Whamcloud - gitweb
LU-10308 misc: update Intel copyright messages for 2017
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lustre/ptlrpc/pack_generic.c
33  *
34  * (Un)packing of OST requests
35  *
36  * Author: Peter J. Braam <braam@clusterfs.com>
37  * Author: Phil Schwan <phil@clusterfs.com>
38  * Author: Eric Barton <eeb@clusterfs.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_RPC
42
43 #include <libcfs/libcfs.h>
44
45 #include <llog_swab.h>
46 #include <lustre_net.h>
47 #include <lustre_swab.h>
48 #include <obd_cksum.h>
49 #include <obd_class.h>
50 #include <obd_support.h>
51 #include <obj_update.h>
52
53 #include "ptlrpc_internal.h"
54
55 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
56 {
57         return cfs_size_round(offsetof(struct lustre_msg_v2,
58                                        lm_buflens[count]));
59 }
60
61 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
62 {
63         switch (magic) {
64         case LUSTRE_MSG_MAGIC_V2:
65                 return lustre_msg_hdr_size_v2(count);
66         default:
67                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
68                 return 0;
69         }
70 }
71
72 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
73                             __u32 index)
74 {
75         if (inout)
76                 lustre_set_req_swabbed(req, index);
77         else
78                 lustre_set_rep_swabbed(req, index);
79 }
80
81 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
82                          __u32 index)
83 {
84         if (inout)
85                 return (ptlrpc_req_need_swab(req) &&
86                         !lustre_req_swabbed(req, index));
87         else
88                 return (ptlrpc_rep_need_swab(req) &&
89                         !lustre_rep_swabbed(req, index));
90 }
91
92 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
93                                                 __u32 version)
94 {
95         __u32 ver = lustre_msg_get_version(msg);
96         return (ver & LUSTRE_VERSION_MASK) != version;
97 }
98
99 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version)
100 {
101 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
102         switch (msg->lm_magic) {
103         case LUSTRE_MSG_MAGIC_V1:
104                 CERROR("msg v1 not supported - please upgrade you system\n");
105                 return -EINVAL;
106         case LUSTRE_MSG_MAGIC_V2:
107                 return lustre_msg_check_version_v2(msg, version);
108         default:
109                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
110                 return -EPROTO;
111         }
112 #undef LUSTRE_MSG_MAGIC_V1
113 }
114
115 /* early reply size */
116 __u32 lustre_msg_early_size()
117 {
118         static __u32 size;
119         if (!size) {
120                 /* Always reply old ptlrpc_body_v2 to keep interoprability
121                  * with the old client (< 2.3) which doesn't have pb_jobid
122                  * in the ptlrpc_body.
123                  *
124                  * XXX Remove this whenever we dorp interoprability with such
125                  *     client.
126                  */
127                 __u32 pblen = sizeof(struct ptlrpc_body_v2);
128                 size = lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
129         }
130         return size;
131 }
132 EXPORT_SYMBOL(lustre_msg_early_size);
133
134 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
135 {
136         __u32 size;
137         int i;
138
139         size = lustre_msg_hdr_size_v2(count);
140         for (i = 0; i < count; i++)
141                 size += cfs_size_round(lengths[i]);
142
143         return size;
144 }
145 EXPORT_SYMBOL(lustre_msg_size_v2);
146
147 /* This returns the size of the buffer that is required to hold a lustre_msg
148  * with the given sub-buffer lengths.
149  * NOTE: this should only be used for NEW requests, and should always be
150  *       in the form of a v2 request.  If this is a connection to a v1
151  *       target then the first buffer will be stripped because the ptlrpc
152  *       data is part of the lustre_msg_v1 header. b=14043 */
153 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
154 {
155         __u32 size[] = { sizeof(struct ptlrpc_body) };
156
157         if (!lens) {
158                 LASSERT(count == 1);
159                 lens = size;
160         }
161
162         LASSERT(count > 0);
163         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
164
165         switch (magic) {
166         case LUSTRE_MSG_MAGIC_V2:
167                 return lustre_msg_size_v2(count, lens);
168         default:
169                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
170                 return 0;
171         }
172 }
173
174 /* This is used to determine the size of a buffer that was already packed
175  * and will correctly handle the different message formats. */
176 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
177 {
178         switch (msg->lm_magic) {
179         case LUSTRE_MSG_MAGIC_V2:
180                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
181         default:
182                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
183                 return 0;
184         }
185 }
186
187 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
188                         char **bufs)
189 {
190         char *ptr;
191         int i;
192
193         msg->lm_bufcount = count;
194         /* XXX: lm_secflvr uninitialized here */
195         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
196
197         for (i = 0; i < count; i++)
198                 msg->lm_buflens[i] = lens[i];
199
200         if (bufs == NULL)
201                 return;
202
203         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
204         for (i = 0; i < count; i++) {
205                 char *tmp = bufs[i];
206
207                 if (tmp)
208                         memcpy(ptr, tmp, lens[i]);
209                 ptr += cfs_size_round(lens[i]);
210         }
211 }
212 EXPORT_SYMBOL(lustre_init_msg_v2);
213
214 static int lustre_pack_request_v2(struct ptlrpc_request *req,
215                                   int count, __u32 *lens, char **bufs)
216 {
217         int reqlen, rc;
218
219         reqlen = lustre_msg_size_v2(count, lens);
220
221         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
222         if (rc)
223                 return rc;
224
225         req->rq_reqlen = reqlen;
226
227         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
228         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
229         return 0;
230 }
231
232 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
233                         __u32 *lens, char **bufs)
234 {
235         __u32 size[] = { sizeof(struct ptlrpc_body) };
236
237         if (!lens) {
238                 LASSERT(count == 1);
239                 lens = size;
240         }
241
242         LASSERT(count > 0);
243         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
244
245         /* only use new format, we don't need to be compatible with 1.4 */
246         magic = LUSTRE_MSG_MAGIC_V2;
247
248         switch (magic) {
249         case LUSTRE_MSG_MAGIC_V2:
250                 return lustre_pack_request_v2(req, count, lens, bufs);
251         default:
252                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
253                 return -EINVAL;
254         }
255 }
256
257 #if RS_DEBUG
258 struct list_head ptlrpc_rs_debug_lru =
259         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
260 spinlock_t ptlrpc_rs_debug_lock;
261
262 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
263 do {                                                                    \
264         spin_lock(&ptlrpc_rs_debug_lock);                               \
265         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
266         spin_unlock(&ptlrpc_rs_debug_lock);                             \
267 } while (0)
268
269 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
270 do {                                                                    \
271         spin_lock(&ptlrpc_rs_debug_lock);                               \
272         list_del(&(rs)->rs_debug_list);                         \
273         spin_unlock(&ptlrpc_rs_debug_lock);                             \
274 } while (0)
275 #else
276 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
277 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
278 #endif
279
280 struct ptlrpc_reply_state *
281 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
282 {
283         struct ptlrpc_reply_state *rs = NULL;
284
285         spin_lock(&svcpt->scp_rep_lock);
286
287         /* See if we have anything in a pool, and wait if nothing */
288         while (list_empty(&svcpt->scp_rep_idle)) {
289                 struct l_wait_info      lwi;
290                 int                     rc;
291
292                 spin_unlock(&svcpt->scp_rep_lock);
293                 /* If we cannot get anything for some long time, we better
294                  * bail out instead of waiting infinitely */
295                 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
296                 rc = l_wait_event(svcpt->scp_rep_waitq,
297                                   !list_empty(&svcpt->scp_rep_idle), &lwi);
298                 if (rc != 0)
299                         goto out;
300                 spin_lock(&svcpt->scp_rep_lock);
301         }
302
303         rs = list_entry(svcpt->scp_rep_idle.next,
304                             struct ptlrpc_reply_state, rs_list);
305         list_del(&rs->rs_list);
306
307         spin_unlock(&svcpt->scp_rep_lock);
308
309         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
310         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
311         rs->rs_svcpt = svcpt;
312         rs->rs_prealloc = 1;
313 out:
314         return rs;
315 }
316
317 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
318 {
319         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
320
321         spin_lock(&svcpt->scp_rep_lock);
322         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
323         spin_unlock(&svcpt->scp_rep_lock);
324         wake_up(&svcpt->scp_rep_waitq);
325 }
326
327 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
328                          __u32 *lens, char **bufs, int flags)
329 {
330         struct ptlrpc_reply_state *rs;
331         int                        msg_len, rc;
332         ENTRY;
333
334         LASSERT(req->rq_reply_state == NULL);
335
336         if ((flags & LPRFL_EARLY_REPLY) == 0) {
337                 spin_lock(&req->rq_lock);
338                 req->rq_packed_final = 1;
339                 spin_unlock(&req->rq_lock);
340         }
341
342         msg_len = lustre_msg_size_v2(count, lens);
343         rc = sptlrpc_svc_alloc_rs(req, msg_len);
344         if (rc)
345                 RETURN(rc);
346
347         rs = req->rq_reply_state;
348         atomic_set(&rs->rs_refcount, 1);        /* 1 ref for rq_reply_state */
349         rs->rs_cb_id.cbid_fn = reply_out_callback;
350         rs->rs_cb_id.cbid_arg = rs;
351         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
352         INIT_LIST_HEAD(&rs->rs_exp_list);
353         INIT_LIST_HEAD(&rs->rs_obd_list);
354         INIT_LIST_HEAD(&rs->rs_list);
355         spin_lock_init(&rs->rs_lock);
356
357         req->rq_replen = msg_len;
358         req->rq_reply_state = rs;
359         req->rq_repmsg = rs->rs_msg;
360
361         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
362         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
363
364         PTLRPC_RS_DEBUG_LRU_ADD(rs);
365
366         RETURN(0);
367 }
368 EXPORT_SYMBOL(lustre_pack_reply_v2);
369
370 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
371                             char **bufs, int flags)
372 {
373         int rc = 0;
374         __u32 size[] = { sizeof(struct ptlrpc_body) };
375
376         if (!lens) {
377                 LASSERT(count == 1);
378                 lens = size;
379         }
380
381         LASSERT(count > 0);
382         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
383
384         switch (req->rq_reqmsg->lm_magic) {
385         case LUSTRE_MSG_MAGIC_V2:
386                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
387                 break;
388         default:
389                 LASSERTF(0, "incorrect message magic: %08x\n",
390                          req->rq_reqmsg->lm_magic);
391                 rc = -EINVAL;
392         }
393         if (rc != 0)
394                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
395                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
396         return rc;
397 }
398
399 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
400                       char **bufs)
401 {
402         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
403 }
404 EXPORT_SYMBOL(lustre_pack_reply);
405
406 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
407 {
408         __u32 i, offset, buflen, bufcount;
409
410         LASSERT(m != NULL);
411
412         bufcount = m->lm_bufcount;
413         if (unlikely(n >= bufcount)) {
414                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
415                        m, n, bufcount);
416                 return NULL;
417         }
418
419         buflen = m->lm_buflens[n];
420         if (unlikely(buflen < min_size)) {
421                 CERROR("msg %p buffer[%d] size %d too small "
422                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
423                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
424                 return NULL;
425         }
426
427         offset = lustre_msg_hdr_size_v2(bufcount);
428         for (i = 0; i < n; i++)
429                 offset += cfs_size_round(m->lm_buflens[i]);
430
431         return (char *)m + offset;
432 }
433
434 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
435 {
436         switch (m->lm_magic) {
437         case LUSTRE_MSG_MAGIC_V2:
438                 return lustre_msg_buf_v2(m, n, min_size);
439         default:
440                 LASSERTF(0, "incorrect message magic: %08x (msg:%p)\n",
441                          m->lm_magic, m);
442                 return NULL;
443         }
444 }
445 EXPORT_SYMBOL(lustre_msg_buf);
446
447 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
448                                 unsigned int newlen, int move_data)
449 {
450         char   *tail = NULL, *newpos;
451         int     tail_len = 0, n;
452
453         LASSERT(msg);
454         LASSERT(msg->lm_bufcount > segment);
455         LASSERT(msg->lm_buflens[segment] >= newlen);
456
457         if (msg->lm_buflens[segment] == newlen)
458                 goto out;
459
460         if (move_data && msg->lm_bufcount > segment + 1) {
461                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
462                 for (n = segment + 1; n < msg->lm_bufcount; n++)
463                         tail_len += cfs_size_round(msg->lm_buflens[n]);
464         }
465
466         msg->lm_buflens[segment] = newlen;
467
468         if (tail && tail_len) {
469                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
470                 LASSERT(newpos <= tail);
471                 if (newpos != tail)
472                         memmove(newpos, tail, tail_len);
473         }
474 out:
475         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
476 }
477
478 /*
479  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
480  * we also move data forward from @segment + 1.
481  *
482  * if @newlen == 0, we remove the segment completely, but we still keep the
483  * totally bufcount the same to save possible data moving. this will leave a
484  * unused segment with size 0 at the tail, but that's ok.
485  *
486  * return new msg size after shrinking.
487  *
488  * CAUTION:
489  * + if any buffers higher than @segment has been filled in, must call shrink
490  *   with non-zero @move_data.
491  * + caller should NOT keep pointers to msg buffers which higher than @segment
492  *   after call shrink.
493  */
494 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
495                       unsigned int newlen, int move_data)
496 {
497         switch (msg->lm_magic) {
498         case LUSTRE_MSG_MAGIC_V2:
499                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
500         default:
501                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
502         }
503 }
504 EXPORT_SYMBOL(lustre_shrink_msg);
505
506 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
507 {
508         PTLRPC_RS_DEBUG_LRU_DEL(rs);
509
510         LASSERT(atomic_read(&rs->rs_refcount) == 0);
511         LASSERT(!rs->rs_difficult || rs->rs_handled);
512         LASSERT(!rs->rs_on_net);
513         LASSERT(!rs->rs_scheduled);
514         LASSERT(rs->rs_export == NULL);
515         LASSERT(rs->rs_nlocks == 0);
516         LASSERT(list_empty(&rs->rs_exp_list));
517         LASSERT(list_empty(&rs->rs_obd_list));
518
519         sptlrpc_svc_free_rs(rs);
520 }
521
522 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
523 {
524         int swabbed, required_len, i;
525
526         /* Now we know the sender speaks my language. */
527         required_len = lustre_msg_hdr_size_v2(0);
528         if (len < required_len) {
529                 /* can't even look inside the message */
530                 CERROR("message length %d too small for lustre_msg\n", len);
531                 return -EINVAL;
532         }
533
534         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
535
536         if (swabbed) {
537                 __swab32s(&m->lm_magic);
538                 __swab32s(&m->lm_bufcount);
539                 __swab32s(&m->lm_secflvr);
540                 __swab32s(&m->lm_repsize);
541                 __swab32s(&m->lm_cksum);
542                 __swab32s(&m->lm_flags);
543                 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
544                 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
545         }
546
547         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
548         if (len < required_len) {
549                 /* didn't receive all the buffer lengths */
550                 CERROR ("message length %d too small for %d buflens\n",
551                         len, m->lm_bufcount);
552                 return -EINVAL;
553         }
554
555         for (i = 0; i < m->lm_bufcount; i++) {
556                 if (swabbed)
557                         __swab32s(&m->lm_buflens[i]);
558                 required_len += cfs_size_round(m->lm_buflens[i]);
559         }
560
561         if (len < required_len) {
562                 CERROR("len: %d, required_len %d\n", len, required_len);
563                 CERROR("bufcount: %d\n", m->lm_bufcount);
564                 for (i = 0; i < m->lm_bufcount; i++)
565                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
566                 return -EINVAL;
567         }
568
569         return swabbed;
570 }
571
572 int __lustre_unpack_msg(struct lustre_msg *m, int len)
573 {
574         int required_len, rc;
575         ENTRY;
576
577         /* We can provide a slightly better error log, if we check the
578          * message magic and version first.  In the future, struct
579          * lustre_msg may grow, and we'd like to log a version mismatch,
580          * rather than a short message.
581          *
582          */
583         required_len = offsetof(struct lustre_msg, lm_magic) +
584                        sizeof(m->lm_magic);
585         if (len < required_len) {
586                 /* can't even look inside the message */
587                 CERROR("message length %d too small for magic/version check\n",
588                        len);
589                 RETURN(-EINVAL);
590         }
591
592         rc = lustre_unpack_msg_v2(m, len);
593
594         RETURN(rc);
595 }
596 EXPORT_SYMBOL(__lustre_unpack_msg);
597
598 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
599 {
600         int rc;
601         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
602         if (rc == 1) {
603                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
604                 rc = 0;
605         }
606         return rc;
607 }
608
609 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
610 {
611         int rc;
612         rc = __lustre_unpack_msg(req->rq_repmsg, len);
613         if (rc == 1) {
614                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
615                 rc = 0;
616         }
617         return rc;
618 }
619
620 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
621                                                const int inout, int offset)
622 {
623         struct ptlrpc_body *pb;
624         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
625
626         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
627         if (!pb) {
628                 CERROR("error unpacking ptlrpc body\n");
629                 return -EFAULT;
630         }
631         if (ptlrpc_buf_need_swab(req, inout, offset)) {
632                 lustre_swab_ptlrpc_body(pb);
633                 ptlrpc_buf_set_swabbed(req, inout, offset);
634         }
635
636         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
637                  CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
638                  return -EINVAL;
639         }
640
641         if (!inout)
642                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
643
644         return 0;
645 }
646
647 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
648 {
649         switch (req->rq_reqmsg->lm_magic) {
650         case LUSTRE_MSG_MAGIC_V2:
651                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
652         default:
653                 CERROR("bad lustre msg magic: %08x\n",
654                        req->rq_reqmsg->lm_magic);
655                 return -EINVAL;
656         }
657 }
658
659 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
660 {
661         switch (req->rq_repmsg->lm_magic) {
662         case LUSTRE_MSG_MAGIC_V2:
663                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
664         default:
665                 CERROR("bad lustre msg magic: %08x\n",
666                        req->rq_repmsg->lm_magic);
667                 return -EINVAL;
668         }
669 }
670
671 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
672 {
673         if (n >= m->lm_bufcount)
674                 return 0;
675
676         return m->lm_buflens[n];
677 }
678
679 /**
680  * lustre_msg_buflen - return the length of buffer \a n in message \a m
681  * \param m lustre_msg (request or reply) to look at
682  * \param n message index (base 0)
683  *
684  * returns zero for non-existent message indices
685  */
686 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
687 {
688         switch (m->lm_magic) {
689         case LUSTRE_MSG_MAGIC_V2:
690                 return lustre_msg_buflen_v2(m, n);
691         default:
692                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
693                 return 0;
694         }
695 }
696 EXPORT_SYMBOL(lustre_msg_buflen);
697
698 static inline void
699 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
700 {
701         if (n >= m->lm_bufcount)
702                 LBUG();
703
704         m->lm_buflens[n] = len;
705 }
706
707 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
708 {
709         switch (m->lm_magic) {
710         case LUSTRE_MSG_MAGIC_V2:
711                 lustre_msg_set_buflen_v2(m, n, len);
712                 return;
713         default:
714                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
715         }
716 }
717
718 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
719  * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
720 __u32 lustre_msg_bufcount(struct lustre_msg *m)
721 {
722         switch (m->lm_magic) {
723         case LUSTRE_MSG_MAGIC_V2:
724                 return m->lm_bufcount;
725         default:
726                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
727                 return 0;
728         }
729 }
730
731 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
732 {
733         /* max_len == 0 means the string should fill the buffer */
734         char *str;
735         __u32 slen, blen;
736
737         switch (m->lm_magic) {
738         case LUSTRE_MSG_MAGIC_V2:
739                 str = lustre_msg_buf_v2(m, index, 0);
740                 blen = lustre_msg_buflen_v2(m, index);
741                 break;
742         default:
743                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
744         }
745
746         if (str == NULL) {
747                 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
748                 return NULL;
749         }
750
751         slen = strnlen(str, blen);
752
753         if (slen == blen) {                     /* not NULL terminated */
754                 CERROR("can't unpack non-NULL terminated string in "
755                         "msg %p buffer[%d] len %d\n", m, index, blen);
756                 return NULL;
757         }
758
759         if (max_len == 0) {
760                 if (slen != blen - 1) {
761                         CERROR("can't unpack short string in msg %p "
762                                "buffer[%d] len %d: strlen %d\n",
763                                m, index, blen, slen);
764                         return NULL;
765                 }
766         } else if (slen > max_len) {
767                 CERROR("can't unpack oversized string in msg %p "
768                        "buffer[%d] len %d strlen %d: max %d expected\n",
769                        m, index, blen, slen, max_len);
770                 return NULL;
771         }
772
773         return str;
774 }
775
776 /* Wrap up the normal fixed length cases */
777 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
778                                       __u32 min_size, void *swabber)
779 {
780         void *ptr = NULL;
781
782         LASSERT(msg != NULL);
783         switch (msg->lm_magic) {
784         case LUSTRE_MSG_MAGIC_V2:
785                 ptr = lustre_msg_buf_v2(msg, index, min_size);
786                 break;
787         default:
788                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
789         }
790
791         if (ptr != NULL && swabber != NULL)
792                 ((void (*)(void *))swabber)(ptr);
793
794         return ptr;
795 }
796
797 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
798 {
799         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
800                                  sizeof(struct ptlrpc_body_v2));
801 }
802
803 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg)
804 {
805         switch (msg->lm_magic) {
806         case LUSTRE_MSG_MAGIC_V2:
807                 /* already in host endian */
808                 return msg->lm_flags;
809         default:
810                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
811                 return 0;
812         }
813 }
814 EXPORT_SYMBOL(lustre_msghdr_get_flags);
815
816 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
817 {
818         switch (msg->lm_magic) {
819         case LUSTRE_MSG_MAGIC_V2:
820                 msg->lm_flags = flags;
821                 return;
822         default:
823                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
824         }
825 }
826
827 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
828 {
829         switch (msg->lm_magic) {
830         case LUSTRE_MSG_MAGIC_V2: {
831                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
832                 if (pb != NULL)
833                         return pb->pb_flags;
834
835                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
836         }
837         /* no break */
838         default:
839                 /* flags might be printed in debug code while message
840                  * uninitialized */
841                 return 0;
842         }
843 }
844 EXPORT_SYMBOL(lustre_msg_get_flags);
845
846 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
847 {
848         switch (msg->lm_magic) {
849         case LUSTRE_MSG_MAGIC_V2: {
850                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
851                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
852                 pb->pb_flags |= flags;
853                 return;
854         }
855         default:
856                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
857         }
858 }
859 EXPORT_SYMBOL(lustre_msg_add_flags);
860
861 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
862 {
863         switch (msg->lm_magic) {
864         case LUSTRE_MSG_MAGIC_V2: {
865                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
866                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
867                 pb->pb_flags = flags;
868                 return;
869         }
870         default:
871                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
872         }
873 }
874
875 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
876 {
877         switch (msg->lm_magic) {
878         case LUSTRE_MSG_MAGIC_V2: {
879                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
880                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
881                 pb->pb_flags &= ~flags;
882
883                 return;
884         }
885         default:
886                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
887         }
888 }
889 EXPORT_SYMBOL(lustre_msg_clear_flags);
890
891 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
892 {
893         switch (msg->lm_magic) {
894         case LUSTRE_MSG_MAGIC_V2: {
895                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
896                 if (pb != NULL)
897                         return pb->pb_op_flags;
898
899                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
900         }
901         /* no break */
902         default:
903                 return 0;
904         }
905 }
906
907 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
908 {
909         switch (msg->lm_magic) {
910         case LUSTRE_MSG_MAGIC_V2: {
911                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
912                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
913                 pb->pb_op_flags |= flags;
914                 return;
915         }
916         default:
917                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
918         }
919 }
920 EXPORT_SYMBOL(lustre_msg_add_op_flags);
921
922 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
923 {
924         switch (msg->lm_magic) {
925         case LUSTRE_MSG_MAGIC_V2: {
926                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
927                 if (pb == NULL) {
928                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
929                         return NULL;
930                 }
931                 return &pb->pb_handle;
932         }
933         default:
934                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
935                 return NULL;
936         }
937 }
938
939 __u32 lustre_msg_get_type(struct lustre_msg *msg)
940 {
941         switch (msg->lm_magic) {
942         case LUSTRE_MSG_MAGIC_V2: {
943                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
944                 if (pb == NULL) {
945                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
946                         return PTL_RPC_MSG_ERR;
947                 }
948                 return pb->pb_type;
949         }
950         default:
951                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
952                 return PTL_RPC_MSG_ERR;
953         }
954 }
955 EXPORT_SYMBOL(lustre_msg_get_type);
956
957 __u32 lustre_msg_get_version(struct lustre_msg *msg)
958 {
959         switch (msg->lm_magic) {
960         case LUSTRE_MSG_MAGIC_V2: {
961                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
962                 if (pb == NULL) {
963                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
964                         return 0;
965                 }
966                 return pb->pb_version;
967         }
968         default:
969                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
970                 return 0;
971         }
972 }
973
974 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
975 {
976         switch (msg->lm_magic) {
977         case LUSTRE_MSG_MAGIC_V2: {
978                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
979                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
980                 pb->pb_version |= version;
981                 return;
982         }
983         default:
984                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
985         }
986 }
987
988 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
989 {
990         switch (msg->lm_magic) {
991         case LUSTRE_MSG_MAGIC_V2: {
992                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
993                 if (pb == NULL) {
994                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
995                         return 0;
996                 }
997                 return pb->pb_opc;
998         }
999         default:
1000                 CERROR("incorrect message magic: %08x (msg:%p)\n",
1001                        msg->lm_magic, msg);
1002                 return 0;
1003         }
1004 }
1005 EXPORT_SYMBOL(lustre_msg_get_opc);
1006
1007 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1008 {
1009         switch (msg->lm_magic) {
1010         case LUSTRE_MSG_MAGIC_V2: {
1011                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1012                 if (pb == NULL) {
1013                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1014                         return 0;
1015                 }
1016                 return pb->pb_last_xid;
1017         }
1018         default:
1019                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1020                 return 0;
1021         }
1022 }
1023 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1024
1025 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1026 {
1027         switch (msg->lm_magic) {
1028         case LUSTRE_MSG_MAGIC_V2: {
1029                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1030                 if (!pb) {
1031                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1032                         return 0;
1033                 }
1034                 return pb->pb_tag;
1035         }
1036         default:
1037                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1038                 return 0;
1039         }
1040 }
1041 EXPORT_SYMBOL(lustre_msg_get_tag);
1042
1043 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1044 {
1045         switch (msg->lm_magic) {
1046         case LUSTRE_MSG_MAGIC_V2: {
1047                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1048                 if (pb == NULL) {
1049                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1050                         return 0;
1051                 }
1052                 return pb->pb_last_committed;
1053         }
1054         default:
1055                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1056                 return 0;
1057         }
1058 }
1059 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1060
1061 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1062 {
1063         switch (msg->lm_magic) {
1064         case LUSTRE_MSG_MAGIC_V2: {
1065                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1066                 if (pb == NULL) {
1067                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1068                         return NULL;
1069                 }
1070                 return pb->pb_pre_versions;
1071         }
1072         default:
1073                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1074                 return NULL;
1075         }
1076 }
1077 EXPORT_SYMBOL(lustre_msg_get_versions);
1078
1079 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1080 {
1081         switch (msg->lm_magic) {
1082         case LUSTRE_MSG_MAGIC_V2: {
1083                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1084                 if (pb == NULL) {
1085                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1086                         return 0;
1087                 }
1088                 return pb->pb_transno;
1089         }
1090         default:
1091                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1092                 return 0;
1093         }
1094 }
1095 EXPORT_SYMBOL(lustre_msg_get_transno);
1096
1097 int lustre_msg_get_status(struct lustre_msg *msg)
1098 {
1099         switch (msg->lm_magic) {
1100         case LUSTRE_MSG_MAGIC_V2: {
1101                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1102                 if (pb != NULL)
1103                         return pb->pb_status;
1104                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1105         }
1106         /* no break */
1107         default:
1108                 /* status might be printed in debug code while message
1109                 * uninitialized */
1110                 return -EINVAL;
1111         }
1112 }
1113 EXPORT_SYMBOL(lustre_msg_get_status);
1114
1115 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1116 {
1117         switch (msg->lm_magic) {
1118         case LUSTRE_MSG_MAGIC_V2: {
1119                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1120                 if (pb == NULL) {
1121                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1122                         return -EINVAL;
1123                 }
1124                 return pb->pb_slv;
1125         }
1126         default:
1127                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1128                 return -EINVAL;
1129         }
1130 }
1131
1132
1133 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1134 {
1135         switch (msg->lm_magic) {
1136         case LUSTRE_MSG_MAGIC_V2: {
1137                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1138                 if (pb == NULL) {
1139                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1140                         return;
1141                 }
1142                 pb->pb_slv = slv;
1143                 return;
1144         }
1145         default:
1146                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1147                 return;
1148         }
1149 }
1150
1151 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1152 {
1153         switch (msg->lm_magic) {
1154         case LUSTRE_MSG_MAGIC_V2: {
1155                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1156                 if (pb == NULL) {
1157                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1158                         return -EINVAL;
1159                 }
1160                 return pb->pb_limit;
1161         }
1162         default:
1163                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1164                 return -EINVAL;
1165         }
1166 }
1167
1168
1169 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1170 {
1171         switch (msg->lm_magic) {
1172         case LUSTRE_MSG_MAGIC_V2: {
1173                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1174                 if (pb == NULL) {
1175                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1176                         return;
1177                 }
1178                 pb->pb_limit = limit;
1179                 return;
1180         }
1181         default:
1182                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1183                 return;
1184         }
1185 }
1186
1187 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1188 {
1189         switch (msg->lm_magic) {
1190         case LUSTRE_MSG_MAGIC_V2: {
1191                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1192                 if (pb == NULL) {
1193                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1194                         return 0;
1195                 }
1196                 return pb->pb_conn_cnt;
1197         }
1198         default:
1199                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1200                 return 0;
1201         }
1202 }
1203 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1204
1205 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1206 {
1207         switch (msg->lm_magic) {
1208         case LUSTRE_MSG_MAGIC_V2:
1209                 return msg->lm_magic;
1210         default:
1211                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1212                 return 0;
1213         }
1214 }
1215
1216 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1217 {
1218         switch (msg->lm_magic) {
1219         case LUSTRE_MSG_MAGIC_V2: {
1220                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1221                 if (pb == NULL) {
1222                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1223                         return 0;
1224                 }
1225                 return pb->pb_timeout;
1226         }
1227         default:
1228                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1229                 return 0;
1230         }
1231 }
1232
1233 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1234 {
1235         switch (msg->lm_magic) {
1236         case LUSTRE_MSG_MAGIC_V2: {
1237                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1238                 if (pb == NULL) {
1239                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1240                         return 0;
1241                 }
1242                 return pb->pb_service_time;
1243         }
1244         default:
1245                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1246                 return 0;
1247         }
1248 }
1249
1250 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1251 {
1252         switch (msg->lm_magic) {
1253         case LUSTRE_MSG_MAGIC_V2: {
1254                 struct ptlrpc_body *pb =
1255                         lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1256                                           sizeof(struct ptlrpc_body));
1257                 if (!pb)
1258                         return NULL;
1259
1260                 return pb->pb_jobid;
1261         }
1262         default:
1263                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1264                 return NULL;
1265         }
1266 }
1267 EXPORT_SYMBOL(lustre_msg_get_jobid);
1268
1269 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1270 {
1271         switch (msg->lm_magic) {
1272         case LUSTRE_MSG_MAGIC_V2:
1273                 return msg->lm_cksum;
1274         default:
1275                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1276                 return 0;
1277         }
1278 }
1279
1280 __u64 lustre_msg_get_mbits(struct lustre_msg *msg)
1281 {
1282         switch (msg->lm_magic) {
1283         case LUSTRE_MSG_MAGIC_V2: {
1284                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1285                 if (pb == NULL) {
1286                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1287                         return 0;
1288                 }
1289                 return pb->pb_mbits;
1290         }
1291         default:
1292                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1293                 return 0;
1294         }
1295 }
1296
1297 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1298 {
1299         switch (msg->lm_magic) {
1300         case LUSTRE_MSG_MAGIC_V2: {
1301                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1302                 __u32 len = lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1303
1304                 unsigned int hsize = 4;
1305                 __u32 crc;
1306
1307                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1308                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1309                                        len, NULL, 0, (unsigned char *)&crc,
1310                                        &hsize);
1311                 return crc;
1312         }
1313         default:
1314                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1315                 return 0;
1316         }
1317 }
1318
1319 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1320 {
1321         switch (msg->lm_magic) {
1322         case LUSTRE_MSG_MAGIC_V2: {
1323                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1324                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1325                 pb->pb_handle = *handle;
1326                 return;
1327         }
1328         default:
1329                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1330         }
1331 }
1332
1333 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1334 {
1335         switch (msg->lm_magic) {
1336         case LUSTRE_MSG_MAGIC_V2: {
1337                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1338                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1339                 pb->pb_type = type;
1340                 return;
1341                 }
1342         default:
1343                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1344         }
1345 }
1346
1347 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1348 {
1349         switch (msg->lm_magic) {
1350         case LUSTRE_MSG_MAGIC_V2: {
1351                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1352                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1353                 pb->pb_opc = opc;
1354                 return;
1355         }
1356         default:
1357                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1358         }
1359 }
1360
1361 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1362 {
1363         switch (msg->lm_magic) {
1364         case LUSTRE_MSG_MAGIC_V2: {
1365                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1366                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1367                 pb->pb_last_xid = last_xid;
1368                 return;
1369         }
1370         default:
1371                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1372         }
1373 }
1374 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1375
1376 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1377 {
1378         switch (msg->lm_magic) {
1379         case LUSTRE_MSG_MAGIC_V2: {
1380                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1381                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1382                 pb->pb_tag = tag;
1383                 return;
1384         }
1385         default:
1386                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1387         }
1388 }
1389 EXPORT_SYMBOL(lustre_msg_set_tag);
1390
1391 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1392 {
1393         switch (msg->lm_magic) {
1394         case LUSTRE_MSG_MAGIC_V2: {
1395                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1396                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1397                 pb->pb_last_committed = last_committed;
1398                 return;
1399         }
1400         default:
1401                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1402         }
1403 }
1404
1405 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1406 {
1407         switch (msg->lm_magic) {
1408         case LUSTRE_MSG_MAGIC_V2: {
1409                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1410                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1411                 pb->pb_pre_versions[0] = versions[0];
1412                 pb->pb_pre_versions[1] = versions[1];
1413                 pb->pb_pre_versions[2] = versions[2];
1414                 pb->pb_pre_versions[3] = versions[3];
1415                 return;
1416         }
1417         default:
1418                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1419         }
1420 }
1421 EXPORT_SYMBOL(lustre_msg_set_versions);
1422
1423 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1424 {
1425         switch (msg->lm_magic) {
1426         case LUSTRE_MSG_MAGIC_V2: {
1427                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1428                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1429                 pb->pb_transno = transno;
1430                 return;
1431         }
1432         default:
1433                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1434         }
1435 }
1436 EXPORT_SYMBOL(lustre_msg_set_transno);
1437
1438 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1439 {
1440         switch (msg->lm_magic) {
1441         case LUSTRE_MSG_MAGIC_V2: {
1442                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1443                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1444                 pb->pb_status = status;
1445                 return;
1446         }
1447         default:
1448                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1449         }
1450 }
1451 EXPORT_SYMBOL(lustre_msg_set_status);
1452
1453 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1454 {
1455         switch (msg->lm_magic) {
1456         case LUSTRE_MSG_MAGIC_V2: {
1457                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1458                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1459                 pb->pb_conn_cnt = conn_cnt;
1460                 return;
1461         }
1462         default:
1463                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1464         }
1465 }
1466
1467 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1468 {
1469         switch (msg->lm_magic) {
1470         case LUSTRE_MSG_MAGIC_V2: {
1471                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1472                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1473                 pb->pb_timeout = timeout;
1474                 return;
1475         }
1476         default:
1477                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1478         }
1479 }
1480
1481 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1482 {
1483         switch (msg->lm_magic) {
1484         case LUSTRE_MSG_MAGIC_V2: {
1485                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1486                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1487                 pb->pb_service_time = service_time;
1488                 return;
1489         }
1490         default:
1491                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1492         }
1493 }
1494
1495 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1496 {
1497         switch (msg->lm_magic) {
1498         case LUSTRE_MSG_MAGIC_V2: {
1499                 __u32 opc = lustre_msg_get_opc(msg);
1500                 struct ptlrpc_body *pb;
1501
1502                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1503                  * See the comment in ptlrpc_request_pack(). */
1504                 if (!opc || opc == LDLM_BL_CALLBACK ||
1505                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1506                         return;
1507
1508                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1509                                        sizeof(struct ptlrpc_body));
1510                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1511
1512                 if (jobid != NULL)
1513                         memcpy(pb->pb_jobid, jobid, LUSTRE_JOBID_SIZE);
1514                 else if (pb->pb_jobid[0] == '\0')
1515                         lustre_get_jobid(pb->pb_jobid);
1516                 return;
1517         }
1518         default:
1519                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1520         }
1521 }
1522 EXPORT_SYMBOL(lustre_msg_set_jobid);
1523
1524 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1525 {
1526         switch (msg->lm_magic) {
1527         case LUSTRE_MSG_MAGIC_V2:
1528                 msg->lm_cksum = cksum;
1529                 return;
1530         default:
1531                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1532         }
1533 }
1534
1535 void lustre_msg_set_mbits(struct lustre_msg *msg, __u64 mbits)
1536 {
1537         switch (msg->lm_magic) {
1538         case LUSTRE_MSG_MAGIC_V2: {
1539                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1540
1541                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1542                 pb->pb_mbits = mbits;
1543                 return;
1544         }
1545         default:
1546                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1547         }
1548 }
1549
1550 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1551 {
1552         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1553
1554         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1555                                          req->rq_pill.rc_area[RCL_SERVER]);
1556         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1557                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1558 }
1559 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1560
1561 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1562 {
1563         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1564         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1565                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1566 }
1567
1568 /**
1569  * Send a remote set_info_async.
1570  *
1571  * This may go from client to server or server to client.
1572  */
1573 int do_set_info_async(struct obd_import *imp,
1574                       int opcode, int version,
1575                       size_t keylen, void *key,
1576                       size_t vallen, void *val,
1577                       struct ptlrpc_request_set *set)
1578 {
1579         struct ptlrpc_request *req;
1580         char                  *tmp;
1581         int                    rc;
1582         ENTRY;
1583
1584         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1585         if (req == NULL)
1586                 RETURN(-ENOMEM);
1587
1588         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1589                              RCL_CLIENT, keylen);
1590         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1591                              RCL_CLIENT, vallen);
1592         rc = ptlrpc_request_pack(req, version, opcode);
1593         if (rc) {
1594                 ptlrpc_request_free(req);
1595                 RETURN(rc);
1596         }
1597
1598         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1599         memcpy(tmp, key, keylen);
1600         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1601         memcpy(tmp, val, vallen);
1602
1603         ptlrpc_request_set_replen(req);
1604
1605         if (set) {
1606                 ptlrpc_set_add_req(set, req);
1607                 ptlrpc_check_set(NULL, set);
1608         } else {
1609                 rc = ptlrpc_queue_wait(req);
1610                 ptlrpc_req_finished(req);
1611         }
1612
1613         RETURN(rc);
1614 }
1615 EXPORT_SYMBOL(do_set_info_async);
1616
1617 /* byte flipping routines for all wire types declared in
1618  * lustre_idl.h implemented here.
1619  */
1620 void lustre_swab_ptlrpc_body(struct ptlrpc_body *body)
1621 {
1622         __swab32s(&body->pb_type);
1623         __swab32s(&body->pb_version);
1624         __swab32s(&body->pb_opc);
1625         __swab32s(&body->pb_status);
1626         __swab64s(&body->pb_last_xid);
1627         __swab16s(&body->pb_tag);
1628         CLASSERT(offsetof(typeof(*body), pb_padding0) != 0);
1629         CLASSERT(offsetof(typeof(*body), pb_padding1) != 0);
1630         __swab64s(&body->pb_last_committed);
1631         __swab64s(&body->pb_transno);
1632         __swab32s(&body->pb_flags);
1633         __swab32s(&body->pb_op_flags);
1634         __swab32s(&body->pb_conn_cnt);
1635         __swab32s(&body->pb_timeout);
1636         __swab32s(&body->pb_service_time);
1637         __swab32s(&body->pb_limit);
1638         __swab64s(&body->pb_slv);
1639         __swab64s(&body->pb_pre_versions[0]);
1640         __swab64s(&body->pb_pre_versions[1]);
1641         __swab64s(&body->pb_pre_versions[2]);
1642         __swab64s(&body->pb_pre_versions[3]);
1643         __swab64s(&body->pb_mbits);
1644         CLASSERT(offsetof(typeof(*body), pb_padding64_0) != 0);
1645         CLASSERT(offsetof(typeof(*body), pb_padding64_1) != 0);
1646         CLASSERT(offsetof(typeof(*body), pb_padding64_2) != 0);
1647         /* While we need to maintain compatibility between
1648          * clients and servers without ptlrpc_body_v2 (< 2.3)
1649          * do not swab any fields beyond pb_jobid, as we are
1650          * using this swab function for both ptlrpc_body
1651          * and ptlrpc_body_v2. */
1652         /* pb_jobid is an ASCII string and should not be swabbed */
1653         CLASSERT(offsetof(typeof(*body), pb_jobid) != 0);
1654 }
1655
1656 void lustre_swab_connect(struct obd_connect_data *ocd)
1657 {
1658         __swab64s(&ocd->ocd_connect_flags);
1659         __swab32s(&ocd->ocd_version);
1660         __swab32s(&ocd->ocd_grant);
1661         __swab64s(&ocd->ocd_ibits_known);
1662         __swab32s(&ocd->ocd_index);
1663         __swab32s(&ocd->ocd_brw_size);
1664         /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1665          * they are 8-byte values */
1666         __swab16s(&ocd->ocd_grant_tax_kb);
1667         __swab32s(&ocd->ocd_grant_max_blks);
1668         __swab64s(&ocd->ocd_transno);
1669         __swab32s(&ocd->ocd_group);
1670         __swab32s(&ocd->ocd_cksum_types);
1671         __swab32s(&ocd->ocd_instance);
1672         /* Fields after ocd_cksum_types are only accessible by the receiver
1673          * if the corresponding flag in ocd_connect_flags is set. Accessing
1674          * any field after ocd_maxbytes on the receiver without a valid flag
1675          * may result in out-of-bound memory access and kernel oops. */
1676         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1677                 __swab32s(&ocd->ocd_max_easize);
1678         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1679                 __swab64s(&ocd->ocd_maxbytes);
1680         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1681                 __swab16s(&ocd->ocd_maxmodrpcs);
1682         CLASSERT(offsetof(typeof(*ocd), padding0) != 0);
1683         CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1684         if (ocd->ocd_connect_flags & OBD_CONNECT_FLAGS2)
1685                 __swab64s(&ocd->ocd_connect_flags2);
1686         CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1687         CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1688         CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1689         CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1690         CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1691         CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1692         CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1693         CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1694         CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1695         CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1696         CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1697         CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1698         CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1699 }
1700
1701 static void lustre_swab_ost_layout(struct ost_layout *ol)
1702 {
1703         __swab32s(&ol->ol_stripe_size);
1704         __swab32s(&ol->ol_stripe_count);
1705         __swab64s(&ol->ol_comp_start);
1706         __swab64s(&ol->ol_comp_end);
1707         __swab32s(&ol->ol_comp_id);
1708 }
1709
1710 void lustre_swab_obdo (struct obdo  *o)
1711 {
1712         __swab64s(&o->o_valid);
1713         lustre_swab_ost_id(&o->o_oi);
1714         __swab64s(&o->o_parent_seq);
1715         __swab64s(&o->o_size);
1716         __swab64s(&o->o_mtime);
1717         __swab64s(&o->o_atime);
1718         __swab64s(&o->o_ctime);
1719         __swab64s(&o->o_blocks);
1720         __swab64s(&o->o_grant);
1721         __swab32s(&o->o_blksize);
1722         __swab32s(&o->o_mode);
1723         __swab32s(&o->o_uid);
1724         __swab32s(&o->o_gid);
1725         __swab32s(&o->o_flags);
1726         __swab32s(&o->o_nlink);
1727         __swab32s(&o->o_parent_oid);
1728         __swab32s(&o->o_misc);
1729         __swab64s(&o->o_ioepoch);
1730         __swab32s(&o->o_stripe_idx);
1731         __swab32s(&o->o_parent_ver);
1732         lustre_swab_ost_layout(&o->o_layout);
1733         __swab32s(&o->o_layout_version);
1734         __swab32s(&o->o_uid_h);
1735         __swab32s(&o->o_gid_h);
1736         __swab64s(&o->o_data_version);
1737         __swab32s(&o->o_projid);
1738         CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1739         CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1740         CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1741
1742 }
1743 EXPORT_SYMBOL(lustre_swab_obdo);
1744
1745 void lustre_swab_obd_statfs (struct obd_statfs *os)
1746 {
1747         __swab64s(&os->os_type);
1748         __swab64s(&os->os_blocks);
1749         __swab64s(&os->os_bfree);
1750         __swab64s(&os->os_bavail);
1751         __swab64s(&os->os_files);
1752         __swab64s(&os->os_ffree);
1753         /* no need to swab os_fsid */
1754         __swab32s(&os->os_bsize);
1755         __swab32s(&os->os_namelen);
1756         __swab64s(&os->os_maxbytes);
1757         __swab32s(&os->os_state);
1758         __swab32s(&os->os_fprecreated);
1759         CLASSERT(offsetof(typeof(*os), os_spare2) != 0);
1760         CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1761         CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1762         CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1763         CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1764         CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1765         CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1766         CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1767 }
1768
1769 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1770 {
1771         lustre_swab_ost_id(&ioo->ioo_oid);
1772         __swab32s(&ioo->ioo_max_brw);
1773         __swab32s(&ioo->ioo_bufcnt);
1774 }
1775
1776 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1777 {
1778         __swab64s(&nbr->rnb_offset);
1779         __swab32s(&nbr->rnb_len);
1780         __swab32s(&nbr->rnb_flags);
1781 }
1782
1783 void lustre_swab_ost_body (struct ost_body *b)
1784 {
1785         lustre_swab_obdo (&b->oa);
1786 }
1787
1788 void lustre_swab_ost_last_id(u64 *id)
1789 {
1790         __swab64s(id);
1791 }
1792
1793 void lustre_swab_generic_32s(__u32 *val)
1794 {
1795         __swab32s(val);
1796 }
1797
1798 void lustre_swab_gl_lquota_desc(struct ldlm_gl_lquota_desc *desc)
1799 {
1800         lustre_swab_lu_fid(&desc->gl_id.qid_fid);
1801         __swab64s(&desc->gl_flags);
1802         __swab64s(&desc->gl_ver);
1803         __swab64s(&desc->gl_hardlimit);
1804         __swab64s(&desc->gl_softlimit);
1805         __swab64s(&desc->gl_time);
1806         CLASSERT(offsetof(typeof(*desc), gl_pad2) != 0);
1807 }
1808 EXPORT_SYMBOL(lustre_swab_gl_lquota_desc);
1809
1810 void lustre_swab_gl_barrier_desc(struct ldlm_gl_barrier_desc *desc)
1811 {
1812         __swab32s(&desc->lgbd_status);
1813         __swab32s(&desc->lgbd_timeout);
1814         CLASSERT(offsetof(typeof(*desc), lgbd_padding) != 0);
1815 }
1816 EXPORT_SYMBOL(lustre_swab_gl_barrier_desc);
1817
1818 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1819 {
1820         __swab64s(&lvb->lvb_size);
1821         __swab64s(&lvb->lvb_mtime);
1822         __swab64s(&lvb->lvb_atime);
1823         __swab64s(&lvb->lvb_ctime);
1824         __swab64s(&lvb->lvb_blocks);
1825 }
1826 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1827
1828 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1829 {
1830         __swab64s(&lvb->lvb_size);
1831         __swab64s(&lvb->lvb_mtime);
1832         __swab64s(&lvb->lvb_atime);
1833         __swab64s(&lvb->lvb_ctime);
1834         __swab64s(&lvb->lvb_blocks);
1835         __swab32s(&lvb->lvb_mtime_ns);
1836         __swab32s(&lvb->lvb_atime_ns);
1837         __swab32s(&lvb->lvb_ctime_ns);
1838         __swab32s(&lvb->lvb_padding);
1839 }
1840 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1841
1842 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1843 {
1844         __swab64s(&lvb->lvb_flags);
1845         __swab64s(&lvb->lvb_id_may_rel);
1846         __swab64s(&lvb->lvb_id_rel);
1847         __swab64s(&lvb->lvb_id_qunit);
1848         __swab64s(&lvb->lvb_pad1);
1849 }
1850 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1851
1852 void lustre_swab_barrier_lvb(struct barrier_lvb *lvb)
1853 {
1854         __swab32s(&lvb->lvb_status);
1855         __swab32s(&lvb->lvb_index);
1856         CLASSERT(offsetof(typeof(*lvb), lvb_padding) != 0);
1857 }
1858 EXPORT_SYMBOL(lustre_swab_barrier_lvb);
1859
1860 void lustre_swab_mdt_body (struct mdt_body *b)
1861 {
1862         lustre_swab_lu_fid(&b->mbo_fid1);
1863         lustre_swab_lu_fid(&b->mbo_fid2);
1864         /* handle is opaque */
1865         __swab64s(&b->mbo_valid);
1866         __swab64s(&b->mbo_size);
1867         __swab64s(&b->mbo_mtime);
1868         __swab64s(&b->mbo_atime);
1869         __swab64s(&b->mbo_ctime);
1870         __swab64s(&b->mbo_blocks);
1871         __swab64s(&b->mbo_ioepoch);
1872         __swab64s(&b->mbo_t_state);
1873         __swab32s(&b->mbo_fsuid);
1874         __swab32s(&b->mbo_fsgid);
1875         __swab32s(&b->mbo_capability);
1876         __swab32s(&b->mbo_mode);
1877         __swab32s(&b->mbo_uid);
1878         __swab32s(&b->mbo_gid);
1879         __swab32s(&b->mbo_flags);
1880         __swab32s(&b->mbo_rdev);
1881         __swab32s(&b->mbo_nlink);
1882         CLASSERT(offsetof(typeof(*b), mbo_unused2) != 0);
1883         __swab32s(&b->mbo_suppgid);
1884         __swab32s(&b->mbo_eadatasize);
1885         __swab32s(&b->mbo_aclsize);
1886         __swab32s(&b->mbo_max_mdsize);
1887         CLASSERT(offsetof(typeof(*b), mbo_unused3) != 0);
1888         __swab32s(&b->mbo_uid_h);
1889         __swab32s(&b->mbo_gid_h);
1890         __swab32s(&b->mbo_projid);
1891         __swab64s(&b->mbo_dom_size);
1892         __swab64s(&b->mbo_dom_blocks);
1893         CLASSERT(offsetof(typeof(*b), mbo_padding_8) != 0);
1894         CLASSERT(offsetof(typeof(*b), mbo_padding_9) != 0);
1895         CLASSERT(offsetof(typeof(*b), mbo_padding_10) != 0);
1896 }
1897
1898 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b)
1899 {
1900         /* mio_handle is opaque */
1901         CLASSERT(offsetof(typeof(*b), mio_unused1) != 0);
1902         CLASSERT(offsetof(typeof(*b), mio_unused2) != 0);
1903         CLASSERT(offsetof(typeof(*b), mio_padding) != 0);
1904 }
1905
1906 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1907 {
1908         int i;
1909
1910         __swab32s(&mti->mti_lustre_ver);
1911         __swab32s(&mti->mti_stripe_index);
1912         __swab32s(&mti->mti_config_ver);
1913         __swab32s(&mti->mti_flags);
1914         __swab32s(&mti->mti_instance);
1915         __swab32s(&mti->mti_nid_count);
1916         CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1917         for (i = 0; i < MTI_NIDS_MAX; i++)
1918                 __swab64s(&mti->mti_nids[i]);
1919 }
1920
1921 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1922 {
1923         __u8 i;
1924
1925         __swab64s(&entry->mne_version);
1926         __swab32s(&entry->mne_instance);
1927         __swab32s(&entry->mne_index);
1928         __swab32s(&entry->mne_length);
1929
1930         /* mne_nid_(count|type) must be one byte size because we're gonna
1931          * access it w/o swapping. */
1932         CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
1933         CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
1934
1935         /* remove this assertion if ipv6 is supported. */
1936         LASSERT(entry->mne_nid_type == 0);
1937         for (i = 0; i < entry->mne_nid_count; i++) {
1938                 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1939                 __swab64s(&entry->u.nids[i]);
1940         }
1941 }
1942 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
1943
1944 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
1945 {
1946         __swab64s(&body->mcb_offset);
1947         __swab32s(&body->mcb_units);
1948         __swab16s(&body->mcb_type);
1949 }
1950
1951 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
1952 {
1953         __swab64s(&body->mcr_offset);
1954         __swab64s(&body->mcr_size);
1955 }
1956
1957 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
1958 {
1959         __swab64s (&i->dqi_bgrace);
1960         __swab64s (&i->dqi_igrace);
1961         __swab32s (&i->dqi_flags);
1962         __swab32s (&i->dqi_valid);
1963 }
1964
1965 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
1966 {
1967         __swab64s (&b->dqb_ihardlimit);
1968         __swab64s (&b->dqb_isoftlimit);
1969         __swab64s (&b->dqb_curinodes);
1970         __swab64s (&b->dqb_bhardlimit);
1971         __swab64s (&b->dqb_bsoftlimit);
1972         __swab64s (&b->dqb_curspace);
1973         __swab64s (&b->dqb_btime);
1974         __swab64s (&b->dqb_itime);
1975         __swab32s (&b->dqb_valid);
1976         CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
1977 }
1978
1979 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
1980 {
1981         __swab32s (&q->qc_cmd);
1982         __swab32s (&q->qc_type);
1983         __swab32s (&q->qc_id);
1984         __swab32s (&q->qc_stat);
1985         lustre_swab_obd_dqinfo (&q->qc_dqinfo);
1986         lustre_swab_obd_dqblk (&q->qc_dqblk);
1987 }
1988
1989 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
1990 {
1991         lustre_swab_lu_fid(&gf->gf_fid);
1992         __swab64s(&gf->gf_recno);
1993         __swab32s(&gf->gf_linkno);
1994         __swab32s(&gf->gf_pathlen);
1995 }
1996 EXPORT_SYMBOL(lustre_swab_fid2path);
1997
1998 static void lustre_swab_fiemap_extent(struct fiemap_extent *fm_extent)
1999 {
2000         __swab64s(&fm_extent->fe_logical);
2001         __swab64s(&fm_extent->fe_physical);
2002         __swab64s(&fm_extent->fe_length);
2003         __swab32s(&fm_extent->fe_flags);
2004         __swab32s(&fm_extent->fe_device);
2005 }
2006
2007 void lustre_swab_fiemap(struct fiemap *fiemap)
2008 {
2009         __u32 i;
2010
2011         __swab64s(&fiemap->fm_start);
2012         __swab64s(&fiemap->fm_length);
2013         __swab32s(&fiemap->fm_flags);
2014         __swab32s(&fiemap->fm_mapped_extents);
2015         __swab32s(&fiemap->fm_extent_count);
2016         __swab32s(&fiemap->fm_reserved);
2017
2018         for (i = 0; i < fiemap->fm_mapped_extents; i++)
2019                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
2020 }
2021
2022 void lustre_swab_idx_info(struct idx_info *ii)
2023 {
2024         __swab32s(&ii->ii_magic);
2025         __swab32s(&ii->ii_flags);
2026         __swab16s(&ii->ii_count);
2027         __swab32s(&ii->ii_attrs);
2028         lustre_swab_lu_fid(&ii->ii_fid);
2029         __swab64s(&ii->ii_version);
2030         __swab64s(&ii->ii_hash_start);
2031         __swab64s(&ii->ii_hash_end);
2032         __swab16s(&ii->ii_keysize);
2033         __swab16s(&ii->ii_recsize);
2034 }
2035
2036 void lustre_swab_lip_header(struct lu_idxpage *lip)
2037 {
2038         /* swab header */
2039         __swab32s(&lip->lip_magic);
2040         __swab16s(&lip->lip_flags);
2041         __swab16s(&lip->lip_nr);
2042 }
2043 EXPORT_SYMBOL(lustre_swab_lip_header);
2044
2045 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2046 {
2047         __swab32s(&rr->rr_opcode);
2048         __swab32s(&rr->rr_cap);
2049         __swab32s(&rr->rr_fsuid);
2050         /* rr_fsuid_h is unused */
2051         __swab32s(&rr->rr_fsgid);
2052         /* rr_fsgid_h is unused */
2053         __swab32s(&rr->rr_suppgid1);
2054         /* rr_suppgid1_h is unused */
2055         __swab32s(&rr->rr_suppgid2);
2056         /* rr_suppgid2_h is unused */
2057         lustre_swab_lu_fid(&rr->rr_fid1);
2058         lustre_swab_lu_fid(&rr->rr_fid2);
2059         __swab64s(&rr->rr_mtime);
2060         __swab64s(&rr->rr_atime);
2061         __swab64s(&rr->rr_ctime);
2062         __swab64s(&rr->rr_size);
2063         __swab64s(&rr->rr_blocks);
2064         __swab32s(&rr->rr_bias);
2065         __swab32s(&rr->rr_mode);
2066         __swab32s(&rr->rr_flags);
2067         __swab32s(&rr->rr_flags_h);
2068         __swab32s(&rr->rr_umask);
2069
2070         CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2071 };
2072
2073 void lustre_swab_lov_desc (struct lov_desc *ld)
2074 {
2075         __swab32s (&ld->ld_tgt_count);
2076         __swab32s (&ld->ld_active_tgt_count);
2077         __swab32s (&ld->ld_default_stripe_count);
2078         __swab32s (&ld->ld_pattern);
2079         __swab64s (&ld->ld_default_stripe_size);
2080         __swab64s (&ld->ld_default_stripe_offset);
2081         __swab32s (&ld->ld_qos_maxage);
2082         /* uuid endian insensitive */
2083 }
2084 EXPORT_SYMBOL(lustre_swab_lov_desc);
2085
2086 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2087 {
2088         __swab32s (&ld->ld_tgt_count);
2089         __swab32s (&ld->ld_active_tgt_count);
2090         __swab32s (&ld->ld_default_stripe_count);
2091         __swab32s (&ld->ld_pattern);
2092         __swab64s (&ld->ld_default_hash_size);
2093         __swab32s (&ld->ld_qos_maxage);
2094         /* uuid endian insensitive */
2095 }
2096
2097 /* This structure is always in little-endian */
2098 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2099 {
2100         int i;
2101
2102         __swab32s(&lmm1->lmv_magic);
2103         __swab32s(&lmm1->lmv_stripe_count);
2104         __swab32s(&lmm1->lmv_master_mdt_index);
2105         __swab32s(&lmm1->lmv_hash_type);
2106         __swab32s(&lmm1->lmv_layout_version);
2107         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2108                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2109 }
2110
2111 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2112 {
2113         switch (lmm->lmv_magic) {
2114         case LMV_MAGIC_V1:
2115                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2116                 break;
2117         default:
2118                 break;
2119         }
2120 }
2121 EXPORT_SYMBOL(lustre_swab_lmv_mds_md);
2122
2123 void lustre_swab_lmv_user_md_objects(struct lmv_user_mds_data *lmd,
2124                                      int stripe_count)
2125 {
2126         int i;
2127
2128         for (i = 0; i < stripe_count; i++)
2129                 __swab32s(&(lmd[i].lum_mds));
2130 }
2131 EXPORT_SYMBOL(lustre_swab_lmv_user_md_objects);
2132
2133
2134 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2135 {
2136         __u32 count = lum->lum_stripe_count;
2137
2138         __swab32s(&lum->lum_magic);
2139         __swab32s(&lum->lum_stripe_count);
2140         __swab32s(&lum->lum_stripe_offset);
2141         __swab32s(&lum->lum_hash_type);
2142         __swab32s(&lum->lum_type);
2143         CLASSERT(offsetof(typeof(*lum), lum_padding1) != 0);
2144         switch (lum->lum_magic) {
2145         case LMV_USER_MAGIC_SPECIFIC:
2146                 count = lum->lum_stripe_count;
2147         case __swab32(LMV_USER_MAGIC_SPECIFIC):
2148                 lustre_swab_lmv_user_md_objects(lum->lum_objects, count);
2149                 break;
2150         default:
2151                 break;
2152         }
2153 }
2154 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2155
2156 static void lustre_print_v1v3(unsigned int lvl, struct lov_user_md *lum,
2157                               const char *msg)
2158 {
2159         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2160         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2161         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2162         CDEBUG(lvl, "\tlmm_object_id: %llu\n", lmm_oi_id(&lum->lmm_oi));
2163         CDEBUG(lvl, "\tlmm_object_gr: %llu\n", lmm_oi_seq(&lum->lmm_oi));
2164         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2165         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2166         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2167                lum->lmm_stripe_offset);
2168         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2169                 struct lov_user_md_v3 *v3 = (void *)lum;
2170                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2171         }
2172         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2173                 struct lov_user_md_v3 *v3 = (void *)lum;
2174                 int i;
2175
2176                 if (v3->lmm_pool_name[0] != '\0')
2177                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2178
2179                 CDEBUG(lvl, "\ttarget list:\n");
2180                 for (i = 0; i < v3->lmm_stripe_count; i++)
2181                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2182         }
2183 }
2184
2185 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2186                           const char *msg)
2187 {
2188         struct lov_comp_md_v1   *comp_v1;
2189         int                      i;
2190
2191         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2192                 return;
2193
2194         if (lum->lmm_magic == LOV_USER_MAGIC_V1 ||
2195             lum->lmm_magic == LOV_USER_MAGIC_V3) {
2196                 lustre_print_v1v3(lvl, lum, msg);
2197                 return;
2198         }
2199
2200         if (lum->lmm_magic != LOV_USER_MAGIC_COMP_V1) {
2201                 CDEBUG(lvl, "%s: bad magic: %x\n", msg, lum->lmm_magic);
2202                 return;
2203         }
2204
2205         comp_v1 = (struct lov_comp_md_v1 *)lum;
2206         CDEBUG(lvl, "%s: lov_comp_md_v1 %p:\n", msg, lum);
2207         CDEBUG(lvl, "\tlcm_magic: %#x\n", comp_v1->lcm_magic);
2208         CDEBUG(lvl, "\tlcm_size: %#x\n", comp_v1->lcm_size);
2209         CDEBUG(lvl, "\tlcm_layout_gen: %#x\n", comp_v1->lcm_layout_gen);
2210         CDEBUG(lvl, "\tlcm_flags: %#x\n", comp_v1->lcm_flags);
2211         CDEBUG(lvl, "\tlcm_entry_count: %#x\n\n", comp_v1->lcm_entry_count);
2212         CDEBUG(lvl, "\tlcm_mirror_count: %#x\n\n", comp_v1->lcm_mirror_count);
2213
2214         for (i = 0; i < comp_v1->lcm_entry_count; i++) {
2215                 struct lov_comp_md_entry_v1 *ent = &comp_v1->lcm_entries[i];
2216                 struct lov_user_md *v1;
2217
2218                 CDEBUG(lvl, "\tentry %d:\n", i);
2219                 CDEBUG(lvl, "\tlcme_id: %#x\n", ent->lcme_id);
2220                 CDEBUG(lvl, "\tlcme_flags: %#x\n", ent->lcme_flags);
2221                 CDEBUG(lvl, "\tlcme_extent.e_start: %llu\n",
2222                        ent->lcme_extent.e_start);
2223                 CDEBUG(lvl, "\tlcme_extent.e_end: %llu\n",
2224                        ent->lcme_extent.e_end);
2225                 CDEBUG(lvl, "\tlcme_offset: %#x\n", ent->lcme_offset);
2226                 CDEBUG(lvl, "\tlcme_size: %#x\n\n", ent->lcme_size);
2227
2228                 v1 = (struct lov_user_md *)((char *)comp_v1 +
2229                                 comp_v1->lcm_entries[i].lcme_offset);
2230                 lustre_print_v1v3(lvl, v1, msg);
2231         }
2232 }
2233 EXPORT_SYMBOL(lustre_print_user_md);
2234
2235 static void lustre_swab_lmm_oi(struct ost_id *oi)
2236 {
2237         __swab64s(&oi->oi.oi_id);
2238         __swab64s(&oi->oi.oi_seq);
2239 }
2240
2241 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2242 {
2243         ENTRY;
2244         __swab32s(&lum->lmm_magic);
2245         __swab32s(&lum->lmm_pattern);
2246         lustre_swab_lmm_oi(&lum->lmm_oi);
2247         __swab32s(&lum->lmm_stripe_size);
2248         __swab16s(&lum->lmm_stripe_count);
2249         __swab16s(&lum->lmm_stripe_offset);
2250         EXIT;
2251 }
2252
2253 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2254 {
2255         ENTRY;
2256         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2257         lustre_swab_lov_user_md_common(lum);
2258         EXIT;
2259 }
2260 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2261
2262 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2263 {
2264         ENTRY;
2265         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2266         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2267         /* lmm_pool_name nothing to do with char */
2268         EXIT;
2269 }
2270 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2271
2272 void lustre_swab_lov_comp_md_v1(struct lov_comp_md_v1 *lum)
2273 {
2274         struct lov_comp_md_entry_v1     *ent;
2275         struct lov_user_md_v1   *v1;
2276         struct lov_user_md_v3   *v3;
2277         int     i;
2278         bool    cpu_endian;
2279         __u32   off, size;
2280         __u16   ent_count, stripe_count;
2281         ENTRY;
2282
2283         cpu_endian = lum->lcm_magic == LOV_USER_MAGIC_COMP_V1;
2284         ent_count = lum->lcm_entry_count;
2285         if (!cpu_endian)
2286                 __swab16s(&ent_count);
2287
2288         CDEBUG(D_IOCTL, "swabbing lov_user_comp_md v1\n");
2289         __swab32s(&lum->lcm_magic);
2290         __swab32s(&lum->lcm_size);
2291         __swab32s(&lum->lcm_layout_gen);
2292         __swab16s(&lum->lcm_flags);
2293         __swab16s(&lum->lcm_entry_count);
2294         __swab16s(&lum->lcm_mirror_count);
2295         CLASSERT(offsetof(typeof(*lum), lcm_padding1) != 0);
2296         CLASSERT(offsetof(typeof(*lum), lcm_padding2) != 0);
2297
2298         for (i = 0; i < ent_count; i++) {
2299                 ent = &lum->lcm_entries[i];
2300                 off = ent->lcme_offset;
2301                 size = ent->lcme_size;
2302
2303                 if (!cpu_endian) {
2304                         __swab32s(&off);
2305                         __swab32s(&size);
2306                 }
2307                 __swab32s(&ent->lcme_id);
2308                 __swab32s(&ent->lcme_flags);
2309                 __swab64s(&ent->lcme_extent.e_start);
2310                 __swab64s(&ent->lcme_extent.e_end);
2311                 __swab32s(&ent->lcme_offset);
2312                 __swab32s(&ent->lcme_size);
2313                 CLASSERT(offsetof(typeof(*ent), lcme_padding) != 0);
2314
2315                 v1 = (struct lov_user_md_v1 *)((char *)lum + off);
2316                 stripe_count = v1->lmm_stripe_count;
2317                 if (!cpu_endian)
2318                         __swab16s(&stripe_count);
2319
2320                 if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V1) ||
2321                     v1->lmm_magic == LOV_USER_MAGIC_V1) {
2322                         lustre_swab_lov_user_md_v1(v1);
2323                         if (size > sizeof(*v1))
2324                                 lustre_swab_lov_user_md_objects(v1->lmm_objects,
2325                                                                 stripe_count);
2326                 } else if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V3) ||
2327                            v1->lmm_magic == LOV_USER_MAGIC_V3 ||
2328                            v1->lmm_magic == __swab32(LOV_USER_MAGIC_SPECIFIC) ||
2329                            v1->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2330                         v3 = (struct lov_user_md_v3 *)v1;
2331                         lustre_swab_lov_user_md_v3(v3);
2332                         if (size > sizeof(*v3))
2333                                 lustre_swab_lov_user_md_objects(v3->lmm_objects,
2334                                                                 stripe_count);
2335                 } else {
2336                         CERROR("Invalid magic %#x\n", v1->lmm_magic);
2337                 }
2338         }
2339 }
2340 EXPORT_SYMBOL(lustre_swab_lov_comp_md_v1);
2341
2342 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2343 {
2344         ENTRY;
2345         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2346         __swab32s(&lmm->lmm_magic);
2347         __swab32s(&lmm->lmm_pattern);
2348         lustre_swab_lmm_oi(&lmm->lmm_oi);
2349         __swab32s(&lmm->lmm_stripe_size);
2350         __swab16s(&lmm->lmm_stripe_count);
2351         __swab16s(&lmm->lmm_layout_gen);
2352         EXIT;
2353 }
2354 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2355
2356 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2357                                      int stripe_count)
2358 {
2359         int i;
2360         ENTRY;
2361         for (i = 0; i < stripe_count; i++) {
2362                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2363                 __swab32s(&(lod[i].l_ost_gen));
2364                 __swab32s(&(lod[i].l_ost_idx));
2365         }
2366         EXIT;
2367 }
2368 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2369
2370 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2371 {
2372         int  i;
2373
2374         for (i = 0; i < RES_NAME_SIZE; i++)
2375                 __swab64s (&id->name[i]);
2376 }
2377
2378 void lustre_swab_ldlm_policy_data(union ldlm_wire_policy_data *d)
2379 {
2380         /* the lock data is a union and the first two fields are always an
2381          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2382          * data the same way. */
2383         __swab64s(&d->l_extent.start);
2384         __swab64s(&d->l_extent.end);
2385         __swab64s(&d->l_extent.gid);
2386         __swab64s(&d->l_flock.lfw_owner);
2387         __swab32s(&d->l_flock.lfw_pid);
2388 }
2389
2390 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2391 {
2392         __swab64s(&i->opc);
2393 }
2394
2395 void lustre_swab_ldlm_resource_desc(struct ldlm_resource_desc *r)
2396 {
2397         __swab32s(&r->lr_type);
2398         CLASSERT(offsetof(typeof(*r), lr_pad) != 0);
2399         lustre_swab_ldlm_res_id(&r->lr_name);
2400 }
2401
2402 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2403 {
2404         lustre_swab_ldlm_resource_desc (&l->l_resource);
2405         __swab32s (&l->l_req_mode);
2406         __swab32s (&l->l_granted_mode);
2407         lustre_swab_ldlm_policy_data (&l->l_policy_data);
2408 }
2409
2410 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2411 {
2412         __swab32s (&rq->lock_flags);
2413         lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2414         __swab32s (&rq->lock_count);
2415         /* lock_handle[] opaque */
2416 }
2417
2418 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2419 {
2420         __swab32s (&r->lock_flags);
2421         CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2422         lustre_swab_ldlm_lock_desc (&r->lock_desc);
2423         /* lock_handle opaque */
2424         __swab64s (&r->lock_policy_res1);
2425         __swab64s (&r->lock_policy_res2);
2426 }
2427
2428 void lustre_swab_quota_body(struct quota_body *b)
2429 {
2430         lustre_swab_lu_fid(&b->qb_fid);
2431         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2432         __swab32s(&b->qb_flags);
2433         __swab64s(&b->qb_count);
2434         __swab64s(&b->qb_usage);
2435         __swab64s(&b->qb_slv_ver);
2436 }
2437
2438 /* Dump functions */
2439 void dump_ioo(struct obd_ioobj *ioo)
2440 {
2441         CDEBUG(D_RPCTRACE,
2442                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2443                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2444                ioo->ioo_bufcnt);
2445 }
2446
2447 void dump_rniobuf(struct niobuf_remote *nb)
2448 {
2449         CDEBUG(D_RPCTRACE, "niobuf_remote: offset=%llu, len=%d, flags=%x\n",
2450                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2451 }
2452
2453 void dump_obdo(struct obdo *oa)
2454 {
2455         u64 valid = oa->o_valid;
2456
2457         CDEBUG(D_RPCTRACE, "obdo: o_valid = %#llx\n", valid);
2458         if (valid & OBD_MD_FLID)
2459                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2460         if (valid & OBD_MD_FLFID)
2461                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = %#llx\n",
2462                        oa->o_parent_seq);
2463         if (valid & OBD_MD_FLSIZE)
2464                 CDEBUG(D_RPCTRACE, "obdo: o_size = %lld\n", oa->o_size);
2465         if (valid & OBD_MD_FLMTIME)
2466                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = %lld\n", oa->o_mtime);
2467         if (valid & OBD_MD_FLATIME)
2468                 CDEBUG(D_RPCTRACE, "obdo: o_atime = %lld\n", oa->o_atime);
2469         if (valid & OBD_MD_FLCTIME)
2470                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = %lld\n", oa->o_ctime);
2471         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2472                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = %lld\n", oa->o_blocks);
2473         if (valid & OBD_MD_FLGRANT)
2474                 CDEBUG(D_RPCTRACE, "obdo: o_grant = %lld\n", oa->o_grant);
2475         if (valid & OBD_MD_FLBLKSZ)
2476                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2477         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2478                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2479                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2480                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2481         if (valid & OBD_MD_FLUID)
2482                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2483         if (valid & OBD_MD_FLUID)
2484                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2485         if (valid & OBD_MD_FLGID)
2486                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2487         if (valid & OBD_MD_FLGID)
2488                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2489         if (valid & OBD_MD_FLFLAGS)
2490                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2491         if (valid & OBD_MD_FLNLINK)
2492                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2493         else if (valid & OBD_MD_FLCKSUM)
2494                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2495                        oa->o_nlink);
2496         if (valid & OBD_MD_FLGENER)
2497                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2498                        oa->o_parent_oid);
2499         if (valid & OBD_MD_FLEPOCH)
2500                 CDEBUG(D_RPCTRACE, "obdo: o_ioepoch = %lld\n",
2501                        oa->o_ioepoch);
2502         if (valid & OBD_MD_FLFID) {
2503                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2504                        oa->o_stripe_idx);
2505                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2506                        oa->o_parent_ver);
2507         }
2508         if (valid & OBD_MD_FLHANDLE)
2509                 CDEBUG(D_RPCTRACE, "obdo: o_handle = %lld\n",
2510                        oa->o_handle.cookie);
2511 }
2512
2513 void dump_ost_body(struct ost_body *ob)
2514 {
2515         dump_obdo(&ob->oa);
2516 }
2517
2518 void dump_rcs(__u32 *rc)
2519 {
2520         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2521 }
2522
2523 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2524 {
2525         LASSERT(req->rq_reqmsg);
2526
2527         switch (req->rq_reqmsg->lm_magic) {
2528         case LUSTRE_MSG_MAGIC_V2:
2529                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2530         default:
2531                 CERROR("bad lustre msg magic: %#08X\n",
2532                        req->rq_reqmsg->lm_magic);
2533         }
2534         return 0;
2535 }
2536
2537 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2538 {
2539         if (unlikely(!req->rq_repmsg))
2540                 return 0;
2541
2542         switch (req->rq_repmsg->lm_magic) {
2543         case LUSTRE_MSG_MAGIC_V2:
2544                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2545         default:
2546                 /* uninitialized yet */
2547                 return 0;
2548         }
2549 }
2550
2551 void _debug_req(struct ptlrpc_request *req,
2552                 struct libcfs_debug_msg_data *msgdata, const char *fmt, ...)
2553 {
2554         bool req_ok = req->rq_reqmsg != NULL;
2555         bool rep_ok = false;
2556         lnet_nid_t nid = LNET_NID_ANY;
2557         va_list args;
2558         int rep_flags = -1;
2559         int rep_status = -1;
2560
2561         spin_lock(&req->rq_early_free_lock);
2562         if (req->rq_repmsg)
2563                 rep_ok = true;
2564
2565         if (ptlrpc_req_need_swab(req)) {
2566                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2567                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2568         }
2569
2570         if (rep_ok) {
2571                 rep_flags = lustre_msg_get_flags(req->rq_repmsg);
2572                 rep_status = lustre_msg_get_status(req->rq_repmsg);
2573         }
2574         spin_unlock(&req->rq_early_free_lock);
2575
2576         if (req->rq_import && req->rq_import->imp_connection)
2577                 nid = req->rq_import->imp_connection->c_peer.nid;
2578         else if (req->rq_export && req->rq_export->exp_connection)
2579                 nid = req->rq_export->exp_connection->c_peer.nid;
2580
2581         va_start(args, fmt);
2582         libcfs_debug_vmsg2(msgdata, fmt, args,
2583                            " req@%p x%llu/t%lld(%lld) o%d->%s@%s:%d/%d lens %d/%d e %d to %lld dl %lld ref %d fl " REQ_FLAGS_FMT "/%x/%x rc %d/%d\n",
2584                            req, req->rq_xid, req->rq_transno,
2585                            req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2586                            req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2587                            req->rq_import ?
2588                                 req->rq_import->imp_obd->obd_name :
2589                                 req->rq_export ?
2590                                         req->rq_export->exp_client_uuid.uuid :
2591                                         "<?>",
2592                            libcfs_nid2str(nid),
2593                            req->rq_request_portal, req->rq_reply_portal,
2594                            req->rq_reqlen, req->rq_replen,
2595                            req->rq_early_count, (s64)req->rq_timedout,
2596                            (s64)req->rq_deadline,
2597                            atomic_read(&req->rq_refcount),
2598                            DEBUG_REQ_FLAGS(req),
2599                            req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2600                            rep_flags, req->rq_status, rep_status);
2601         va_end(args);
2602 }
2603 EXPORT_SYMBOL(_debug_req);
2604
2605 void lustre_swab_lustre_capa(struct lustre_capa *c)
2606 {
2607         lustre_swab_lu_fid(&c->lc_fid);
2608         __swab64s (&c->lc_opc);
2609         __swab64s (&c->lc_uid);
2610         __swab64s (&c->lc_gid);
2611         __swab32s (&c->lc_flags);
2612         __swab32s (&c->lc_keyid);
2613         __swab32s (&c->lc_timeout);
2614         __swab32s (&c->lc_expiry);
2615 }
2616
2617 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2618 {
2619         __swab64s (&k->lk_seq);
2620         __swab32s (&k->lk_keyid);
2621         CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2622 }
2623
2624 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2625 {
2626         __swab32s(&state->hus_states);
2627         __swab32s(&state->hus_archive_id);
2628 }
2629
2630 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2631 {
2632         __swab32s(&hss->hss_valid);
2633         __swab64s(&hss->hss_setmask);
2634         __swab64s(&hss->hss_clearmask);
2635         __swab32s(&hss->hss_archive_id);
2636 }
2637
2638 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2639 {
2640         __swab64s(&extent->offset);
2641         __swab64s(&extent->length);
2642 }
2643
2644 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2645 {
2646         __swab32s(&action->hca_state);
2647         __swab32s(&action->hca_action);
2648         lustre_swab_hsm_extent(&action->hca_location);
2649 }
2650
2651 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2652 {
2653         lustre_swab_lu_fid(&hui->hui_fid);
2654         lustre_swab_hsm_extent(&hui->hui_extent);
2655 }
2656
2657 void lustre_swab_lu_extent(struct lu_extent *le)
2658 {
2659         __swab64s(&le->e_start);
2660         __swab64s(&le->e_end);
2661 }
2662
2663 void lustre_swab_layout_intent(struct layout_intent *li)
2664 {
2665         __swab32s(&li->li_opc);
2666         __swab32s(&li->li_flags);
2667         lustre_swab_lu_extent(&li->li_extent);
2668 }
2669
2670 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2671 {
2672         lustre_swab_lu_fid(&hpk->hpk_fid);
2673         __swab64s(&hpk->hpk_cookie);
2674         __swab64s(&hpk->hpk_extent.offset);
2675         __swab64s(&hpk->hpk_extent.length);
2676         __swab16s(&hpk->hpk_flags);
2677         __swab16s(&hpk->hpk_errval);
2678 }
2679
2680 void lustre_swab_hsm_request(struct hsm_request *hr)
2681 {
2682         __swab32s(&hr->hr_action);
2683         __swab32s(&hr->hr_archive_id);
2684         __swab64s(&hr->hr_flags);
2685         __swab32s(&hr->hr_itemcount);
2686         __swab32s(&hr->hr_data_len);
2687 }
2688
2689 void lustre_swab_object_update(struct object_update *ou)
2690 {
2691         struct object_update_param *param;
2692         size_t  i;
2693
2694         __swab16s(&ou->ou_type);
2695         __swab16s(&ou->ou_params_count);
2696         __swab32s(&ou->ou_result_size);
2697         __swab32s(&ou->ou_flags);
2698         __swab32s(&ou->ou_padding1);
2699         __swab64s(&ou->ou_batchid);
2700         lustre_swab_lu_fid(&ou->ou_fid);
2701         param = &ou->ou_params[0];
2702         for (i = 0; i < ou->ou_params_count; i++) {
2703                 __swab16s(&param->oup_len);
2704                 __swab16s(&param->oup_padding);
2705                 __swab32s(&param->oup_padding2);
2706                 param = (struct object_update_param *)((char *)param +
2707                          object_update_param_size(param));
2708         }
2709 }
2710
2711 void lustre_swab_object_update_request(struct object_update_request *our)
2712 {
2713         size_t i;
2714         __swab32s(&our->ourq_magic);
2715         __swab16s(&our->ourq_count);
2716         __swab16s(&our->ourq_padding);
2717         for (i = 0; i < our->ourq_count; i++) {
2718                 struct object_update *ou;
2719
2720                 ou = object_update_request_get(our, i, NULL);
2721                 if (ou == NULL)
2722                         return;
2723                 lustre_swab_object_update(ou);
2724         }
2725 }
2726
2727 void lustre_swab_object_update_result(struct object_update_result *our)
2728 {
2729         __swab32s(&our->our_rc);
2730         __swab16s(&our->our_datalen);
2731         __swab16s(&our->our_padding);
2732 }
2733
2734 void lustre_swab_object_update_reply(struct object_update_reply *our)
2735 {
2736         size_t i;
2737
2738         __swab32s(&our->ourp_magic);
2739         __swab16s(&our->ourp_count);
2740         __swab16s(&our->ourp_padding);
2741         for (i = 0; i < our->ourp_count; i++) {
2742                 struct object_update_result *ourp;
2743
2744                 __swab16s(&our->ourp_lens[i]);
2745                 ourp = object_update_result_get(our, i, NULL);
2746                 if (ourp == NULL)
2747                         return;
2748                 lustre_swab_object_update_result(ourp);
2749         }
2750 }
2751
2752 void lustre_swab_out_update_header(struct out_update_header *ouh)
2753 {
2754         __swab32s(&ouh->ouh_magic);
2755         __swab32s(&ouh->ouh_count);
2756         __swab32s(&ouh->ouh_inline_length);
2757         __swab32s(&ouh->ouh_reply_size);
2758 }
2759 EXPORT_SYMBOL(lustre_swab_out_update_header);
2760
2761 void lustre_swab_out_update_buffer(struct out_update_buffer *oub)
2762 {
2763         __swab32s(&oub->oub_size);
2764         __swab32s(&oub->oub_padding);
2765 }
2766 EXPORT_SYMBOL(lustre_swab_out_update_buffer);
2767
2768 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2769 {
2770         __swab64s(&msl->msl_flags);
2771 }
2772
2773 void lustre_swab_close_data(struct close_data *cd)
2774 {
2775         lustre_swab_lu_fid(&cd->cd_fid);
2776         __swab64s(&cd->cd_data_version);
2777 }
2778
2779 void lustre_swab_close_data_resync_done(struct close_data_resync_done *resync)
2780 {
2781         int i;
2782
2783         __swab32s(&resync->resync_count);
2784         /* after swab, resync_count must in CPU endian */
2785         if (resync->resync_count <= INLINE_RESYNC_ARRAY_SIZE) {
2786                 for (i = 0; i < resync->resync_count; i++)
2787                         __swab32s(&resync->resync_ids_inline[i]);
2788         }
2789 }
2790 EXPORT_SYMBOL(lustre_swab_close_data_resync_done);
2791
2792 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2793 {
2794         __swab32s(&lr->lr_event);
2795         __swab32s(&lr->lr_index);
2796         __swab32s(&lr->lr_flags);
2797         __swab32s(&lr->lr_valid);
2798         __swab32s(&lr->lr_speed);
2799         __swab16s(&lr->lr_version);
2800         __swab16s(&lr->lr_active);
2801         __swab16s(&lr->lr_param);
2802         __swab16s(&lr->lr_async_windows);
2803         __swab32s(&lr->lr_flags);
2804         lustre_swab_lu_fid(&lr->lr_fid);
2805         lustre_swab_lu_fid(&lr->lr_fid2);
2806         __swab32s(&lr->lr_comp_id);
2807         CLASSERT(offsetof(typeof(*lr), lr_padding_0) != 0);
2808         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2809         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2810         CLASSERT(offsetof(typeof(*lr), lr_padding_3) != 0);
2811 }
2812
2813 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2814 {
2815         __swab32s(&lr->lr_status);
2816         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2817         __swab64s(&lr->lr_repaired);
2818 }
2819
2820 static void lustre_swab_orphan_rec(struct lu_orphan_rec *rec)
2821 {
2822         lustre_swab_lu_fid(&rec->lor_fid);
2823         __swab32s(&rec->lor_uid);
2824         __swab32s(&rec->lor_gid);
2825 }
2826
2827 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2828 {
2829         lustre_swab_lu_fid(&ent->loe_key);
2830         lustre_swab_orphan_rec(&ent->loe_rec);
2831 }
2832 EXPORT_SYMBOL(lustre_swab_orphan_ent);
2833
2834 void lustre_swab_orphan_ent_v2(struct lu_orphan_ent_v2 *ent)
2835 {
2836         lustre_swab_lu_fid(&ent->loe_key);
2837         lustre_swab_orphan_rec(&ent->loe_rec.lor_rec);
2838         lustre_swab_ost_layout(&ent->loe_rec.lor_layout);
2839         CLASSERT(offsetof(typeof(ent->loe_rec), lor_padding) != 0);
2840 }
2841 EXPORT_SYMBOL(lustre_swab_orphan_ent_v2);
2842
2843 void lustre_swab_ladvise(struct lu_ladvise *ladvise)
2844 {
2845         __swab16s(&ladvise->lla_advice);
2846         __swab16s(&ladvise->lla_value1);
2847         __swab32s(&ladvise->lla_value2);
2848         __swab64s(&ladvise->lla_start);
2849         __swab64s(&ladvise->lla_end);
2850         __swab32s(&ladvise->lla_value3);
2851         __swab32s(&ladvise->lla_value4);
2852 }
2853 EXPORT_SYMBOL(lustre_swab_ladvise);
2854
2855 void lustre_swab_ladvise_hdr(struct ladvise_hdr *ladvise_hdr)
2856 {
2857         __swab32s(&ladvise_hdr->lah_magic);
2858         __swab32s(&ladvise_hdr->lah_count);
2859         __swab64s(&ladvise_hdr->lah_flags);
2860         __swab32s(&ladvise_hdr->lah_value1);
2861         __swab32s(&ladvise_hdr->lah_value2);
2862         __swab64s(&ladvise_hdr->lah_value3);
2863 }
2864 EXPORT_SYMBOL(lustre_swab_ladvise_hdr);