Whamcloud - gitweb
LU-3534 ptlrpc: mbits is sent within ptlrpc_body
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2014, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/pack_generic.c
37  *
38  * (Un)packing of OST requests
39  *
40  * Author: Peter J. Braam <braam@clusterfs.com>
41  * Author: Phil Schwan <phil@clusterfs.com>
42  * Author: Eric Barton <eeb@clusterfs.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_RPC
46
47 #include <libcfs/libcfs.h>
48
49 #include <obd_support.h>
50 #include <obd_class.h>
51 #include <lustre_net.h>
52 #include <obd_cksum.h>
53 #include <lustre/ll_fiemap.h>
54
55 #include "ptlrpc_internal.h"
56
57 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
58 {
59         return cfs_size_round(offsetof(struct lustre_msg_v2,
60                                        lm_buflens[count]));
61 }
62
63 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
64 {
65         switch (magic) {
66         case LUSTRE_MSG_MAGIC_V2:
67                 return lustre_msg_hdr_size_v2(count);
68         default:
69                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
70                 return 0;
71         }
72 }
73
74 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
75                             __u32 index)
76 {
77         if (inout)
78                 lustre_set_req_swabbed(req, index);
79         else
80                 lustre_set_rep_swabbed(req, index);
81 }
82
83 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
84                          __u32 index)
85 {
86         if (inout)
87                 return (ptlrpc_req_need_swab(req) &&
88                         !lustre_req_swabbed(req, index));
89         else
90                 return (ptlrpc_rep_need_swab(req) &&
91                         !lustre_rep_swabbed(req, index));
92 }
93
94 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
95                                                 __u32 version)
96 {
97         __u32 ver = lustre_msg_get_version(msg);
98         return (ver & LUSTRE_VERSION_MASK) != version;
99 }
100
101 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version)
102 {
103 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
104         switch (msg->lm_magic) {
105         case LUSTRE_MSG_MAGIC_V1:
106                 CERROR("msg v1 not supported - please upgrade you system\n");
107                 return -EINVAL;
108         case LUSTRE_MSG_MAGIC_V2:
109                 return lustre_msg_check_version_v2(msg, version);
110         default:
111                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
112                 return -EPROTO;
113         }
114 #undef LUSTRE_MSG_MAGIC_V1
115 }
116
117 /* early reply size */
118 __u32 lustre_msg_early_size()
119 {
120         static __u32 size;
121         if (!size) {
122                 /* Always reply old ptlrpc_body_v2 to keep interoprability
123                  * with the old client (< 2.3) which doesn't have pb_jobid
124                  * in the ptlrpc_body.
125                  *
126                  * XXX Remove this whenever we dorp interoprability with such
127                  *     client.
128                  */
129                 __u32 pblen = sizeof(struct ptlrpc_body_v2);
130                 size = lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
131         }
132         return size;
133 }
134 EXPORT_SYMBOL(lustre_msg_early_size);
135
136 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
137 {
138         __u32 size;
139         int i;
140
141         size = lustre_msg_hdr_size_v2(count);
142         for (i = 0; i < count; i++)
143                 size += cfs_size_round(lengths[i]);
144
145         return size;
146 }
147 EXPORT_SYMBOL(lustre_msg_size_v2);
148
149 /* This returns the size of the buffer that is required to hold a lustre_msg
150  * with the given sub-buffer lengths.
151  * NOTE: this should only be used for NEW requests, and should always be
152  *       in the form of a v2 request.  If this is a connection to a v1
153  *       target then the first buffer will be stripped because the ptlrpc
154  *       data is part of the lustre_msg_v1 header. b=14043 */
155 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
156 {
157         __u32 size[] = { sizeof(struct ptlrpc_body) };
158
159         if (!lens) {
160                 LASSERT(count == 1);
161                 lens = size;
162         }
163
164         LASSERT(count > 0);
165         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
166
167         switch (magic) {
168         case LUSTRE_MSG_MAGIC_V2:
169                 return lustre_msg_size_v2(count, lens);
170         default:
171                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
172                 return 0;
173         }
174 }
175
176 /* This is used to determine the size of a buffer that was already packed
177  * and will correctly handle the different message formats. */
178 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
179 {
180         switch (msg->lm_magic) {
181         case LUSTRE_MSG_MAGIC_V2:
182                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
183         default:
184                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
185                 return 0;
186         }
187 }
188
189 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
190                         char **bufs)
191 {
192         char *ptr;
193         int i;
194
195         msg->lm_bufcount = count;
196         /* XXX: lm_secflvr uninitialized here */
197         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
198
199         for (i = 0; i < count; i++)
200                 msg->lm_buflens[i] = lens[i];
201
202         if (bufs == NULL)
203                 return;
204
205         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
206         for (i = 0; i < count; i++) {
207                 char *tmp = bufs[i];
208                 LOGL(tmp, lens[i], ptr);
209         }
210 }
211 EXPORT_SYMBOL(lustre_init_msg_v2);
212
213 static int lustre_pack_request_v2(struct ptlrpc_request *req,
214                                   int count, __u32 *lens, char **bufs)
215 {
216         int reqlen, rc;
217
218         reqlen = lustre_msg_size_v2(count, lens);
219
220         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
221         if (rc)
222                 return rc;
223
224         req->rq_reqlen = reqlen;
225
226         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
227         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
228         return 0;
229 }
230
231 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
232                         __u32 *lens, char **bufs)
233 {
234         __u32 size[] = { sizeof(struct ptlrpc_body) };
235
236         if (!lens) {
237                 LASSERT(count == 1);
238                 lens = size;
239         }
240
241         LASSERT(count > 0);
242         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
243
244         /* only use new format, we don't need to be compatible with 1.4 */
245         magic = LUSTRE_MSG_MAGIC_V2;
246
247         switch (magic) {
248         case LUSTRE_MSG_MAGIC_V2:
249                 return lustre_pack_request_v2(req, count, lens, bufs);
250         default:
251                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
252                 return -EINVAL;
253         }
254 }
255
256 #if RS_DEBUG
257 struct list_head ptlrpc_rs_debug_lru =
258         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
259 spinlock_t ptlrpc_rs_debug_lock;
260
261 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
262 do {                                                                    \
263         spin_lock(&ptlrpc_rs_debug_lock);                               \
264         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
265         spin_unlock(&ptlrpc_rs_debug_lock);                             \
266 } while (0)
267
268 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
269 do {                                                                    \
270         spin_lock(&ptlrpc_rs_debug_lock);                               \
271         list_del(&(rs)->rs_debug_list);                         \
272         spin_unlock(&ptlrpc_rs_debug_lock);                             \
273 } while (0)
274 #else
275 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
276 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
277 #endif
278
279 struct ptlrpc_reply_state *
280 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
281 {
282         struct ptlrpc_reply_state *rs = NULL;
283
284         spin_lock(&svcpt->scp_rep_lock);
285
286         /* See if we have anything in a pool, and wait if nothing */
287         while (list_empty(&svcpt->scp_rep_idle)) {
288                 struct l_wait_info      lwi;
289                 int                     rc;
290
291                 spin_unlock(&svcpt->scp_rep_lock);
292                 /* If we cannot get anything for some long time, we better
293                  * bail out instead of waiting infinitely */
294                 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
295                 rc = l_wait_event(svcpt->scp_rep_waitq,
296                                   !list_empty(&svcpt->scp_rep_idle), &lwi);
297                 if (rc != 0)
298                         goto out;
299                 spin_lock(&svcpt->scp_rep_lock);
300         }
301
302         rs = list_entry(svcpt->scp_rep_idle.next,
303                             struct ptlrpc_reply_state, rs_list);
304         list_del(&rs->rs_list);
305
306         spin_unlock(&svcpt->scp_rep_lock);
307
308         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
309         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
310         rs->rs_svcpt = svcpt;
311         rs->rs_prealloc = 1;
312 out:
313         return rs;
314 }
315
316 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
317 {
318         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
319
320         spin_lock(&svcpt->scp_rep_lock);
321         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
322         spin_unlock(&svcpt->scp_rep_lock);
323         wake_up(&svcpt->scp_rep_waitq);
324 }
325
326 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
327                          __u32 *lens, char **bufs, int flags)
328 {
329         struct ptlrpc_reply_state *rs;
330         int                        msg_len, rc;
331         ENTRY;
332
333         LASSERT(req->rq_reply_state == NULL);
334
335         if ((flags & LPRFL_EARLY_REPLY) == 0) {
336                 spin_lock(&req->rq_lock);
337                 req->rq_packed_final = 1;
338                 spin_unlock(&req->rq_lock);
339         }
340
341         msg_len = lustre_msg_size_v2(count, lens);
342         rc = sptlrpc_svc_alloc_rs(req, msg_len);
343         if (rc)
344                 RETURN(rc);
345
346         rs = req->rq_reply_state;
347         atomic_set(&rs->rs_refcount, 1);        /* 1 ref for rq_reply_state */
348         rs->rs_cb_id.cbid_fn = reply_out_callback;
349         rs->rs_cb_id.cbid_arg = rs;
350         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
351         INIT_LIST_HEAD(&rs->rs_exp_list);
352         INIT_LIST_HEAD(&rs->rs_obd_list);
353         INIT_LIST_HEAD(&rs->rs_list);
354         spin_lock_init(&rs->rs_lock);
355
356         req->rq_replen = msg_len;
357         req->rq_reply_state = rs;
358         req->rq_repmsg = rs->rs_msg;
359
360         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
361         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
362
363         PTLRPC_RS_DEBUG_LRU_ADD(rs);
364
365         RETURN(0);
366 }
367 EXPORT_SYMBOL(lustre_pack_reply_v2);
368
369 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
370                             char **bufs, int flags)
371 {
372         int rc = 0;
373         __u32 size[] = { sizeof(struct ptlrpc_body) };
374
375         if (!lens) {
376                 LASSERT(count == 1);
377                 lens = size;
378         }
379
380         LASSERT(count > 0);
381         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
382
383         switch (req->rq_reqmsg->lm_magic) {
384         case LUSTRE_MSG_MAGIC_V2:
385                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
386                 break;
387         default:
388                 LASSERTF(0, "incorrect message magic: %08x\n",
389                          req->rq_reqmsg->lm_magic);
390                 rc = -EINVAL;
391         }
392         if (rc != 0)
393                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
394                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
395         return rc;
396 }
397
398 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
399                       char **bufs)
400 {
401         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
402 }
403 EXPORT_SYMBOL(lustre_pack_reply);
404
405 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
406 {
407         __u32 i, offset, buflen, bufcount;
408
409         LASSERT(m != NULL);
410
411         bufcount = m->lm_bufcount;
412         if (unlikely(n >= bufcount)) {
413                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
414                        m, n, bufcount);
415                 return NULL;
416         }
417
418         buflen = m->lm_buflens[n];
419         if (unlikely(buflen < min_size)) {
420                 CERROR("msg %p buffer[%d] size %d too small "
421                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
422                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
423                 return NULL;
424         }
425
426         offset = lustre_msg_hdr_size_v2(bufcount);
427         for (i = 0; i < n; i++)
428                 offset += cfs_size_round(m->lm_buflens[i]);
429
430         return (char *)m + offset;
431 }
432
433 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
434 {
435         switch (m->lm_magic) {
436         case LUSTRE_MSG_MAGIC_V2:
437                 return lustre_msg_buf_v2(m, n, min_size);
438         default:
439                 LASSERTF(0, "incorrect message magic: %08x (msg:%p)\n",
440                          m->lm_magic, m);
441                 return NULL;
442         }
443 }
444 EXPORT_SYMBOL(lustre_msg_buf);
445
446 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
447                                 unsigned int newlen, int move_data)
448 {
449         char   *tail = NULL, *newpos;
450         int     tail_len = 0, n;
451
452         LASSERT(msg);
453         LASSERT(msg->lm_bufcount > segment);
454         LASSERT(msg->lm_buflens[segment] >= newlen);
455
456         if (msg->lm_buflens[segment] == newlen)
457                 goto out;
458
459         if (move_data && msg->lm_bufcount > segment + 1) {
460                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
461                 for (n = segment + 1; n < msg->lm_bufcount; n++)
462                         tail_len += cfs_size_round(msg->lm_buflens[n]);
463         }
464
465         msg->lm_buflens[segment] = newlen;
466
467         if (tail && tail_len) {
468                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
469                 LASSERT(newpos <= tail);
470                 if (newpos != tail)
471                         memmove(newpos, tail, tail_len);
472         }
473 out:
474         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
475 }
476
477 /*
478  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
479  * we also move data forward from @segment + 1.
480  *
481  * if @newlen == 0, we remove the segment completely, but we still keep the
482  * totally bufcount the same to save possible data moving. this will leave a
483  * unused segment with size 0 at the tail, but that's ok.
484  *
485  * return new msg size after shrinking.
486  *
487  * CAUTION:
488  * + if any buffers higher than @segment has been filled in, must call shrink
489  *   with non-zero @move_data.
490  * + caller should NOT keep pointers to msg buffers which higher than @segment
491  *   after call shrink.
492  */
493 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
494                       unsigned int newlen, int move_data)
495 {
496         switch (msg->lm_magic) {
497         case LUSTRE_MSG_MAGIC_V2:
498                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
499         default:
500                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
501         }
502 }
503 EXPORT_SYMBOL(lustre_shrink_msg);
504
505 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
506 {
507         PTLRPC_RS_DEBUG_LRU_DEL(rs);
508
509         LASSERT(atomic_read(&rs->rs_refcount) == 0);
510         LASSERT(!rs->rs_difficult || rs->rs_handled);
511         LASSERT(!rs->rs_on_net);
512         LASSERT(!rs->rs_scheduled);
513         LASSERT(rs->rs_export == NULL);
514         LASSERT(rs->rs_nlocks == 0);
515         LASSERT(list_empty(&rs->rs_exp_list));
516         LASSERT(list_empty(&rs->rs_obd_list));
517
518         sptlrpc_svc_free_rs(rs);
519 }
520
521 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
522 {
523         int swabbed, required_len, i;
524
525         /* Now we know the sender speaks my language. */
526         required_len = lustre_msg_hdr_size_v2(0);
527         if (len < required_len) {
528                 /* can't even look inside the message */
529                 CERROR("message length %d too small for lustre_msg\n", len);
530                 return -EINVAL;
531         }
532
533         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
534
535         if (swabbed) {
536                 __swab32s(&m->lm_magic);
537                 __swab32s(&m->lm_bufcount);
538                 __swab32s(&m->lm_secflvr);
539                 __swab32s(&m->lm_repsize);
540                 __swab32s(&m->lm_cksum);
541                 __swab32s(&m->lm_flags);
542                 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
543                 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
544         }
545
546         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
547         if (len < required_len) {
548                 /* didn't receive all the buffer lengths */
549                 CERROR ("message length %d too small for %d buflens\n",
550                         len, m->lm_bufcount);
551                 return -EINVAL;
552         }
553
554         for (i = 0; i < m->lm_bufcount; i++) {
555                 if (swabbed)
556                         __swab32s(&m->lm_buflens[i]);
557                 required_len += cfs_size_round(m->lm_buflens[i]);
558         }
559
560         if (len < required_len) {
561                 CERROR("len: %d, required_len %d\n", len, required_len);
562                 CERROR("bufcount: %d\n", m->lm_bufcount);
563                 for (i = 0; i < m->lm_bufcount; i++)
564                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
565                 return -EINVAL;
566         }
567
568         return swabbed;
569 }
570
571 int __lustre_unpack_msg(struct lustre_msg *m, int len)
572 {
573         int required_len, rc;
574         ENTRY;
575
576         /* We can provide a slightly better error log, if we check the
577          * message magic and version first.  In the future, struct
578          * lustre_msg may grow, and we'd like to log a version mismatch,
579          * rather than a short message.
580          *
581          */
582         required_len = offsetof(struct lustre_msg, lm_magic) +
583                        sizeof(m->lm_magic);
584         if (len < required_len) {
585                 /* can't even look inside the message */
586                 CERROR("message length %d too small for magic/version check\n",
587                        len);
588                 RETURN(-EINVAL);
589         }
590
591         rc = lustre_unpack_msg_v2(m, len);
592
593         RETURN(rc);
594 }
595 EXPORT_SYMBOL(__lustre_unpack_msg);
596
597 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
598 {
599         int rc;
600         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
601         if (rc == 1) {
602                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
603                 rc = 0;
604         }
605         return rc;
606 }
607
608 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
609 {
610         int rc;
611         rc = __lustre_unpack_msg(req->rq_repmsg, len);
612         if (rc == 1) {
613                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
614                 rc = 0;
615         }
616         return rc;
617 }
618
619 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
620                                                const int inout, int offset)
621 {
622         struct ptlrpc_body *pb;
623         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
624
625         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
626         if (!pb) {
627                 CERROR("error unpacking ptlrpc body\n");
628                 return -EFAULT;
629         }
630         if (ptlrpc_buf_need_swab(req, inout, offset)) {
631                 lustre_swab_ptlrpc_body(pb);
632                 ptlrpc_buf_set_swabbed(req, inout, offset);
633         }
634
635         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
636                  CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
637                  return -EINVAL;
638         }
639
640         if (!inout)
641                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
642
643         return 0;
644 }
645
646 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
647 {
648         switch (req->rq_reqmsg->lm_magic) {
649         case LUSTRE_MSG_MAGIC_V2:
650                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
651         default:
652                 CERROR("bad lustre msg magic: %08x\n",
653                        req->rq_reqmsg->lm_magic);
654                 return -EINVAL;
655         }
656 }
657
658 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
659 {
660         switch (req->rq_repmsg->lm_magic) {
661         case LUSTRE_MSG_MAGIC_V2:
662                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
663         default:
664                 CERROR("bad lustre msg magic: %08x\n",
665                        req->rq_repmsg->lm_magic);
666                 return -EINVAL;
667         }
668 }
669
670 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
671 {
672         if (n >= m->lm_bufcount)
673                 return 0;
674
675         return m->lm_buflens[n];
676 }
677
678 /**
679  * lustre_msg_buflen - return the length of buffer \a n in message \a m
680  * \param m lustre_msg (request or reply) to look at
681  * \param n message index (base 0)
682  *
683  * returns zero for non-existent message indices
684  */
685 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
686 {
687         switch (m->lm_magic) {
688         case LUSTRE_MSG_MAGIC_V2:
689                 return lustre_msg_buflen_v2(m, n);
690         default:
691                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
692                 return 0;
693         }
694 }
695 EXPORT_SYMBOL(lustre_msg_buflen);
696
697 static inline void
698 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
699 {
700         if (n >= m->lm_bufcount)
701                 LBUG();
702
703         m->lm_buflens[n] = len;
704 }
705
706 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
707 {
708         switch (m->lm_magic) {
709         case LUSTRE_MSG_MAGIC_V2:
710                 lustre_msg_set_buflen_v2(m, n, len);
711                 return;
712         default:
713                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
714         }
715 }
716
717 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
718  * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
719 __u32 lustre_msg_bufcount(struct lustre_msg *m)
720 {
721         switch (m->lm_magic) {
722         case LUSTRE_MSG_MAGIC_V2:
723                 return m->lm_bufcount;
724         default:
725                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
726                 return 0;
727         }
728 }
729
730 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
731 {
732         /* max_len == 0 means the string should fill the buffer */
733         char *str;
734         __u32 slen, blen;
735
736         switch (m->lm_magic) {
737         case LUSTRE_MSG_MAGIC_V2:
738                 str = lustre_msg_buf_v2(m, index, 0);
739                 blen = lustre_msg_buflen_v2(m, index);
740                 break;
741         default:
742                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
743         }
744
745         if (str == NULL) {
746                 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
747                 return NULL;
748         }
749
750         slen = strnlen(str, blen);
751
752         if (slen == blen) {                     /* not NULL terminated */
753                 CERROR("can't unpack non-NULL terminated string in "
754                         "msg %p buffer[%d] len %d\n", m, index, blen);
755                 return NULL;
756         }
757
758         if (max_len == 0) {
759                 if (slen != blen - 1) {
760                         CERROR("can't unpack short string in msg %p "
761                                "buffer[%d] len %d: strlen %d\n",
762                                m, index, blen, slen);
763                         return NULL;
764                 }
765         } else if (slen > max_len) {
766                 CERROR("can't unpack oversized string in msg %p "
767                        "buffer[%d] len %d strlen %d: max %d expected\n",
768                        m, index, blen, slen, max_len);
769                 return NULL;
770         }
771
772         return str;
773 }
774
775 /* Wrap up the normal fixed length cases */
776 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
777                                       __u32 min_size, void *swabber)
778 {
779         void *ptr = NULL;
780
781         LASSERT(msg != NULL);
782         switch (msg->lm_magic) {
783         case LUSTRE_MSG_MAGIC_V2:
784                 ptr = lustre_msg_buf_v2(msg, index, min_size);
785                 break;
786         default:
787                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
788         }
789
790         if (ptr != NULL && swabber != NULL)
791                 ((void (*)(void *))swabber)(ptr);
792
793         return ptr;
794 }
795
796 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
797 {
798         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
799                                  sizeof(struct ptlrpc_body_v2));
800 }
801
802 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg)
803 {
804         switch (msg->lm_magic) {
805         case LUSTRE_MSG_MAGIC_V2:
806                 /* already in host endian */
807                 return msg->lm_flags;
808         default:
809                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
810                 return 0;
811         }
812 }
813 EXPORT_SYMBOL(lustre_msghdr_get_flags);
814
815 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
816 {
817         switch (msg->lm_magic) {
818         case LUSTRE_MSG_MAGIC_V2:
819                 msg->lm_flags = flags;
820                 return;
821         default:
822                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
823         }
824 }
825
826 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
827 {
828         switch (msg->lm_magic) {
829         case LUSTRE_MSG_MAGIC_V2: {
830                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
831                 if (pb != NULL)
832                         return pb->pb_flags;
833
834                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
835         }
836         /* no break */
837         default:
838                 /* flags might be printed in debug code while message
839                  * uninitialized */
840                 return 0;
841         }
842 }
843 EXPORT_SYMBOL(lustre_msg_get_flags);
844
845 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
846 {
847         switch (msg->lm_magic) {
848         case LUSTRE_MSG_MAGIC_V2: {
849                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
850                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
851                 pb->pb_flags |= flags;
852                 return;
853         }
854         default:
855                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
856         }
857 }
858 EXPORT_SYMBOL(lustre_msg_add_flags);
859
860 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
861 {
862         switch (msg->lm_magic) {
863         case LUSTRE_MSG_MAGIC_V2: {
864                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
865                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
866                 pb->pb_flags = flags;
867                 return;
868         }
869         default:
870                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
871         }
872 }
873
874 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
875 {
876         switch (msg->lm_magic) {
877         case LUSTRE_MSG_MAGIC_V2: {
878                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
879                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
880                 pb->pb_flags &= ~(MSG_GEN_FLAG_MASK & flags);
881                 return;
882         }
883         default:
884                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
885         }
886 }
887 EXPORT_SYMBOL(lustre_msg_clear_flags);
888
889 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
890 {
891         switch (msg->lm_magic) {
892         case LUSTRE_MSG_MAGIC_V2: {
893                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
894                 if (pb != NULL)
895                         return pb->pb_op_flags;
896
897                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
898         }
899         /* no break */
900         default:
901                 return 0;
902         }
903 }
904
905 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
906 {
907         switch (msg->lm_magic) {
908         case LUSTRE_MSG_MAGIC_V2: {
909                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
910                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
911                 pb->pb_op_flags |= flags;
912                 return;
913         }
914         default:
915                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
916         }
917 }
918 EXPORT_SYMBOL(lustre_msg_add_op_flags);
919
920 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
921 {
922         switch (msg->lm_magic) {
923         case LUSTRE_MSG_MAGIC_V2: {
924                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
925                 if (pb == NULL) {
926                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
927                         return NULL;
928                 }
929                 return &pb->pb_handle;
930         }
931         default:
932                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
933                 return NULL;
934         }
935 }
936
937 __u32 lustre_msg_get_type(struct lustre_msg *msg)
938 {
939         switch (msg->lm_magic) {
940         case LUSTRE_MSG_MAGIC_V2: {
941                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
942                 if (pb == NULL) {
943                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
944                         return PTL_RPC_MSG_ERR;
945                 }
946                 return pb->pb_type;
947         }
948         default:
949                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
950                 return PTL_RPC_MSG_ERR;
951         }
952 }
953 EXPORT_SYMBOL(lustre_msg_get_type);
954
955 __u32 lustre_msg_get_version(struct lustre_msg *msg)
956 {
957         switch (msg->lm_magic) {
958         case LUSTRE_MSG_MAGIC_V2: {
959                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
960                 if (pb == NULL) {
961                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
962                         return 0;
963                 }
964                 return pb->pb_version;
965         }
966         default:
967                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
968                 return 0;
969         }
970 }
971
972 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
973 {
974         switch (msg->lm_magic) {
975         case LUSTRE_MSG_MAGIC_V2: {
976                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
977                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
978                 pb->pb_version |= version;
979                 return;
980         }
981         default:
982                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
983         }
984 }
985
986 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
987 {
988         switch (msg->lm_magic) {
989         case LUSTRE_MSG_MAGIC_V2: {
990                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
991                 if (pb == NULL) {
992                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
993                         return 0;
994                 }
995                 return pb->pb_opc;
996         }
997         default:
998                 CERROR("incorrect message magic: %08x (msg:%p)\n",
999                        msg->lm_magic, msg);
1000                 return 0;
1001         }
1002 }
1003 EXPORT_SYMBOL(lustre_msg_get_opc);
1004
1005 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1006 {
1007         switch (msg->lm_magic) {
1008         case LUSTRE_MSG_MAGIC_V2: {
1009                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1010                 if (pb == NULL) {
1011                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1012                         return 0;
1013                 }
1014                 return pb->pb_last_xid;
1015         }
1016         default:
1017                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1018                 return 0;
1019         }
1020 }
1021 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1022
1023 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1024 {
1025         switch (msg->lm_magic) {
1026         case LUSTRE_MSG_MAGIC_V2: {
1027                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1028                 if (!pb) {
1029                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1030                         return 0;
1031                 }
1032                 return pb->pb_tag;
1033         }
1034         default:
1035                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1036                 return 0;
1037         }
1038 }
1039 EXPORT_SYMBOL(lustre_msg_get_tag);
1040
1041 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1042 {
1043         switch (msg->lm_magic) {
1044         case LUSTRE_MSG_MAGIC_V2: {
1045                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1046                 if (pb == NULL) {
1047                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1048                         return 0;
1049                 }
1050                 return pb->pb_last_committed;
1051         }
1052         default:
1053                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1054                 return 0;
1055         }
1056 }
1057 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1058
1059 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1060 {
1061         switch (msg->lm_magic) {
1062         case LUSTRE_MSG_MAGIC_V2: {
1063                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1064                 if (pb == NULL) {
1065                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1066                         return NULL;
1067                 }
1068                 return pb->pb_pre_versions;
1069         }
1070         default:
1071                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1072                 return NULL;
1073         }
1074 }
1075 EXPORT_SYMBOL(lustre_msg_get_versions);
1076
1077 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1078 {
1079         switch (msg->lm_magic) {
1080         case LUSTRE_MSG_MAGIC_V2: {
1081                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1082                 if (pb == NULL) {
1083                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1084                         return 0;
1085                 }
1086                 return pb->pb_transno;
1087         }
1088         default:
1089                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1090                 return 0;
1091         }
1092 }
1093 EXPORT_SYMBOL(lustre_msg_get_transno);
1094
1095 int lustre_msg_get_status(struct lustre_msg *msg)
1096 {
1097         switch (msg->lm_magic) {
1098         case LUSTRE_MSG_MAGIC_V2: {
1099                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1100                 if (pb != NULL)
1101                         return pb->pb_status;
1102                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1103         }
1104         /* no break */
1105         default:
1106                 /* status might be printed in debug code while message
1107                 * uninitialized */
1108                 return -EINVAL;
1109         }
1110 }
1111 EXPORT_SYMBOL(lustre_msg_get_status);
1112
1113 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1114 {
1115         switch (msg->lm_magic) {
1116         case LUSTRE_MSG_MAGIC_V2: {
1117                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1118                 if (pb == NULL) {
1119                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1120                         return -EINVAL;
1121                 }
1122                 return pb->pb_slv;
1123         }
1124         default:
1125                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1126                 return -EINVAL;
1127         }
1128 }
1129
1130
1131 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1132 {
1133         switch (msg->lm_magic) {
1134         case LUSTRE_MSG_MAGIC_V2: {
1135                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1136                 if (pb == NULL) {
1137                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1138                         return;
1139                 }
1140                 pb->pb_slv = slv;
1141                 return;
1142         }
1143         default:
1144                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1145                 return;
1146         }
1147 }
1148
1149 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1150 {
1151         switch (msg->lm_magic) {
1152         case LUSTRE_MSG_MAGIC_V2: {
1153                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1154                 if (pb == NULL) {
1155                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1156                         return -EINVAL;
1157                 }
1158                 return pb->pb_limit;
1159         }
1160         default:
1161                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1162                 return -EINVAL;
1163         }
1164 }
1165
1166
1167 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1168 {
1169         switch (msg->lm_magic) {
1170         case LUSTRE_MSG_MAGIC_V2: {
1171                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1172                 if (pb == NULL) {
1173                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1174                         return;
1175                 }
1176                 pb->pb_limit = limit;
1177                 return;
1178         }
1179         default:
1180                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1181                 return;
1182         }
1183 }
1184
1185 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1186 {
1187         switch (msg->lm_magic) {
1188         case LUSTRE_MSG_MAGIC_V2: {
1189                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1190                 if (pb == NULL) {
1191                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1192                         return 0;
1193                 }
1194                 return pb->pb_conn_cnt;
1195         }
1196         default:
1197                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1198                 return 0;
1199         }
1200 }
1201 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1202
1203 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1204 {
1205         switch (msg->lm_magic) {
1206         case LUSTRE_MSG_MAGIC_V2:
1207                 return msg->lm_magic;
1208         default:
1209                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1210                 return 0;
1211         }
1212 }
1213
1214 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1215 {
1216         switch (msg->lm_magic) {
1217         case LUSTRE_MSG_MAGIC_V2: {
1218                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1219                 if (pb == NULL) {
1220                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1221                         return 0;
1222                 }
1223                 return pb->pb_timeout;
1224         }
1225         default:
1226                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1227                 return 0;
1228         }
1229 }
1230
1231 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1232 {
1233         switch (msg->lm_magic) {
1234         case LUSTRE_MSG_MAGIC_V2: {
1235                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1236                 if (pb == NULL) {
1237                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1238                         return 0;
1239                 }
1240                 return pb->pb_service_time;
1241         }
1242         default:
1243                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1244                 return 0;
1245         }
1246 }
1247
1248 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1249 {
1250         switch (msg->lm_magic) {
1251         case LUSTRE_MSG_MAGIC_V2: {
1252                 struct ptlrpc_body *pb =
1253                         lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1254                                           sizeof(struct ptlrpc_body));
1255                 if (!pb)
1256                         return NULL;
1257
1258                 return pb->pb_jobid;
1259         }
1260         default:
1261                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1262                 return NULL;
1263         }
1264 }
1265 EXPORT_SYMBOL(lustre_msg_get_jobid);
1266
1267 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1268 {
1269         switch (msg->lm_magic) {
1270         case LUSTRE_MSG_MAGIC_V2:
1271                 return msg->lm_cksum;
1272         default:
1273                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1274                 return 0;
1275         }
1276 }
1277
1278 __u64 lustre_msg_get_mbits(struct lustre_msg *msg)
1279 {
1280         switch (msg->lm_magic) {
1281         case LUSTRE_MSG_MAGIC_V2: {
1282                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1283                 if (pb == NULL) {
1284                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1285                         return 0;
1286                 }
1287                 return pb->pb_mbits;
1288         }
1289         default:
1290                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1291                 return 0;
1292         }
1293 }
1294
1295 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 53, 0)
1296 /*
1297  * In 1.6 and 1.8 the checksum was computed only on struct ptlrpc_body as
1298  * it was in 1.6 (88 bytes, smaller than the full size in 1.8).  It makes
1299  * more sense to compute the checksum on the full ptlrpc_body, regardless
1300  * of what size it is, but in order to keep interoperability with 1.8 we
1301  * can optionally also checksum only the first 88 bytes (caller decides). */
1302 # define ptlrpc_body_cksum_size_compat18         88
1303
1304 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg, int compat18)
1305 #else
1306 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1307 #endif
1308 {
1309         switch (msg->lm_magic) {
1310         case LUSTRE_MSG_MAGIC_V2: {
1311                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1312 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 53, 0)
1313                 __u32 len = compat18 ? ptlrpc_body_cksum_size_compat18 :
1314                             lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1315 #else
1316                 __u32 len = lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1317 #endif
1318                 unsigned int hsize = 4;
1319                 __u32 crc;
1320
1321                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1322                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1323                                        len, NULL, 0, (unsigned char *)&crc,
1324                                        &hsize);
1325                 return crc;
1326         }
1327         default:
1328                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1329                 return 0;
1330         }
1331 }
1332
1333 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1334 {
1335         switch (msg->lm_magic) {
1336         case LUSTRE_MSG_MAGIC_V2: {
1337                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1338                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1339                 pb->pb_handle = *handle;
1340                 return;
1341         }
1342         default:
1343                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1344         }
1345 }
1346
1347 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1348 {
1349         switch (msg->lm_magic) {
1350         case LUSTRE_MSG_MAGIC_V2: {
1351                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1352                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1353                 pb->pb_type = type;
1354                 return;
1355                 }
1356         default:
1357                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1358         }
1359 }
1360
1361 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1362 {
1363         switch (msg->lm_magic) {
1364         case LUSTRE_MSG_MAGIC_V2: {
1365                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1366                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1367                 pb->pb_opc = opc;
1368                 return;
1369         }
1370         default:
1371                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1372         }
1373 }
1374
1375 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1376 {
1377         switch (msg->lm_magic) {
1378         case LUSTRE_MSG_MAGIC_V2: {
1379                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1380                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1381                 pb->pb_last_xid = last_xid;
1382                 return;
1383         }
1384         default:
1385                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1386         }
1387 }
1388 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1389
1390 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1391 {
1392         switch (msg->lm_magic) {
1393         case LUSTRE_MSG_MAGIC_V2: {
1394                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1395                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1396                 pb->pb_tag = tag;
1397                 return;
1398         }
1399         default:
1400                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1401         }
1402 }
1403 EXPORT_SYMBOL(lustre_msg_set_tag);
1404
1405 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1406 {
1407         switch (msg->lm_magic) {
1408         case LUSTRE_MSG_MAGIC_V2: {
1409                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1410                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1411                 pb->pb_last_committed = last_committed;
1412                 return;
1413         }
1414         default:
1415                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1416         }
1417 }
1418
1419 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1420 {
1421         switch (msg->lm_magic) {
1422         case LUSTRE_MSG_MAGIC_V2: {
1423                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1424                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1425                 pb->pb_pre_versions[0] = versions[0];
1426                 pb->pb_pre_versions[1] = versions[1];
1427                 pb->pb_pre_versions[2] = versions[2];
1428                 pb->pb_pre_versions[3] = versions[3];
1429                 return;
1430         }
1431         default:
1432                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1433         }
1434 }
1435 EXPORT_SYMBOL(lustre_msg_set_versions);
1436
1437 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1438 {
1439         switch (msg->lm_magic) {
1440         case LUSTRE_MSG_MAGIC_V2: {
1441                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1442                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1443                 pb->pb_transno = transno;
1444                 return;
1445         }
1446         default:
1447                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1448         }
1449 }
1450 EXPORT_SYMBOL(lustre_msg_set_transno);
1451
1452 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1453 {
1454         switch (msg->lm_magic) {
1455         case LUSTRE_MSG_MAGIC_V2: {
1456                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1457                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1458                 pb->pb_status = status;
1459                 return;
1460         }
1461         default:
1462                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1463         }
1464 }
1465 EXPORT_SYMBOL(lustre_msg_set_status);
1466
1467 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1468 {
1469         switch (msg->lm_magic) {
1470         case LUSTRE_MSG_MAGIC_V2: {
1471                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1472                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1473                 pb->pb_conn_cnt = conn_cnt;
1474                 return;
1475         }
1476         default:
1477                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1478         }
1479 }
1480
1481 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1482 {
1483         switch (msg->lm_magic) {
1484         case LUSTRE_MSG_MAGIC_V2: {
1485                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1486                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1487                 pb->pb_timeout = timeout;
1488                 return;
1489         }
1490         default:
1491                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1492         }
1493 }
1494
1495 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1496 {
1497         switch (msg->lm_magic) {
1498         case LUSTRE_MSG_MAGIC_V2: {
1499                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1500                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1501                 pb->pb_service_time = service_time;
1502                 return;
1503         }
1504         default:
1505                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1506         }
1507 }
1508
1509 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1510 {
1511         switch (msg->lm_magic) {
1512         case LUSTRE_MSG_MAGIC_V2: {
1513                 __u32 opc = lustre_msg_get_opc(msg);
1514                 struct ptlrpc_body *pb;
1515
1516                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1517                  * See the comment in ptlrpc_request_pack(). */
1518                 if (!opc || opc == LDLM_BL_CALLBACK ||
1519                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1520                         return;
1521
1522                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1523                                        sizeof(struct ptlrpc_body));
1524                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1525
1526                 if (jobid != NULL)
1527                         memcpy(pb->pb_jobid, jobid, LUSTRE_JOBID_SIZE);
1528                 else if (pb->pb_jobid[0] == '\0')
1529                         lustre_get_jobid(pb->pb_jobid);
1530                 return;
1531         }
1532         default:
1533                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1534         }
1535 }
1536 EXPORT_SYMBOL(lustre_msg_set_jobid);
1537
1538 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1539 {
1540         switch (msg->lm_magic) {
1541         case LUSTRE_MSG_MAGIC_V2:
1542                 msg->lm_cksum = cksum;
1543                 return;
1544         default:
1545                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1546         }
1547 }
1548
1549 void lustre_msg_set_mbits(struct lustre_msg *msg, __u64 mbits)
1550 {
1551         switch (msg->lm_magic) {
1552         case LUSTRE_MSG_MAGIC_V2: {
1553                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1554
1555                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1556                 pb->pb_mbits = mbits;
1557                 return;
1558         }
1559         default:
1560                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1561         }
1562 }
1563
1564 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1565 {
1566         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1567
1568         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1569                                          req->rq_pill.rc_area[RCL_SERVER]);
1570         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1571                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1572 }
1573 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1574
1575 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1576 {
1577         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1578         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1579                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1580 }
1581
1582 /**
1583  * Send a remote set_info_async.
1584  *
1585  * This may go from client to server or server to client.
1586  */
1587 int do_set_info_async(struct obd_import *imp,
1588                       int opcode, int version,
1589                       size_t keylen, void *key,
1590                       size_t vallen, void *val,
1591                       struct ptlrpc_request_set *set)
1592 {
1593         struct ptlrpc_request *req;
1594         char                  *tmp;
1595         int                    rc;
1596         ENTRY;
1597
1598         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1599         if (req == NULL)
1600                 RETURN(-ENOMEM);
1601
1602         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1603                              RCL_CLIENT, keylen);
1604         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1605                              RCL_CLIENT, vallen);
1606         rc = ptlrpc_request_pack(req, version, opcode);
1607         if (rc) {
1608                 ptlrpc_request_free(req);
1609                 RETURN(rc);
1610         }
1611
1612         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1613         memcpy(tmp, key, keylen);
1614         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1615         memcpy(tmp, val, vallen);
1616
1617         ptlrpc_request_set_replen(req);
1618
1619         if (set) {
1620                 ptlrpc_set_add_req(set, req);
1621                 ptlrpc_check_set(NULL, set);
1622         } else {
1623                 rc = ptlrpc_queue_wait(req);
1624                 ptlrpc_req_finished(req);
1625         }
1626
1627         RETURN(rc);
1628 }
1629 EXPORT_SYMBOL(do_set_info_async);
1630
1631 /* byte flipping routines for all wire types declared in
1632  * lustre_idl.h implemented here.
1633  */
1634 void lustre_swab_ptlrpc_body(struct ptlrpc_body *b)
1635 {
1636         __swab32s (&b->pb_type);
1637         __swab32s (&b->pb_version);
1638         __swab32s (&b->pb_opc);
1639         __swab32s (&b->pb_status);
1640         __swab64s (&b->pb_last_xid);
1641         __swab16s (&b->pb_tag);
1642         __swab64s (&b->pb_last_committed);
1643         __swab64s (&b->pb_transno);
1644         __swab32s (&b->pb_flags);
1645         __swab32s (&b->pb_op_flags);
1646         __swab32s (&b->pb_conn_cnt);
1647         __swab32s (&b->pb_timeout);
1648         __swab32s (&b->pb_service_time);
1649         __swab32s (&b->pb_limit);
1650         __swab64s (&b->pb_slv);
1651         __swab64s (&b->pb_pre_versions[0]);
1652         __swab64s (&b->pb_pre_versions[1]);
1653         __swab64s (&b->pb_pre_versions[2]);
1654         __swab64s (&b->pb_pre_versions[3]);
1655         __swab64s(&b->pb_mbits);
1656         CLASSERT(offsetof(typeof(*b), pb_padding0) != 0);
1657         CLASSERT(offsetof(typeof(*b), pb_padding1) != 0);
1658         CLASSERT(offsetof(typeof(*b), pb_padding64_0) != 0);
1659         CLASSERT(offsetof(typeof(*b), pb_padding64_1) != 0);
1660         CLASSERT(offsetof(typeof(*b), pb_padding64_2) != 0);
1661         /* While we need to maintain compatibility between
1662          * clients and servers without ptlrpc_body_v2 (< 2.3)
1663          * do not swab any fields beyond pb_jobid, as we are
1664          * using this swab function for both ptlrpc_body
1665          * and ptlrpc_body_v2. */
1666         CLASSERT(offsetof(typeof(*b), pb_jobid) != 0);
1667 }
1668
1669 void lustre_swab_connect(struct obd_connect_data *ocd)
1670 {
1671         __swab64s(&ocd->ocd_connect_flags);
1672         __swab32s(&ocd->ocd_version);
1673         __swab32s(&ocd->ocd_grant);
1674         __swab64s(&ocd->ocd_ibits_known);
1675         __swab32s(&ocd->ocd_index);
1676         __swab32s(&ocd->ocd_brw_size);
1677         /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1678          * they are 8-byte values */
1679         __swab16s(&ocd->ocd_grant_extent);
1680         __swab32s(&ocd->ocd_unused);
1681         __swab64s(&ocd->ocd_transno);
1682         __swab32s(&ocd->ocd_group);
1683         __swab32s(&ocd->ocd_cksum_types);
1684         __swab32s(&ocd->ocd_instance);
1685         /* Fields after ocd_cksum_types are only accessible by the receiver
1686          * if the corresponding flag in ocd_connect_flags is set. Accessing
1687          * any field after ocd_maxbytes on the receiver without a valid flag
1688          * may result in out-of-bound memory access and kernel oops. */
1689         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1690                 __swab32s(&ocd->ocd_max_easize);
1691         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1692                 __swab64s(&ocd->ocd_maxbytes);
1693         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1694                 __swab16s(&ocd->ocd_maxmodrpcs);
1695         CLASSERT(offsetof(typeof(*ocd), padding0) != 0);
1696         CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1697         CLASSERT(offsetof(typeof(*ocd), padding2) != 0);
1698         CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1699         CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1700         CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1701         CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1702         CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1703         CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1704         CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1705         CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1706         CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1707         CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1708         CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1709         CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1710         CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1711 }
1712
1713 void lustre_swab_obdo (struct obdo  *o)
1714 {
1715         __swab64s (&o->o_valid);
1716         lustre_swab_ost_id(&o->o_oi);
1717         __swab64s (&o->o_parent_seq);
1718         __swab64s (&o->o_size);
1719         __swab64s (&o->o_mtime);
1720         __swab64s (&o->o_atime);
1721         __swab64s (&o->o_ctime);
1722         __swab64s (&o->o_blocks);
1723         __swab64s (&o->o_grant);
1724         __swab32s (&o->o_blksize);
1725         __swab32s (&o->o_mode);
1726         __swab32s (&o->o_uid);
1727         __swab32s (&o->o_gid);
1728         __swab32s (&o->o_flags);
1729         __swab32s (&o->o_nlink);
1730         __swab32s (&o->o_parent_oid);
1731         __swab32s (&o->o_misc);
1732         __swab64s (&o->o_ioepoch);
1733         __swab32s (&o->o_stripe_idx);
1734         __swab32s (&o->o_parent_ver);
1735         /* o_handle is opaque */
1736         /* o_lcookie is swabbed elsewhere */
1737         __swab32s (&o->o_uid_h);
1738         __swab32s (&o->o_gid_h);
1739         __swab64s (&o->o_data_version);
1740         CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1741         CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1742         CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1743
1744 }
1745 EXPORT_SYMBOL(lustre_swab_obdo);
1746
1747 void lustre_swab_obd_statfs (struct obd_statfs *os)
1748 {
1749         __swab64s (&os->os_type);
1750         __swab64s (&os->os_blocks);
1751         __swab64s (&os->os_bfree);
1752         __swab64s (&os->os_bavail);
1753         __swab64s (&os->os_files);
1754         __swab64s (&os->os_ffree);
1755         /* no need to swab os_fsid */
1756         __swab32s (&os->os_bsize);
1757         __swab32s (&os->os_namelen);
1758         __swab64s (&os->os_maxbytes);
1759         __swab32s (&os->os_state);
1760         CLASSERT(offsetof(typeof(*os), os_fprecreated) != 0);
1761         CLASSERT(offsetof(typeof(*os), os_spare2) != 0);
1762         CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1763         CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1764         CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1765         CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1766         CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1767         CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1768         CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1769 }
1770
1771 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1772 {
1773         lustre_swab_ost_id(&ioo->ioo_oid);
1774         __swab32s(&ioo->ioo_max_brw);
1775         __swab32s(&ioo->ioo_bufcnt);
1776 }
1777
1778 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1779 {
1780         __swab64s(&nbr->rnb_offset);
1781         __swab32s(&nbr->rnb_len);
1782         __swab32s(&nbr->rnb_flags);
1783 }
1784
1785 void lustre_swab_ost_body (struct ost_body *b)
1786 {
1787         lustre_swab_obdo (&b->oa);
1788 }
1789
1790 void lustre_swab_ost_last_id(u64 *id)
1791 {
1792         __swab64s(id);
1793 }
1794
1795 void lustre_swab_generic_32s(__u32 *val)
1796 {
1797         __swab32s(val);
1798 }
1799
1800 void lustre_swab_gl_desc(union ldlm_gl_desc *desc)
1801 {
1802         lustre_swab_lu_fid(&desc->lquota_desc.gl_id.qid_fid);
1803         __swab64s(&desc->lquota_desc.gl_flags);
1804         __swab64s(&desc->lquota_desc.gl_ver);
1805         __swab64s(&desc->lquota_desc.gl_hardlimit);
1806         __swab64s(&desc->lquota_desc.gl_softlimit);
1807         __swab64s(&desc->lquota_desc.gl_time);
1808         CLASSERT(offsetof(typeof(desc->lquota_desc), gl_pad2) != 0);
1809 }
1810
1811 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1812 {
1813         __swab64s(&lvb->lvb_size);
1814         __swab64s(&lvb->lvb_mtime);
1815         __swab64s(&lvb->lvb_atime);
1816         __swab64s(&lvb->lvb_ctime);
1817         __swab64s(&lvb->lvb_blocks);
1818 }
1819 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1820
1821 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1822 {
1823         __swab64s(&lvb->lvb_size);
1824         __swab64s(&lvb->lvb_mtime);
1825         __swab64s(&lvb->lvb_atime);
1826         __swab64s(&lvb->lvb_ctime);
1827         __swab64s(&lvb->lvb_blocks);
1828         __swab32s(&lvb->lvb_mtime_ns);
1829         __swab32s(&lvb->lvb_atime_ns);
1830         __swab32s(&lvb->lvb_ctime_ns);
1831         __swab32s(&lvb->lvb_padding);
1832 }
1833 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1834
1835 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1836 {
1837         __swab64s(&lvb->lvb_flags);
1838         __swab64s(&lvb->lvb_id_may_rel);
1839         __swab64s(&lvb->lvb_id_rel);
1840         __swab64s(&lvb->lvb_id_qunit);
1841         __swab64s(&lvb->lvb_pad1);
1842 }
1843 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1844
1845 void lustre_swab_mdt_body (struct mdt_body *b)
1846 {
1847         lustre_swab_lu_fid(&b->mbo_fid1);
1848         lustre_swab_lu_fid(&b->mbo_fid2);
1849         /* handle is opaque */
1850         __swab64s(&b->mbo_valid);
1851         __swab64s(&b->mbo_size);
1852         __swab64s(&b->mbo_mtime);
1853         __swab64s(&b->mbo_atime);
1854         __swab64s(&b->mbo_ctime);
1855         __swab64s(&b->mbo_blocks);
1856         __swab64s(&b->mbo_ioepoch);
1857         __swab64s(&b->mbo_t_state);
1858         __swab32s(&b->mbo_fsuid);
1859         __swab32s(&b->mbo_fsgid);
1860         __swab32s(&b->mbo_capability);
1861         __swab32s(&b->mbo_mode);
1862         __swab32s(&b->mbo_uid);
1863         __swab32s(&b->mbo_gid);
1864         __swab32s(&b->mbo_flags);
1865         __swab32s(&b->mbo_rdev);
1866         __swab32s(&b->mbo_nlink);
1867         CLASSERT(offsetof(typeof(*b), mbo_unused2) != 0);
1868         __swab32s(&b->mbo_suppgid);
1869         __swab32s(&b->mbo_eadatasize);
1870         __swab32s(&b->mbo_aclsize);
1871         __swab32s(&b->mbo_max_mdsize);
1872         CLASSERT(offsetof(typeof(*b), mbo_unused3) != 0);
1873         __swab32s(&b->mbo_uid_h);
1874         __swab32s(&b->mbo_gid_h);
1875         CLASSERT(offsetof(typeof(*b), mbo_padding_5) != 0);
1876 }
1877
1878 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b)
1879 {
1880         /* mio_handle is opaque */
1881         CLASSERT(offsetof(typeof(*b), mio_unused1) != 0);
1882         CLASSERT(offsetof(typeof(*b), mio_unused2) != 0);
1883         CLASSERT(offsetof(typeof(*b), mio_padding) != 0);
1884 }
1885
1886 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1887 {
1888         int i;
1889         __swab32s(&mti->mti_lustre_ver);
1890         __swab32s(&mti->mti_stripe_index);
1891         __swab32s(&mti->mti_config_ver);
1892         __swab32s(&mti->mti_flags);
1893         __swab32s(&mti->mti_instance);
1894         __swab32s(&mti->mti_nid_count);
1895         CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1896         for (i = 0; i < MTI_NIDS_MAX; i++)
1897                 __swab64s(&mti->mti_nids[i]);
1898 }
1899
1900 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1901 {
1902         __u8 i;
1903
1904         __swab64s(&entry->mne_version);
1905         __swab32s(&entry->mne_instance);
1906         __swab32s(&entry->mne_index);
1907         __swab32s(&entry->mne_length);
1908
1909         /* mne_nid_(count|type) must be one byte size because we're gonna
1910          * access it w/o swapping. */
1911         CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
1912         CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
1913
1914         /* remove this assertion if ipv6 is supported. */
1915         LASSERT(entry->mne_nid_type == 0);
1916         for (i = 0; i < entry->mne_nid_count; i++) {
1917                 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1918                 __swab64s(&entry->u.nids[i]);
1919         }
1920 }
1921 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
1922
1923 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
1924 {
1925         __swab64s(&body->mcb_offset);
1926         __swab32s(&body->mcb_units);
1927         __swab16s(&body->mcb_type);
1928 }
1929
1930 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
1931 {
1932         __swab64s(&body->mcr_offset);
1933         __swab64s(&body->mcr_size);
1934 }
1935
1936 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
1937 {
1938         __swab64s (&i->dqi_bgrace);
1939         __swab64s (&i->dqi_igrace);
1940         __swab32s (&i->dqi_flags);
1941         __swab32s (&i->dqi_valid);
1942 }
1943
1944 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
1945 {
1946         __swab64s (&b->dqb_ihardlimit);
1947         __swab64s (&b->dqb_isoftlimit);
1948         __swab64s (&b->dqb_curinodes);
1949         __swab64s (&b->dqb_bhardlimit);
1950         __swab64s (&b->dqb_bsoftlimit);
1951         __swab64s (&b->dqb_curspace);
1952         __swab64s (&b->dqb_btime);
1953         __swab64s (&b->dqb_itime);
1954         __swab32s (&b->dqb_valid);
1955         CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
1956 }
1957
1958 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
1959 {
1960         __swab32s (&q->qc_cmd);
1961         __swab32s (&q->qc_type);
1962         __swab32s (&q->qc_id);
1963         __swab32s (&q->qc_stat);
1964         lustre_swab_obd_dqinfo (&q->qc_dqinfo);
1965         lustre_swab_obd_dqblk (&q->qc_dqblk);
1966 }
1967
1968 void lustre_swab_mdt_remote_perm (struct mdt_remote_perm *p)
1969 {
1970         __swab32s (&p->rp_uid);
1971         __swab32s (&p->rp_gid);
1972         __swab32s (&p->rp_fsuid);
1973         __swab32s (&p->rp_fsuid_h);
1974         __swab32s (&p->rp_fsgid);
1975         __swab32s (&p->rp_fsgid_h);
1976         __swab32s (&p->rp_access_perm);
1977         __swab32s (&p->rp_padding);
1978 };
1979 EXPORT_SYMBOL(lustre_swab_mdt_remote_perm);
1980
1981 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
1982 {
1983         lustre_swab_lu_fid(&gf->gf_fid);
1984         __swab64s(&gf->gf_recno);
1985         __swab32s(&gf->gf_linkno);
1986         __swab32s(&gf->gf_pathlen);
1987 }
1988 EXPORT_SYMBOL(lustre_swab_fid2path);
1989
1990 static void lustre_swab_fiemap_extent(struct fiemap_extent *fm_extent)
1991 {
1992         __swab64s(&fm_extent->fe_logical);
1993         __swab64s(&fm_extent->fe_physical);
1994         __swab64s(&fm_extent->fe_length);
1995         __swab32s(&fm_extent->fe_flags);
1996         __swab32s(&fm_extent->fe_device);
1997 }
1998
1999 void lustre_swab_fiemap(struct fiemap *fiemap)
2000 {
2001         __u32 i;
2002
2003         __swab64s(&fiemap->fm_start);
2004         __swab64s(&fiemap->fm_length);
2005         __swab32s(&fiemap->fm_flags);
2006         __swab32s(&fiemap->fm_mapped_extents);
2007         __swab32s(&fiemap->fm_extent_count);
2008         __swab32s(&fiemap->fm_reserved);
2009
2010         for (i = 0; i < fiemap->fm_mapped_extents; i++)
2011                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
2012 }
2013
2014 void lustre_swab_idx_info(struct idx_info *ii)
2015 {
2016         __swab32s(&ii->ii_magic);
2017         __swab32s(&ii->ii_flags);
2018         __swab16s(&ii->ii_count);
2019         __swab32s(&ii->ii_attrs);
2020         lustre_swab_lu_fid(&ii->ii_fid);
2021         __swab64s(&ii->ii_version);
2022         __swab64s(&ii->ii_hash_start);
2023         __swab64s(&ii->ii_hash_end);
2024         __swab16s(&ii->ii_keysize);
2025         __swab16s(&ii->ii_recsize);
2026 }
2027
2028 void lustre_swab_lip_header(struct lu_idxpage *lip)
2029 {
2030         /* swab header */
2031         __swab32s(&lip->lip_magic);
2032         __swab16s(&lip->lip_flags);
2033         __swab16s(&lip->lip_nr);
2034 }
2035 EXPORT_SYMBOL(lustre_swab_lip_header);
2036
2037 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2038 {
2039         __swab32s(&rr->rr_opcode);
2040         __swab32s(&rr->rr_cap);
2041         __swab32s(&rr->rr_fsuid);
2042         /* rr_fsuid_h is unused */
2043         __swab32s(&rr->rr_fsgid);
2044         /* rr_fsgid_h is unused */
2045         __swab32s(&rr->rr_suppgid1);
2046         /* rr_suppgid1_h is unused */
2047         __swab32s(&rr->rr_suppgid2);
2048         /* rr_suppgid2_h is unused */
2049         lustre_swab_lu_fid(&rr->rr_fid1);
2050         lustre_swab_lu_fid(&rr->rr_fid2);
2051         __swab64s(&rr->rr_mtime);
2052         __swab64s(&rr->rr_atime);
2053         __swab64s(&rr->rr_ctime);
2054         __swab64s(&rr->rr_size);
2055         __swab64s(&rr->rr_blocks);
2056         __swab32s(&rr->rr_bias);
2057         __swab32s(&rr->rr_mode);
2058         __swab32s(&rr->rr_flags);
2059         __swab32s(&rr->rr_flags_h);
2060         __swab32s(&rr->rr_umask);
2061
2062         CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2063 };
2064
2065 void lustre_swab_lov_desc (struct lov_desc *ld)
2066 {
2067         __swab32s (&ld->ld_tgt_count);
2068         __swab32s (&ld->ld_active_tgt_count);
2069         __swab32s (&ld->ld_default_stripe_count);
2070         __swab32s (&ld->ld_pattern);
2071         __swab64s (&ld->ld_default_stripe_size);
2072         __swab64s (&ld->ld_default_stripe_offset);
2073         __swab32s (&ld->ld_qos_maxage);
2074         /* uuid endian insensitive */
2075 }
2076 EXPORT_SYMBOL(lustre_swab_lov_desc);
2077
2078 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2079 {
2080         __swab32s (&ld->ld_tgt_count);
2081         __swab32s (&ld->ld_active_tgt_count);
2082         __swab32s (&ld->ld_default_stripe_count);
2083         __swab32s (&ld->ld_pattern);
2084         __swab64s (&ld->ld_default_hash_size);
2085         __swab32s (&ld->ld_qos_maxage);
2086         /* uuid endian insensitive */
2087 }
2088
2089 /* This structure is always in little-endian */
2090 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2091 {
2092         int i;
2093
2094         __swab32s(&lmm1->lmv_magic);
2095         __swab32s(&lmm1->lmv_stripe_count);
2096         __swab32s(&lmm1->lmv_master_mdt_index);
2097         __swab32s(&lmm1->lmv_hash_type);
2098         __swab32s(&lmm1->lmv_layout_version);
2099         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2100                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2101 }
2102
2103 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2104 {
2105         switch (lmm->lmv_magic) {
2106         case LMV_MAGIC_V1:
2107                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2108                 break;
2109         default:
2110                 break;
2111         }
2112 }
2113 EXPORT_SYMBOL(lustre_swab_lmv_mds_md);
2114
2115 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2116 {
2117         __swab32s(&lum->lum_magic);
2118         __swab32s(&lum->lum_stripe_count);
2119         __swab32s(&lum->lum_stripe_offset);
2120         __swab32s(&lum->lum_hash_type);
2121         __swab32s(&lum->lum_type);
2122         CLASSERT(offsetof(typeof(*lum), lum_padding1) != 0);
2123 }
2124 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2125
2126 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2127                           const char *msg)
2128 {
2129         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2130                 return;
2131
2132         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2133         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2134         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2135         CDEBUG(lvl, "\tlmm_object_id: "LPU64"\n", lmm_oi_id(&lum->lmm_oi));
2136         CDEBUG(lvl, "\tlmm_object_gr: "LPU64"\n", lmm_oi_seq(&lum->lmm_oi));
2137         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2138         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2139         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2140                lum->lmm_stripe_offset);
2141         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2142                 struct lov_user_md_v3 *v3 = (void *)lum;
2143                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2144         }
2145         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2146                 struct lov_user_md_v3 *v3 = (void *)lum;
2147                 int i;
2148
2149                 if (v3->lmm_pool_name[0] != '\0')
2150                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2151
2152                 CDEBUG(lvl, "\ttarget list:\n");
2153                 for (i = 0; i < v3->lmm_stripe_count; i++)
2154                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2155         }
2156 }
2157 EXPORT_SYMBOL(lustre_print_user_md);
2158
2159 static void lustre_swab_lmm_oi(struct ost_id *oi)
2160 {
2161         __swab64s(&oi->oi.oi_id);
2162         __swab64s(&oi->oi.oi_seq);
2163 }
2164
2165 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2166 {
2167         ENTRY;
2168         __swab32s(&lum->lmm_magic);
2169         __swab32s(&lum->lmm_pattern);
2170         lustre_swab_lmm_oi(&lum->lmm_oi);
2171         __swab32s(&lum->lmm_stripe_size);
2172         __swab16s(&lum->lmm_stripe_count);
2173         __swab16s(&lum->lmm_stripe_offset);
2174         EXIT;
2175 }
2176
2177 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2178 {
2179         ENTRY;
2180         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2181         lustre_swab_lov_user_md_common(lum);
2182         EXIT;
2183 }
2184 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2185
2186 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2187 {
2188         ENTRY;
2189         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2190         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2191         /* lmm_pool_name nothing to do with char */
2192         EXIT;
2193 }
2194 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2195
2196 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2197 {
2198         ENTRY;
2199         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2200         __swab32s(&lmm->lmm_magic);
2201         __swab32s(&lmm->lmm_pattern);
2202         lustre_swab_lmm_oi(&lmm->lmm_oi);
2203         __swab32s(&lmm->lmm_stripe_size);
2204         __swab16s(&lmm->lmm_stripe_count);
2205         __swab16s(&lmm->lmm_layout_gen);
2206         EXIT;
2207 }
2208 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2209
2210 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2211                                      int stripe_count)
2212 {
2213         int i;
2214         ENTRY;
2215         for (i = 0; i < stripe_count; i++) {
2216                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2217                 __swab32s(&(lod[i].l_ost_gen));
2218                 __swab32s(&(lod[i].l_ost_idx));
2219         }
2220         EXIT;
2221 }
2222 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2223
2224 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2225 {
2226         int  i;
2227
2228         for (i = 0; i < RES_NAME_SIZE; i++)
2229                 __swab64s (&id->name[i]);
2230 }
2231
2232 void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d)
2233 {
2234         /* the lock data is a union and the first two fields are always an
2235          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2236          * data the same way. */
2237         __swab64s(&d->l_extent.start);
2238         __swab64s(&d->l_extent.end);
2239         __swab64s(&d->l_extent.gid);
2240         __swab64s(&d->l_flock.lfw_owner);
2241         __swab32s(&d->l_flock.lfw_pid);
2242 }
2243
2244 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2245 {
2246         __swab64s (&i->opc);
2247 }
2248
2249 void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r)
2250 {
2251         __swab32s (&r->lr_type);
2252         CLASSERT(offsetof(typeof(*r), lr_padding) != 0);
2253         lustre_swab_ldlm_res_id (&r->lr_name);
2254 }
2255
2256 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2257 {
2258         lustre_swab_ldlm_resource_desc (&l->l_resource);
2259         __swab32s (&l->l_req_mode);
2260         __swab32s (&l->l_granted_mode);
2261         lustre_swab_ldlm_policy_data (&l->l_policy_data);
2262 }
2263
2264 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2265 {
2266         __swab32s (&rq->lock_flags);
2267         lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2268         __swab32s (&rq->lock_count);
2269         /* lock_handle[] opaque */
2270 }
2271
2272 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2273 {
2274         __swab32s (&r->lock_flags);
2275         CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2276         lustre_swab_ldlm_lock_desc (&r->lock_desc);
2277         /* lock_handle opaque */
2278         __swab64s (&r->lock_policy_res1);
2279         __swab64s (&r->lock_policy_res2);
2280 }
2281
2282 void lustre_swab_quota_body(struct quota_body *b)
2283 {
2284         lustre_swab_lu_fid(&b->qb_fid);
2285         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2286         __swab32s(&b->qb_flags);
2287         __swab64s(&b->qb_count);
2288         __swab64s(&b->qb_usage);
2289         __swab64s(&b->qb_slv_ver);
2290 }
2291
2292 /* Dump functions */
2293 void dump_ioo(struct obd_ioobj *ioo)
2294 {
2295         CDEBUG(D_RPCTRACE,
2296                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2297                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2298                ioo->ioo_bufcnt);
2299 }
2300
2301 void dump_rniobuf(struct niobuf_remote *nb)
2302 {
2303         CDEBUG(D_RPCTRACE, "niobuf_remote: offset="LPU64", len=%d, flags=%x\n",
2304                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2305 }
2306
2307 void dump_obdo(struct obdo *oa)
2308 {
2309         u64 valid = oa->o_valid;
2310
2311         CDEBUG(D_RPCTRACE, "obdo: o_valid = "LPX64"\n", valid);
2312         if (valid & OBD_MD_FLID)
2313                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2314         if (valid & OBD_MD_FLFID)
2315                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = "LPX64"\n",
2316                        oa->o_parent_seq);
2317         if (valid & OBD_MD_FLSIZE)
2318                 CDEBUG(D_RPCTRACE, "obdo: o_size = "LPD64"\n", oa->o_size);
2319         if (valid & OBD_MD_FLMTIME)
2320                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = "LPD64"\n", oa->o_mtime);
2321         if (valid & OBD_MD_FLATIME)
2322                 CDEBUG(D_RPCTRACE, "obdo: o_atime = "LPD64"\n", oa->o_atime);
2323         if (valid & OBD_MD_FLCTIME)
2324                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = "LPD64"\n", oa->o_ctime);
2325         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2326                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = "LPD64"\n", oa->o_blocks);
2327         if (valid & OBD_MD_FLGRANT)
2328                 CDEBUG(D_RPCTRACE, "obdo: o_grant = "LPD64"\n", oa->o_grant);
2329         if (valid & OBD_MD_FLBLKSZ)
2330                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2331         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2332                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2333                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2334                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2335         if (valid & OBD_MD_FLUID)
2336                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2337         if (valid & OBD_MD_FLUID)
2338                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2339         if (valid & OBD_MD_FLGID)
2340                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2341         if (valid & OBD_MD_FLGID)
2342                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2343         if (valid & OBD_MD_FLFLAGS)
2344                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2345         if (valid & OBD_MD_FLNLINK)
2346                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2347         else if (valid & OBD_MD_FLCKSUM)
2348                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2349                        oa->o_nlink);
2350         if (valid & OBD_MD_FLGENER)
2351                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2352                        oa->o_parent_oid);
2353         if (valid & OBD_MD_FLEPOCH)
2354                 CDEBUG(D_RPCTRACE, "obdo: o_ioepoch = "LPD64"\n",
2355                        oa->o_ioepoch);
2356         if (valid & OBD_MD_FLFID) {
2357                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2358                        oa->o_stripe_idx);
2359                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2360                        oa->o_parent_ver);
2361         }
2362         if (valid & OBD_MD_FLHANDLE)
2363                 CDEBUG(D_RPCTRACE, "obdo: o_handle = "LPD64"\n",
2364                        oa->o_handle.cookie);
2365 }
2366
2367 void dump_ost_body(struct ost_body *ob)
2368 {
2369         dump_obdo(&ob->oa);
2370 }
2371
2372 void dump_rcs(__u32 *rc)
2373 {
2374         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2375 }
2376
2377 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2378 {
2379         LASSERT(req->rq_reqmsg);
2380
2381         switch (req->rq_reqmsg->lm_magic) {
2382         case LUSTRE_MSG_MAGIC_V2:
2383                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2384         default:
2385                 CERROR("bad lustre msg magic: %#08X\n",
2386                        req->rq_reqmsg->lm_magic);
2387         }
2388         return 0;
2389 }
2390
2391 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2392 {
2393         LASSERT(req->rq_repmsg);
2394
2395         switch (req->rq_repmsg->lm_magic) {
2396         case LUSTRE_MSG_MAGIC_V2:
2397                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2398         default:
2399                 /* uninitialized yet */
2400                 return 0;
2401         }
2402 }
2403
2404 void _debug_req(struct ptlrpc_request *req,
2405                 struct libcfs_debug_msg_data *msgdata,
2406                 const char *fmt, ... )
2407 {
2408         int req_ok = req->rq_reqmsg != NULL;
2409         int rep_ok = req->rq_repmsg != NULL;
2410         lnet_nid_t nid = LNET_NID_ANY;
2411         va_list args;
2412
2413         if (ptlrpc_req_need_swab(req)) {
2414                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2415                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2416         }
2417
2418         if (req->rq_import && req->rq_import->imp_connection)
2419                 nid = req->rq_import->imp_connection->c_peer.nid;
2420         else if (req->rq_export && req->rq_export->exp_connection)
2421                 nid = req->rq_export->exp_connection->c_peer.nid;
2422
2423         va_start(args, fmt);
2424         libcfs_debug_vmsg2(msgdata, fmt, args,
2425                            " req@%p x"LPU64"/t"LPD64"("LPD64") o%d->%s@%s:%d/%d"
2426                            " lens %d/%d e %d to %d dl "CFS_TIME_T" ref %d "
2427                            "fl "REQ_FLAGS_FMT"/%x/%x rc %d/%d\n",
2428                            req, req->rq_xid, req->rq_transno,
2429                            req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2430                            req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2431                            req->rq_import ?
2432                                 req->rq_import->imp_obd->obd_name :
2433                                 req->rq_export ?
2434                                         req->rq_export->exp_client_uuid.uuid :
2435                                         "<?>",
2436                            libcfs_nid2str(nid),
2437                            req->rq_request_portal, req->rq_reply_portal,
2438                            req->rq_reqlen, req->rq_replen,
2439                            req->rq_early_count, req->rq_timedout,
2440                            req->rq_deadline,
2441                            atomic_read(&req->rq_refcount),
2442                            DEBUG_REQ_FLAGS(req),
2443                            req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2444                            rep_ok ? lustre_msg_get_flags(req->rq_repmsg) : -1,
2445                            req->rq_status,
2446                            rep_ok ? lustre_msg_get_status(req->rq_repmsg) : -1);
2447         va_end(args);
2448 }
2449 EXPORT_SYMBOL(_debug_req);
2450
2451 void lustre_swab_lustre_capa(struct lustre_capa *c)
2452 {
2453         lustre_swab_lu_fid(&c->lc_fid);
2454         __swab64s (&c->lc_opc);
2455         __swab64s (&c->lc_uid);
2456         __swab64s (&c->lc_gid);
2457         __swab32s (&c->lc_flags);
2458         __swab32s (&c->lc_keyid);
2459         __swab32s (&c->lc_timeout);
2460         __swab32s (&c->lc_expiry);
2461 }
2462
2463 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2464 {
2465         __swab64s (&k->lk_seq);
2466         __swab32s (&k->lk_keyid);
2467         CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2468 }
2469
2470 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2471 {
2472         __swab32s(&state->hus_states);
2473         __swab32s(&state->hus_archive_id);
2474 }
2475
2476 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2477 {
2478         __swab32s(&hss->hss_valid);
2479         __swab64s(&hss->hss_setmask);
2480         __swab64s(&hss->hss_clearmask);
2481         __swab32s(&hss->hss_archive_id);
2482 }
2483
2484 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2485 {
2486         __swab64s(&extent->offset);
2487         __swab64s(&extent->length);
2488 }
2489
2490 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2491 {
2492         __swab32s(&action->hca_state);
2493         __swab32s(&action->hca_action);
2494         lustre_swab_hsm_extent(&action->hca_location);
2495 }
2496
2497 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2498 {
2499         lustre_swab_lu_fid(&hui->hui_fid);
2500         lustre_swab_hsm_extent(&hui->hui_extent);
2501 }
2502
2503 void lustre_swab_layout_intent(struct layout_intent *li)
2504 {
2505         __swab32s(&li->li_opc);
2506         __swab32s(&li->li_flags);
2507         __swab64s(&li->li_start);
2508         __swab64s(&li->li_end);
2509 }
2510
2511 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2512 {
2513         lustre_swab_lu_fid(&hpk->hpk_fid);
2514         __swab64s(&hpk->hpk_cookie);
2515         __swab64s(&hpk->hpk_extent.offset);
2516         __swab64s(&hpk->hpk_extent.length);
2517         __swab16s(&hpk->hpk_flags);
2518         __swab16s(&hpk->hpk_errval);
2519 }
2520
2521 void lustre_swab_hsm_request(struct hsm_request *hr)
2522 {
2523         __swab32s(&hr->hr_action);
2524         __swab32s(&hr->hr_archive_id);
2525         __swab64s(&hr->hr_flags);
2526         __swab32s(&hr->hr_itemcount);
2527         __swab32s(&hr->hr_data_len);
2528 }
2529
2530 void lustre_swab_object_update(struct object_update *ou)
2531 {
2532         struct object_update_param *param;
2533         size_t  i;
2534
2535         __swab16s(&ou->ou_type);
2536         __swab16s(&ou->ou_params_count);
2537         __swab32s(&ou->ou_master_index);
2538         __swab32s(&ou->ou_flags);
2539         __swab32s(&ou->ou_padding1);
2540         __swab64s(&ou->ou_batchid);
2541         lustre_swab_lu_fid(&ou->ou_fid);
2542         param = &ou->ou_params[0];
2543         for (i = 0; i < ou->ou_params_count; i++) {
2544                 __swab16s(&param->oup_len);
2545                 __swab16s(&param->oup_padding);
2546                 __swab32s(&param->oup_padding2);
2547                 param = (struct object_update_param *)((char *)param +
2548                          object_update_param_size(param));
2549         }
2550 }
2551
2552 void lustre_swab_object_update_request(struct object_update_request *our)
2553 {
2554         size_t i;
2555         __swab32s(&our->ourq_magic);
2556         __swab16s(&our->ourq_count);
2557         __swab16s(&our->ourq_padding);
2558         for (i = 0; i < our->ourq_count; i++) {
2559                 struct object_update *ou;
2560
2561                 ou = object_update_request_get(our, i, NULL);
2562                 if (ou == NULL)
2563                         return;
2564                 lustre_swab_object_update(ou);
2565         }
2566 }
2567
2568 void lustre_swab_object_update_result(struct object_update_result *our)
2569 {
2570         __swab32s(&our->our_rc);
2571         __swab16s(&our->our_datalen);
2572         __swab16s(&our->our_padding);
2573 }
2574
2575 void lustre_swab_object_update_reply(struct object_update_reply *our)
2576 {
2577         size_t i;
2578
2579         __swab32s(&our->ourp_magic);
2580         __swab16s(&our->ourp_count);
2581         __swab16s(&our->ourp_padding);
2582         for (i = 0; i < our->ourp_count; i++) {
2583                 struct object_update_result *ourp;
2584
2585                 __swab16s(&our->ourp_lens[i]);
2586                 ourp = object_update_result_get(our, i, NULL);
2587                 if (ourp == NULL)
2588                         return;
2589                 lustre_swab_object_update_result(ourp);
2590         }
2591 }
2592
2593 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2594 {
2595         __swab64s(&msl->msl_flags);
2596 }
2597
2598 void lustre_swab_close_data(struct close_data *cd)
2599 {
2600         lustre_swab_lu_fid(&cd->cd_fid);
2601         __swab64s(&cd->cd_data_version);
2602 }
2603
2604 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2605 {
2606         __swab32s(&lr->lr_event);
2607         __swab32s(&lr->lr_index);
2608         __swab32s(&lr->lr_flags);
2609         __swab32s(&lr->lr_valid);
2610         __swab32s(&lr->lr_speed);
2611         __swab16s(&lr->lr_version);
2612         __swab16s(&lr->lr_active);
2613         __swab16s(&lr->lr_param);
2614         __swab16s(&lr->lr_async_windows);
2615         __swab32s(&lr->lr_flags);
2616         lustre_swab_lu_fid(&lr->lr_fid);
2617         lustre_swab_lu_fid(&lr->lr_fid2);
2618         lustre_swab_lu_fid(&lr->lr_fid3);
2619         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2620         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2621 }
2622
2623 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2624 {
2625         __swab32s(&lr->lr_status);
2626         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2627         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2628 }
2629
2630 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2631 {
2632         lustre_swab_lu_fid(&ent->loe_key);
2633         lustre_swab_lu_fid(&ent->loe_rec.lor_fid);
2634         __swab32s(&ent->loe_rec.lor_uid);
2635         __swab32s(&ent->loe_rec.lor_gid);
2636 }
2637 EXPORT_SYMBOL(lustre_swab_orphan_ent);