Whamcloud - gitweb
LU-7243 misc: update Intel copyright messages 2015
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2015, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/pack_generic.c
37  *
38  * (Un)packing of OST requests
39  *
40  * Author: Peter J. Braam <braam@clusterfs.com>
41  * Author: Phil Schwan <phil@clusterfs.com>
42  * Author: Eric Barton <eeb@clusterfs.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_RPC
46
47 #include <libcfs/libcfs.h>
48
49 #include <obd_support.h>
50 #include <obd_class.h>
51 #include <lustre_net.h>
52 #include <obd_cksum.h>
53 #include <lustre/ll_fiemap.h>
54
55 #include "ptlrpc_internal.h"
56
57 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
58 {
59         return cfs_size_round(offsetof(struct lustre_msg_v2,
60                                        lm_buflens[count]));
61 }
62
63 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
64 {
65         switch (magic) {
66         case LUSTRE_MSG_MAGIC_V2:
67                 return lustre_msg_hdr_size_v2(count);
68         default:
69                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
70                 return 0;
71         }
72 }
73
74 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
75                             __u32 index)
76 {
77         if (inout)
78                 lustre_set_req_swabbed(req, index);
79         else
80                 lustre_set_rep_swabbed(req, index);
81 }
82
83 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
84                          __u32 index)
85 {
86         if (inout)
87                 return (ptlrpc_req_need_swab(req) &&
88                         !lustre_req_swabbed(req, index));
89         else
90                 return (ptlrpc_rep_need_swab(req) &&
91                         !lustre_rep_swabbed(req, index));
92 }
93
94 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
95                                                 __u32 version)
96 {
97         __u32 ver = lustre_msg_get_version(msg);
98         return (ver & LUSTRE_VERSION_MASK) != version;
99 }
100
101 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version)
102 {
103 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
104         switch (msg->lm_magic) {
105         case LUSTRE_MSG_MAGIC_V1:
106                 CERROR("msg v1 not supported - please upgrade you system\n");
107                 return -EINVAL;
108         case LUSTRE_MSG_MAGIC_V2:
109                 return lustre_msg_check_version_v2(msg, version);
110         default:
111                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
112                 return -EPROTO;
113         }
114 #undef LUSTRE_MSG_MAGIC_V1
115 }
116
117 /* early reply size */
118 __u32 lustre_msg_early_size()
119 {
120         static __u32 size;
121         if (!size) {
122                 /* Always reply old ptlrpc_body_v2 to keep interoprability
123                  * with the old client (< 2.3) which doesn't have pb_jobid
124                  * in the ptlrpc_body.
125                  *
126                  * XXX Remove this whenever we dorp interoprability with such
127                  *     client.
128                  */
129                 __u32 pblen = sizeof(struct ptlrpc_body_v2);
130                 size = lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
131         }
132         return size;
133 }
134 EXPORT_SYMBOL(lustre_msg_early_size);
135
136 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
137 {
138         __u32 size;
139         int i;
140
141         size = lustre_msg_hdr_size_v2(count);
142         for (i = 0; i < count; i++)
143                 size += cfs_size_round(lengths[i]);
144
145         return size;
146 }
147 EXPORT_SYMBOL(lustre_msg_size_v2);
148
149 /* This returns the size of the buffer that is required to hold a lustre_msg
150  * with the given sub-buffer lengths.
151  * NOTE: this should only be used for NEW requests, and should always be
152  *       in the form of a v2 request.  If this is a connection to a v1
153  *       target then the first buffer will be stripped because the ptlrpc
154  *       data is part of the lustre_msg_v1 header. b=14043 */
155 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
156 {
157         __u32 size[] = { sizeof(struct ptlrpc_body) };
158
159         if (!lens) {
160                 LASSERT(count == 1);
161                 lens = size;
162         }
163
164         LASSERT(count > 0);
165         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
166
167         switch (magic) {
168         case LUSTRE_MSG_MAGIC_V2:
169                 return lustre_msg_size_v2(count, lens);
170         default:
171                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
172                 return 0;
173         }
174 }
175
176 /* This is used to determine the size of a buffer that was already packed
177  * and will correctly handle the different message formats. */
178 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
179 {
180         switch (msg->lm_magic) {
181         case LUSTRE_MSG_MAGIC_V2:
182                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
183         default:
184                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
185                 return 0;
186         }
187 }
188
189 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
190                         char **bufs)
191 {
192         char *ptr;
193         int i;
194
195         msg->lm_bufcount = count;
196         /* XXX: lm_secflvr uninitialized here */
197         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
198
199         for (i = 0; i < count; i++)
200                 msg->lm_buflens[i] = lens[i];
201
202         if (bufs == NULL)
203                 return;
204
205         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
206         for (i = 0; i < count; i++) {
207                 char *tmp = bufs[i];
208                 LOGL(tmp, lens[i], ptr);
209         }
210 }
211 EXPORT_SYMBOL(lustre_init_msg_v2);
212
213 static int lustre_pack_request_v2(struct ptlrpc_request *req,
214                                   int count, __u32 *lens, char **bufs)
215 {
216         int reqlen, rc;
217
218         reqlen = lustre_msg_size_v2(count, lens);
219
220         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
221         if (rc)
222                 return rc;
223
224         req->rq_reqlen = reqlen;
225
226         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
227         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
228         return 0;
229 }
230
231 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
232                         __u32 *lens, char **bufs)
233 {
234         __u32 size[] = { sizeof(struct ptlrpc_body) };
235
236         if (!lens) {
237                 LASSERT(count == 1);
238                 lens = size;
239         }
240
241         LASSERT(count > 0);
242         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
243
244         /* only use new format, we don't need to be compatible with 1.4 */
245         magic = LUSTRE_MSG_MAGIC_V2;
246
247         switch (magic) {
248         case LUSTRE_MSG_MAGIC_V2:
249                 return lustre_pack_request_v2(req, count, lens, bufs);
250         default:
251                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
252                 return -EINVAL;
253         }
254 }
255
256 #if RS_DEBUG
257 struct list_head ptlrpc_rs_debug_lru =
258         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
259 spinlock_t ptlrpc_rs_debug_lock;
260
261 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
262 do {                                                                    \
263         spin_lock(&ptlrpc_rs_debug_lock);                               \
264         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
265         spin_unlock(&ptlrpc_rs_debug_lock);                             \
266 } while (0)
267
268 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
269 do {                                                                    \
270         spin_lock(&ptlrpc_rs_debug_lock);                               \
271         list_del(&(rs)->rs_debug_list);                         \
272         spin_unlock(&ptlrpc_rs_debug_lock);                             \
273 } while (0)
274 #else
275 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
276 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
277 #endif
278
279 struct ptlrpc_reply_state *
280 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
281 {
282         struct ptlrpc_reply_state *rs = NULL;
283
284         spin_lock(&svcpt->scp_rep_lock);
285
286         /* See if we have anything in a pool, and wait if nothing */
287         while (list_empty(&svcpt->scp_rep_idle)) {
288                 struct l_wait_info      lwi;
289                 int                     rc;
290
291                 spin_unlock(&svcpt->scp_rep_lock);
292                 /* If we cannot get anything for some long time, we better
293                  * bail out instead of waiting infinitely */
294                 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
295                 rc = l_wait_event(svcpt->scp_rep_waitq,
296                                   !list_empty(&svcpt->scp_rep_idle), &lwi);
297                 if (rc != 0)
298                         goto out;
299                 spin_lock(&svcpt->scp_rep_lock);
300         }
301
302         rs = list_entry(svcpt->scp_rep_idle.next,
303                             struct ptlrpc_reply_state, rs_list);
304         list_del(&rs->rs_list);
305
306         spin_unlock(&svcpt->scp_rep_lock);
307
308         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
309         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
310         rs->rs_svcpt = svcpt;
311         rs->rs_prealloc = 1;
312 out:
313         return rs;
314 }
315
316 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
317 {
318         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
319
320         spin_lock(&svcpt->scp_rep_lock);
321         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
322         spin_unlock(&svcpt->scp_rep_lock);
323         wake_up(&svcpt->scp_rep_waitq);
324 }
325
326 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
327                          __u32 *lens, char **bufs, int flags)
328 {
329         struct ptlrpc_reply_state *rs;
330         int                        msg_len, rc;
331         ENTRY;
332
333         LASSERT(req->rq_reply_state == NULL);
334
335         if ((flags & LPRFL_EARLY_REPLY) == 0) {
336                 spin_lock(&req->rq_lock);
337                 req->rq_packed_final = 1;
338                 spin_unlock(&req->rq_lock);
339         }
340
341         msg_len = lustre_msg_size_v2(count, lens);
342         rc = sptlrpc_svc_alloc_rs(req, msg_len);
343         if (rc)
344                 RETURN(rc);
345
346         rs = req->rq_reply_state;
347         atomic_set(&rs->rs_refcount, 1);        /* 1 ref for rq_reply_state */
348         rs->rs_cb_id.cbid_fn = reply_out_callback;
349         rs->rs_cb_id.cbid_arg = rs;
350         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
351         INIT_LIST_HEAD(&rs->rs_exp_list);
352         INIT_LIST_HEAD(&rs->rs_obd_list);
353         INIT_LIST_HEAD(&rs->rs_list);
354         spin_lock_init(&rs->rs_lock);
355
356         req->rq_replen = msg_len;
357         req->rq_reply_state = rs;
358         req->rq_repmsg = rs->rs_msg;
359
360         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
361         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
362
363         PTLRPC_RS_DEBUG_LRU_ADD(rs);
364
365         RETURN(0);
366 }
367 EXPORT_SYMBOL(lustre_pack_reply_v2);
368
369 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
370                             char **bufs, int flags)
371 {
372         int rc = 0;
373         __u32 size[] = { sizeof(struct ptlrpc_body) };
374
375         if (!lens) {
376                 LASSERT(count == 1);
377                 lens = size;
378         }
379
380         LASSERT(count > 0);
381         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
382
383         switch (req->rq_reqmsg->lm_magic) {
384         case LUSTRE_MSG_MAGIC_V2:
385                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
386                 break;
387         default:
388                 LASSERTF(0, "incorrect message magic: %08x\n",
389                          req->rq_reqmsg->lm_magic);
390                 rc = -EINVAL;
391         }
392         if (rc != 0)
393                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
394                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
395         return rc;
396 }
397
398 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
399                       char **bufs)
400 {
401         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
402 }
403 EXPORT_SYMBOL(lustre_pack_reply);
404
405 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
406 {
407         __u32 i, offset, buflen, bufcount;
408
409         LASSERT(m != NULL);
410
411         bufcount = m->lm_bufcount;
412         if (unlikely(n >= bufcount)) {
413                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
414                        m, n, bufcount);
415                 return NULL;
416         }
417
418         buflen = m->lm_buflens[n];
419         if (unlikely(buflen < min_size)) {
420                 CERROR("msg %p buffer[%d] size %d too small "
421                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
422                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
423                 return NULL;
424         }
425
426         offset = lustre_msg_hdr_size_v2(bufcount);
427         for (i = 0; i < n; i++)
428                 offset += cfs_size_round(m->lm_buflens[i]);
429
430         return (char *)m + offset;
431 }
432
433 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
434 {
435         switch (m->lm_magic) {
436         case LUSTRE_MSG_MAGIC_V2:
437                 return lustre_msg_buf_v2(m, n, min_size);
438         default:
439                 LASSERTF(0, "incorrect message magic: %08x (msg:%p)\n",
440                          m->lm_magic, m);
441                 return NULL;
442         }
443 }
444 EXPORT_SYMBOL(lustre_msg_buf);
445
446 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
447                                 unsigned int newlen, int move_data)
448 {
449         char   *tail = NULL, *newpos;
450         int     tail_len = 0, n;
451
452         LASSERT(msg);
453         LASSERT(msg->lm_bufcount > segment);
454         LASSERT(msg->lm_buflens[segment] >= newlen);
455
456         if (msg->lm_buflens[segment] == newlen)
457                 goto out;
458
459         if (move_data && msg->lm_bufcount > segment + 1) {
460                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
461                 for (n = segment + 1; n < msg->lm_bufcount; n++)
462                         tail_len += cfs_size_round(msg->lm_buflens[n]);
463         }
464
465         msg->lm_buflens[segment] = newlen;
466
467         if (tail && tail_len) {
468                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
469                 LASSERT(newpos <= tail);
470                 if (newpos != tail)
471                         memmove(newpos, tail, tail_len);
472         }
473 out:
474         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
475 }
476
477 /*
478  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
479  * we also move data forward from @segment + 1.
480  *
481  * if @newlen == 0, we remove the segment completely, but we still keep the
482  * totally bufcount the same to save possible data moving. this will leave a
483  * unused segment with size 0 at the tail, but that's ok.
484  *
485  * return new msg size after shrinking.
486  *
487  * CAUTION:
488  * + if any buffers higher than @segment has been filled in, must call shrink
489  *   with non-zero @move_data.
490  * + caller should NOT keep pointers to msg buffers which higher than @segment
491  *   after call shrink.
492  */
493 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
494                       unsigned int newlen, int move_data)
495 {
496         switch (msg->lm_magic) {
497         case LUSTRE_MSG_MAGIC_V2:
498                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
499         default:
500                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
501         }
502 }
503 EXPORT_SYMBOL(lustre_shrink_msg);
504
505 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
506 {
507         PTLRPC_RS_DEBUG_LRU_DEL(rs);
508
509         LASSERT(atomic_read(&rs->rs_refcount) == 0);
510         LASSERT(!rs->rs_difficult || rs->rs_handled);
511         LASSERT(!rs->rs_on_net);
512         LASSERT(!rs->rs_scheduled);
513         LASSERT(rs->rs_export == NULL);
514         LASSERT(rs->rs_nlocks == 0);
515         LASSERT(list_empty(&rs->rs_exp_list));
516         LASSERT(list_empty(&rs->rs_obd_list));
517
518         sptlrpc_svc_free_rs(rs);
519 }
520
521 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
522 {
523         int swabbed, required_len, i;
524
525         /* Now we know the sender speaks my language. */
526         required_len = lustre_msg_hdr_size_v2(0);
527         if (len < required_len) {
528                 /* can't even look inside the message */
529                 CERROR("message length %d too small for lustre_msg\n", len);
530                 return -EINVAL;
531         }
532
533         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
534
535         if (swabbed) {
536                 __swab32s(&m->lm_magic);
537                 __swab32s(&m->lm_bufcount);
538                 __swab32s(&m->lm_secflvr);
539                 __swab32s(&m->lm_repsize);
540                 __swab32s(&m->lm_cksum);
541                 __swab32s(&m->lm_flags);
542                 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
543                 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
544         }
545
546         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
547         if (len < required_len) {
548                 /* didn't receive all the buffer lengths */
549                 CERROR ("message length %d too small for %d buflens\n",
550                         len, m->lm_bufcount);
551                 return -EINVAL;
552         }
553
554         for (i = 0; i < m->lm_bufcount; i++) {
555                 if (swabbed)
556                         __swab32s(&m->lm_buflens[i]);
557                 required_len += cfs_size_round(m->lm_buflens[i]);
558         }
559
560         if (len < required_len) {
561                 CERROR("len: %d, required_len %d\n", len, required_len);
562                 CERROR("bufcount: %d\n", m->lm_bufcount);
563                 for (i = 0; i < m->lm_bufcount; i++)
564                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
565                 return -EINVAL;
566         }
567
568         return swabbed;
569 }
570
571 int __lustre_unpack_msg(struct lustre_msg *m, int len)
572 {
573         int required_len, rc;
574         ENTRY;
575
576         /* We can provide a slightly better error log, if we check the
577          * message magic and version first.  In the future, struct
578          * lustre_msg may grow, and we'd like to log a version mismatch,
579          * rather than a short message.
580          *
581          */
582         required_len = offsetof(struct lustre_msg, lm_magic) +
583                        sizeof(m->lm_magic);
584         if (len < required_len) {
585                 /* can't even look inside the message */
586                 CERROR("message length %d too small for magic/version check\n",
587                        len);
588                 RETURN(-EINVAL);
589         }
590
591         rc = lustre_unpack_msg_v2(m, len);
592
593         RETURN(rc);
594 }
595 EXPORT_SYMBOL(__lustre_unpack_msg);
596
597 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
598 {
599         int rc;
600         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
601         if (rc == 1) {
602                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
603                 rc = 0;
604         }
605         return rc;
606 }
607
608 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
609 {
610         int rc;
611         rc = __lustre_unpack_msg(req->rq_repmsg, len);
612         if (rc == 1) {
613                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
614                 rc = 0;
615         }
616         return rc;
617 }
618
619 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
620                                                const int inout, int offset)
621 {
622         struct ptlrpc_body *pb;
623         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
624
625         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
626         if (!pb) {
627                 CERROR("error unpacking ptlrpc body\n");
628                 return -EFAULT;
629         }
630         if (ptlrpc_buf_need_swab(req, inout, offset)) {
631                 lustre_swab_ptlrpc_body(pb);
632                 ptlrpc_buf_set_swabbed(req, inout, offset);
633         }
634
635         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
636                  CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
637                  return -EINVAL;
638         }
639
640         if (!inout)
641                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
642
643         return 0;
644 }
645
646 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
647 {
648         switch (req->rq_reqmsg->lm_magic) {
649         case LUSTRE_MSG_MAGIC_V2:
650                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
651         default:
652                 CERROR("bad lustre msg magic: %08x\n",
653                        req->rq_reqmsg->lm_magic);
654                 return -EINVAL;
655         }
656 }
657
658 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
659 {
660         switch (req->rq_repmsg->lm_magic) {
661         case LUSTRE_MSG_MAGIC_V2:
662                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
663         default:
664                 CERROR("bad lustre msg magic: %08x\n",
665                        req->rq_repmsg->lm_magic);
666                 return -EINVAL;
667         }
668 }
669
670 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
671 {
672         if (n >= m->lm_bufcount)
673                 return 0;
674
675         return m->lm_buflens[n];
676 }
677
678 /**
679  * lustre_msg_buflen - return the length of buffer \a n in message \a m
680  * \param m lustre_msg (request or reply) to look at
681  * \param n message index (base 0)
682  *
683  * returns zero for non-existent message indices
684  */
685 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
686 {
687         switch (m->lm_magic) {
688         case LUSTRE_MSG_MAGIC_V2:
689                 return lustre_msg_buflen_v2(m, n);
690         default:
691                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
692                 return 0;
693         }
694 }
695 EXPORT_SYMBOL(lustre_msg_buflen);
696
697 static inline void
698 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
699 {
700         if (n >= m->lm_bufcount)
701                 LBUG();
702
703         m->lm_buflens[n] = len;
704 }
705
706 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
707 {
708         switch (m->lm_magic) {
709         case LUSTRE_MSG_MAGIC_V2:
710                 lustre_msg_set_buflen_v2(m, n, len);
711                 return;
712         default:
713                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
714         }
715 }
716
717 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
718  * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
719 __u32 lustre_msg_bufcount(struct lustre_msg *m)
720 {
721         switch (m->lm_magic) {
722         case LUSTRE_MSG_MAGIC_V2:
723                 return m->lm_bufcount;
724         default:
725                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
726                 return 0;
727         }
728 }
729
730 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
731 {
732         /* max_len == 0 means the string should fill the buffer */
733         char *str;
734         __u32 slen, blen;
735
736         switch (m->lm_magic) {
737         case LUSTRE_MSG_MAGIC_V2:
738                 str = lustre_msg_buf_v2(m, index, 0);
739                 blen = lustre_msg_buflen_v2(m, index);
740                 break;
741         default:
742                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
743         }
744
745         if (str == NULL) {
746                 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
747                 return NULL;
748         }
749
750         slen = strnlen(str, blen);
751
752         if (slen == blen) {                     /* not NULL terminated */
753                 CERROR("can't unpack non-NULL terminated string in "
754                         "msg %p buffer[%d] len %d\n", m, index, blen);
755                 return NULL;
756         }
757
758         if (max_len == 0) {
759                 if (slen != blen - 1) {
760                         CERROR("can't unpack short string in msg %p "
761                                "buffer[%d] len %d: strlen %d\n",
762                                m, index, blen, slen);
763                         return NULL;
764                 }
765         } else if (slen > max_len) {
766                 CERROR("can't unpack oversized string in msg %p "
767                        "buffer[%d] len %d strlen %d: max %d expected\n",
768                        m, index, blen, slen, max_len);
769                 return NULL;
770         }
771
772         return str;
773 }
774
775 /* Wrap up the normal fixed length cases */
776 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
777                                       __u32 min_size, void *swabber)
778 {
779         void *ptr = NULL;
780
781         LASSERT(msg != NULL);
782         switch (msg->lm_magic) {
783         case LUSTRE_MSG_MAGIC_V2:
784                 ptr = lustre_msg_buf_v2(msg, index, min_size);
785                 break;
786         default:
787                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
788         }
789
790         if (ptr != NULL && swabber != NULL)
791                 ((void (*)(void *))swabber)(ptr);
792
793         return ptr;
794 }
795
796 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
797 {
798         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
799                                  sizeof(struct ptlrpc_body_v2));
800 }
801
802 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg)
803 {
804         switch (msg->lm_magic) {
805         case LUSTRE_MSG_MAGIC_V2:
806                 /* already in host endian */
807                 return msg->lm_flags;
808         default:
809                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
810                 return 0;
811         }
812 }
813 EXPORT_SYMBOL(lustre_msghdr_get_flags);
814
815 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
816 {
817         switch (msg->lm_magic) {
818         case LUSTRE_MSG_MAGIC_V2:
819                 msg->lm_flags = flags;
820                 return;
821         default:
822                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
823         }
824 }
825
826 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
827 {
828         switch (msg->lm_magic) {
829         case LUSTRE_MSG_MAGIC_V2: {
830                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
831                 if (pb != NULL)
832                         return pb->pb_flags;
833
834                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
835         }
836         /* no break */
837         default:
838                 /* flags might be printed in debug code while message
839                  * uninitialized */
840                 return 0;
841         }
842 }
843 EXPORT_SYMBOL(lustre_msg_get_flags);
844
845 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
846 {
847         switch (msg->lm_magic) {
848         case LUSTRE_MSG_MAGIC_V2: {
849                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
850                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
851                 pb->pb_flags |= flags;
852                 return;
853         }
854         default:
855                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
856         }
857 }
858 EXPORT_SYMBOL(lustre_msg_add_flags);
859
860 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
861 {
862         switch (msg->lm_magic) {
863         case LUSTRE_MSG_MAGIC_V2: {
864                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
865                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
866                 pb->pb_flags = flags;
867                 return;
868         }
869         default:
870                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
871         }
872 }
873
874 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
875 {
876         switch (msg->lm_magic) {
877         case LUSTRE_MSG_MAGIC_V2: {
878                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
879                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
880                 pb->pb_flags &= ~(MSG_GEN_FLAG_MASK & flags);
881                 return;
882         }
883         default:
884                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
885         }
886 }
887 EXPORT_SYMBOL(lustre_msg_clear_flags);
888
889 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
890 {
891         switch (msg->lm_magic) {
892         case LUSTRE_MSG_MAGIC_V2: {
893                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
894                 if (pb != NULL)
895                         return pb->pb_op_flags;
896
897                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
898         }
899         /* no break */
900         default:
901                 return 0;
902         }
903 }
904
905 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
906 {
907         switch (msg->lm_magic) {
908         case LUSTRE_MSG_MAGIC_V2: {
909                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
910                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
911                 pb->pb_op_flags |= flags;
912                 return;
913         }
914         default:
915                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
916         }
917 }
918 EXPORT_SYMBOL(lustre_msg_add_op_flags);
919
920 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
921 {
922         switch (msg->lm_magic) {
923         case LUSTRE_MSG_MAGIC_V2: {
924                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
925                 if (pb == NULL) {
926                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
927                         return NULL;
928                 }
929                 return &pb->pb_handle;
930         }
931         default:
932                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
933                 return NULL;
934         }
935 }
936
937 __u32 lustre_msg_get_type(struct lustre_msg *msg)
938 {
939         switch (msg->lm_magic) {
940         case LUSTRE_MSG_MAGIC_V2: {
941                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
942                 if (pb == NULL) {
943                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
944                         return PTL_RPC_MSG_ERR;
945                 }
946                 return pb->pb_type;
947         }
948         default:
949                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
950                 return PTL_RPC_MSG_ERR;
951         }
952 }
953 EXPORT_SYMBOL(lustre_msg_get_type);
954
955 __u32 lustre_msg_get_version(struct lustre_msg *msg)
956 {
957         switch (msg->lm_magic) {
958         case LUSTRE_MSG_MAGIC_V2: {
959                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
960                 if (pb == NULL) {
961                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
962                         return 0;
963                 }
964                 return pb->pb_version;
965         }
966         default:
967                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
968                 return 0;
969         }
970 }
971
972 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
973 {
974         switch (msg->lm_magic) {
975         case LUSTRE_MSG_MAGIC_V2: {
976                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
977                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
978                 pb->pb_version |= version;
979                 return;
980         }
981         default:
982                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
983         }
984 }
985
986 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
987 {
988         switch (msg->lm_magic) {
989         case LUSTRE_MSG_MAGIC_V2: {
990                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
991                 if (pb == NULL) {
992                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
993                         return 0;
994                 }
995                 return pb->pb_opc;
996         }
997         default:
998                 CERROR("incorrect message magic: %08x (msg:%p)\n",
999                        msg->lm_magic, msg);
1000                 return 0;
1001         }
1002 }
1003 EXPORT_SYMBOL(lustre_msg_get_opc);
1004
1005 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1006 {
1007         switch (msg->lm_magic) {
1008         case LUSTRE_MSG_MAGIC_V2: {
1009                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1010                 if (pb == NULL) {
1011                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1012                         return 0;
1013                 }
1014                 return pb->pb_last_xid;
1015         }
1016         default:
1017                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1018                 return 0;
1019         }
1020 }
1021 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1022
1023 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1024 {
1025         switch (msg->lm_magic) {
1026         case LUSTRE_MSG_MAGIC_V2: {
1027                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1028                 if (!pb) {
1029                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1030                         return 0;
1031                 }
1032                 return pb->pb_tag;
1033         }
1034         default:
1035                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1036                 return 0;
1037         }
1038 }
1039 EXPORT_SYMBOL(lustre_msg_get_tag);
1040
1041 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1042 {
1043         switch (msg->lm_magic) {
1044         case LUSTRE_MSG_MAGIC_V2: {
1045                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1046                 if (pb == NULL) {
1047                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1048                         return 0;
1049                 }
1050                 return pb->pb_last_committed;
1051         }
1052         default:
1053                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1054                 return 0;
1055         }
1056 }
1057 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1058
1059 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1060 {
1061         switch (msg->lm_magic) {
1062         case LUSTRE_MSG_MAGIC_V2: {
1063                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1064                 if (pb == NULL) {
1065                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1066                         return NULL;
1067                 }
1068                 return pb->pb_pre_versions;
1069         }
1070         default:
1071                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1072                 return NULL;
1073         }
1074 }
1075 EXPORT_SYMBOL(lustre_msg_get_versions);
1076
1077 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1078 {
1079         switch (msg->lm_magic) {
1080         case LUSTRE_MSG_MAGIC_V2: {
1081                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1082                 if (pb == NULL) {
1083                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1084                         return 0;
1085                 }
1086                 return pb->pb_transno;
1087         }
1088         default:
1089                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1090                 return 0;
1091         }
1092 }
1093 EXPORT_SYMBOL(lustre_msg_get_transno);
1094
1095 int lustre_msg_get_status(struct lustre_msg *msg)
1096 {
1097         switch (msg->lm_magic) {
1098         case LUSTRE_MSG_MAGIC_V2: {
1099                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1100                 if (pb != NULL)
1101                         return pb->pb_status;
1102                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1103         }
1104         /* no break */
1105         default:
1106                 /* status might be printed in debug code while message
1107                 * uninitialized */
1108                 return -EINVAL;
1109         }
1110 }
1111 EXPORT_SYMBOL(lustre_msg_get_status);
1112
1113 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1114 {
1115         switch (msg->lm_magic) {
1116         case LUSTRE_MSG_MAGIC_V2: {
1117                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1118                 if (pb == NULL) {
1119                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1120                         return -EINVAL;
1121                 }
1122                 return pb->pb_slv;
1123         }
1124         default:
1125                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1126                 return -EINVAL;
1127         }
1128 }
1129
1130
1131 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1132 {
1133         switch (msg->lm_magic) {
1134         case LUSTRE_MSG_MAGIC_V2: {
1135                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1136                 if (pb == NULL) {
1137                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1138                         return;
1139                 }
1140                 pb->pb_slv = slv;
1141                 return;
1142         }
1143         default:
1144                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1145                 return;
1146         }
1147 }
1148
1149 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1150 {
1151         switch (msg->lm_magic) {
1152         case LUSTRE_MSG_MAGIC_V2: {
1153                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1154                 if (pb == NULL) {
1155                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1156                         return -EINVAL;
1157                 }
1158                 return pb->pb_limit;
1159         }
1160         default:
1161                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1162                 return -EINVAL;
1163         }
1164 }
1165
1166
1167 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1168 {
1169         switch (msg->lm_magic) {
1170         case LUSTRE_MSG_MAGIC_V2: {
1171                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1172                 if (pb == NULL) {
1173                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1174                         return;
1175                 }
1176                 pb->pb_limit = limit;
1177                 return;
1178         }
1179         default:
1180                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1181                 return;
1182         }
1183 }
1184
1185 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1186 {
1187         switch (msg->lm_magic) {
1188         case LUSTRE_MSG_MAGIC_V2: {
1189                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1190                 if (pb == NULL) {
1191                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1192                         return 0;
1193                 }
1194                 return pb->pb_conn_cnt;
1195         }
1196         default:
1197                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1198                 return 0;
1199         }
1200 }
1201 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1202
1203 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1204 {
1205         switch (msg->lm_magic) {
1206         case LUSTRE_MSG_MAGIC_V2:
1207                 return msg->lm_magic;
1208         default:
1209                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1210                 return 0;
1211         }
1212 }
1213
1214 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1215 {
1216         switch (msg->lm_magic) {
1217         case LUSTRE_MSG_MAGIC_V2: {
1218                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1219                 if (pb == NULL) {
1220                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1221                         return 0;
1222                 }
1223                 return pb->pb_timeout;
1224         }
1225         default:
1226                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1227                 return 0;
1228         }
1229 }
1230
1231 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1232 {
1233         switch (msg->lm_magic) {
1234         case LUSTRE_MSG_MAGIC_V2: {
1235                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1236                 if (pb == NULL) {
1237                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1238                         return 0;
1239                 }
1240                 return pb->pb_service_time;
1241         }
1242         default:
1243                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1244                 return 0;
1245         }
1246 }
1247
1248 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1249 {
1250         switch (msg->lm_magic) {
1251         case LUSTRE_MSG_MAGIC_V2: {
1252                 struct ptlrpc_body *pb =
1253                         lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1254                                           sizeof(struct ptlrpc_body));
1255                 if (!pb)
1256                         return NULL;
1257
1258                 return pb->pb_jobid;
1259         }
1260         default:
1261                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1262                 return NULL;
1263         }
1264 }
1265 EXPORT_SYMBOL(lustre_msg_get_jobid);
1266
1267 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1268 {
1269         switch (msg->lm_magic) {
1270         case LUSTRE_MSG_MAGIC_V2:
1271                 return msg->lm_cksum;
1272         default:
1273                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1274                 return 0;
1275         }
1276 }
1277
1278 __u64 lustre_msg_get_mbits(struct lustre_msg *msg)
1279 {
1280         switch (msg->lm_magic) {
1281         case LUSTRE_MSG_MAGIC_V2: {
1282                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1283                 if (pb == NULL) {
1284                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1285                         return 0;
1286                 }
1287                 return pb->pb_mbits;
1288         }
1289         default:
1290                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1291                 return 0;
1292         }
1293 }
1294
1295 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1296 {
1297         switch (msg->lm_magic) {
1298         case LUSTRE_MSG_MAGIC_V2: {
1299                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1300                 __u32 len = lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1301
1302                 unsigned int hsize = 4;
1303                 __u32 crc;
1304
1305                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1306                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1307                                        len, NULL, 0, (unsigned char *)&crc,
1308                                        &hsize);
1309                 return crc;
1310         }
1311         default:
1312                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1313                 return 0;
1314         }
1315 }
1316
1317 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1318 {
1319         switch (msg->lm_magic) {
1320         case LUSTRE_MSG_MAGIC_V2: {
1321                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1322                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1323                 pb->pb_handle = *handle;
1324                 return;
1325         }
1326         default:
1327                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1328         }
1329 }
1330
1331 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1332 {
1333         switch (msg->lm_magic) {
1334         case LUSTRE_MSG_MAGIC_V2: {
1335                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1336                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1337                 pb->pb_type = type;
1338                 return;
1339                 }
1340         default:
1341                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1342         }
1343 }
1344
1345 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1346 {
1347         switch (msg->lm_magic) {
1348         case LUSTRE_MSG_MAGIC_V2: {
1349                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1350                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1351                 pb->pb_opc = opc;
1352                 return;
1353         }
1354         default:
1355                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1356         }
1357 }
1358
1359 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1360 {
1361         switch (msg->lm_magic) {
1362         case LUSTRE_MSG_MAGIC_V2: {
1363                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1364                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1365                 pb->pb_last_xid = last_xid;
1366                 return;
1367         }
1368         default:
1369                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1370         }
1371 }
1372 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1373
1374 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1375 {
1376         switch (msg->lm_magic) {
1377         case LUSTRE_MSG_MAGIC_V2: {
1378                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1379                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1380                 pb->pb_tag = tag;
1381                 return;
1382         }
1383         default:
1384                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1385         }
1386 }
1387 EXPORT_SYMBOL(lustre_msg_set_tag);
1388
1389 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1390 {
1391         switch (msg->lm_magic) {
1392         case LUSTRE_MSG_MAGIC_V2: {
1393                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1394                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1395                 pb->pb_last_committed = last_committed;
1396                 return;
1397         }
1398         default:
1399                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1400         }
1401 }
1402
1403 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1404 {
1405         switch (msg->lm_magic) {
1406         case LUSTRE_MSG_MAGIC_V2: {
1407                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1408                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1409                 pb->pb_pre_versions[0] = versions[0];
1410                 pb->pb_pre_versions[1] = versions[1];
1411                 pb->pb_pre_versions[2] = versions[2];
1412                 pb->pb_pre_versions[3] = versions[3];
1413                 return;
1414         }
1415         default:
1416                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1417         }
1418 }
1419 EXPORT_SYMBOL(lustre_msg_set_versions);
1420
1421 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1422 {
1423         switch (msg->lm_magic) {
1424         case LUSTRE_MSG_MAGIC_V2: {
1425                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1426                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1427                 pb->pb_transno = transno;
1428                 return;
1429         }
1430         default:
1431                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1432         }
1433 }
1434 EXPORT_SYMBOL(lustre_msg_set_transno);
1435
1436 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1437 {
1438         switch (msg->lm_magic) {
1439         case LUSTRE_MSG_MAGIC_V2: {
1440                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1441                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1442                 pb->pb_status = status;
1443                 return;
1444         }
1445         default:
1446                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1447         }
1448 }
1449 EXPORT_SYMBOL(lustre_msg_set_status);
1450
1451 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1452 {
1453         switch (msg->lm_magic) {
1454         case LUSTRE_MSG_MAGIC_V2: {
1455                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1456                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1457                 pb->pb_conn_cnt = conn_cnt;
1458                 return;
1459         }
1460         default:
1461                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1462         }
1463 }
1464
1465 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1466 {
1467         switch (msg->lm_magic) {
1468         case LUSTRE_MSG_MAGIC_V2: {
1469                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1470                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1471                 pb->pb_timeout = timeout;
1472                 return;
1473         }
1474         default:
1475                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1476         }
1477 }
1478
1479 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1480 {
1481         switch (msg->lm_magic) {
1482         case LUSTRE_MSG_MAGIC_V2: {
1483                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1484                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1485                 pb->pb_service_time = service_time;
1486                 return;
1487         }
1488         default:
1489                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1490         }
1491 }
1492
1493 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1494 {
1495         switch (msg->lm_magic) {
1496         case LUSTRE_MSG_MAGIC_V2: {
1497                 __u32 opc = lustre_msg_get_opc(msg);
1498                 struct ptlrpc_body *pb;
1499
1500                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1501                  * See the comment in ptlrpc_request_pack(). */
1502                 if (!opc || opc == LDLM_BL_CALLBACK ||
1503                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1504                         return;
1505
1506                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1507                                        sizeof(struct ptlrpc_body));
1508                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1509
1510                 if (jobid != NULL)
1511                         memcpy(pb->pb_jobid, jobid, LUSTRE_JOBID_SIZE);
1512                 else if (pb->pb_jobid[0] == '\0')
1513                         lustre_get_jobid(pb->pb_jobid);
1514                 return;
1515         }
1516         default:
1517                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1518         }
1519 }
1520 EXPORT_SYMBOL(lustre_msg_set_jobid);
1521
1522 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1523 {
1524         switch (msg->lm_magic) {
1525         case LUSTRE_MSG_MAGIC_V2:
1526                 msg->lm_cksum = cksum;
1527                 return;
1528         default:
1529                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1530         }
1531 }
1532
1533 void lustre_msg_set_mbits(struct lustre_msg *msg, __u64 mbits)
1534 {
1535         switch (msg->lm_magic) {
1536         case LUSTRE_MSG_MAGIC_V2: {
1537                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1538
1539                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1540                 pb->pb_mbits = mbits;
1541                 return;
1542         }
1543         default:
1544                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1545         }
1546 }
1547
1548 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1549 {
1550         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1551
1552         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1553                                          req->rq_pill.rc_area[RCL_SERVER]);
1554         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1555                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1556 }
1557 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1558
1559 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1560 {
1561         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1562         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1563                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1564 }
1565
1566 /**
1567  * Send a remote set_info_async.
1568  *
1569  * This may go from client to server or server to client.
1570  */
1571 int do_set_info_async(struct obd_import *imp,
1572                       int opcode, int version,
1573                       size_t keylen, void *key,
1574                       size_t vallen, void *val,
1575                       struct ptlrpc_request_set *set)
1576 {
1577         struct ptlrpc_request *req;
1578         char                  *tmp;
1579         int                    rc;
1580         ENTRY;
1581
1582         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1583         if (req == NULL)
1584                 RETURN(-ENOMEM);
1585
1586         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1587                              RCL_CLIENT, keylen);
1588         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1589                              RCL_CLIENT, vallen);
1590         rc = ptlrpc_request_pack(req, version, opcode);
1591         if (rc) {
1592                 ptlrpc_request_free(req);
1593                 RETURN(rc);
1594         }
1595
1596         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1597         memcpy(tmp, key, keylen);
1598         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1599         memcpy(tmp, val, vallen);
1600
1601         ptlrpc_request_set_replen(req);
1602
1603         if (set) {
1604                 ptlrpc_set_add_req(set, req);
1605                 ptlrpc_check_set(NULL, set);
1606         } else {
1607                 rc = ptlrpc_queue_wait(req);
1608                 ptlrpc_req_finished(req);
1609         }
1610
1611         RETURN(rc);
1612 }
1613 EXPORT_SYMBOL(do_set_info_async);
1614
1615 /* byte flipping routines for all wire types declared in
1616  * lustre_idl.h implemented here.
1617  */
1618 void lustre_swab_ptlrpc_body(struct ptlrpc_body *b)
1619 {
1620         __swab32s (&b->pb_type);
1621         __swab32s (&b->pb_version);
1622         __swab32s (&b->pb_opc);
1623         __swab32s (&b->pb_status);
1624         __swab64s (&b->pb_last_xid);
1625         __swab16s (&b->pb_tag);
1626         __swab64s (&b->pb_last_committed);
1627         __swab64s (&b->pb_transno);
1628         __swab32s (&b->pb_flags);
1629         __swab32s (&b->pb_op_flags);
1630         __swab32s (&b->pb_conn_cnt);
1631         __swab32s (&b->pb_timeout);
1632         __swab32s (&b->pb_service_time);
1633         __swab32s (&b->pb_limit);
1634         __swab64s (&b->pb_slv);
1635         __swab64s (&b->pb_pre_versions[0]);
1636         __swab64s (&b->pb_pre_versions[1]);
1637         __swab64s (&b->pb_pre_versions[2]);
1638         __swab64s (&b->pb_pre_versions[3]);
1639         __swab64s(&b->pb_mbits);
1640         CLASSERT(offsetof(typeof(*b), pb_padding0) != 0);
1641         CLASSERT(offsetof(typeof(*b), pb_padding1) != 0);
1642         CLASSERT(offsetof(typeof(*b), pb_padding64_0) != 0);
1643         CLASSERT(offsetof(typeof(*b), pb_padding64_1) != 0);
1644         CLASSERT(offsetof(typeof(*b), pb_padding64_2) != 0);
1645         /* While we need to maintain compatibility between
1646          * clients and servers without ptlrpc_body_v2 (< 2.3)
1647          * do not swab any fields beyond pb_jobid, as we are
1648          * using this swab function for both ptlrpc_body
1649          * and ptlrpc_body_v2. */
1650         CLASSERT(offsetof(typeof(*b), pb_jobid) != 0);
1651 }
1652
1653 void lustre_swab_connect(struct obd_connect_data *ocd)
1654 {
1655         __swab64s(&ocd->ocd_connect_flags);
1656         __swab32s(&ocd->ocd_version);
1657         __swab32s(&ocd->ocd_grant);
1658         __swab64s(&ocd->ocd_ibits_known);
1659         __swab32s(&ocd->ocd_index);
1660         __swab32s(&ocd->ocd_brw_size);
1661         /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1662          * they are 8-byte values */
1663         __swab16s(&ocd->ocd_grant_extent);
1664         __swab32s(&ocd->ocd_unused);
1665         __swab64s(&ocd->ocd_transno);
1666         __swab32s(&ocd->ocd_group);
1667         __swab32s(&ocd->ocd_cksum_types);
1668         __swab32s(&ocd->ocd_instance);
1669         /* Fields after ocd_cksum_types are only accessible by the receiver
1670          * if the corresponding flag in ocd_connect_flags is set. Accessing
1671          * any field after ocd_maxbytes on the receiver without a valid flag
1672          * may result in out-of-bound memory access and kernel oops. */
1673         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1674                 __swab32s(&ocd->ocd_max_easize);
1675         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1676                 __swab64s(&ocd->ocd_maxbytes);
1677         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1678                 __swab16s(&ocd->ocd_maxmodrpcs);
1679         CLASSERT(offsetof(typeof(*ocd), padding0) != 0);
1680         CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1681         CLASSERT(offsetof(typeof(*ocd), padding2) != 0);
1682         CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1683         CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1684         CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1685         CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1686         CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1687         CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1688         CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1689         CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1690         CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1691         CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1692         CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1693         CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1694         CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1695 }
1696
1697 void lustre_swab_obdo (struct obdo  *o)
1698 {
1699         __swab64s (&o->o_valid);
1700         lustre_swab_ost_id(&o->o_oi);
1701         __swab64s (&o->o_parent_seq);
1702         __swab64s (&o->o_size);
1703         __swab64s (&o->o_mtime);
1704         __swab64s (&o->o_atime);
1705         __swab64s (&o->o_ctime);
1706         __swab64s (&o->o_blocks);
1707         __swab64s (&o->o_grant);
1708         __swab32s (&o->o_blksize);
1709         __swab32s (&o->o_mode);
1710         __swab32s (&o->o_uid);
1711         __swab32s (&o->o_gid);
1712         __swab32s (&o->o_flags);
1713         __swab32s (&o->o_nlink);
1714         __swab32s (&o->o_parent_oid);
1715         __swab32s (&o->o_misc);
1716         __swab64s (&o->o_ioepoch);
1717         __swab32s (&o->o_stripe_idx);
1718         __swab32s (&o->o_parent_ver);
1719         /* o_handle is opaque */
1720         /* o_lcookie is swabbed elsewhere */
1721         __swab32s (&o->o_uid_h);
1722         __swab32s (&o->o_gid_h);
1723         __swab64s (&o->o_data_version);
1724         CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1725         CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1726         CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1727
1728 }
1729 EXPORT_SYMBOL(lustre_swab_obdo);
1730
1731 void lustre_swab_obd_statfs (struct obd_statfs *os)
1732 {
1733         __swab64s (&os->os_type);
1734         __swab64s (&os->os_blocks);
1735         __swab64s (&os->os_bfree);
1736         __swab64s (&os->os_bavail);
1737         __swab64s (&os->os_files);
1738         __swab64s (&os->os_ffree);
1739         /* no need to swab os_fsid */
1740         __swab32s (&os->os_bsize);
1741         __swab32s (&os->os_namelen);
1742         __swab64s (&os->os_maxbytes);
1743         __swab32s (&os->os_state);
1744         CLASSERT(offsetof(typeof(*os), os_fprecreated) != 0);
1745         CLASSERT(offsetof(typeof(*os), os_spare2) != 0);
1746         CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1747         CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1748         CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1749         CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1750         CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1751         CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1752         CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1753 }
1754
1755 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1756 {
1757         lustre_swab_ost_id(&ioo->ioo_oid);
1758         __swab32s(&ioo->ioo_max_brw);
1759         __swab32s(&ioo->ioo_bufcnt);
1760 }
1761
1762 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1763 {
1764         __swab64s(&nbr->rnb_offset);
1765         __swab32s(&nbr->rnb_len);
1766         __swab32s(&nbr->rnb_flags);
1767 }
1768
1769 void lustre_swab_ost_body (struct ost_body *b)
1770 {
1771         lustre_swab_obdo (&b->oa);
1772 }
1773
1774 void lustre_swab_ost_last_id(u64 *id)
1775 {
1776         __swab64s(id);
1777 }
1778
1779 void lustre_swab_generic_32s(__u32 *val)
1780 {
1781         __swab32s(val);
1782 }
1783
1784 void lustre_swab_gl_desc(union ldlm_gl_desc *desc)
1785 {
1786         lustre_swab_lu_fid(&desc->lquota_desc.gl_id.qid_fid);
1787         __swab64s(&desc->lquota_desc.gl_flags);
1788         __swab64s(&desc->lquota_desc.gl_ver);
1789         __swab64s(&desc->lquota_desc.gl_hardlimit);
1790         __swab64s(&desc->lquota_desc.gl_softlimit);
1791         __swab64s(&desc->lquota_desc.gl_time);
1792         CLASSERT(offsetof(typeof(desc->lquota_desc), gl_pad2) != 0);
1793 }
1794
1795 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1796 {
1797         __swab64s(&lvb->lvb_size);
1798         __swab64s(&lvb->lvb_mtime);
1799         __swab64s(&lvb->lvb_atime);
1800         __swab64s(&lvb->lvb_ctime);
1801         __swab64s(&lvb->lvb_blocks);
1802 }
1803 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1804
1805 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1806 {
1807         __swab64s(&lvb->lvb_size);
1808         __swab64s(&lvb->lvb_mtime);
1809         __swab64s(&lvb->lvb_atime);
1810         __swab64s(&lvb->lvb_ctime);
1811         __swab64s(&lvb->lvb_blocks);
1812         __swab32s(&lvb->lvb_mtime_ns);
1813         __swab32s(&lvb->lvb_atime_ns);
1814         __swab32s(&lvb->lvb_ctime_ns);
1815         __swab32s(&lvb->lvb_padding);
1816 }
1817 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1818
1819 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1820 {
1821         __swab64s(&lvb->lvb_flags);
1822         __swab64s(&lvb->lvb_id_may_rel);
1823         __swab64s(&lvb->lvb_id_rel);
1824         __swab64s(&lvb->lvb_id_qunit);
1825         __swab64s(&lvb->lvb_pad1);
1826 }
1827 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1828
1829 void lustre_swab_mdt_body (struct mdt_body *b)
1830 {
1831         lustre_swab_lu_fid(&b->mbo_fid1);
1832         lustre_swab_lu_fid(&b->mbo_fid2);
1833         /* handle is opaque */
1834         __swab64s(&b->mbo_valid);
1835         __swab64s(&b->mbo_size);
1836         __swab64s(&b->mbo_mtime);
1837         __swab64s(&b->mbo_atime);
1838         __swab64s(&b->mbo_ctime);
1839         __swab64s(&b->mbo_blocks);
1840         __swab64s(&b->mbo_ioepoch);
1841         __swab64s(&b->mbo_t_state);
1842         __swab32s(&b->mbo_fsuid);
1843         __swab32s(&b->mbo_fsgid);
1844         __swab32s(&b->mbo_capability);
1845         __swab32s(&b->mbo_mode);
1846         __swab32s(&b->mbo_uid);
1847         __swab32s(&b->mbo_gid);
1848         __swab32s(&b->mbo_flags);
1849         __swab32s(&b->mbo_rdev);
1850         __swab32s(&b->mbo_nlink);
1851         CLASSERT(offsetof(typeof(*b), mbo_unused2) != 0);
1852         __swab32s(&b->mbo_suppgid);
1853         __swab32s(&b->mbo_eadatasize);
1854         __swab32s(&b->mbo_aclsize);
1855         __swab32s(&b->mbo_max_mdsize);
1856         CLASSERT(offsetof(typeof(*b), mbo_unused3) != 0);
1857         __swab32s(&b->mbo_uid_h);
1858         __swab32s(&b->mbo_gid_h);
1859         CLASSERT(offsetof(typeof(*b), mbo_padding_5) != 0);
1860 }
1861
1862 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b)
1863 {
1864         /* mio_handle is opaque */
1865         CLASSERT(offsetof(typeof(*b), mio_unused1) != 0);
1866         CLASSERT(offsetof(typeof(*b), mio_unused2) != 0);
1867         CLASSERT(offsetof(typeof(*b), mio_padding) != 0);
1868 }
1869
1870 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1871 {
1872         int i;
1873         __swab32s(&mti->mti_lustre_ver);
1874         __swab32s(&mti->mti_stripe_index);
1875         __swab32s(&mti->mti_config_ver);
1876         __swab32s(&mti->mti_flags);
1877         __swab32s(&mti->mti_instance);
1878         __swab32s(&mti->mti_nid_count);
1879         CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1880         for (i = 0; i < MTI_NIDS_MAX; i++)
1881                 __swab64s(&mti->mti_nids[i]);
1882 }
1883
1884 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1885 {
1886         __u8 i;
1887
1888         __swab64s(&entry->mne_version);
1889         __swab32s(&entry->mne_instance);
1890         __swab32s(&entry->mne_index);
1891         __swab32s(&entry->mne_length);
1892
1893         /* mne_nid_(count|type) must be one byte size because we're gonna
1894          * access it w/o swapping. */
1895         CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
1896         CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
1897
1898         /* remove this assertion if ipv6 is supported. */
1899         LASSERT(entry->mne_nid_type == 0);
1900         for (i = 0; i < entry->mne_nid_count; i++) {
1901                 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1902                 __swab64s(&entry->u.nids[i]);
1903         }
1904 }
1905 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
1906
1907 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
1908 {
1909         __swab64s(&body->mcb_offset);
1910         __swab32s(&body->mcb_units);
1911         __swab16s(&body->mcb_type);
1912 }
1913
1914 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
1915 {
1916         __swab64s(&body->mcr_offset);
1917         __swab64s(&body->mcr_size);
1918 }
1919
1920 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
1921 {
1922         __swab64s (&i->dqi_bgrace);
1923         __swab64s (&i->dqi_igrace);
1924         __swab32s (&i->dqi_flags);
1925         __swab32s (&i->dqi_valid);
1926 }
1927
1928 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
1929 {
1930         __swab64s (&b->dqb_ihardlimit);
1931         __swab64s (&b->dqb_isoftlimit);
1932         __swab64s (&b->dqb_curinodes);
1933         __swab64s (&b->dqb_bhardlimit);
1934         __swab64s (&b->dqb_bsoftlimit);
1935         __swab64s (&b->dqb_curspace);
1936         __swab64s (&b->dqb_btime);
1937         __swab64s (&b->dqb_itime);
1938         __swab32s (&b->dqb_valid);
1939         CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
1940 }
1941
1942 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
1943 {
1944         __swab32s (&q->qc_cmd);
1945         __swab32s (&q->qc_type);
1946         __swab32s (&q->qc_id);
1947         __swab32s (&q->qc_stat);
1948         lustre_swab_obd_dqinfo (&q->qc_dqinfo);
1949         lustre_swab_obd_dqblk (&q->qc_dqblk);
1950 }
1951
1952 void lustre_swab_mdt_remote_perm (struct mdt_remote_perm *p)
1953 {
1954         __swab32s (&p->rp_uid);
1955         __swab32s (&p->rp_gid);
1956         __swab32s (&p->rp_fsuid);
1957         __swab32s (&p->rp_fsuid_h);
1958         __swab32s (&p->rp_fsgid);
1959         __swab32s (&p->rp_fsgid_h);
1960         __swab32s (&p->rp_access_perm);
1961         __swab32s (&p->rp_padding);
1962 };
1963 EXPORT_SYMBOL(lustre_swab_mdt_remote_perm);
1964
1965 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
1966 {
1967         lustre_swab_lu_fid(&gf->gf_fid);
1968         __swab64s(&gf->gf_recno);
1969         __swab32s(&gf->gf_linkno);
1970         __swab32s(&gf->gf_pathlen);
1971 }
1972 EXPORT_SYMBOL(lustre_swab_fid2path);
1973
1974 static void lustre_swab_fiemap_extent(struct fiemap_extent *fm_extent)
1975 {
1976         __swab64s(&fm_extent->fe_logical);
1977         __swab64s(&fm_extent->fe_physical);
1978         __swab64s(&fm_extent->fe_length);
1979         __swab32s(&fm_extent->fe_flags);
1980         __swab32s(&fm_extent->fe_device);
1981 }
1982
1983 void lustre_swab_fiemap(struct fiemap *fiemap)
1984 {
1985         __u32 i;
1986
1987         __swab64s(&fiemap->fm_start);
1988         __swab64s(&fiemap->fm_length);
1989         __swab32s(&fiemap->fm_flags);
1990         __swab32s(&fiemap->fm_mapped_extents);
1991         __swab32s(&fiemap->fm_extent_count);
1992         __swab32s(&fiemap->fm_reserved);
1993
1994         for (i = 0; i < fiemap->fm_mapped_extents; i++)
1995                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
1996 }
1997
1998 void lustre_swab_idx_info(struct idx_info *ii)
1999 {
2000         __swab32s(&ii->ii_magic);
2001         __swab32s(&ii->ii_flags);
2002         __swab16s(&ii->ii_count);
2003         __swab32s(&ii->ii_attrs);
2004         lustre_swab_lu_fid(&ii->ii_fid);
2005         __swab64s(&ii->ii_version);
2006         __swab64s(&ii->ii_hash_start);
2007         __swab64s(&ii->ii_hash_end);
2008         __swab16s(&ii->ii_keysize);
2009         __swab16s(&ii->ii_recsize);
2010 }
2011
2012 void lustre_swab_lip_header(struct lu_idxpage *lip)
2013 {
2014         /* swab header */
2015         __swab32s(&lip->lip_magic);
2016         __swab16s(&lip->lip_flags);
2017         __swab16s(&lip->lip_nr);
2018 }
2019 EXPORT_SYMBOL(lustre_swab_lip_header);
2020
2021 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2022 {
2023         __swab32s(&rr->rr_opcode);
2024         __swab32s(&rr->rr_cap);
2025         __swab32s(&rr->rr_fsuid);
2026         /* rr_fsuid_h is unused */
2027         __swab32s(&rr->rr_fsgid);
2028         /* rr_fsgid_h is unused */
2029         __swab32s(&rr->rr_suppgid1);
2030         /* rr_suppgid1_h is unused */
2031         __swab32s(&rr->rr_suppgid2);
2032         /* rr_suppgid2_h is unused */
2033         lustre_swab_lu_fid(&rr->rr_fid1);
2034         lustre_swab_lu_fid(&rr->rr_fid2);
2035         __swab64s(&rr->rr_mtime);
2036         __swab64s(&rr->rr_atime);
2037         __swab64s(&rr->rr_ctime);
2038         __swab64s(&rr->rr_size);
2039         __swab64s(&rr->rr_blocks);
2040         __swab32s(&rr->rr_bias);
2041         __swab32s(&rr->rr_mode);
2042         __swab32s(&rr->rr_flags);
2043         __swab32s(&rr->rr_flags_h);
2044         __swab32s(&rr->rr_umask);
2045
2046         CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2047 };
2048
2049 void lustre_swab_lov_desc (struct lov_desc *ld)
2050 {
2051         __swab32s (&ld->ld_tgt_count);
2052         __swab32s (&ld->ld_active_tgt_count);
2053         __swab32s (&ld->ld_default_stripe_count);
2054         __swab32s (&ld->ld_pattern);
2055         __swab64s (&ld->ld_default_stripe_size);
2056         __swab64s (&ld->ld_default_stripe_offset);
2057         __swab32s (&ld->ld_qos_maxage);
2058         /* uuid endian insensitive */
2059 }
2060 EXPORT_SYMBOL(lustre_swab_lov_desc);
2061
2062 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2063 {
2064         __swab32s (&ld->ld_tgt_count);
2065         __swab32s (&ld->ld_active_tgt_count);
2066         __swab32s (&ld->ld_default_stripe_count);
2067         __swab32s (&ld->ld_pattern);
2068         __swab64s (&ld->ld_default_hash_size);
2069         __swab32s (&ld->ld_qos_maxage);
2070         /* uuid endian insensitive */
2071 }
2072
2073 /* This structure is always in little-endian */
2074 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2075 {
2076         int i;
2077
2078         __swab32s(&lmm1->lmv_magic);
2079         __swab32s(&lmm1->lmv_stripe_count);
2080         __swab32s(&lmm1->lmv_master_mdt_index);
2081         __swab32s(&lmm1->lmv_hash_type);
2082         __swab32s(&lmm1->lmv_layout_version);
2083         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2084                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2085 }
2086
2087 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2088 {
2089         switch (lmm->lmv_magic) {
2090         case LMV_MAGIC_V1:
2091                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2092                 break;
2093         default:
2094                 break;
2095         }
2096 }
2097 EXPORT_SYMBOL(lustre_swab_lmv_mds_md);
2098
2099 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2100 {
2101         __swab32s(&lum->lum_magic);
2102         __swab32s(&lum->lum_stripe_count);
2103         __swab32s(&lum->lum_stripe_offset);
2104         __swab32s(&lum->lum_hash_type);
2105         __swab32s(&lum->lum_type);
2106         CLASSERT(offsetof(typeof(*lum), lum_padding1) != 0);
2107 }
2108 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2109
2110 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2111                           const char *msg)
2112 {
2113         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2114                 return;
2115
2116         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2117         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2118         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2119         CDEBUG(lvl, "\tlmm_object_id: "LPU64"\n", lmm_oi_id(&lum->lmm_oi));
2120         CDEBUG(lvl, "\tlmm_object_gr: "LPU64"\n", lmm_oi_seq(&lum->lmm_oi));
2121         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2122         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2123         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2124                lum->lmm_stripe_offset);
2125         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2126                 struct lov_user_md_v3 *v3 = (void *)lum;
2127                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2128         }
2129         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2130                 struct lov_user_md_v3 *v3 = (void *)lum;
2131                 int i;
2132
2133                 if (v3->lmm_pool_name[0] != '\0')
2134                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2135
2136                 CDEBUG(lvl, "\ttarget list:\n");
2137                 for (i = 0; i < v3->lmm_stripe_count; i++)
2138                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2139         }
2140 }
2141 EXPORT_SYMBOL(lustre_print_user_md);
2142
2143 static void lustre_swab_lmm_oi(struct ost_id *oi)
2144 {
2145         __swab64s(&oi->oi.oi_id);
2146         __swab64s(&oi->oi.oi_seq);
2147 }
2148
2149 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2150 {
2151         ENTRY;
2152         __swab32s(&lum->lmm_magic);
2153         __swab32s(&lum->lmm_pattern);
2154         lustre_swab_lmm_oi(&lum->lmm_oi);
2155         __swab32s(&lum->lmm_stripe_size);
2156         __swab16s(&lum->lmm_stripe_count);
2157         __swab16s(&lum->lmm_stripe_offset);
2158         EXIT;
2159 }
2160
2161 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2162 {
2163         ENTRY;
2164         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2165         lustre_swab_lov_user_md_common(lum);
2166         EXIT;
2167 }
2168 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2169
2170 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2171 {
2172         ENTRY;
2173         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2174         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2175         /* lmm_pool_name nothing to do with char */
2176         EXIT;
2177 }
2178 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2179
2180 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2181 {
2182         ENTRY;
2183         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2184         __swab32s(&lmm->lmm_magic);
2185         __swab32s(&lmm->lmm_pattern);
2186         lustre_swab_lmm_oi(&lmm->lmm_oi);
2187         __swab32s(&lmm->lmm_stripe_size);
2188         __swab16s(&lmm->lmm_stripe_count);
2189         __swab16s(&lmm->lmm_layout_gen);
2190         EXIT;
2191 }
2192 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2193
2194 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2195                                      int stripe_count)
2196 {
2197         int i;
2198         ENTRY;
2199         for (i = 0; i < stripe_count; i++) {
2200                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2201                 __swab32s(&(lod[i].l_ost_gen));
2202                 __swab32s(&(lod[i].l_ost_idx));
2203         }
2204         EXIT;
2205 }
2206 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2207
2208 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2209 {
2210         int  i;
2211
2212         for (i = 0; i < RES_NAME_SIZE; i++)
2213                 __swab64s (&id->name[i]);
2214 }
2215
2216 void lustre_swab_ldlm_policy_data(union ldlm_wire_policy_data *d)
2217 {
2218         /* the lock data is a union and the first two fields are always an
2219          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2220          * data the same way. */
2221         __swab64s(&d->l_extent.start);
2222         __swab64s(&d->l_extent.end);
2223         __swab64s(&d->l_extent.gid);
2224         __swab64s(&d->l_flock.lfw_owner);
2225         __swab32s(&d->l_flock.lfw_pid);
2226 }
2227
2228 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2229 {
2230         __swab64s(&i->opc);
2231 }
2232
2233 void lustre_swab_ldlm_resource_desc(struct ldlm_resource_desc *r)
2234 {
2235         __swab32s(&r->lr_type);
2236         CLASSERT(offsetof(typeof(*r), lr_pad) != 0);
2237         lustre_swab_ldlm_res_id(&r->lr_name);
2238 }
2239
2240 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2241 {
2242         lustre_swab_ldlm_resource_desc (&l->l_resource);
2243         __swab32s (&l->l_req_mode);
2244         __swab32s (&l->l_granted_mode);
2245         lustre_swab_ldlm_policy_data (&l->l_policy_data);
2246 }
2247
2248 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2249 {
2250         __swab32s (&rq->lock_flags);
2251         lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2252         __swab32s (&rq->lock_count);
2253         /* lock_handle[] opaque */
2254 }
2255
2256 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2257 {
2258         __swab32s (&r->lock_flags);
2259         CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2260         lustre_swab_ldlm_lock_desc (&r->lock_desc);
2261         /* lock_handle opaque */
2262         __swab64s (&r->lock_policy_res1);
2263         __swab64s (&r->lock_policy_res2);
2264 }
2265
2266 void lustre_swab_quota_body(struct quota_body *b)
2267 {
2268         lustre_swab_lu_fid(&b->qb_fid);
2269         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2270         __swab32s(&b->qb_flags);
2271         __swab64s(&b->qb_count);
2272         __swab64s(&b->qb_usage);
2273         __swab64s(&b->qb_slv_ver);
2274 }
2275
2276 /* Dump functions */
2277 void dump_ioo(struct obd_ioobj *ioo)
2278 {
2279         CDEBUG(D_RPCTRACE,
2280                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2281                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2282                ioo->ioo_bufcnt);
2283 }
2284
2285 void dump_rniobuf(struct niobuf_remote *nb)
2286 {
2287         CDEBUG(D_RPCTRACE, "niobuf_remote: offset="LPU64", len=%d, flags=%x\n",
2288                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2289 }
2290
2291 void dump_obdo(struct obdo *oa)
2292 {
2293         u64 valid = oa->o_valid;
2294
2295         CDEBUG(D_RPCTRACE, "obdo: o_valid = "LPX64"\n", valid);
2296         if (valid & OBD_MD_FLID)
2297                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2298         if (valid & OBD_MD_FLFID)
2299                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = "LPX64"\n",
2300                        oa->o_parent_seq);
2301         if (valid & OBD_MD_FLSIZE)
2302                 CDEBUG(D_RPCTRACE, "obdo: o_size = "LPD64"\n", oa->o_size);
2303         if (valid & OBD_MD_FLMTIME)
2304                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = "LPD64"\n", oa->o_mtime);
2305         if (valid & OBD_MD_FLATIME)
2306                 CDEBUG(D_RPCTRACE, "obdo: o_atime = "LPD64"\n", oa->o_atime);
2307         if (valid & OBD_MD_FLCTIME)
2308                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = "LPD64"\n", oa->o_ctime);
2309         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2310                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = "LPD64"\n", oa->o_blocks);
2311         if (valid & OBD_MD_FLGRANT)
2312                 CDEBUG(D_RPCTRACE, "obdo: o_grant = "LPD64"\n", oa->o_grant);
2313         if (valid & OBD_MD_FLBLKSZ)
2314                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2315         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2316                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2317                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2318                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2319         if (valid & OBD_MD_FLUID)
2320                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2321         if (valid & OBD_MD_FLUID)
2322                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2323         if (valid & OBD_MD_FLGID)
2324                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2325         if (valid & OBD_MD_FLGID)
2326                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2327         if (valid & OBD_MD_FLFLAGS)
2328                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2329         if (valid & OBD_MD_FLNLINK)
2330                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2331         else if (valid & OBD_MD_FLCKSUM)
2332                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2333                        oa->o_nlink);
2334         if (valid & OBD_MD_FLGENER)
2335                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2336                        oa->o_parent_oid);
2337         if (valid & OBD_MD_FLEPOCH)
2338                 CDEBUG(D_RPCTRACE, "obdo: o_ioepoch = "LPD64"\n",
2339                        oa->o_ioepoch);
2340         if (valid & OBD_MD_FLFID) {
2341                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2342                        oa->o_stripe_idx);
2343                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2344                        oa->o_parent_ver);
2345         }
2346         if (valid & OBD_MD_FLHANDLE)
2347                 CDEBUG(D_RPCTRACE, "obdo: o_handle = "LPD64"\n",
2348                        oa->o_handle.cookie);
2349 }
2350
2351 void dump_ost_body(struct ost_body *ob)
2352 {
2353         dump_obdo(&ob->oa);
2354 }
2355
2356 void dump_rcs(__u32 *rc)
2357 {
2358         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2359 }
2360
2361 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2362 {
2363         LASSERT(req->rq_reqmsg);
2364
2365         switch (req->rq_reqmsg->lm_magic) {
2366         case LUSTRE_MSG_MAGIC_V2:
2367                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2368         default:
2369                 CERROR("bad lustre msg magic: %#08X\n",
2370                        req->rq_reqmsg->lm_magic);
2371         }
2372         return 0;
2373 }
2374
2375 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2376 {
2377         LASSERT(req->rq_repmsg);
2378
2379         switch (req->rq_repmsg->lm_magic) {
2380         case LUSTRE_MSG_MAGIC_V2:
2381                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2382         default:
2383                 /* uninitialized yet */
2384                 return 0;
2385         }
2386 }
2387
2388 void _debug_req(struct ptlrpc_request *req,
2389                 struct libcfs_debug_msg_data *msgdata,
2390                 const char *fmt, ... )
2391 {
2392         int req_ok = req->rq_reqmsg != NULL;
2393         int rep_ok = req->rq_repmsg != NULL;
2394         lnet_nid_t nid = LNET_NID_ANY;
2395         va_list args;
2396
2397         if (ptlrpc_req_need_swab(req)) {
2398                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2399                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2400         }
2401
2402         if (req->rq_import && req->rq_import->imp_connection)
2403                 nid = req->rq_import->imp_connection->c_peer.nid;
2404         else if (req->rq_export && req->rq_export->exp_connection)
2405                 nid = req->rq_export->exp_connection->c_peer.nid;
2406
2407         va_start(args, fmt);
2408         libcfs_debug_vmsg2(msgdata, fmt, args,
2409                            " req@%p x"LPU64"/t"LPD64"("LPD64") o%d->%s@%s:%d/%d"
2410                            " lens %d/%d e %d to %d dl "CFS_TIME_T" ref %d "
2411                            "fl "REQ_FLAGS_FMT"/%x/%x rc %d/%d\n",
2412                            req, req->rq_xid, req->rq_transno,
2413                            req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2414                            req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2415                            req->rq_import ?
2416                                 req->rq_import->imp_obd->obd_name :
2417                                 req->rq_export ?
2418                                         req->rq_export->exp_client_uuid.uuid :
2419                                         "<?>",
2420                            libcfs_nid2str(nid),
2421                            req->rq_request_portal, req->rq_reply_portal,
2422                            req->rq_reqlen, req->rq_replen,
2423                            req->rq_early_count, req->rq_timedout,
2424                            req->rq_deadline,
2425                            atomic_read(&req->rq_refcount),
2426                            DEBUG_REQ_FLAGS(req),
2427                            req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2428                            rep_ok ? lustre_msg_get_flags(req->rq_repmsg) : -1,
2429                            req->rq_status,
2430                            rep_ok ? lustre_msg_get_status(req->rq_repmsg) : -1);
2431         va_end(args);
2432 }
2433 EXPORT_SYMBOL(_debug_req);
2434
2435 void lustre_swab_lustre_capa(struct lustre_capa *c)
2436 {
2437         lustre_swab_lu_fid(&c->lc_fid);
2438         __swab64s (&c->lc_opc);
2439         __swab64s (&c->lc_uid);
2440         __swab64s (&c->lc_gid);
2441         __swab32s (&c->lc_flags);
2442         __swab32s (&c->lc_keyid);
2443         __swab32s (&c->lc_timeout);
2444         __swab32s (&c->lc_expiry);
2445 }
2446
2447 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2448 {
2449         __swab64s (&k->lk_seq);
2450         __swab32s (&k->lk_keyid);
2451         CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2452 }
2453
2454 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2455 {
2456         __swab32s(&state->hus_states);
2457         __swab32s(&state->hus_archive_id);
2458 }
2459
2460 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2461 {
2462         __swab32s(&hss->hss_valid);
2463         __swab64s(&hss->hss_setmask);
2464         __swab64s(&hss->hss_clearmask);
2465         __swab32s(&hss->hss_archive_id);
2466 }
2467
2468 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2469 {
2470         __swab64s(&extent->offset);
2471         __swab64s(&extent->length);
2472 }
2473
2474 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2475 {
2476         __swab32s(&action->hca_state);
2477         __swab32s(&action->hca_action);
2478         lustre_swab_hsm_extent(&action->hca_location);
2479 }
2480
2481 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2482 {
2483         lustre_swab_lu_fid(&hui->hui_fid);
2484         lustre_swab_hsm_extent(&hui->hui_extent);
2485 }
2486
2487 void lustre_swab_layout_intent(struct layout_intent *li)
2488 {
2489         __swab32s(&li->li_opc);
2490         __swab32s(&li->li_flags);
2491         __swab64s(&li->li_start);
2492         __swab64s(&li->li_end);
2493 }
2494
2495 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2496 {
2497         lustre_swab_lu_fid(&hpk->hpk_fid);
2498         __swab64s(&hpk->hpk_cookie);
2499         __swab64s(&hpk->hpk_extent.offset);
2500         __swab64s(&hpk->hpk_extent.length);
2501         __swab16s(&hpk->hpk_flags);
2502         __swab16s(&hpk->hpk_errval);
2503 }
2504
2505 void lustre_swab_hsm_request(struct hsm_request *hr)
2506 {
2507         __swab32s(&hr->hr_action);
2508         __swab32s(&hr->hr_archive_id);
2509         __swab64s(&hr->hr_flags);
2510         __swab32s(&hr->hr_itemcount);
2511         __swab32s(&hr->hr_data_len);
2512 }
2513
2514 void lustre_swab_object_update(struct object_update *ou)
2515 {
2516         struct object_update_param *param;
2517         size_t  i;
2518
2519         __swab16s(&ou->ou_type);
2520         __swab16s(&ou->ou_params_count);
2521         __swab32s(&ou->ou_master_index);
2522         __swab32s(&ou->ou_flags);
2523         __swab32s(&ou->ou_padding1);
2524         __swab64s(&ou->ou_batchid);
2525         lustre_swab_lu_fid(&ou->ou_fid);
2526         param = &ou->ou_params[0];
2527         for (i = 0; i < ou->ou_params_count; i++) {
2528                 __swab16s(&param->oup_len);
2529                 __swab16s(&param->oup_padding);
2530                 __swab32s(&param->oup_padding2);
2531                 param = (struct object_update_param *)((char *)param +
2532                          object_update_param_size(param));
2533         }
2534 }
2535
2536 void lustre_swab_object_update_request(struct object_update_request *our)
2537 {
2538         size_t i;
2539         __swab32s(&our->ourq_magic);
2540         __swab16s(&our->ourq_count);
2541         __swab16s(&our->ourq_padding);
2542         for (i = 0; i < our->ourq_count; i++) {
2543                 struct object_update *ou;
2544
2545                 ou = object_update_request_get(our, i, NULL);
2546                 if (ou == NULL)
2547                         return;
2548                 lustre_swab_object_update(ou);
2549         }
2550 }
2551
2552 void lustre_swab_object_update_result(struct object_update_result *our)
2553 {
2554         __swab32s(&our->our_rc);
2555         __swab16s(&our->our_datalen);
2556         __swab16s(&our->our_padding);
2557 }
2558
2559 void lustre_swab_object_update_reply(struct object_update_reply *our)
2560 {
2561         size_t i;
2562
2563         __swab32s(&our->ourp_magic);
2564         __swab16s(&our->ourp_count);
2565         __swab16s(&our->ourp_padding);
2566         for (i = 0; i < our->ourp_count; i++) {
2567                 struct object_update_result *ourp;
2568
2569                 __swab16s(&our->ourp_lens[i]);
2570                 ourp = object_update_result_get(our, i, NULL);
2571                 if (ourp == NULL)
2572                         return;
2573                 lustre_swab_object_update_result(ourp);
2574         }
2575 }
2576
2577 void lustre_swab_out_update_header(struct out_update_header *ouh)
2578 {
2579         __swab32s(&ouh->ouh_magic);
2580         __swab32s(&ouh->ouh_count);
2581         __swab32s(&ouh->ouh_inline_length);
2582         __swab32s(&ouh->ouh_padding);
2583 }
2584 EXPORT_SYMBOL(lustre_swab_out_update_header);
2585
2586 void lustre_swab_out_update_buffer(struct out_update_buffer *oub)
2587 {
2588         __swab32s(&oub->oub_size);
2589         __swab32s(&oub->oub_padding);
2590 }
2591 EXPORT_SYMBOL(lustre_swab_out_update_buffer);
2592
2593 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2594 {
2595         __swab64s(&msl->msl_flags);
2596 }
2597
2598 void lustre_swab_close_data(struct close_data *cd)
2599 {
2600         lustre_swab_lu_fid(&cd->cd_fid);
2601         __swab64s(&cd->cd_data_version);
2602 }
2603
2604 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2605 {
2606         __swab32s(&lr->lr_event);
2607         __swab32s(&lr->lr_index);
2608         __swab32s(&lr->lr_flags);
2609         __swab32s(&lr->lr_valid);
2610         __swab32s(&lr->lr_speed);
2611         __swab16s(&lr->lr_version);
2612         __swab16s(&lr->lr_active);
2613         __swab16s(&lr->lr_param);
2614         __swab16s(&lr->lr_async_windows);
2615         __swab32s(&lr->lr_flags);
2616         lustre_swab_lu_fid(&lr->lr_fid);
2617         lustre_swab_lu_fid(&lr->lr_fid2);
2618         lustre_swab_lu_fid(&lr->lr_fid3);
2619         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2620         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2621 }
2622
2623 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2624 {
2625         __swab32s(&lr->lr_status);
2626         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2627         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2628 }
2629
2630 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2631 {
2632         lustre_swab_lu_fid(&ent->loe_key);
2633         lustre_swab_lu_fid(&ent->loe_rec.lor_fid);
2634         __swab32s(&ent->loe_rec.lor_uid);
2635         __swab32s(&ent->loe_rec.lor_gid);
2636 }
2637 EXPORT_SYMBOL(lustre_swab_orphan_ent);