "CFS_DURATION_T"s",
1887                           cfs_time_sub(cfs_time_current_sec(),
1888                                        req->rq_arrival_time.tv_sec));
1889
1890         /* Set rpc server deadline and add it to the timed list */
1891         deadline = (lustre_msghdr_get_flags(req->rq_reqmsg) &
1892                     MSGHDR_AT_SUPPORT) ?
1893                    /* The max time the client expects us to take */
1894                    lustre_msg_get_timeout(req->rq_reqmsg) : obd_timeout;
1895         req->rq_deadline = req->rq_arrival_time.tv_sec + deadline;
1896         if (unlikely(deadline == 0)) {
1897                 DEBUG_REQ(D_ERROR, req, "Dropping request with 0 timeout");
1898                 goto err_req;
1899         }
1900
1901         ptlrpc_at_add_timed(req);
1902
1903         /* Move it over to the request processing queue */
1904         rc = ptlrpc_server_request_add(svcpt, req);
1905         if (rc)
1906                 GOTO(err_req, rc);
1907
1908         cfs_waitq_signal(&svcpt->scp_waitq);
1909         RETURN(1);
1910
1911 err_req:
1912         ptlrpc_server_finish_request(svcpt, req);
1913
1914         RETURN(1);
1915 }
1916
1917 /**
1918  * Main incoming request handling logic.
1919  * Calls handler function from service to do actual processing.
1920  */
1921 static int
1922 ptlrpc_server_handle_request(struct ptlrpc_service_part *svcpt,
1923                              struct ptlrpc_thread *thread)
1924 {
1925         struct ptlrpc_service *svc = svcpt->scp_service;
1926         struct ptlrpc_request *request;
1927         struct timeval         work_start;
1928         struct timeval         work_end;
1929         long                   timediff;
1930         int                    rc;
1931         int                    fail_opc = 0;
1932         ENTRY;
1933
1934         request = ptlrpc_server_request_get(svcpt, false);
1935         if (request == NULL)
1936                 RETURN(0);
1937
1938         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_HPREQ_NOTIMEOUT))
1939                 fail_opc = OBD_FAIL_PTLRPC_HPREQ_NOTIMEOUT;
1940         else if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_HPREQ_TIMEOUT))
1941                 fail_opc = OBD_FAIL_PTLRPC_HPREQ_TIMEOUT;
1942
1943         if (unlikely(fail_opc)) {
1944                 if (request->rq_export && request->rq_ops)
1945                         OBD_FAIL_TIMEOUT(fail_opc, 4);
1946         }
1947
1948         ptlrpc_rqphase_move(request, RQ_PHASE_INTERPRET);
1949
1950         if(OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_DUMP_LOG))
1951                 libcfs_debug_dumplog();
1952
1953         cfs_gettimeofday(&work_start);
1954         timediff = cfs_timeval_sub(&work_start, &request->rq_arrival_time,NULL);
1955         if (likely(svc->srv_stats != NULL)) {
1956                 lprocfs_counter_add(svc->srv_stats, PTLRPC_REQWAIT_CNTR,
1957                                     timediff);
1958                 lprocfs_counter_add(svc->srv_stats, PTLRPC_REQQDEPTH_CNTR,
1959                                     svcpt->scp_nreqs_incoming);
1960                 lprocfs_counter_add(svc->srv_stats, PTLRPC_REQACTIVE_CNTR,
1961                                     svcpt->scp_nreqs_active);
1962                 lprocfs_counter_add(svc->srv_stats, PTLRPC_TIMEOUT,
1963                                     at_get(&svcpt->scp_at_estimate));
1964         }
1965
1966         rc = lu_context_init(&request->rq_session, LCT_SESSION | LCT_NOREF);
1967         if (rc) {
1968                 CERROR("Failure to initialize session: %d\n", rc);
1969                 goto out_req;
1970         }
1971         request->rq_session.lc_thread = thread;
1972         request->rq_session.lc_cookie = 0x5;
1973         lu_context_enter(&request->rq_session);
1974
1975         CDEBUG(D_NET, "got req "LPU64"\n", request->rq_xid);
1976
1977         request->rq_svc_thread = thread;
1978         if (thread)
1979                 request->rq_svc_thread->t_env->le_ses = &request->rq_session;
1980
1981         if (likely(request->rq_export)) {
1982                 if (unlikely(ptlrpc_check_req(request)))
1983                         goto put_conn;
1984                 ptlrpc_update_export_timer(request->rq_export, timediff >> 19);
1985         }
1986
1987         /* Discard requests queued for longer than the deadline.
1988            The deadline is increased if we send an early reply. */
1989         if (cfs_time_current_sec() > request->rq_deadline) {
1990                 DEBUG_REQ(D_ERROR, request, "Dropping timed-out request from %s"
1991                           ": deadline "CFS_DURATION_T":"CFS_DURATION_T"s ago\n",
1992                           libcfs_id2str(request->rq_peer),
1993                           cfs_time_sub(request->rq_deadline,
1994                           request->rq_arrival_time.tv_sec),
1995                           cfs_time_sub(cfs_time_current_sec(),
1996                           request->rq_deadline));
1997                 goto put_conn;
1998         }
1999
2000         CDEBUG(D_RPCTRACE, "Handling RPC pname:cluuid+ref:pid:xid:nid:opc "
2001                "%s:%s+%d:%d:x"LPU64":%s:%d\n", cfs_curproc_comm(),
2002                (request->rq_export ?
2003                 (char *)request->rq_export->exp_client_uuid.uuid : "0"),
2004                (request->rq_export ?
2005                 cfs_atomic_read(&request->rq_export->exp_refcount) : -99),
2006                lustre_msg_get_status(request->rq_reqmsg), request->rq_xid,
2007                libcfs_id2str(request->rq_peer),
2008                lustre_msg_get_opc(request->rq_reqmsg));
2009
2010         if (lustre_msg_get_opc(request->rq_reqmsg) != OBD_PING)
2011                 CFS_FAIL_TIMEOUT_MS(OBD_FAIL_PTLRPC_PAUSE_REQ, cfs_fail_val);
2012
2013         rc = svc->srv_ops.so_req_handler(request);
2014
2015         ptlrpc_rqphase_move(request, RQ_PHASE_COMPLETE);
2016
2017 put_conn:
2018         lu_context_exit(&request->rq_session);
2019         lu_context_fini(&request->rq_session);
2020
2021         if (unlikely(cfs_time_current_sec() > request->rq_deadline)) {
2022                      DEBUG_REQ(D_WARNING, request, "Request took longer "
2023                                "than estimated ("CFS_DURATION_T":"CFS_DURATION_T"s);"
2024                                " client may timeout.",
2025                                cfs_time_sub(request->rq_deadline,
2026                                             request->rq_arrival_time.tv_sec),
2027                                cfs_time_sub(cfs_time_current_sec(),
2028                                             request->rq_deadline));
2029         }
2030
2031         cfs_gettimeofday(&work_end);
2032         timediff = cfs_timeval_sub(&work_end, &work_start, NULL);
2033         CDEBUG(D_RPCTRACE, "Handled RPC pname:cluuid+ref:pid:xid:nid:opc "
2034                "%s:%s+%d:%d:x"LPU64":%s:%d Request procesed in "
2035                "%ldus (%ldus total) trans "LPU64" rc %d/%d\n",
2036                 cfs_curproc_comm(),
2037                 (request->rq_export ?
2038                  (char *)request->rq_export->exp_client_uuid.uuid : "0"),
2039                 (request->rq_export ?
2040                  cfs_atomic_read(&request->rq_export->exp_refcount) : -99),
2041                 lustre_msg_get_status(request->rq_reqmsg),
2042                 request->rq_xid,
2043                 libcfs_id2str(request->rq_peer),
2044                 lustre_msg_get_opc(request->rq_reqmsg),
2045                 timediff,
2046                 cfs_timeval_sub(&work_end, &request->rq_arrival_time, NULL),
2047                 (request->rq_repmsg ?
2048                  lustre_msg_get_transno(request->rq_repmsg) :
2049                  request->rq_transno),
2050                 request->rq_status,
2051                 (request->rq_repmsg ?
2052                  lustre_msg_get_status(request->rq_repmsg) : -999));
2053         if (likely(svc->srv_stats != NULL && request->rq_reqmsg != NULL)) {
2054                 __u32 op = lustre_msg_get_opc(request->rq_reqmsg);
2055                 int opc = opcode_offset(op);
2056                 if (opc > 0 && !(op == LDLM_ENQUEUE || op == MDS_REINT)) {
2057                         LASSERT(opc < LUSTRE_MAX_OPCODES);
2058                         lprocfs_counter_add(svc->srv_stats,
2059                                             opc + EXTRA_MAX_OPCODES,
2060                                             timediff);
2061                 }
2062         }
2063         if (unlikely(request->rq_early_count)) {
2064                 DEBUG_REQ(D_ADAPTTO, request,
2065                           "sent %d early replies before finishing in "
2066                           CFS_DURATION_T"s",
2067                           request->rq_early_count,
2068                           cfs_time_sub(work_end.tv_sec,
2069                           request->rq_arrival_time.tv_sec));
2070         }
2071
2072 out_req:
2073         ptlrpc_server_finish_active_request(svcpt, request);
2074
2075         RETURN(1);
2076 }
2077
2078 /**
2079  * An internal function to process a single reply state object.
2080  */
2081 static int
2082 ptlrpc_handle_rs(struct ptlrpc_reply_state *rs)
2083 {
2084         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
2085         struct ptlrpc_service     *svc = svcpt->scp_service;
2086         struct obd_export         *exp;
2087         int                        nlocks;
2088         int                        been_handled;
2089         ENTRY;
2090
2091         exp = rs->rs_export;
2092
2093         LASSERT (rs->rs_difficult);
2094         LASSERT (rs->rs_scheduled);
2095         LASSERT (cfs_list_empty(&rs->rs_list));
2096
2097         spin_lock(&exp->exp_lock);
2098         /* Noop if removed already */
2099         cfs_list_del_init (&rs->rs_exp_list);
2100         spin_unlock(&exp->exp_lock);
2101
2102         /* The disk commit callback holds exp_uncommitted_replies_lock while it
2103          * iterates over newly committed replies, removing them from
2104          * exp_uncommitted_replies.  It then drops this lock and schedules the
2105          * replies it found for handling here.
2106          *
2107          * We can avoid contention for exp_uncommitted_replies_lock between the
2108          * HRT threads and further commit callbacks by checking rs_committed
2109          * which is set in the commit callback while it holds both
2110          * rs_lock and exp_uncommitted_reples.
2111          *
2112          * If we see rs_committed clear, the commit callback _may_ not have
2113          * handled this reply yet and we race with it to grab
2114          * exp_uncommitted_replies_lock before removing the reply from
2115          * exp_uncommitted_replies.  Note that if we lose the race and the
2116          * reply has already been removed, list_del_init() is a noop.
2117          *
2118          * If we see rs_committed set, we know the commit callback is handling,
2119          * or has handled this reply since store reordering might allow us to
2120          * see rs_committed set out of sequence.  But since this is done
2121          * holding rs_lock, we can be sure it has all completed once we hold
2122          * rs_lock, which we do right next.
2123          */
2124         if (!rs->rs_committed) {
2125                 spin_lock(&exp->exp_uncommitted_replies_lock);
2126                 cfs_list_del_init(&rs->rs_obd_list);
2127                 spin_unlock(&exp->exp_uncommitted_replies_lock);
2128         }
2129
2130         spin_lock(&rs->rs_lock);
2131
2132         been_handled = rs->rs_handled;
2133         rs->rs_handled = 1;
2134
2135         nlocks = rs->rs_nlocks;                 /* atomic "steal", but */
2136         rs->rs_nlocks = 0;                      /* locks still on rs_locks! */
2137
2138         if (nlocks == 0 && !been_handled) {
2139                 /* If we see this, we should already have seen the warning
2140                  * in mds_steal_ack_locks()  */
2141                 CDEBUG(D_HA, "All locks stolen from rs %p x"LPD64".t"LPD64
2142                        " o%d NID %s\n",
2143                        rs,
2144                        rs->rs_xid, rs->rs_transno, rs->rs_opc,
2145                        libcfs_nid2str(exp->exp_connection->c_peer.nid));
2146         }
2147
2148         if ((!been_handled && rs->rs_on_net) || nlocks > 0) {
2149                 spin_unlock(&rs->rs_lock);
2150
2151                 if (!been_handled && rs->rs_on_net) {
2152                         LNetMDUnlink(rs->rs_md_h);
2153                         /* Ignore return code; we're racing with completion */
2154                 }
2155
2156                 while (nlocks-- > 0)
2157                         ldlm_lock_decref(&rs->rs_locks[nlocks],
2158                                          rs->rs_modes[nlocks]);
2159
2160                 spin_lock(&rs->rs_lock);
2161         }
2162
2163         rs->rs_scheduled = 0;
2164
2165         if (!rs->rs_on_net) {
2166                 /* Off the net */
2167                 spin_unlock(&rs->rs_lock);
2168
2169                 class_export_put (exp);
2170                 rs->rs_export = NULL;
2171                 ptlrpc_rs_decref (rs);
2172                 if (cfs_atomic_dec_and_test(&svcpt->scp_nreps_difficult) &&
2173                     svc->srv_is_stopping)
2174                         cfs_waitq_broadcast(&svcpt->scp_waitq);
2175                 RETURN(1);
2176         }
2177
2178         /* still on the net; callback will schedule */
2179         spin_unlock(&rs->rs_lock);
2180         RETURN(1);
2181 }
2182
2183 #ifndef __KERNEL__
2184
2185 /**
2186  * Check whether given service has a reply available for processing
2187  * and process it.
2188  *
2189  * \param svc a ptlrpc service
2190  * \retval 0 no replies processed
2191  * \retval 1 one reply processed
2192  */
2193 static int
2194 ptlrpc_server_handle_reply(struct ptlrpc_service_part *svcpt)
2195 {
2196         struct ptlrpc_reply_state *rs = NULL;
2197         ENTRY;
2198
2199         spin_lock(&svcpt->scp_rep_lock);
2200         if (!cfs_list_empty(&svcpt->scp_rep_queue)) {
2201                 rs = cfs_list_entry(svcpt->scp_rep_queue.prev,
2202                                     struct ptlrpc_reply_state,
2203                                     rs_list);
2204                 cfs_list_del_init(&rs->rs_list);
2205         }
2206         spin_unlock(&svcpt->scp_rep_lock);
2207         if (rs != NULL)
2208                 ptlrpc_handle_rs(rs);
2209         RETURN(rs != NULL);
2210 }
2211
2212 /* FIXME make use of timeout later */
2213 int
2214 liblustre_check_services (void *arg)
2215 {
2216         int  did_something = 0;
2217         int  rc;
2218         cfs_list_t *tmp, *nxt;
2219         ENTRY;
2220
2221         /* I'm relying on being single threaded, not to have to lock
2222          * ptlrpc_all_services etc */
2223         cfs_list_for_each_safe (tmp, nxt, &ptlrpc_all_services) {
2224                 struct ptlrpc_service *svc =
2225                         cfs_list_entry (tmp, struct ptlrpc_service, srv_list);
2226                 struct ptlrpc_service_part *svcpt;
2227
2228                 LASSERT(svc->srv_ncpts == 1);
2229                 svcpt = svc->srv_parts[0];
2230
2231                 if (svcpt->scp_nthrs_running != 0)     /* I've recursed */
2232                         continue;
2233
2234                 /* service threads can block for bulk, so this limits us
2235                  * (arbitrarily) to recursing 1 stack frame per service.
2236                  * Note that the problem with recursion is that we have to
2237                  * unwind completely before our caller can resume. */
2238
2239                 svcpt->scp_nthrs_running++;
2240
2241                 do {
2242                         rc = ptlrpc_server_handle_req_in(svcpt);
2243                         rc |= ptlrpc_server_handle_reply(svcpt);
2244                         rc |= ptlrpc_at_check_timed(svcpt);
2245                         rc |= ptlrpc_server_handle_request(svcpt, NULL);
2246                         rc |= (ptlrpc_server_post_idle_rqbds(svcpt) > 0);
2247                         did_something |= rc;
2248                 } while (rc);
2249
2250                 svcpt->scp_nthrs_running--;
2251         }
2252
2253         RETURN(did_something);
2254 }
2255 #define ptlrpc_stop_all_threads(s) do {} while (0)
2256
2257 #else /* __KERNEL__ */
2258
2259 static void
2260 ptlrpc_check_rqbd_pool(struct ptlrpc_service_part *svcpt)
2261 {
2262         int avail = svcpt->scp_nrqbds_posted;
2263         int low_water = test_req_buffer_pressure ? 0 :
2264                         svcpt->scp_service->srv_nbuf_per_group / 2;
2265
2266         /* NB I'm not locking; just looking. */
2267
2268         /* CAVEAT EMPTOR: We might be allocating buffers here because we've
2269          * allowed the request history to grow out of control.  We could put a
2270          * sanity check on that here and cull some history if we need the
2271          * space. */
2272
2273         if (avail <= low_water)
2274                 ptlrpc_grow_req_bufs(svcpt, 1);
2275
2276         if (svcpt->scp_service->srv_stats) {
2277                 lprocfs_counter_add(svcpt->scp_service->srv_stats,
2278                                     PTLRPC_REQBUF_AVAIL_CNTR, avail);
2279         }
2280 }
2281
2282 static int
2283 ptlrpc_retry_rqbds(void *arg)
2284 {
2285         struct ptlrpc_service_part *svcpt = (struct ptlrpc_service_part *)arg;
2286
2287         svcpt->scp_rqbd_timeout = 0;
2288         return -ETIMEDOUT;
2289 }
2290
2291 static inline int
2292 ptlrpc_threads_enough(struct ptlrpc_service_part *svcpt)
2293 {
2294         return svcpt->scp_nreqs_active <
2295                svcpt->scp_nthrs_running - 1 -
2296                (svcpt->scp_service->srv_ops.so_hpreq_handler != NULL);
2297 }
2298
2299 /**
2300  * allowed to create more threads
2301  * user can call it w/o any lock but need to hold
2302  * ptlrpc_service_part::scp_lock to get reliable result
2303  */
2304 static inline int
2305 ptlrpc_threads_increasable(struct ptlrpc_service_part *svcpt)
2306 {
2307         return svcpt->scp_nthrs_running +
2308                svcpt->scp_nthrs_starting <
2309                svcpt->scp_service->srv_nthrs_cpt_limit;
2310 }
2311
2312 /**
2313  * too many requests and allowed to create more threads
2314  */
2315 static inline int
2316 ptlrpc_threads_need_create(struct ptlrpc_service_part *svcpt)
2317 {
2318         return !ptlrpc_threads_enough(svcpt) &&
2319                 ptlrpc_threads_increasable(svcpt);
2320 }
2321
2322 static inline int
2323 ptlrpc_thread_stopping(struct ptlrpc_thread *thread)
2324 {
2325         return thread_is_stopping(thread) ||
2326                thread->t_svcpt->scp_service->srv_is_stopping;
2327 }
2328
2329 static inline int
2330 ptlrpc_rqbd_pending(struct ptlrpc_service_part *svcpt)
2331 {
2332         return !cfs_list_empty(&svcpt->scp_rqbd_idle) &&
2333                svcpt->scp_rqbd_timeout == 0;
2334 }
2335
2336 static inline int
2337 ptlrpc_at_check(struct ptlrpc_service_part *svcpt)
2338 {
2339         return svcpt->scp_at_check;
2340 }
2341
2342 /**
2343  * requests wait on preprocessing
2344  * user can call it w/o any lock but need to hold
2345  * ptlrpc_service_part::scp_lock to get reliable result
2346  */
2347 static inline int
2348 ptlrpc_server_request_incoming(struct ptlrpc_service_part *svcpt)
2349 {
2350         return !cfs_list_empty(&svcpt->scp_req_incoming);
2351 }
2352
2353 static __attribute__((__noinline__)) int
2354 ptlrpc_wait_event(struct ptlrpc_service_part *svcpt,
2355                   struct ptlrpc_thread *thread)
2356 {
2357         /* Don't exit while there are replies to be handled */
2358         struct l_wait_info lwi = LWI_TIMEOUT(svcpt->scp_rqbd_timeout,
2359                                              ptlrpc_retry_rqbds, svcpt);
2360
2361         lc_watchdog_disable(thread->t_watchdog);
2362
2363         cfs_cond_resched();
2364
2365         l_wait_event_exclusive_head(svcpt->scp_waitq,
2366                                 ptlrpc_thread_stopping(thread) ||
2367                                 ptlrpc_server_request_incoming(svcpt) ||
2368                                 ptlrpc_server_request_pending(svcpt, false) ||
2369                                 ptlrpc_rqbd_pending(svcpt) ||
2370                                 ptlrpc_at_check(svcpt), &lwi);
2371
2372         if (ptlrpc_thread_stopping(thread))
2373                 return -EINTR;
2374
2375         lc_watchdog_touch(thread->t_watchdog,
2376                           ptlrpc_server_get_timeout(svcpt));
2377         return 0;
2378 }
2379
2380 /**
2381  * Main thread body for service threads.
2382  * Waits in a loop waiting for new requests to process to appear.
2383  * Every time an incoming requests is added to its queue, a waitq
2384  * is woken up and one of the threads will handle it.
2385  */
2386 static int ptlrpc_main(void *arg)
2387 {
2388         struct ptlrpc_thread            *thread = (struct ptlrpc_thread *)arg;
2389         struct ptlrpc_service_part      *svcpt = thread->t_svcpt;
2390         struct ptlrpc_service           *svc = svcpt->scp_service;
2391         struct ptlrpc_reply_state       *rs;
2392 #ifdef WITH_GROUP_INFO
2393         cfs_group_info_t *ginfo = NULL;
2394 #endif
2395         struct lu_env *env;
2396         int counter = 0, rc = 0;
2397         ENTRY;
2398
2399         thread->t_pid = cfs_curproc_pid();
2400         cfs_daemonize_ctxt(thread->t_name);
2401
2402         /* NB: we will call cfs_cpt_bind() for all threads, because we
2403          * might want to run lustre server only on a subset of system CPUs,
2404          * in that case ->scp_cpt is CFS_CPT_ANY */
2405         rc = cfs_cpt_bind(svc->srv_cptable, svcpt->scp_cpt);
2406         if (rc != 0) {
2407                 CWARN("%s: failed to bind %s on CPT %d\n",
2408                       svc->srv_name, thread->t_name, svcpt->scp_cpt);
2409         }
2410
2411 #ifdef WITH_GROUP_INFO
2412         ginfo = cfs_groups_alloc(0);
2413         if (!ginfo) {
2414                 rc = -ENOMEM;
2415                 goto out;
2416         }
2417
2418         cfs_set_current_groups(ginfo);
2419         cfs_put_group_info(ginfo);
2420 #endif
2421
2422         if (svc->srv_ops.so_thr_init != NULL) {
2423                 rc = svc->srv_ops.so_thr_init(thread);
2424                 if (rc)
2425                         goto out;
2426         }
2427
2428         OBD_ALLOC_PTR(env);
2429         if (env == NULL) {
2430                 rc = -ENOMEM;
2431                 goto out_srv_fini;
2432         }
2433
2434         rc = lu_context_init(&env->le_ctx,
2435                              svc->srv_ctx_tags|LCT_REMEMBER|LCT_NOREF);
2436         if (rc)
2437                 goto out_srv_fini;
2438
2439         thread->t_env = env;
2440         env->le_ctx.lc_thread = thread;
2441         env->le_ctx.lc_cookie = 0x6;
2442
2443         while (!cfs_list_empty(&svcpt->scp_rqbd_idle)) {
2444                 rc = ptlrpc_server_post_idle_rqbds(svcpt);
2445                 if (rc >= 0)
2446                         continue;
2447
2448                 CERROR("Failed to post rqbd for %s on CPT %d: %d\n",
2449                         svc->srv_name, svcpt->scp_cpt, rc);
2450                 goto out_srv_fini;
2451         }
2452
2453         /* Alloc reply state structure for this one */
2454         OBD_ALLOC_LARGE(rs, svc->srv_max_reply_size);
2455         if (!rs) {
2456                 rc = -ENOMEM;
2457                 goto out_srv_fini;
2458         }
2459
2460         spin_lock(&svcpt->scp_lock);
2461
2462         LASSERT(thread_is_starting(thread));
2463         thread_clear_flags(thread, SVC_STARTING);
2464
2465         LASSERT(svcpt->scp_nthrs_starting == 1);
2466         svcpt->scp_nthrs_starting--;
2467
2468         /* SVC_STOPPING may already be set here if someone else is trying
2469          * to stop the service while this new thread has been dynamically
2470          * forked. We still set SVC_RUNNING to let our creator know that
2471          * we are now running, however we will exit as soon as possible */
2472         thread_add_flags(thread, SVC_RUNNING);
2473         svcpt->scp_nthrs_running++;
2474         spin_unlock(&svcpt->scp_lock);
2475
2476         /* wake up our creator in case he's still waiting. */
2477         cfs_waitq_signal(&thread->t_ctl_waitq);
2478
2479         thread->t_watchdog = lc_watchdog_add(ptlrpc_server_get_timeout(svcpt),
2480                                              NULL, NULL);
2481
2482         spin_lock(&svcpt->scp_rep_lock);
2483         cfs_list_add(&rs->rs_list, &svcpt->scp_rep_idle);
2484         cfs_waitq_signal(&svcpt->scp_rep_waitq);
2485         spin_unlock(&svcpt->scp_rep_lock);
2486
2487         CDEBUG(D_NET, "service thread %d (#%d) started\n", thread->t_id,
2488                svcpt->scp_nthrs_running);
2489
2490         /* XXX maintain a list of all managed devices: insert here */
2491         while (!ptlrpc_thread_stopping(thread)) {
2492                 if (ptlrpc_wait_event(svcpt, thread))
2493                         break;
2494
2495                 ptlrpc_check_rqbd_pool(svcpt);
2496
2497                 if (ptlrpc_threads_need_create(svcpt)) {
2498                         /* Ignore return code - we tried... */
2499                         ptlrpc_start_thread(svcpt, 0);
2500                 }
2501
2502                 /* Process all incoming reqs before handling any */
2503                 if (ptlrpc_server_request_incoming(svcpt)) {
2504                         ptlrpc_server_handle_req_in(svcpt);
2505                         /* but limit ourselves in case of flood */
2506                         if (counter++ < 100)
2507                                 continue;
2508                         counter = 0;
2509                 }
2510
2511                 if (ptlrpc_at_check(svcpt))
2512                         ptlrpc_at_check_timed(svcpt);
2513
2514                 if (ptlrpc_server_request_pending(svcpt, false)) {
2515                         lu_context_enter(&env->le_ctx);
2516                         ptlrpc_server_handle_request(svcpt, thread);
2517                         lu_context_exit(&env->le_ctx);
2518                 }
2519
2520                 if (ptlrpc_rqbd_pending(svcpt) &&
2521                     ptlrpc_server_post_idle_rqbds(svcpt) < 0) {
2522                         /* I just failed to repost request buffers.
2523                          * Wait for a timeout (unless something else
2524                          * happens) before I try again */
2525                         svcpt->scp_rqbd_timeout = cfs_time_seconds(1) / 10;
2526                         CDEBUG(D_RPCTRACE, "Posted buffers: %d\n",
2527                                svcpt->scp_nrqbds_posted);
2528                 }
2529         }
2530
2531         lc_watchdog_delete(thread->t_watchdog);
2532         thread->t_watchdog = NULL;
2533
2534 out_srv_fini:
2535         /*
2536          * deconstruct service specific state created by ptlrpc_start_thread()
2537          */
2538         if (svc->srv_ops.so_thr_done != NULL)
2539                 svc->srv_ops.so_thr_done(thread);
2540
2541         if (env != NULL) {
2542                 lu_context_fini(&env->le_ctx);
2543                 OBD_FREE_PTR(env);
2544         }
2545 out:
2546         CDEBUG(D_RPCTRACE, "service thread [ %p : %u ] %d exiting: rc %d\n",
2547                thread, thread->t_pid, thread->t_id, rc);
2548
2549         spin_lock(&svcpt->scp_lock);
2550         if (thread_test_and_clear_flags(thread, SVC_STARTING))
2551                 svcpt->scp_nthrs_starting--;
2552
2553         if (thread_test_and_clear_flags(thread, SVC_RUNNING)) {
2554                 /* must know immediately */
2555                 svcpt->scp_nthrs_running--;
2556         }
2557
2558         thread->t_id = rc;
2559         thread_add_flags(thread, SVC_STOPPED);
2560
2561         cfs_waitq_signal(&thread->t_ctl_waitq);
2562         spin_unlock(&svcpt->scp_lock);
2563
2564         return rc;
2565 }
2566
2567 static int hrt_dont_sleep(struct ptlrpc_hr_thread *hrt,
2568                           cfs_list_t *replies)
2569 {
2570         int result;
2571
2572         spin_lock(&hrt->hrt_lock);
2573
2574         cfs_list_splice_init(&hrt->hrt_queue, replies);
2575         result = ptlrpc_hr.hr_stopping || !cfs_list_empty(replies);
2576
2577         spin_unlock(&hrt->hrt_lock);
2578         return result;
2579 }
2580
2581 /**
2582  * Main body of "handle reply" function.
2583  * It processes acked reply states
2584  */
2585 static int ptlrpc_hr_main(void *arg)
2586 {
2587         struct ptlrpc_hr_thread         *hrt = (struct ptlrpc_hr_thread *)arg;
2588         struct ptlrpc_hr_partition      *hrp = hrt->hrt_partition;
2589         CFS_LIST_HEAD                   (replies);
2590         char                            threadname[20];
2591         int                             rc;
2592
2593         snprintf(threadname, sizeof(threadname), "ptlrpc_hr%02d_%03d",
2594                  hrp->hrp_cpt, hrt->hrt_id);
2595         cfs_daemonize_ctxt(threadname);
2596
2597         rc = cfs_cpt_bind(ptlrpc_hr.hr_cpt_table, hrp->hrp_cpt);
2598         if (rc != 0) {
2599                 CWARN("Failed to bind %s on CPT %d of CPT table %p: rc = %d\n",
2600                       threadname, hrp->hrp_cpt, ptlrpc_hr.hr_cpt_table, rc);
2601         }
2602
2603         cfs_atomic_inc(&hrp->hrp_nstarted);
2604         cfs_waitq_signal(&ptlrpc_hr.hr_waitq);
2605
2606         while (!ptlrpc_hr.hr_stopping) {
2607                 l_wait_condition(hrt->hrt_waitq, hrt_dont_sleep(hrt, &replies));
2608
2609                 while (!cfs_list_empty(&replies)) {
2610                         struct ptlrpc_reply_state *rs;
2611
2612                         rs = cfs_list_entry(replies.prev,
2613                                             struct ptlrpc_reply_state,
2614                                             rs_list);
2615                         cfs_list_del_init(&rs->rs_list);
2616                         ptlrpc_handle_rs(rs);
2617                 }
2618         }
2619
2620         cfs_atomic_inc(&hrp->hrp_nstopped);
2621         cfs_waitq_signal(&ptlrpc_hr.hr_waitq);
2622
2623         return 0;
2624 }
2625
2626 static void ptlrpc_stop_hr_threads(void)
2627 {
2628         struct ptlrpc_hr_partition      *hrp;
2629         int                             i;
2630         int                             j;
2631
2632         ptlrpc_hr.hr_stopping = 1;
2633
2634         cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
2635                 if (hrp->hrp_thrs == NULL)
2636                         continue; /* uninitialized */
2637                 for (j = 0; j < hrp->hrp_nthrs; j++)
2638                         cfs_waitq_broadcast(&hrp->hrp_thrs[j].hrt_waitq);
2639         }
2640
2641         cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
2642                 if (hrp->hrp_thrs == NULL)
2643                         continue; /* uninitialized */
2644                 cfs_wait_event(ptlrpc_hr.hr_waitq,
2645                                cfs_atomic_read(&hrp->hrp_nstopped) ==
2646                                cfs_atomic_read(&hrp->hrp_nstarted));
2647         }
2648 }
2649
2650 static int ptlrpc_start_hr_threads(void)
2651 {
2652         struct ptlrpc_hr_partition      *hrp;
2653         int                             i;
2654         int                             j;
2655         ENTRY;
2656
2657         cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
2658                 int     rc = 0;
2659
2660                 for (j = 0; j < hrp->hrp_nthrs; j++) {
2661                         rc = cfs_create_thread(ptlrpc_hr_main,
2662                                                &hrp->hrp_thrs[j],
2663                                                CLONE_VM | CLONE_FILES);
2664                         if (rc < 0)
2665                                 break;
2666                 }
2667                 cfs_wait_event(ptlrpc_hr.hr_waitq,
2668                                cfs_atomic_read(&hrp->hrp_nstarted) == j);
2669                 if (rc >= 0)
2670                         continue;
2671
2672                 CERROR("Reply handling thread %d:%d Failed on starting: "
2673                        "rc = %d\n", i, j, rc);
2674                 ptlrpc_stop_hr_threads();
2675                 RETURN(rc);
2676         }
2677         RETURN(0);
2678 }
2679
2680 static void ptlrpc_svcpt_stop_threads(struct ptlrpc_service_part *svcpt)
2681 {
2682         struct l_wait_info      lwi = { 0 };
2683         struct ptlrpc_thread    *thread;
2684         CFS_LIST_HEAD           (zombie);
2685
2686         ENTRY;
2687
2688         CDEBUG(D_INFO, "Stopping threads for service %s\n",
2689                svcpt->scp_service->srv_name);
2690
2691         spin_lock(&svcpt->scp_lock);
2692         /* let the thread know that we would like it to stop asap */
2693         list_for_each_entry(thread, &svcpt->scp_threads, t_link) {
2694                 CDEBUG(D_INFO, "Stopping thread %s #%u\n",
2695                        svcpt->scp_service->srv_thread_name, thread->t_id);
2696                 thread_add_flags(thread, SVC_STOPPING);
2697         }
2698
2699         cfs_waitq_broadcast(&svcpt->scp_waitq);
2700
2701         while (!cfs_list_empty(&svcpt->scp_threads)) {
2702                 thread = cfs_list_entry(svcpt->scp_threads.next,
2703                                         struct ptlrpc_thread, t_link);
2704                 if (thread_is_stopped(thread)) {
2705                         cfs_list_del(&thread->t_link);
2706                         cfs_list_add(&thread->t_link, &zombie);
2707                         continue;
2708                 }
2709                 spin_unlock(&svcpt->scp_lock);
2710
2711                 CDEBUG(D_INFO, "waiting for stopping-thread %s #%u\n",
2712                        svcpt->scp_service->srv_thread_name, thread->t_id);
2713                 l_wait_event(thread->t_ctl_waitq,
2714                              thread_is_stopped(thread), &lwi);
2715
2716                 spin_lock(&svcpt->scp_lock);
2717         }
2718
2719         spin_unlock(&svcpt->scp_lock);
2720
2721         while (!cfs_list_empty(&zombie)) {
2722                 thread = cfs_list_entry(zombie.next,
2723                                         struct ptlrpc_thread, t_link);
2724                 cfs_list_del(&thread->t_link);
2725                 OBD_FREE_PTR(thread);
2726         }
2727         EXIT;
2728 }
2729
2730 /**
2731  * Stops all threads of a particular service \a svc
2732  */
2733 void ptlrpc_stop_all_threads(struct ptlrpc_service *svc)
2734 {
2735         struct ptlrpc_service_part *svcpt;
2736         int                        i;
2737         ENTRY;
2738
2739         ptlrpc_service_for_each_part(svcpt, i, svc) {
2740                 if (svcpt->scp_service != NULL)
2741                         ptlrpc_svcpt_stop_threads(svcpt);
2742         }
2743
2744         EXIT;
2745 }
2746 EXPORT_SYMBOL(ptlrpc_stop_all_threads);
2747
2748 int ptlrpc_start_threads(struct ptlrpc_service *svc)
2749 {
2750         int     rc = 0;
2751         int     i;
2752         int     j;
2753         ENTRY;
2754
2755         /* We require 2 threads min, see note in ptlrpc_server_handle_request */
2756         LASSERT(svc->srv_nthrs_cpt_init >= PTLRPC_NTHRS_INIT);
2757
2758         for (i = 0; i < svc->srv_ncpts; i++) {
2759                 for (j = 0; j < svc->srv_nthrs_cpt_init; j++) {
2760                         rc = ptlrpc_start_thread(svc->srv_parts[i], 1);
2761                         if (rc == 0)
2762                                 continue;
2763
2764                         if (rc != -EMFILE)
2765                                 goto failed;
2766                         /* We have enough threads, don't start more. b=15759 */
2767                         break;
2768                 }
2769         }
2770
2771         RETURN(0);
2772  failed:
2773         CERROR("cannot start %s thread #%d_%d: rc %d\n",
2774                svc->srv_thread_name, i, j, rc);
2775         ptlrpc_stop_all_threads(svc);
2776         RETURN(rc);
2777 }
2778 EXPORT_SYMBOL(ptlrpc_start_threads);
2779
2780 int ptlrpc_start_thread(struct ptlrpc_service_part *svcpt, int wait)
2781 {
2782         struct l_wait_info      lwi = { 0 };
2783         struct ptlrpc_thread    *thread;
2784         struct ptlrpc_service   *svc;
2785         int                     rc;
2786         ENTRY;
2787
2788         LASSERT(svcpt != NULL);
2789
2790         svc = svcpt->scp_service;
2791
2792         CDEBUG(D_RPCTRACE, "%s[%d] started %d min %d max %d\n",
2793                svc->srv_name, svcpt->scp_cpt, svcpt->scp_nthrs_running,
2794                svc->srv_nthrs_cpt_init, svc->srv_nthrs_cpt_limit);
2795
2796  again:
2797         if (unlikely(svc->srv_is_stopping))
2798                 RETURN(-ESRCH);
2799
2800         if (!ptlrpc_threads_increasable(svcpt) ||
2801             (OBD_FAIL_CHECK(OBD_FAIL_TGT_TOOMANY_THREADS) &&
2802              svcpt->scp_nthrs_running == svc->srv_nthrs_cpt_init - 1))
2803                 RETURN(-EMFILE);
2804
2805         OBD_CPT_ALLOC_PTR(thread, svc->srv_cptable, svcpt->scp_cpt);
2806         if (thread == NULL)
2807                 RETURN(-ENOMEM);
2808         cfs_waitq_init(&thread->t_ctl_waitq);
2809
2810         spin_lock(&svcpt->scp_lock);
2811         if (!ptlrpc_threads_increasable(svcpt)) {
2812                 spin_unlock(&svcpt->scp_lock);
2813                 OBD_FREE_PTR(thread);
2814                 RETURN(-EMFILE);
2815         }
2816
2817         if (svcpt->scp_nthrs_starting != 0) {
2818                 /* serialize starting because some modules (obdfilter)
2819                  * might require unique and contiguous t_id */
2820                 LASSERT(svcpt->scp_nthrs_starting == 1);
2821                 spin_unlock(&svcpt->scp_lock);
2822                 OBD_FREE_PTR(thread);
2823                 if (wait) {
2824                         CDEBUG(D_INFO, "Waiting for creating thread %s #%d\n",
2825                                svc->srv_thread_name, svcpt->scp_thr_nextid);
2826                         cfs_schedule();
2827                         goto again;
2828                 }
2829
2830                 CDEBUG(D_INFO, "Creating thread %s #%d race, retry later\n",
2831                        svc->srv_thread_name, svcpt->scp_thr_nextid);
2832                 RETURN(-EAGAIN);
2833         }
2834
2835         svcpt->scp_nthrs_starting++;
2836         thread->t_id = svcpt->scp_thr_nextid++;
2837         thread_add_flags(thread, SVC_STARTING);
2838         thread->t_svcpt = svcpt;
2839
2840         cfs_list_add(&thread->t_link, &svcpt->scp_threads);
2841         spin_unlock(&svcpt->scp_lock);
2842
2843         if (svcpt->scp_cpt >= 0) {
2844                 snprintf(thread->t_name, PTLRPC_THR_NAME_LEN, "%s%02d_%03d",
2845                          svc->srv_thread_name, svcpt->scp_cpt, thread->t_id);
2846         } else {
2847                 snprintf(thread->t_name, PTLRPC_THR_NAME_LEN, "%s_%04d",
2848                          svc->srv_thread_name, thread->t_id);
2849         }
2850
2851         CDEBUG(D_RPCTRACE, "starting thread '%s'\n", thread->t_name);
2852         /*
2853          * CLONE_VM and CLONE_FILES just avoid a needless copy, because we
2854          * just drop the VM and FILES in cfs_daemonize_ctxt() right away.
2855          */
2856         rc = cfs_create_thread(ptlrpc_main, thread, CFS_DAEMON_FLAGS);
2857         if (rc < 0) {
2858                 CERROR("cannot start thread '%s': rc %d\n",
2859                        thread->t_name, rc);
2860                 spin_lock(&svcpt->scp_lock);
2861                 cfs_list_del(&thread->t_link);
2862                 --svcpt->scp_nthrs_starting;
2863                 spin_unlock(&svcpt->scp_lock);
2864
2865                 OBD_FREE(thread, sizeof(*thread));
2866                 RETURN(rc);
2867         }
2868
2869         if (!wait)
2870                 RETURN(0);
2871
2872         l_wait_event(thread->t_ctl_waitq,
2873                      thread_is_running(thread) || thread_is_stopped(thread),
2874                      &lwi);
2875
2876         rc = thread_is_stopped(thread) ? thread->t_id : 0;
2877         RETURN(rc);
2878 }
2879
2880 int ptlrpc_hr_init(void)
2881 {
2882         struct ptlrpc_hr_partition      *hrp;
2883         struct ptlrpc_hr_thread         *hrt;
2884         int                             rc;
2885         int                             i;
2886         int                             j;
2887         ENTRY;
2888
2889         memset(&ptlrpc_hr, 0, sizeof(ptlrpc_hr));
2890         ptlrpc_hr.hr_cpt_table = cfs_cpt_table;
2891
2892         ptlrpc_hr.hr_partitions = cfs_percpt_alloc(ptlrpc_hr.hr_cpt_table,
2893                                                    sizeof(*hrp));
2894         if (ptlrpc_hr.hr_partitions == NULL)
2895                 RETURN(-ENOMEM);
2896
2897         cfs_waitq_init(&ptlrpc_hr.hr_waitq);
2898
2899         cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
2900                 hrp->hrp_cpt = i;
2901
2902                 cfs_atomic_set(&hrp->hrp_nstarted, 0);
2903                 cfs_atomic_set(&hrp->hrp_nstopped, 0);
2904
2905                 hrp->hrp_nthrs = cfs_cpt_weight(ptlrpc_hr.hr_cpt_table, i);
2906                 hrp->hrp_nthrs /= cfs_cpu_ht_nsiblings(0);
2907
2908                 LASSERT(hrp->hrp_nthrs > 0);
2909                 OBD_CPT_ALLOC(hrp->hrp_thrs, ptlrpc_hr.hr_cpt_table, i,
2910                               hrp->hrp_nthrs * sizeof(*hrt));
2911                 if (hrp->hrp_thrs == NULL)
2912                         GOTO(out, rc = -ENOMEM);
2913
2914                 for (j = 0; j < hrp->hrp_nthrs; j++) {
2915                         hrt = &hrp->hrp_thrs[j];
2916
2917                         hrt->hrt_id = j;
2918                         hrt->hrt_partition = hrp;
2919                         cfs_waitq_init(&hrt->hrt_waitq);
2920                         spin_lock_init(&hrt->hrt_lock);
2921                         CFS_INIT_LIST_HEAD(&hrt->hrt_queue);
2922                 }
2923         }
2924
2925         rc = ptlrpc_start_hr_threads();
2926 out:
2927         if (rc != 0)
2928                 ptlrpc_hr_fini();
2929         RETURN(rc);
2930 }
2931
2932 void ptlrpc_hr_fini(void)
2933 {
2934         struct ptlrpc_hr_partition      *hrp;
2935         int                             i;
2936
2937         if (ptlrpc_hr.hr_partitions == NULL)
2938                 return;
2939
2940         ptlrpc_stop_hr_threads();
2941
2942         cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
2943                 if (hrp->hrp_thrs != NULL) {
2944                         OBD_FREE(hrp->hrp_thrs,
2945                                  hrp->hrp_nthrs * sizeof(hrp->hrp_thrs[0]));
2946                 }
2947         }
2948
2949         cfs_percpt_free(ptlrpc_hr.hr_partitions);
2950         ptlrpc_hr.hr_partitions = NULL;
2951 }
2952
2953 #endif /* __KERNEL__ */
2954
2955 /**
2956  * Wait until all already scheduled replies are processed.
2957  */
2958 static void ptlrpc_wait_replies(struct ptlrpc_service_part *svcpt)
2959 {
2960         while (1) {
2961                 int rc;
2962                 struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(10),
2963                                                      NULL, NULL);
2964
2965                 rc = l_wait_event(svcpt->scp_waitq,
2966                      cfs_atomic_read(&svcpt->scp_nreps_difficult) == 0, &lwi);
2967                 if (rc == 0)
2968                         break;
2969                 CWARN("Unexpectedly long timeout %s %p\n",
2970                       svcpt->scp_service->srv_name, svcpt->scp_service);
2971         }
2972 }
2973
2974 static void
2975 ptlrpc_service_del_atimer(struct ptlrpc_service *svc)
2976 {
2977         struct ptlrpc_service_part      *svcpt;
2978         int                             i;
2979
2980         /* early disarm AT timer... */
2981         ptlrpc_service_for_each_part(svcpt, i, svc) {
2982                 if (svcpt->scp_service != NULL)
2983                         cfs_timer_disarm(&svcpt->scp_at_timer);
2984         }
2985 }
2986
2987 static void
2988 ptlrpc_service_unlink_rqbd(struct ptlrpc_service *svc)
2989 {
2990         struct ptlrpc_service_part        *svcpt;
2991         struct ptlrpc_request_buffer_desc *rqbd;
2992         struct l_wait_info                lwi;
2993         int                               rc;
2994         int                               i;
2995
2996         /* All history will be culled when the next request buffer is
2997          * freed in ptlrpc_service_purge_all() */
2998         svc->srv_hist_nrqbds_cpt_max = 0;
2999
3000         rc = LNetClearLazyPortal(svc->srv_req_portal);
3001         LASSERT(rc == 0);
3002
3003         ptlrpc_service_for_each_part(svcpt, i, svc) {
3004                 if (svcpt->scp_service == NULL)
3005                         break;
3006
3007                 /* Unlink all the request buffers.  This forces a 'final'
3008                  * event with its 'unlink' flag set for each posted rqbd */
3009                 cfs_list_for_each_entry(rqbd, &svcpt->scp_rqbd_posted,
3010                                         rqbd_list) {
3011                         rc = LNetMDUnlink(rqbd->rqbd_md_h);
3012                         LASSERT(rc == 0 || rc == -ENOENT);
3013                 }
3014         }
3015
3016         ptlrpc_service_for_each_part(svcpt, i, svc) {
3017                 if (svcpt->scp_service == NULL)
3018                         break;
3019
3020                 /* Wait for the network to release any buffers
3021                  * it's currently filling */
3022                 spin_lock(&svcpt->scp_lock);
3023                 while (svcpt->scp_nrqbds_posted != 0) {
3024                         spin_unlock(&svcpt->scp_lock);
3025                         /* Network access will complete in finite time but
3026                          * the HUGE timeout lets us CWARN for visibility
3027                          * of sluggish NALs */
3028                         lwi = LWI_TIMEOUT_INTERVAL(
3029                                         cfs_time_seconds(LONG_UNLINK),
3030                                         cfs_time_seconds(1), NULL, NULL);
3031                         rc = l_wait_event(svcpt->scp_waitq,
3032                                           svcpt->scp_nrqbds_posted == 0, &lwi);
3033                         if (rc == -ETIMEDOUT) {
3034                                 CWARN("Service %s waiting for "
3035                                       "request buffers\n",
3036                                       svcpt->scp_service->srv_name);
3037                         }
3038                         spin_lock(&svcpt->scp_lock);
3039                 }
3040                 spin_unlock(&svcpt->scp_lock);
3041         }
3042 }
3043
3044 static void
3045 ptlrpc_service_purge_all(struct ptlrpc_service *svc)
3046 {
3047         struct ptlrpc_service_part              *svcpt;
3048         struct ptlrpc_request_buffer_desc       *rqbd;
3049         struct ptlrpc_request                   *req;
3050         struct ptlrpc_reply_state               *rs;
3051         int                                     i;
3052
3053         ptlrpc_service_for_each_part(svcpt, i, svc) {
3054                 if (svcpt->scp_service == NULL)
3055                         break;
3056
3057                 spin_lock(&svcpt->scp_rep_lock);
3058                 while (!cfs_list_empty(&svcpt->scp_rep_active)) {
3059                         rs = cfs_list_entry(svcpt->scp_rep_active.next,
3060                                             struct ptlrpc_reply_state, rs_list);
3061                         spin_lock(&rs->rs_lock);
3062                         ptlrpc_schedule_difficult_reply(rs);
3063                         spin_unlock(&rs->rs_lock);
3064                 }
3065                 spin_unlock(&svcpt->scp_rep_lock);
3066
3067                 /* purge the request queue.  NB No new replies (rqbds
3068                  * all unlinked) and no service threads, so I'm the only
3069                  * thread noodling the request queue now */
3070                 while (!cfs_list_empty(&svcpt->scp_req_incoming)) {
3071                         req = cfs_list_entry(svcpt->scp_req_incoming.next,
3072                                              struct ptlrpc_request, rq_list);
3073
3074                         cfs_list_del(&req->rq_list);
3075                         svcpt->scp_nreqs_incoming--;
3076                         ptlrpc_server_finish_request(svcpt, req);
3077                 }
3078
3079                 while (ptlrpc_server_request_pending(svcpt, true)) {
3080                         req = ptlrpc_server_request_get(svcpt, true);
3081                         ptlrpc_server_finish_active_request(svcpt, req);
3082                 }
3083
3084                 LASSERT(cfs_list_empty(&svcpt->scp_rqbd_posted));
3085                 LASSERT(svcpt->scp_nreqs_incoming == 0);
3086                 LASSERT(svcpt->scp_nreqs_active == 0);
3087                 /* history should have been culled by
3088                  * ptlrpc_server_finish_request */
3089                 LASSERT(svcpt->scp_hist_nrqbds == 0);
3090
3091                 /* Now free all the request buffers since nothing
3092                  * references them any more... */
3093
3094                 while (!cfs_list_empty(&svcpt->scp_rqbd_idle)) {
3095                         rqbd = cfs_list_entry(svcpt->scp_rqbd_idle.next,
3096                                               struct ptlrpc_request_buffer_desc,
3097                                               rqbd_list);
3098                         ptlrpc_free_rqbd(rqbd);
3099                 }
3100                 ptlrpc_wait_replies(svcpt);
3101
3102                 while (!cfs_list_empty(&svcpt->scp_rep_idle)) {
3103                         rs = cfs_list_entry(svcpt->scp_rep_idle.next,
3104                                             struct ptlrpc_reply_state,
3105                                             rs_list);
3106                         cfs_list_del(&rs->rs_list);
3107                         OBD_FREE_LARGE(rs, svc->srv_max_reply_size);
3108                 }
3109         }
3110 }
3111
3112 static void
3113 ptlrpc_service_free(struct ptlrpc_service *svc)
3114 {
3115         struct ptlrpc_service_part      *svcpt;
3116         struct ptlrpc_at_array          *array;
3117         int                             i;
3118
3119         ptlrpc_service_for_each_part(svcpt, i, svc) {
3120                 if (svcpt->scp_service == NULL)
3121                         break;
3122
3123                 /* In case somebody rearmed this in the meantime */
3124                 cfs_timer_disarm(&svcpt->scp_at_timer);
3125                 array = &svcpt->scp_at_array;
3126
3127                 if (array->paa_reqs_array != NULL) {
3128                         OBD_FREE(array->paa_reqs_array,
3129                                  sizeof(cfs_list_t) * array->paa_size);
3130                         array->paa_reqs_array = NULL;
3131                 }
3132
3133                 if (array->paa_reqs_count != NULL) {
3134                         OBD_FREE(array->paa_reqs_count,
3135                                  sizeof(__u32) * array->paa_size);
3136                         array->paa_reqs_count = NULL;
3137                 }
3138         }
3139
3140         ptlrpc_service_for_each_part(svcpt, i, svc)
3141                 OBD_FREE_PTR(svcpt);
3142
3143         if (svc->srv_cpts != NULL)
3144                 cfs_expr_list_values_free(svc->srv_cpts, svc->srv_ncpts);
3145
3146         OBD_FREE(svc, offsetof(struct ptlrpc_service,
3147                                srv_parts[svc->srv_ncpts]));
3148 }
3149
3150 int ptlrpc_unregister_service(struct ptlrpc_service *service)
3151 {
3152         ENTRY;
3153
3154         CDEBUG(D_NET, "%s: tearing down\n", service->srv_name);
3155
3156         service->srv_is_stopping = 1;
3157
3158         mutex_lock(&ptlrpc_all_services_mutex);
3159         cfs_list_del_init(&service->srv_list);
3160         mutex_unlock(&ptlrpc_all_services_mutex);
3161
3162         ptlrpc_service_del_atimer(service);
3163         ptlrpc_stop_all_threads(service);
3164
3165         ptlrpc_service_unlink_rqbd(service);
3166         ptlrpc_service_purge_all(service);
3167         ptlrpc_service_nrs_cleanup(service);
3168
3169         ptlrpc_lprocfs_unregister_service(service);
3170
3171         ptlrpc_service_free(service);
3172
3173         RETURN(0);
3174 }
3175 EXPORT_SYMBOL(ptlrpc_unregister_service);
3176
3177 /**
3178  * Returns 0 if the service is healthy.
3179  *
3180  * Right now, it just checks to make sure that requests aren't languishing
3181  * in the queue.  We'll use this health check to govern whether a node needs
3182  * to be shot, so it's intentionally non-aggressive. */
3183 int ptlrpc_svcpt_health_check(struct ptlrpc_service_part *svcpt)
3184 {
3185         struct ptlrpc_request           *request = NULL;
3186         struct timeval                  right_now;
3187         long                            timediff;
3188
3189         cfs_gettimeofday(&right_now);
3190
3191         spin_lock(&svcpt->scp_req_lock);
3192         /* How long has the next entry been waiting? */
3193         if (ptlrpc_server_high_pending(svcpt, true))
3194                 request = ptlrpc_nrs_req_peek_nolock(svcpt, true);
3195         else if (ptlrpc_server_normal_pending(svcpt, true))
3196                 request = ptlrpc_nrs_req_peek_nolock(svcpt, false);
3197
3198         if (request == NULL) {
3199                 spin_unlock(&svcpt->scp_req_lock);
3200                 return 0;
3201         }
3202
3203         timediff = cfs_timeval_sub(&right_now, &request->rq_arrival_time, NULL);
3204         spin_unlock(&svcpt->scp_req_lock);
3205
3206         if ((timediff / ONE_MILLION) >
3207             (AT_OFF ? obd_timeout * 3 / 2 : at_max)) {
3208                 CERROR("%s: unhealthy - request has been waiting %lds\n",
3209                        svcpt->scp_service->srv_name, timediff / ONE_MILLION);
3210                 return -1;
3211         }
3212
3213         return 0;
3214 }
3215
3216 int
3217 ptlrpc_service_health_check(struct ptlrpc_service *svc)
3218 {
3219         struct ptlrpc_service_part      *svcpt;
3220         int                             i;
3221
3222         if (svc == NULL)
3223                 return 0;
3224
3225         ptlrpc_service_for_each_part(svcpt, i, svc) {
3226                 int rc = ptlrpc_svcpt_health_check(svcpt);
3227
3228                 if (rc != 0)
3229                         return rc;
3230         }
3231         return 0;
3232 }
3233 EXPORT_SYMBOL(ptlrpc_service_health_check);