Whamcloud - gitweb
a58f51087bf7c989c3a3168c1b5aa9c1eeca46a3
[fs/lustre-release.git] / lustre / ptlrpc / ptlrpcd.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/ptlrpcd.c
37  */
38
39 /** \defgroup ptlrpcd PortalRPC daemon
40  *
41  * ptlrpcd is a special thread with its own set where other user might add
42  * requests when they don't want to wait for their completion.
43  * PtlRPCD will take care of sending such requests and then processing their
44  * replies and calling completion callbacks as necessary.
45  * The callbacks are called directly from ptlrpcd context.
46  * It is important to never significantly block (esp. on RPCs!) within such
47  * completion handler or a deadlock might occur where ptlrpcd enters some
48  * callback that attempts to send another RPC and wait for it to return,
49  * during which time ptlrpcd is completely blocked, so e.g. if import
50  * fails, recovery cannot progress because connection requests are also
51  * sent by ptlrpcd.
52  *
53  * @{
54  */
55
56 #define DEBUG_SUBSYSTEM S_RPC
57
58 #ifdef __KERNEL__
59 # include <libcfs/libcfs.h>
60 #else /* __KERNEL__ */
61 # include <liblustre.h>
62 # include <ctype.h>
63 #endif
64
65 #include <lustre_net.h>
66 # include <lustre_lib.h>
67
68 #include <lustre_ha.h>
69 #include <obd_class.h>   /* for obd_zombie */
70 #include <obd_support.h> /* for OBD_FAIL_CHECK */
71 #include <cl_object.h> /* cl_env_{get,put}() */
72 #include <lprocfs_status.h>
73
74 #include "ptlrpc_internal.h"
75
76 struct ptlrpcd {
77         int                pd_size;
78         int                pd_index;
79         int                pd_nthreads;
80         struct ptlrpcd_ctl pd_thread_rcv;
81         struct ptlrpcd_ctl pd_threads[0];
82 };
83
84 #ifdef __KERNEL__
85 static int max_ptlrpcds;
86 CFS_MODULE_PARM(max_ptlrpcds, "i", int, 0644,
87                 "Max ptlrpcd thread count to be started.");
88
89 static int ptlrpcd_bind_policy = PDB_POLICY_PAIR;
90 CFS_MODULE_PARM(ptlrpcd_bind_policy, "i", int, 0644,
91                 "Ptlrpcd threads binding mode.");
92 #endif
93 static struct ptlrpcd *ptlrpcds;
94
95 struct mutex ptlrpcd_mutex;
96 static int ptlrpcd_users = 0;
97
98 void ptlrpcd_wake(struct ptlrpc_request *req)
99 {
100         struct ptlrpc_request_set *rq_set = req->rq_set;
101
102         LASSERT(rq_set != NULL);
103
104         wake_up(&rq_set->set_waitq);
105 }
106 EXPORT_SYMBOL(ptlrpcd_wake);
107
108 static struct ptlrpcd_ctl *
109 ptlrpcd_select_pc(struct ptlrpc_request *req, pdl_policy_t policy, int index)
110 {
111         int idx = 0;
112
113         if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
114                 return &ptlrpcds->pd_thread_rcv;
115
116 #ifdef __KERNEL__
117         switch (policy) {
118         case PDL_POLICY_SAME:
119                 idx = smp_processor_id() % ptlrpcds->pd_nthreads;
120                 break;
121         case PDL_POLICY_LOCAL:
122                 /* Before CPU partition patches available, process it the same
123                  * as "PDL_POLICY_ROUND". */
124 # ifdef CFS_CPU_MODE_NUMA
125 # warning "fix this code to use new CPU partition APIs"
126 # endif
127                 /* Fall through to PDL_POLICY_ROUND until the CPU
128                  * CPU partition patches are available. */
129                 index = -1;
130         case PDL_POLICY_PREFERRED:
131                 if (index >= 0 && index < num_online_cpus()) {
132                         idx = index % ptlrpcds->pd_nthreads;
133                         break;
134                 }
135                 /* Fall through to PDL_POLICY_ROUND for bad index. */
136         default:
137                 /* Fall through to PDL_POLICY_ROUND for unknown policy. */
138         case PDL_POLICY_ROUND:
139                 /* We do not care whether it is strict load balance. */
140                 idx = ptlrpcds->pd_index + 1;
141                 if (idx == smp_processor_id())
142                         idx++;
143                 idx %= ptlrpcds->pd_nthreads;
144                 ptlrpcds->pd_index = idx;
145                 break;
146         }
147 #endif /* __KERNEL__ */
148
149         return &ptlrpcds->pd_threads[idx];
150 }
151
152 /**
153  * Move all request from an existing request set to the ptlrpcd queue.
154  * All requests from the set must be in phase RQ_PHASE_NEW.
155  */
156 void ptlrpcd_add_rqset(struct ptlrpc_request_set *set)
157 {
158         struct list_head *tmp, *pos;
159 #ifdef __KERNEL__
160         struct ptlrpcd_ctl *pc;
161         struct ptlrpc_request_set *new;
162         int count, i;
163
164         pc = ptlrpcd_select_pc(NULL, PDL_POLICY_LOCAL, -1);
165         new = pc->pc_set;
166 #endif
167
168         list_for_each_safe(pos, tmp, &set->set_requests) {
169                 struct ptlrpc_request *req =
170                         list_entry(pos, struct ptlrpc_request,
171                                    rq_set_chain);
172
173                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
174 #ifdef __KERNEL__
175                 req->rq_set = new;
176                 req->rq_queued_time = cfs_time_current();
177 #else
178                 list_del_init(&req->rq_set_chain);
179                 req->rq_set = NULL;
180                 ptlrpcd_add_req(req, PDL_POLICY_LOCAL, -1);
181                 atomic_dec(&set->set_remaining);
182 #endif
183         }
184
185 #ifdef __KERNEL__
186         spin_lock(&new->set_new_req_lock);
187         list_splice_init(&set->set_requests, &new->set_new_requests);
188         i = atomic_read(&set->set_remaining);
189         count = atomic_add_return(i, &new->set_new_count);
190         atomic_set(&set->set_remaining, 0);
191         spin_unlock(&new->set_new_req_lock);
192         if (count == i) {
193                 wake_up(&new->set_waitq);
194
195                 /* XXX: It maybe unnecessary to wakeup all the partners. But to
196                  *      guarantee the async RPC can be processed ASAP, we have
197                  *      no other better choice. It maybe fixed in future. */
198                 for (i = 0; i < pc->pc_npartners; i++)
199                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
200         }
201 #endif
202 }
203 EXPORT_SYMBOL(ptlrpcd_add_rqset);
204
205 #ifdef __KERNEL__
206 /**
207  * Return transferred RPCs count.
208  */
209 static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
210                                struct ptlrpc_request_set *src)
211 {
212         struct list_head *tmp, *pos;
213         struct ptlrpc_request *req;
214         int rc = 0;
215
216         spin_lock(&src->set_new_req_lock);
217         if (likely(!list_empty(&src->set_new_requests))) {
218                 list_for_each_safe(pos, tmp, &src->set_new_requests) {
219                         req = list_entry(pos, struct ptlrpc_request,
220                                          rq_set_chain);
221                         req->rq_set = des;
222                 }
223                 list_splice_init(&src->set_new_requests,
224                                  &des->set_requests);
225                 rc = atomic_read(&src->set_new_count);
226                 atomic_add(rc, &des->set_remaining);
227                 atomic_set(&src->set_new_count, 0);
228         }
229         spin_unlock(&src->set_new_req_lock);
230         return rc;
231 }
232 #endif
233
234 /**
235  * Requests that are added to the ptlrpcd queue are sent via
236  * ptlrpcd_check->ptlrpc_check_set().
237  */
238 void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx)
239 {
240         struct ptlrpcd_ctl *pc;
241
242         if (req->rq_reqmsg)
243                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
244
245         spin_lock(&req->rq_lock);
246         if (req->rq_invalid_rqset) {
247                 struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(5),
248                                                      back_to_sleep, NULL);
249
250                 req->rq_invalid_rqset = 0;
251                 spin_unlock(&req->rq_lock);
252                 l_wait_event(req->rq_set_waitq, (req->rq_set == NULL), &lwi);
253         } else if (req->rq_set) {
254                 /* If we have a vaid "rq_set", just reuse it to avoid double
255                  * linked. */
256                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
257                 LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);
258
259                 /* ptlrpc_check_set will decrease the count */
260                 atomic_inc(&req->rq_set->set_remaining);
261                 spin_unlock(&req->rq_lock);
262                 wake_up(&req->rq_set->set_waitq);
263                 return;
264         } else {
265                 spin_unlock(&req->rq_lock);
266         }
267
268         pc = ptlrpcd_select_pc(req, policy, idx);
269
270         DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s:%d]",
271                   req, pc->pc_name, pc->pc_index);
272
273         ptlrpc_set_add_new_req(pc, req);
274 }
275 EXPORT_SYMBOL(ptlrpcd_add_req);
276
277 static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
278 {
279         atomic_inc(&set->set_refcount);
280 }
281
282 /**
283  * Check if there is more work to do on ptlrpcd set.
284  * Returns 1 if yes.
285  */
286 static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
287 {
288         struct list_head *tmp, *pos;
289         struct ptlrpc_request *req;
290         struct ptlrpc_request_set *set = pc->pc_set;
291         int rc = 0;
292         int rc2;
293         ENTRY;
294
295         if (atomic_read(&set->set_new_count)) {
296                 spin_lock(&set->set_new_req_lock);
297                 if (likely(!list_empty(&set->set_new_requests))) {
298                         list_splice_init(&set->set_new_requests,
299                                              &set->set_requests);
300                         atomic_add(atomic_read(&set->set_new_count),
301                                    &set->set_remaining);
302                         atomic_set(&set->set_new_count, 0);
303                         /*
304                          * Need to calculate its timeout.
305                          */
306                         rc = 1;
307                 }
308                 spin_unlock(&set->set_new_req_lock);
309         }
310
311         /* We should call lu_env_refill() before handling new requests to make
312          * sure that env key the requests depending on really exists.
313          */
314         rc2 = lu_env_refill(env);
315         if (rc2 != 0) {
316                 /*
317                  * XXX This is very awkward situation, because
318                  * execution can neither continue (request
319                  * interpreters assume that env is set up), nor repeat
320                  * the loop (as this potentially results in a tight
321                  * loop of -ENOMEM's).
322                  *
323                  * Fortunately, refill only ever does something when
324                  * new modules are loaded, i.e., early during boot up.
325                  */
326                 CERROR("Failure to refill session: %d\n", rc2);
327                 RETURN(rc);
328         }
329
330         if (atomic_read(&set->set_remaining))
331                 rc |= ptlrpc_check_set(env, set);
332
333         if (!list_empty(&set->set_requests)) {
334                 /*
335                  * XXX: our set never completes, so we prune the completed
336                  * reqs after each iteration. boy could this be smarter.
337                  */
338                 list_for_each_safe(pos, tmp, &set->set_requests) {
339                         req = list_entry(pos, struct ptlrpc_request,
340                                          rq_set_chain);
341                         if (req->rq_phase != RQ_PHASE_COMPLETE)
342                                 continue;
343
344                         list_del_init(&req->rq_set_chain);
345                         req->rq_set = NULL;
346                         ptlrpc_req_finished(req);
347                 }
348         }
349
350         if (rc == 0) {
351                 /*
352                  * If new requests have been added, make sure to wake up.
353                  */
354                 rc = atomic_read(&set->set_new_count);
355
356 #ifdef __KERNEL__
357                 /* If we have nothing to do, check whether we can take some
358                  * work from our partner threads. */
359                 if (rc == 0 && pc->pc_npartners > 0) {
360                         struct ptlrpcd_ctl *partner;
361                         struct ptlrpc_request_set *ps;
362                         int first = pc->pc_cursor;
363
364                         do {
365                                 partner = pc->pc_partners[pc->pc_cursor++];
366                                 if (pc->pc_cursor >= pc->pc_npartners)
367                                         pc->pc_cursor = 0;
368                                 if (partner == NULL)
369                                         continue;
370
371                                 spin_lock(&partner->pc_lock);
372                                 ps = partner->pc_set;
373                                 if (ps == NULL) {
374                                         spin_unlock(&partner->pc_lock);
375                                         continue;
376                                 }
377
378                                 ptlrpc_reqset_get(ps);
379                                 spin_unlock(&partner->pc_lock);
380
381                                 if (atomic_read(&ps->set_new_count)) {
382                                         rc = ptlrpcd_steal_rqset(set, ps);
383                                         if (rc > 0)
384                                                 CDEBUG(D_RPCTRACE, "transfer %d"
385                                                        " async RPCs [%d->%d]\n",
386                                                        rc, partner->pc_index,
387                                                        pc->pc_index);
388                                 }
389                                 ptlrpc_reqset_put(ps);
390                         } while (rc == 0 && pc->pc_cursor != first);
391                 }
392 #endif
393         }
394
395         RETURN(rc);
396 }
397
398 #ifdef __KERNEL__
399 /**
400  * Main ptlrpcd thread.
401  * ptlrpc's code paths like to execute in process context, so we have this
402  * thread which spins on a set which contains the rpcs and sends them.
403  *
404  */
405 static int ptlrpcd(void *arg)
406 {
407         struct ptlrpcd_ctl *pc = arg;
408         struct ptlrpc_request_set *set = pc->pc_set;
409         struct lu_context ses = { 0 };
410         struct lu_env env = { .le_ses = &ses };
411         int rc, exit = 0;
412         ENTRY;
413
414         unshare_fs_struct();
415 #if defined(CONFIG_SMP)
416         if (test_bit(LIOD_BIND, &pc->pc_flags)) {
417                 int index = pc->pc_index;
418
419                 if (index >= 0 && index < num_possible_cpus()) {
420                         while (!cpu_online(index)) {
421                                 if (++index >= num_possible_cpus())
422                                         index = 0;
423                         }
424                         set_cpus_allowed_ptr(current,
425                                      cpumask_of_node(cpu_to_node(index)));
426                 }
427         }
428 #endif
429         /* Both client and server (MDT/OST) may use the environment. */
430         rc = lu_context_init(&env.le_ctx, LCT_MD_THREAD | LCT_DT_THREAD |
431                                           LCT_CL_THREAD | LCT_REMEMBER |
432                                           LCT_NOREF);
433         if (rc == 0) {
434                 rc = lu_context_init(env.le_ses,
435                                      LCT_SESSION|LCT_REMEMBER|LCT_NOREF);
436                 if (rc != 0)
437                         lu_context_fini(&env.le_ctx);
438         }
439         complete(&pc->pc_starting);
440
441         if (rc != 0)
442                 RETURN(rc);
443
444         /*
445          * This mainloop strongly resembles ptlrpc_set_wait() except that our
446          * set never completes.  ptlrpcd_check() calls ptlrpc_check_set() when
447          * there are requests in the set. New requests come in on the set's
448          * new_req_list and ptlrpcd_check() moves them into the set.
449          */
450         do {
451                 struct l_wait_info lwi;
452                 int timeout;
453
454                 timeout = ptlrpc_set_next_timeout(set);
455                 lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
456                                   ptlrpc_expired_set, set);
457
458                 lu_context_enter(&env.le_ctx);
459                 lu_context_enter(env.le_ses);
460                 l_wait_event(set->set_waitq, ptlrpcd_check(&env, pc), &lwi);
461                 lu_context_exit(&env.le_ctx);
462                 lu_context_exit(env.le_ses);
463
464                 /*
465                  * Abort inflight rpcs for forced stop case.
466                  */
467                 if (test_bit(LIOD_STOP, &pc->pc_flags)) {
468                         if (test_bit(LIOD_FORCE, &pc->pc_flags))
469                                 ptlrpc_abort_set(set);
470                         exit++;
471                 }
472
473                 /*
474                  * Let's make one more loop to make sure that ptlrpcd_check()
475                  * copied all raced new rpcs into the set so we can kill them.
476                  */
477         } while (exit < 2);
478
479         /*
480          * Wait for inflight requests to drain.
481          */
482         if (!list_empty(&set->set_requests))
483                 ptlrpc_set_wait(set);
484         lu_context_fini(&env.le_ctx);
485         lu_context_fini(env.le_ses);
486
487         complete(&pc->pc_finishing);
488
489         return 0;
490 }
491
492 /* XXX: We want multiple CPU cores to share the async RPC load. So we start many
493  *      ptlrpcd threads. We also want to reduce the ptlrpcd overhead caused by
494  *      data transfer cross-CPU cores. So we bind ptlrpcd thread to specified
495  *      CPU core. But binding all ptlrpcd threads maybe cause response delay
496  *      because of some CPU core(s) busy with other loads.
497  *
498  *      For example: "ls -l", some async RPCs for statahead are assigned to
499  *      ptlrpcd_0, and ptlrpcd_0 is bound to CPU_0, but CPU_0 may be quite busy
500  *      with other non-ptlrpcd, like "ls -l" itself (we want to the "ls -l"
501  *      thread, statahead thread, and ptlrpcd thread can run in parallel), under
502  *      such case, the statahead async RPCs can not be processed in time, it is
503  *      unexpected. If ptlrpcd_0 can be re-scheduled on other CPU core, it may
504  *      be better. But it breaks former data transfer policy.
505  *
506  *      So we shouldn't be blind for avoiding the data transfer. We make some
507  *      compromise: divide the ptlrpcd threds pool into two parts. One part is
508  *      for bound mode, each ptlrpcd thread in this part is bound to some CPU
509  *      core. The other part is for free mode, all the ptlrpcd threads in the
510  *      part can be scheduled on any CPU core. We specify some partnership
511  *      between bound mode ptlrpcd thread(s) and free mode ptlrpcd thread(s),
512  *      and the async RPC load within the partners are shared.
513  *
514  *      It can partly avoid data transfer cross-CPU (if the bound mode ptlrpcd
515  *      thread can be scheduled in time), and try to guarantee the async RPC
516  *      processed ASAP (as long as the free mode ptlrpcd thread can be scheduled
517  *      on any CPU core).
518  *
519  *      As for how to specify the partnership between bound mode ptlrpcd
520  *      thread(s) and free mode ptlrpcd thread(s), the simplest way is to use
521  *      <free bound> pair. In future, we can specify some more complex
522  *      partnership based on the patches for CPU partition. But before such
523  *      patches are available, we prefer to use the simplest one.
524  */
525 # ifdef CFS_CPU_MODE_NUMA
526 # warning "fix ptlrpcd_bind() to use new CPU partition APIs"
527 # endif
528 static int ptlrpcd_bind(int index, int max)
529 {
530         struct ptlrpcd_ctl *pc;
531         int rc = 0;
532 #if defined(CONFIG_NUMA)
533         cpumask_t mask;
534 #endif
535         ENTRY;
536
537         LASSERT(index <= max - 1);
538         pc = &ptlrpcds->pd_threads[index];
539         switch (ptlrpcd_bind_policy) {
540         case PDB_POLICY_NONE:
541                 pc->pc_npartners = -1;
542                 break;
543         case PDB_POLICY_FULL:
544                 pc->pc_npartners = 0;
545                 set_bit(LIOD_BIND, &pc->pc_flags);
546                 break;
547         case PDB_POLICY_PAIR:
548                 LASSERT(max % 2 == 0);
549                 pc->pc_npartners = 1;
550                 break;
551         case PDB_POLICY_NEIGHBOR:
552 #if defined(CONFIG_NUMA)
553         {
554                 int i;
555                 mask = *cpumask_of_node(cpu_to_node(index));
556                 for (i = max; i < num_online_cpus(); i++)
557                         cpu_clear(i, mask);
558                 pc->pc_npartners = cpus_weight(mask) - 1;
559                 set_bit(LIOD_BIND, &pc->pc_flags);
560         }
561 #else
562                 LASSERT(max >= 3);
563                 pc->pc_npartners = 2;
564 #endif
565                 break;
566         default:
567                 CERROR("unknown ptlrpcd bind policy %d\n", ptlrpcd_bind_policy);
568                 rc = -EINVAL;
569         }
570
571         if (rc == 0 && pc->pc_npartners > 0) {
572                 OBD_ALLOC(pc->pc_partners,
573                           sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
574                 if (pc->pc_partners == NULL) {
575                         pc->pc_npartners = 0;
576                         rc = -ENOMEM;
577                 } else {
578                         switch (ptlrpcd_bind_policy) {
579                         case PDB_POLICY_PAIR:
580                                 if (index & 0x1) {
581                                         set_bit(LIOD_BIND, &pc->pc_flags);
582                                         pc->pc_partners[0] = &ptlrpcds->
583                                                 pd_threads[index - 1];
584                                         ptlrpcds->pd_threads[index - 1].
585                                                 pc_partners[0] = pc;
586                                 }
587                                 break;
588                         case PDB_POLICY_NEIGHBOR:
589 #if defined(CONFIG_NUMA)
590                         {
591                                 struct ptlrpcd_ctl *ppc;
592                                 int i, pidx;
593                                 /* partners are cores in the same NUMA node.
594                                  * setup partnership only with ptlrpcd threads
595                                  * that are already initialized
596                                  */
597                                 for (pidx = 0, i = 0; i < index; i++) {
598                                         if (cpu_isset(i, mask)) {
599                                                 ppc = &ptlrpcds->pd_threads[i];
600                                                 pc->pc_partners[pidx++] = ppc;
601                                                 ppc->pc_partners[ppc->
602                                                           pc_npartners++] = pc;
603                                         }
604                                 }
605                                 /* adjust number of partners to the number
606                                  * of partnership really setup */
607                                 pc->pc_npartners = pidx;
608                         }
609 #else
610                                 if (index & 0x1)
611                                         set_bit(LIOD_BIND, &pc->pc_flags);
612                                 if (index > 0) {
613                                         pc->pc_partners[0] = &ptlrpcds->
614                                                 pd_threads[index - 1];
615                                         ptlrpcds->pd_threads[index - 1].
616                                                 pc_partners[1] = pc;
617                                         if (index == max - 1) {
618                                                 pc->pc_partners[1] =
619                                                 &ptlrpcds->pd_threads[0];
620                                                 ptlrpcds->pd_threads[0].
621                                                 pc_partners[0] = pc;
622                                         }
623                                 }
624 #endif
625                                 break;
626                         }
627                 }
628         }
629
630         RETURN(rc);
631 }
632
633 #else /* !__KERNEL__ */
634
635 /**
636  * In liblustre we do not have separate threads, so this function
637  * is called from time to time all across common code to see
638  * if something needs to be processed on ptlrpcd set.
639  */
640 int ptlrpcd_check_async_rpcs(void *arg)
641 {
642         struct ptlrpcd_ctl *pc = arg;
643         int                 rc = 0;
644
645         /*
646          * Single threaded!!
647          */
648         pc->pc_recurred++;
649
650         if (pc->pc_recurred == 1) {
651                 rc = lu_env_refill(&pc->pc_env);
652                 if (rc == 0) {
653                         lu_context_enter(&pc->pc_env.le_ctx);
654                         rc = ptlrpcd_check(&pc->pc_env, pc);
655                         if (!rc)
656                                 ptlrpc_expired_set(pc->pc_set);
657                         /*
658                          * XXX: send replay requests.
659                          */
660                         if (test_bit(LIOD_RECOVERY, &pc->pc_flags))
661                                 rc = ptlrpcd_check(&pc->pc_env, pc);
662                         lu_context_exit(&pc->pc_env.le_ctx);
663                 }
664         }
665
666         pc->pc_recurred--;
667         return rc;
668 }
669
670 int ptlrpcd_idle(void *arg)
671 {
672         struct ptlrpcd_ctl *pc = arg;
673
674         return (atomic_read(&pc->pc_set->set_new_count) == 0 &&
675                 atomic_read(&pc->pc_set->set_remaining) == 0);
676 }
677
678 #endif
679
680 int ptlrpcd_start(int index, int max, const char *name, struct ptlrpcd_ctl *pc)
681 {
682         int rc;
683         ENTRY;
684
685         /*
686          * Do not allow start second thread for one pc.
687          */
688         if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
689                 CWARN("Starting second thread (%s) for same pc %p\n",
690                       name, pc);
691                 RETURN(0);
692         }
693
694         pc->pc_index = index;
695         init_completion(&pc->pc_starting);
696         init_completion(&pc->pc_finishing);
697         spin_lock_init(&pc->pc_lock);
698         strlcpy(pc->pc_name, name, sizeof(pc->pc_name));
699         pc->pc_set = ptlrpc_prep_set();
700         if (pc->pc_set == NULL)
701                 GOTO(out, rc = -ENOMEM);
702
703 #ifndef __KERNEL__
704         pc->pc_wait_callback =
705                 liblustre_register_wait_callback("ptlrpcd_check_async_rpcs",
706                                                  &ptlrpcd_check_async_rpcs, pc);
707         pc->pc_idle_callback =
708                 liblustre_register_idle_callback("ptlrpcd_check_idle_rpcs",
709                                                  &ptlrpcd_idle, pc);
710         RETURN(0);
711 #else
712         /*
713          * So far only "client" ptlrpcd uses an environment. In the future,
714          * ptlrpcd thread (or a thread-set) has to be given an argument,
715          * describing its "scope".
716          */
717         rc = lu_context_init(&pc->pc_env.le_ctx, LCT_CL_THREAD|LCT_REMEMBER);
718         if (rc != 0)
719                 GOTO(out_set, rc);
720
721         {
722                 struct task_struct *task;
723                 if (index >= 0) {
724                         rc = ptlrpcd_bind(index, max);
725                         if (rc < 0)
726                                 GOTO(out_env, rc);
727                 }
728
729                 task = kthread_run(ptlrpcd, pc, pc->pc_name);
730                 if (IS_ERR(task))
731                         GOTO(out_env, rc = PTR_ERR(task));
732
733                 wait_for_completion(&pc->pc_starting);
734         }
735         RETURN(0);
736
737 out_env:
738         lu_context_fini(&pc->pc_env.le_ctx);
739
740 out_set:
741         if (pc->pc_set != NULL) {
742                 struct ptlrpc_request_set *set = pc->pc_set;
743
744                 spin_lock(&pc->pc_lock);
745                 pc->pc_set = NULL;
746                 spin_unlock(&pc->pc_lock);
747                 ptlrpc_set_destroy(set);
748         }
749         clear_bit(LIOD_BIND, &pc->pc_flags);
750 #endif
751 out:
752         clear_bit(LIOD_START, &pc->pc_flags);
753         RETURN(rc);
754 }
755
756 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
757 {
758         ENTRY;
759
760         if (!test_bit(LIOD_START, &pc->pc_flags)) {
761                 CWARN("Thread for pc %p was not started\n", pc);
762                 goto out;
763         }
764
765         set_bit(LIOD_STOP, &pc->pc_flags);
766         if (force)
767                 set_bit(LIOD_FORCE, &pc->pc_flags);
768         wake_up(&pc->pc_set->set_waitq);
769
770 out:
771         EXIT;
772 }
773
774 void ptlrpcd_free(struct ptlrpcd_ctl *pc)
775 {
776         struct ptlrpc_request_set *set = pc->pc_set;
777         ENTRY;
778
779         if (!test_bit(LIOD_START, &pc->pc_flags)) {
780                 CWARN("Thread for pc %p was not started\n", pc);
781                 goto out;
782         }
783
784 #ifdef __KERNEL__
785         wait_for_completion(&pc->pc_finishing);
786 #else
787         liblustre_deregister_wait_callback(pc->pc_wait_callback);
788         liblustre_deregister_idle_callback(pc->pc_idle_callback);
789 #endif
790         lu_context_fini(&pc->pc_env.le_ctx);
791
792         spin_lock(&pc->pc_lock);
793         pc->pc_set = NULL;
794         spin_unlock(&pc->pc_lock);
795         ptlrpc_set_destroy(set);
796
797         clear_bit(LIOD_START, &pc->pc_flags);
798         clear_bit(LIOD_STOP, &pc->pc_flags);
799         clear_bit(LIOD_FORCE, &pc->pc_flags);
800         clear_bit(LIOD_BIND, &pc->pc_flags);
801
802 out:
803 #ifdef __KERNEL__
804         if (pc->pc_npartners > 0) {
805                 LASSERT(pc->pc_partners != NULL);
806
807                 OBD_FREE(pc->pc_partners,
808                          sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
809                 pc->pc_partners = NULL;
810         }
811         pc->pc_npartners = 0;
812 #endif
813         EXIT;
814 }
815
816 static void ptlrpcd_fini(void)
817 {
818         int i;
819         ENTRY;
820
821         if (ptlrpcds != NULL) {
822                 for (i = 0; i < ptlrpcds->pd_nthreads; i++)
823                         ptlrpcd_stop(&ptlrpcds->pd_threads[i], 0);
824                 for (i = 0; i < ptlrpcds->pd_nthreads; i++)
825                         ptlrpcd_free(&ptlrpcds->pd_threads[i]);
826                 ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0);
827                 ptlrpcd_free(&ptlrpcds->pd_thread_rcv);
828                 OBD_FREE(ptlrpcds, ptlrpcds->pd_size);
829                 ptlrpcds = NULL;
830         }
831
832         EXIT;
833 }
834
835 static int ptlrpcd_init(void)
836 {
837         int     nthreads = num_online_cpus();
838         char    name[16];
839         int     size, i = -1, j, rc = 0;
840         ENTRY;
841
842 #ifdef __KERNEL__
843         if (max_ptlrpcds > 0 && max_ptlrpcds < nthreads)
844                 nthreads = max_ptlrpcds;
845         if (nthreads < 2)
846                 nthreads = 2;
847         if (nthreads < 3 && ptlrpcd_bind_policy == PDB_POLICY_NEIGHBOR)
848                 ptlrpcd_bind_policy = PDB_POLICY_PAIR;
849         else if (nthreads % 2 != 0 && ptlrpcd_bind_policy == PDB_POLICY_PAIR)
850                 nthreads &= ~1; /* make sure it is even */
851 #else
852         nthreads = 1;
853 #endif
854
855         size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
856         OBD_ALLOC(ptlrpcds, size);
857         if (ptlrpcds == NULL)
858                 GOTO(out, rc = -ENOMEM);
859
860         snprintf(name, 15, "ptlrpcd_rcv");
861         set_bit(LIOD_RECOVERY, &ptlrpcds->pd_thread_rcv.pc_flags);
862         rc = ptlrpcd_start(-1, nthreads, name, &ptlrpcds->pd_thread_rcv);
863         if (rc < 0)
864                 GOTO(out, rc);
865
866         /* XXX: We start nthreads ptlrpc daemons. Each of them can process any
867          *      non-recovery async RPC to improve overall async RPC efficiency.
868          *
869          *      But there are some issues with async I/O RPCs and async non-I/O
870          *      RPCs processed in the same set under some cases. The ptlrpcd may
871          *      be blocked by some async I/O RPC(s), then will cause other async
872          *      non-I/O RPC(s) can not be processed in time.
873          *
874          *      Maybe we should distinguish blocked async RPCs from non-blocked
875          *      async RPCs, and process them in different ptlrpcd sets to avoid
876          *      unnecessary dependency. But how to distribute async RPCs load
877          *      among all the ptlrpc daemons becomes another trouble. */
878         for (i = 0; i < nthreads; i++) {
879                 snprintf(name, 15, "ptlrpcd_%d", i);
880                 rc = ptlrpcd_start(i, nthreads, name, &ptlrpcds->pd_threads[i]);
881                 if (rc < 0)
882                         GOTO(out, rc);
883         }
884
885         ptlrpcds->pd_size = size;
886         ptlrpcds->pd_index = 0;
887         ptlrpcds->pd_nthreads = nthreads;
888
889 out:
890         if (rc != 0 && ptlrpcds != NULL) {
891                 for (j = 0; j <= i; j++)
892                         ptlrpcd_stop(&ptlrpcds->pd_threads[j], 0);
893                 for (j = 0; j <= i; j++)
894                         ptlrpcd_free(&ptlrpcds->pd_threads[j]);
895                 ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0);
896                 ptlrpcd_free(&ptlrpcds->pd_thread_rcv);
897                 OBD_FREE(ptlrpcds, size);
898                 ptlrpcds = NULL;
899         }
900
901         RETURN(rc);
902 }
903
904 int ptlrpcd_addref(void)
905 {
906         int rc = 0;
907         ENTRY;
908
909         mutex_lock(&ptlrpcd_mutex);
910         if (++ptlrpcd_users == 1) {
911                 rc = ptlrpcd_init();
912                 if (rc < 0)
913                         ptlrpcd_users--;
914         }
915         mutex_unlock(&ptlrpcd_mutex);
916         RETURN(rc);
917 }
918 EXPORT_SYMBOL(ptlrpcd_addref);
919
920 void ptlrpcd_decref(void)
921 {
922         mutex_lock(&ptlrpcd_mutex);
923         if (--ptlrpcd_users == 0)
924                 ptlrpcd_fini();
925         mutex_unlock(&ptlrpcd_mutex);
926 }
927 EXPORT_SYMBOL(ptlrpcd_decref);
928 /** @} ptlrpcd */