Whamcloud - gitweb
aa71b0382f76650a61388e3163f61c2ee153fb6d
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2014, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/pack_generic.c
37  *
38  * (Un)packing of OST requests
39  *
40  * Author: Peter J. Braam <braam@clusterfs.com>
41  * Author: Phil Schwan <phil@clusterfs.com>
42  * Author: Eric Barton <eeb@clusterfs.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_RPC
46
47 #include <libcfs/libcfs.h>
48
49 #include <obd_support.h>
50 #include <obd_class.h>
51 #include <lustre_net.h>
52 #include <obd_cksum.h>
53 #include <lustre/ll_fiemap.h>
54
55 #include "ptlrpc_internal.h"
56
57 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
58 {
59         return cfs_size_round(offsetof(struct lustre_msg_v2,
60                                        lm_buflens[count]));
61 }
62
63 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
64 {
65         switch (magic) {
66         case LUSTRE_MSG_MAGIC_V2:
67                 return lustre_msg_hdr_size_v2(count);
68         default:
69                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
70                 return 0;
71         }
72 }
73
74 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
75                             __u32 index)
76 {
77         if (inout)
78                 lustre_set_req_swabbed(req, index);
79         else
80                 lustre_set_rep_swabbed(req, index);
81 }
82
83 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
84                          __u32 index)
85 {
86         if (inout)
87                 return (ptlrpc_req_need_swab(req) &&
88                         !lustre_req_swabbed(req, index));
89         else
90                 return (ptlrpc_rep_need_swab(req) &&
91                         !lustre_rep_swabbed(req, index));
92 }
93
94 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
95                                                 __u32 version)
96 {
97         __u32 ver = lustre_msg_get_version(msg);
98         return (ver & LUSTRE_VERSION_MASK) != version;
99 }
100
101 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version)
102 {
103 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
104         switch (msg->lm_magic) {
105         case LUSTRE_MSG_MAGIC_V1:
106                 CERROR("msg v1 not supported - please upgrade you system\n");
107                 return -EINVAL;
108         case LUSTRE_MSG_MAGIC_V2:
109                 return lustre_msg_check_version_v2(msg, version);
110         default:
111                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
112                 return -EPROTO;
113         }
114 #undef LUSTRE_MSG_MAGIC_V1
115 }
116
117 /* early reply size */
118 __u32 lustre_msg_early_size()
119 {
120         static __u32 size;
121         if (!size) {
122                 /* Always reply old ptlrpc_body_v2 to keep interoprability
123                  * with the old client (< 2.3) which doesn't have pb_jobid
124                  * in the ptlrpc_body.
125                  *
126                  * XXX Remove this whenever we dorp interoprability with such
127                  *     client.
128                  */
129                 __u32 pblen = sizeof(struct ptlrpc_body_v2);
130                 size = lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
131         }
132         return size;
133 }
134 EXPORT_SYMBOL(lustre_msg_early_size);
135
136 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
137 {
138         __u32 size;
139         int i;
140
141         size = lustre_msg_hdr_size_v2(count);
142         for (i = 0; i < count; i++)
143                 size += cfs_size_round(lengths[i]);
144
145         return size;
146 }
147 EXPORT_SYMBOL(lustre_msg_size_v2);
148
149 /* This returns the size of the buffer that is required to hold a lustre_msg
150  * with the given sub-buffer lengths.
151  * NOTE: this should only be used for NEW requests, and should always be
152  *       in the form of a v2 request.  If this is a connection to a v1
153  *       target then the first buffer will be stripped because the ptlrpc
154  *       data is part of the lustre_msg_v1 header. b=14043 */
155 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
156 {
157         __u32 size[] = { sizeof(struct ptlrpc_body) };
158
159         if (!lens) {
160                 LASSERT(count == 1);
161                 lens = size;
162         }
163
164         LASSERT(count > 0);
165         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
166
167         switch (magic) {
168         case LUSTRE_MSG_MAGIC_V2:
169                 return lustre_msg_size_v2(count, lens);
170         default:
171                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
172                 return 0;
173         }
174 }
175
176 /* This is used to determine the size of a buffer that was already packed
177  * and will correctly handle the different message formats. */
178 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
179 {
180         switch (msg->lm_magic) {
181         case LUSTRE_MSG_MAGIC_V2:
182                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
183         default:
184                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
185                 return 0;
186         }
187 }
188
189 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
190                         char **bufs)
191 {
192         char *ptr;
193         int i;
194
195         msg->lm_bufcount = count;
196         /* XXX: lm_secflvr uninitialized here */
197         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
198
199         for (i = 0; i < count; i++)
200                 msg->lm_buflens[i] = lens[i];
201
202         if (bufs == NULL)
203                 return;
204
205         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
206         for (i = 0; i < count; i++) {
207                 char *tmp = bufs[i];
208                 LOGL(tmp, lens[i], ptr);
209         }
210 }
211 EXPORT_SYMBOL(lustre_init_msg_v2);
212
213 static int lustre_pack_request_v2(struct ptlrpc_request *req,
214                                   int count, __u32 *lens, char **bufs)
215 {
216         int reqlen, rc;
217
218         reqlen = lustre_msg_size_v2(count, lens);
219
220         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
221         if (rc)
222                 return rc;
223
224         req->rq_reqlen = reqlen;
225
226         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
227         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
228         return 0;
229 }
230
231 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
232                         __u32 *lens, char **bufs)
233 {
234         __u32 size[] = { sizeof(struct ptlrpc_body) };
235
236         if (!lens) {
237                 LASSERT(count == 1);
238                 lens = size;
239         }
240
241         LASSERT(count > 0);
242         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
243
244         /* only use new format, we don't need to be compatible with 1.4 */
245         magic = LUSTRE_MSG_MAGIC_V2;
246
247         switch (magic) {
248         case LUSTRE_MSG_MAGIC_V2:
249                 return lustre_pack_request_v2(req, count, lens, bufs);
250         default:
251                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
252                 return -EINVAL;
253         }
254 }
255
256 #if RS_DEBUG
257 struct list_head ptlrpc_rs_debug_lru =
258         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
259 spinlock_t ptlrpc_rs_debug_lock;
260
261 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
262 do {                                                                    \
263         spin_lock(&ptlrpc_rs_debug_lock);                               \
264         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
265         spin_unlock(&ptlrpc_rs_debug_lock);                             \
266 } while (0)
267
268 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
269 do {                                                                    \
270         spin_lock(&ptlrpc_rs_debug_lock);                               \
271         list_del(&(rs)->rs_debug_list);                         \
272         spin_unlock(&ptlrpc_rs_debug_lock);                             \
273 } while (0)
274 #else
275 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
276 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
277 #endif
278
279 struct ptlrpc_reply_state *
280 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
281 {
282         struct ptlrpc_reply_state *rs = NULL;
283
284         spin_lock(&svcpt->scp_rep_lock);
285
286         /* See if we have anything in a pool, and wait if nothing */
287         while (list_empty(&svcpt->scp_rep_idle)) {
288                 struct l_wait_info      lwi;
289                 int                     rc;
290
291                 spin_unlock(&svcpt->scp_rep_lock);
292                 /* If we cannot get anything for some long time, we better
293                  * bail out instead of waiting infinitely */
294                 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
295                 rc = l_wait_event(svcpt->scp_rep_waitq,
296                                   !list_empty(&svcpt->scp_rep_idle), &lwi);
297                 if (rc != 0)
298                         goto out;
299                 spin_lock(&svcpt->scp_rep_lock);
300         }
301
302         rs = list_entry(svcpt->scp_rep_idle.next,
303                             struct ptlrpc_reply_state, rs_list);
304         list_del(&rs->rs_list);
305
306         spin_unlock(&svcpt->scp_rep_lock);
307
308         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
309         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
310         rs->rs_svcpt = svcpt;
311         rs->rs_prealloc = 1;
312 out:
313         return rs;
314 }
315
316 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
317 {
318         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
319
320         spin_lock(&svcpt->scp_rep_lock);
321         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
322         spin_unlock(&svcpt->scp_rep_lock);
323         wake_up(&svcpt->scp_rep_waitq);
324 }
325
326 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
327                          __u32 *lens, char **bufs, int flags)
328 {
329         struct ptlrpc_reply_state *rs;
330         int                        msg_len, rc;
331         ENTRY;
332
333         LASSERT(req->rq_reply_state == NULL);
334
335         if ((flags & LPRFL_EARLY_REPLY) == 0) {
336                 spin_lock(&req->rq_lock);
337                 req->rq_packed_final = 1;
338                 spin_unlock(&req->rq_lock);
339         }
340
341         msg_len = lustre_msg_size_v2(count, lens);
342         rc = sptlrpc_svc_alloc_rs(req, msg_len);
343         if (rc)
344                 RETURN(rc);
345
346         rs = req->rq_reply_state;
347         atomic_set(&rs->rs_refcount, 1);        /* 1 ref for rq_reply_state */
348         rs->rs_cb_id.cbid_fn = reply_out_callback;
349         rs->rs_cb_id.cbid_arg = rs;
350         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
351         INIT_LIST_HEAD(&rs->rs_exp_list);
352         INIT_LIST_HEAD(&rs->rs_obd_list);
353         INIT_LIST_HEAD(&rs->rs_list);
354         spin_lock_init(&rs->rs_lock);
355
356         req->rq_replen = msg_len;
357         req->rq_reply_state = rs;
358         req->rq_repmsg = rs->rs_msg;
359
360         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
361         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
362
363         PTLRPC_RS_DEBUG_LRU_ADD(rs);
364
365         RETURN(0);
366 }
367 EXPORT_SYMBOL(lustre_pack_reply_v2);
368
369 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
370                             char **bufs, int flags)
371 {
372         int rc = 0;
373         __u32 size[] = { sizeof(struct ptlrpc_body) };
374
375         if (!lens) {
376                 LASSERT(count == 1);
377                 lens = size;
378         }
379
380         LASSERT(count > 0);
381         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
382
383         switch (req->rq_reqmsg->lm_magic) {
384         case LUSTRE_MSG_MAGIC_V2:
385                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
386                 break;
387         default:
388                 LASSERTF(0, "incorrect message magic: %08x\n",
389                          req->rq_reqmsg->lm_magic);
390                 rc = -EINVAL;
391         }
392         if (rc != 0)
393                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
394                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
395         return rc;
396 }
397
398 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
399                       char **bufs)
400 {
401         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
402 }
403 EXPORT_SYMBOL(lustre_pack_reply);
404
405 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
406 {
407         __u32 i, offset, buflen, bufcount;
408
409         LASSERT(m != NULL);
410
411         bufcount = m->lm_bufcount;
412         if (unlikely(n >= bufcount)) {
413                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
414                        m, n, bufcount);
415                 return NULL;
416         }
417
418         buflen = m->lm_buflens[n];
419         if (unlikely(buflen < min_size)) {
420                 CERROR("msg %p buffer[%d] size %d too small "
421                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
422                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
423                 return NULL;
424         }
425
426         offset = lustre_msg_hdr_size_v2(bufcount);
427         for (i = 0; i < n; i++)
428                 offset += cfs_size_round(m->lm_buflens[i]);
429
430         return (char *)m + offset;
431 }
432
433 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
434 {
435         switch (m->lm_magic) {
436         case LUSTRE_MSG_MAGIC_V2:
437                 return lustre_msg_buf_v2(m, n, min_size);
438         default:
439                 LASSERTF(0, "incorrect message magic: %08x (msg:%p)\n",
440                          m->lm_magic, m);
441                 return NULL;
442         }
443 }
444 EXPORT_SYMBOL(lustre_msg_buf);
445
446 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
447                                 unsigned int newlen, int move_data)
448 {
449         char   *tail = NULL, *newpos;
450         int     tail_len = 0, n;
451
452         LASSERT(msg);
453         LASSERT(msg->lm_bufcount > segment);
454         LASSERT(msg->lm_buflens[segment] >= newlen);
455
456         if (msg->lm_buflens[segment] == newlen)
457                 goto out;
458
459         if (move_data && msg->lm_bufcount > segment + 1) {
460                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
461                 for (n = segment + 1; n < msg->lm_bufcount; n++)
462                         tail_len += cfs_size_round(msg->lm_buflens[n]);
463         }
464
465         msg->lm_buflens[segment] = newlen;
466
467         if (tail && tail_len) {
468                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
469                 LASSERT(newpos <= tail);
470                 if (newpos != tail)
471                         memmove(newpos, tail, tail_len);
472         }
473 out:
474         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
475 }
476
477 /*
478  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
479  * we also move data forward from @segment + 1.
480  *
481  * if @newlen == 0, we remove the segment completely, but we still keep the
482  * totally bufcount the same to save possible data moving. this will leave a
483  * unused segment with size 0 at the tail, but that's ok.
484  *
485  * return new msg size after shrinking.
486  *
487  * CAUTION:
488  * + if any buffers higher than @segment has been filled in, must call shrink
489  *   with non-zero @move_data.
490  * + caller should NOT keep pointers to msg buffers which higher than @segment
491  *   after call shrink.
492  */
493 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
494                       unsigned int newlen, int move_data)
495 {
496         switch (msg->lm_magic) {
497         case LUSTRE_MSG_MAGIC_V2:
498                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
499         default:
500                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
501         }
502 }
503 EXPORT_SYMBOL(lustre_shrink_msg);
504
505 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
506 {
507         PTLRPC_RS_DEBUG_LRU_DEL(rs);
508
509         LASSERT(atomic_read(&rs->rs_refcount) == 0);
510         LASSERT(!rs->rs_difficult || rs->rs_handled);
511         LASSERT(!rs->rs_on_net);
512         LASSERT(!rs->rs_scheduled);
513         LASSERT(rs->rs_export == NULL);
514         LASSERT(rs->rs_nlocks == 0);
515         LASSERT(list_empty(&rs->rs_exp_list));
516         LASSERT(list_empty(&rs->rs_obd_list));
517
518         sptlrpc_svc_free_rs(rs);
519 }
520
521 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
522 {
523         int swabbed, required_len, i;
524
525         /* Now we know the sender speaks my language. */
526         required_len = lustre_msg_hdr_size_v2(0);
527         if (len < required_len) {
528                 /* can't even look inside the message */
529                 CERROR("message length %d too small for lustre_msg\n", len);
530                 return -EINVAL;
531         }
532
533         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
534
535         if (swabbed) {
536                 __swab32s(&m->lm_magic);
537                 __swab32s(&m->lm_bufcount);
538                 __swab32s(&m->lm_secflvr);
539                 __swab32s(&m->lm_repsize);
540                 __swab32s(&m->lm_cksum);
541                 __swab32s(&m->lm_flags);
542                 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
543                 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
544         }
545
546         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
547         if (len < required_len) {
548                 /* didn't receive all the buffer lengths */
549                 CERROR ("message length %d too small for %d buflens\n",
550                         len, m->lm_bufcount);
551                 return -EINVAL;
552         }
553
554         for (i = 0; i < m->lm_bufcount; i++) {
555                 if (swabbed)
556                         __swab32s(&m->lm_buflens[i]);
557                 required_len += cfs_size_round(m->lm_buflens[i]);
558         }
559
560         if (len < required_len) {
561                 CERROR("len: %d, required_len %d\n", len, required_len);
562                 CERROR("bufcount: %d\n", m->lm_bufcount);
563                 for (i = 0; i < m->lm_bufcount; i++)
564                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
565                 return -EINVAL;
566         }
567
568         return swabbed;
569 }
570
571 int __lustre_unpack_msg(struct lustre_msg *m, int len)
572 {
573         int required_len, rc;
574         ENTRY;
575
576         /* We can provide a slightly better error log, if we check the
577          * message magic and version first.  In the future, struct
578          * lustre_msg may grow, and we'd like to log a version mismatch,
579          * rather than a short message.
580          *
581          */
582         required_len = offsetof(struct lustre_msg, lm_magic) +
583                        sizeof(m->lm_magic);
584         if (len < required_len) {
585                 /* can't even look inside the message */
586                 CERROR("message length %d too small for magic/version check\n",
587                        len);
588                 RETURN(-EINVAL);
589         }
590
591         rc = lustre_unpack_msg_v2(m, len);
592
593         RETURN(rc);
594 }
595 EXPORT_SYMBOL(__lustre_unpack_msg);
596
597 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
598 {
599         int rc;
600         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
601         if (rc == 1) {
602                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
603                 rc = 0;
604         }
605         return rc;
606 }
607
608 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
609 {
610         int rc;
611         rc = __lustre_unpack_msg(req->rq_repmsg, len);
612         if (rc == 1) {
613                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
614                 rc = 0;
615         }
616         return rc;
617 }
618
619 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
620                                                const int inout, int offset)
621 {
622         struct ptlrpc_body *pb;
623         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
624
625         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
626         if (!pb) {
627                 CERROR("error unpacking ptlrpc body\n");
628                 return -EFAULT;
629         }
630         if (ptlrpc_buf_need_swab(req, inout, offset)) {
631                 lustre_swab_ptlrpc_body(pb);
632                 ptlrpc_buf_set_swabbed(req, inout, offset);
633         }
634
635         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
636                  CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
637                  return -EINVAL;
638         }
639
640         if (!inout)
641                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
642
643         return 0;
644 }
645
646 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
647 {
648         switch (req->rq_reqmsg->lm_magic) {
649         case LUSTRE_MSG_MAGIC_V2:
650                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
651         default:
652                 CERROR("bad lustre msg magic: %08x\n",
653                        req->rq_reqmsg->lm_magic);
654                 return -EINVAL;
655         }
656 }
657
658 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
659 {
660         switch (req->rq_repmsg->lm_magic) {
661         case LUSTRE_MSG_MAGIC_V2:
662                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
663         default:
664                 CERROR("bad lustre msg magic: %08x\n",
665                        req->rq_repmsg->lm_magic);
666                 return -EINVAL;
667         }
668 }
669
670 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
671 {
672         if (n >= m->lm_bufcount)
673                 return 0;
674
675         return m->lm_buflens[n];
676 }
677
678 /**
679  * lustre_msg_buflen - return the length of buffer \a n in message \a m
680  * \param m lustre_msg (request or reply) to look at
681  * \param n message index (base 0)
682  *
683  * returns zero for non-existent message indices
684  */
685 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
686 {
687         switch (m->lm_magic) {
688         case LUSTRE_MSG_MAGIC_V2:
689                 return lustre_msg_buflen_v2(m, n);
690         default:
691                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
692                 return 0;
693         }
694 }
695 EXPORT_SYMBOL(lustre_msg_buflen);
696
697 static inline void
698 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
699 {
700         if (n >= m->lm_bufcount)
701                 LBUG();
702
703         m->lm_buflens[n] = len;
704 }
705
706 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
707 {
708         switch (m->lm_magic) {
709         case LUSTRE_MSG_MAGIC_V2:
710                 lustre_msg_set_buflen_v2(m, n, len);
711                 return;
712         default:
713                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
714         }
715 }
716
717 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
718  * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
719 __u32 lustre_msg_bufcount(struct lustre_msg *m)
720 {
721         switch (m->lm_magic) {
722         case LUSTRE_MSG_MAGIC_V2:
723                 return m->lm_bufcount;
724         default:
725                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
726                 return 0;
727         }
728 }
729
730 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
731 {
732         /* max_len == 0 means the string should fill the buffer */
733         char *str;
734         __u32 slen, blen;
735
736         switch (m->lm_magic) {
737         case LUSTRE_MSG_MAGIC_V2:
738                 str = lustre_msg_buf_v2(m, index, 0);
739                 blen = lustre_msg_buflen_v2(m, index);
740                 break;
741         default:
742                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
743         }
744
745         if (str == NULL) {
746                 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
747                 return NULL;
748         }
749
750         slen = strnlen(str, blen);
751
752         if (slen == blen) {                     /* not NULL terminated */
753                 CERROR("can't unpack non-NULL terminated string in "
754                         "msg %p buffer[%d] len %d\n", m, index, blen);
755                 return NULL;
756         }
757
758         if (max_len == 0) {
759                 if (slen != blen - 1) {
760                         CERROR("can't unpack short string in msg %p "
761                                "buffer[%d] len %d: strlen %d\n",
762                                m, index, blen, slen);
763                         return NULL;
764                 }
765         } else if (slen > max_len) {
766                 CERROR("can't unpack oversized string in msg %p "
767                        "buffer[%d] len %d strlen %d: max %d expected\n",
768                        m, index, blen, slen, max_len);
769                 return NULL;
770         }
771
772         return str;
773 }
774
775 /* Wrap up the normal fixed length cases */
776 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
777                                       __u32 min_size, void *swabber)
778 {
779         void *ptr = NULL;
780
781         LASSERT(msg != NULL);
782         switch (msg->lm_magic) {
783         case LUSTRE_MSG_MAGIC_V2:
784                 ptr = lustre_msg_buf_v2(msg, index, min_size);
785                 break;
786         default:
787                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
788         }
789
790         if (ptr != NULL && swabber != NULL)
791                 ((void (*)(void *))swabber)(ptr);
792
793         return ptr;
794 }
795
796 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
797 {
798         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
799                                  sizeof(struct ptlrpc_body_v2));
800 }
801
802 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg)
803 {
804         switch (msg->lm_magic) {
805         case LUSTRE_MSG_MAGIC_V2:
806                 /* already in host endian */
807                 return msg->lm_flags;
808         default:
809                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
810                 return 0;
811         }
812 }
813 EXPORT_SYMBOL(lustre_msghdr_get_flags);
814
815 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
816 {
817         switch (msg->lm_magic) {
818         case LUSTRE_MSG_MAGIC_V2:
819                 msg->lm_flags = flags;
820                 return;
821         default:
822                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
823         }
824 }
825
826 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
827 {
828         switch (msg->lm_magic) {
829         case LUSTRE_MSG_MAGIC_V2: {
830                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
831                 if (pb != NULL)
832                         return pb->pb_flags;
833
834                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
835         }
836         /* no break */
837         default:
838                 /* flags might be printed in debug code while message
839                  * uninitialized */
840                 return 0;
841         }
842 }
843 EXPORT_SYMBOL(lustre_msg_get_flags);
844
845 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
846 {
847         switch (msg->lm_magic) {
848         case LUSTRE_MSG_MAGIC_V2: {
849                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
850                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
851                 pb->pb_flags |= flags;
852                 return;
853         }
854         default:
855                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
856         }
857 }
858 EXPORT_SYMBOL(lustre_msg_add_flags);
859
860 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
861 {
862         switch (msg->lm_magic) {
863         case LUSTRE_MSG_MAGIC_V2: {
864                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
865                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
866                 pb->pb_flags = flags;
867                 return;
868         }
869         default:
870                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
871         }
872 }
873
874 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
875 {
876         switch (msg->lm_magic) {
877         case LUSTRE_MSG_MAGIC_V2: {
878                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
879                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
880                 pb->pb_flags &= ~(MSG_GEN_FLAG_MASK & flags);
881                 return;
882         }
883         default:
884                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
885         }
886 }
887 EXPORT_SYMBOL(lustre_msg_clear_flags);
888
889 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
890 {
891         switch (msg->lm_magic) {
892         case LUSTRE_MSG_MAGIC_V2: {
893                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
894                 if (pb != NULL)
895                         return pb->pb_op_flags;
896
897                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
898         }
899         /* no break */
900         default:
901                 return 0;
902         }
903 }
904
905 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
906 {
907         switch (msg->lm_magic) {
908         case LUSTRE_MSG_MAGIC_V2: {
909                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
910                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
911                 pb->pb_op_flags |= flags;
912                 return;
913         }
914         default:
915                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
916         }
917 }
918 EXPORT_SYMBOL(lustre_msg_add_op_flags);
919
920 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
921 {
922         switch (msg->lm_magic) {
923         case LUSTRE_MSG_MAGIC_V2: {
924                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
925                 if (pb == NULL) {
926                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
927                         return NULL;
928                 }
929                 return &pb->pb_handle;
930         }
931         default:
932                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
933                 return NULL;
934         }
935 }
936
937 __u32 lustre_msg_get_type(struct lustre_msg *msg)
938 {
939         switch (msg->lm_magic) {
940         case LUSTRE_MSG_MAGIC_V2: {
941                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
942                 if (pb == NULL) {
943                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
944                         return PTL_RPC_MSG_ERR;
945                 }
946                 return pb->pb_type;
947         }
948         default:
949                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
950                 return PTL_RPC_MSG_ERR;
951         }
952 }
953 EXPORT_SYMBOL(lustre_msg_get_type);
954
955 __u32 lustre_msg_get_version(struct lustre_msg *msg)
956 {
957         switch (msg->lm_magic) {
958         case LUSTRE_MSG_MAGIC_V2: {
959                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
960                 if (pb == NULL) {
961                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
962                         return 0;
963                 }
964                 return pb->pb_version;
965         }
966         default:
967                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
968                 return 0;
969         }
970 }
971
972 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
973 {
974         switch (msg->lm_magic) {
975         case LUSTRE_MSG_MAGIC_V2: {
976                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
977                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
978                 pb->pb_version |= version;
979                 return;
980         }
981         default:
982                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
983         }
984 }
985
986 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
987 {
988         switch (msg->lm_magic) {
989         case LUSTRE_MSG_MAGIC_V2: {
990                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
991                 if (pb == NULL) {
992                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
993                         return 0;
994                 }
995                 return pb->pb_opc;
996         }
997         default:
998                 CERROR("incorrect message magic: %08x (msg:%p)\n",
999                        msg->lm_magic, msg);
1000                 return 0;
1001         }
1002 }
1003 EXPORT_SYMBOL(lustre_msg_get_opc);
1004
1005 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1006 {
1007         switch (msg->lm_magic) {
1008         case LUSTRE_MSG_MAGIC_V2: {
1009                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1010                 if (pb == NULL) {
1011                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1012                         return 0;
1013                 }
1014                 return pb->pb_last_xid;
1015         }
1016         default:
1017                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1018                 return 0;
1019         }
1020 }
1021 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1022
1023 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1024 {
1025         switch (msg->lm_magic) {
1026         case LUSTRE_MSG_MAGIC_V2: {
1027                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1028                 if (!pb) {
1029                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1030                         return 0;
1031                 }
1032                 return pb->pb_tag;
1033         }
1034         default:
1035                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1036                 return 0;
1037         }
1038 }
1039 EXPORT_SYMBOL(lustre_msg_get_tag);
1040
1041 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1042 {
1043         switch (msg->lm_magic) {
1044         case LUSTRE_MSG_MAGIC_V2: {
1045                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1046                 if (pb == NULL) {
1047                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1048                         return 0;
1049                 }
1050                 return pb->pb_last_committed;
1051         }
1052         default:
1053                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1054                 return 0;
1055         }
1056 }
1057 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1058
1059 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1060 {
1061         switch (msg->lm_magic) {
1062         case LUSTRE_MSG_MAGIC_V2: {
1063                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1064                 if (pb == NULL) {
1065                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1066                         return NULL;
1067                 }
1068                 return pb->pb_pre_versions;
1069         }
1070         default:
1071                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1072                 return NULL;
1073         }
1074 }
1075 EXPORT_SYMBOL(lustre_msg_get_versions);
1076
1077 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1078 {
1079         switch (msg->lm_magic) {
1080         case LUSTRE_MSG_MAGIC_V2: {
1081                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1082                 if (pb == NULL) {
1083                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1084                         return 0;
1085                 }
1086                 return pb->pb_transno;
1087         }
1088         default:
1089                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1090                 return 0;
1091         }
1092 }
1093 EXPORT_SYMBOL(lustre_msg_get_transno);
1094
1095 int lustre_msg_get_status(struct lustre_msg *msg)
1096 {
1097         switch (msg->lm_magic) {
1098         case LUSTRE_MSG_MAGIC_V2: {
1099                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1100                 if (pb != NULL)
1101                         return pb->pb_status;
1102                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1103         }
1104         /* no break */
1105         default:
1106                 /* status might be printed in debug code while message
1107                 * uninitialized */
1108                 return -EINVAL;
1109         }
1110 }
1111 EXPORT_SYMBOL(lustre_msg_get_status);
1112
1113 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1114 {
1115         switch (msg->lm_magic) {
1116         case LUSTRE_MSG_MAGIC_V2: {
1117                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1118                 if (pb == NULL) {
1119                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1120                         return -EINVAL;
1121                 }
1122                 return pb->pb_slv;
1123         }
1124         default:
1125                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1126                 return -EINVAL;
1127         }
1128 }
1129
1130
1131 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1132 {
1133         switch (msg->lm_magic) {
1134         case LUSTRE_MSG_MAGIC_V2: {
1135                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1136                 if (pb == NULL) {
1137                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1138                         return;
1139                 }
1140                 pb->pb_slv = slv;
1141                 return;
1142         }
1143         default:
1144                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1145                 return;
1146         }
1147 }
1148
1149 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1150 {
1151         switch (msg->lm_magic) {
1152         case LUSTRE_MSG_MAGIC_V2: {
1153                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1154                 if (pb == NULL) {
1155                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1156                         return -EINVAL;
1157                 }
1158                 return pb->pb_limit;
1159         }
1160         default:
1161                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1162                 return -EINVAL;
1163         }
1164 }
1165
1166
1167 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1168 {
1169         switch (msg->lm_magic) {
1170         case LUSTRE_MSG_MAGIC_V2: {
1171                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1172                 if (pb == NULL) {
1173                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1174                         return;
1175                 }
1176                 pb->pb_limit = limit;
1177                 return;
1178         }
1179         default:
1180                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1181                 return;
1182         }
1183 }
1184
1185 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1186 {
1187         switch (msg->lm_magic) {
1188         case LUSTRE_MSG_MAGIC_V2: {
1189                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1190                 if (pb == NULL) {
1191                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1192                         return 0;
1193                 }
1194                 return pb->pb_conn_cnt;
1195         }
1196         default:
1197                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1198                 return 0;
1199         }
1200 }
1201 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1202
1203 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1204 {
1205         switch (msg->lm_magic) {
1206         case LUSTRE_MSG_MAGIC_V2:
1207                 return msg->lm_magic;
1208         default:
1209                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1210                 return 0;
1211         }
1212 }
1213
1214 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1215 {
1216         switch (msg->lm_magic) {
1217         case LUSTRE_MSG_MAGIC_V2: {
1218                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1219                 if (pb == NULL) {
1220                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1221                         return 0;
1222                 }
1223                 return pb->pb_timeout;
1224         }
1225         default:
1226                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1227                 return 0;
1228         }
1229 }
1230
1231 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1232 {
1233         switch (msg->lm_magic) {
1234         case LUSTRE_MSG_MAGIC_V2: {
1235                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1236                 if (pb == NULL) {
1237                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1238                         return 0;
1239                 }
1240                 return pb->pb_service_time;
1241         }
1242         default:
1243                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1244                 return 0;
1245         }
1246 }
1247
1248 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1249 {
1250         switch (msg->lm_magic) {
1251         case LUSTRE_MSG_MAGIC_V2: {
1252                 struct ptlrpc_body *pb =
1253                         lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1254                                           sizeof(struct ptlrpc_body));
1255                 if (!pb)
1256                         return NULL;
1257
1258                 return pb->pb_jobid;
1259         }
1260         default:
1261                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1262                 return NULL;
1263         }
1264 }
1265 EXPORT_SYMBOL(lustre_msg_get_jobid);
1266
1267 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1268 {
1269         switch (msg->lm_magic) {
1270         case LUSTRE_MSG_MAGIC_V2:
1271                 return msg->lm_cksum;
1272         default:
1273                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1274                 return 0;
1275         }
1276 }
1277
1278 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 53, 0)
1279 /*
1280  * In 1.6 and 1.8 the checksum was computed only on struct ptlrpc_body as
1281  * it was in 1.6 (88 bytes, smaller than the full size in 1.8).  It makes
1282  * more sense to compute the checksum on the full ptlrpc_body, regardless
1283  * of what size it is, but in order to keep interoperability with 1.8 we
1284  * can optionally also checksum only the first 88 bytes (caller decides). */
1285 # define ptlrpc_body_cksum_size_compat18         88
1286
1287 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg, int compat18)
1288 #else
1289 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1290 #endif
1291 {
1292         switch (msg->lm_magic) {
1293         case LUSTRE_MSG_MAGIC_V2: {
1294                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1295 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 53, 0)
1296                 __u32 len = compat18 ? ptlrpc_body_cksum_size_compat18 :
1297                             lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1298 #else
1299                 __u32 len = lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1300 #endif
1301                 unsigned int hsize = 4;
1302                 __u32 crc;
1303
1304                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1305                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1306                                        len, NULL, 0, (unsigned char *)&crc,
1307                                        &hsize);
1308                 return crc;
1309         }
1310         default:
1311                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1312                 return 0;
1313         }
1314 }
1315
1316 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1317 {
1318         switch (msg->lm_magic) {
1319         case LUSTRE_MSG_MAGIC_V2: {
1320                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1321                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1322                 pb->pb_handle = *handle;
1323                 return;
1324         }
1325         default:
1326                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1327         }
1328 }
1329
1330 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1331 {
1332         switch (msg->lm_magic) {
1333         case LUSTRE_MSG_MAGIC_V2: {
1334                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1335                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1336                 pb->pb_type = type;
1337                 return;
1338                 }
1339         default:
1340                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1341         }
1342 }
1343
1344 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1345 {
1346         switch (msg->lm_magic) {
1347         case LUSTRE_MSG_MAGIC_V2: {
1348                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1349                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1350                 pb->pb_opc = opc;
1351                 return;
1352         }
1353         default:
1354                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1355         }
1356 }
1357
1358 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1359 {
1360         switch (msg->lm_magic) {
1361         case LUSTRE_MSG_MAGIC_V2: {
1362                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1363                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1364                 pb->pb_last_xid = last_xid;
1365                 return;
1366         }
1367         default:
1368                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1369         }
1370 }
1371 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1372
1373 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1374 {
1375         switch (msg->lm_magic) {
1376         case LUSTRE_MSG_MAGIC_V2: {
1377                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1378                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1379                 pb->pb_tag = tag;
1380                 return;
1381         }
1382         default:
1383                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1384         }
1385 }
1386 EXPORT_SYMBOL(lustre_msg_set_tag);
1387
1388 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1389 {
1390         switch (msg->lm_magic) {
1391         case LUSTRE_MSG_MAGIC_V2: {
1392                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1393                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1394                 pb->pb_last_committed = last_committed;
1395                 return;
1396         }
1397         default:
1398                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1399         }
1400 }
1401
1402 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1403 {
1404         switch (msg->lm_magic) {
1405         case LUSTRE_MSG_MAGIC_V2: {
1406                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1407                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1408                 pb->pb_pre_versions[0] = versions[0];
1409                 pb->pb_pre_versions[1] = versions[1];
1410                 pb->pb_pre_versions[2] = versions[2];
1411                 pb->pb_pre_versions[3] = versions[3];
1412                 return;
1413         }
1414         default:
1415                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1416         }
1417 }
1418 EXPORT_SYMBOL(lustre_msg_set_versions);
1419
1420 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1421 {
1422         switch (msg->lm_magic) {
1423         case LUSTRE_MSG_MAGIC_V2: {
1424                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1425                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1426                 pb->pb_transno = transno;
1427                 return;
1428         }
1429         default:
1430                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1431         }
1432 }
1433 EXPORT_SYMBOL(lustre_msg_set_transno);
1434
1435 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1436 {
1437         switch (msg->lm_magic) {
1438         case LUSTRE_MSG_MAGIC_V2: {
1439                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1440                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1441                 pb->pb_status = status;
1442                 return;
1443         }
1444         default:
1445                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1446         }
1447 }
1448 EXPORT_SYMBOL(lustre_msg_set_status);
1449
1450 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1451 {
1452         switch (msg->lm_magic) {
1453         case LUSTRE_MSG_MAGIC_V2: {
1454                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1455                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1456                 pb->pb_conn_cnt = conn_cnt;
1457                 return;
1458         }
1459         default:
1460                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1461         }
1462 }
1463
1464 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1465 {
1466         switch (msg->lm_magic) {
1467         case LUSTRE_MSG_MAGIC_V2: {
1468                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1469                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1470                 pb->pb_timeout = timeout;
1471                 return;
1472         }
1473         default:
1474                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1475         }
1476 }
1477
1478 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1479 {
1480         switch (msg->lm_magic) {
1481         case LUSTRE_MSG_MAGIC_V2: {
1482                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1483                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1484                 pb->pb_service_time = service_time;
1485                 return;
1486         }
1487         default:
1488                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1489         }
1490 }
1491
1492 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1493 {
1494         switch (msg->lm_magic) {
1495         case LUSTRE_MSG_MAGIC_V2: {
1496                 __u32 opc = lustre_msg_get_opc(msg);
1497                 struct ptlrpc_body *pb;
1498
1499                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1500                  * See the comment in ptlrpc_request_pack(). */
1501                 if (!opc || opc == LDLM_BL_CALLBACK ||
1502                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1503                         return;
1504
1505                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1506                                        sizeof(struct ptlrpc_body));
1507                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1508
1509                 if (jobid != NULL)
1510                         memcpy(pb->pb_jobid, jobid, LUSTRE_JOBID_SIZE);
1511                 else if (pb->pb_jobid[0] == '\0')
1512                         lustre_get_jobid(pb->pb_jobid);
1513                 return;
1514         }
1515         default:
1516                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1517         }
1518 }
1519 EXPORT_SYMBOL(lustre_msg_set_jobid);
1520
1521 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1522 {
1523         switch (msg->lm_magic) {
1524         case LUSTRE_MSG_MAGIC_V2:
1525                 msg->lm_cksum = cksum;
1526                 return;
1527         default:
1528                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1529         }
1530 }
1531
1532
1533 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1534 {
1535         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1536
1537         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1538                                          req->rq_pill.rc_area[RCL_SERVER]);
1539         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1540                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1541 }
1542 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1543
1544 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1545 {
1546         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1547         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1548                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1549 }
1550
1551 /**
1552  * Send a remote set_info_async.
1553  *
1554  * This may go from client to server or server to client.
1555  */
1556 int do_set_info_async(struct obd_import *imp,
1557                       int opcode, int version,
1558                       size_t keylen, void *key,
1559                       size_t vallen, void *val,
1560                       struct ptlrpc_request_set *set)
1561 {
1562         struct ptlrpc_request *req;
1563         char                  *tmp;
1564         int                    rc;
1565         ENTRY;
1566
1567         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1568         if (req == NULL)
1569                 RETURN(-ENOMEM);
1570
1571         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1572                              RCL_CLIENT, keylen);
1573         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1574                              RCL_CLIENT, vallen);
1575         rc = ptlrpc_request_pack(req, version, opcode);
1576         if (rc) {
1577                 ptlrpc_request_free(req);
1578                 RETURN(rc);
1579         }
1580
1581         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1582         memcpy(tmp, key, keylen);
1583         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1584         memcpy(tmp, val, vallen);
1585
1586         ptlrpc_request_set_replen(req);
1587
1588         if (set) {
1589                 ptlrpc_set_add_req(set, req);
1590                 ptlrpc_check_set(NULL, set);
1591         } else {
1592                 rc = ptlrpc_queue_wait(req);
1593                 ptlrpc_req_finished(req);
1594         }
1595
1596         RETURN(rc);
1597 }
1598 EXPORT_SYMBOL(do_set_info_async);
1599
1600 /* byte flipping routines for all wire types declared in
1601  * lustre_idl.h implemented here.
1602  */
1603 void lustre_swab_ptlrpc_body(struct ptlrpc_body *b)
1604 {
1605         __swab32s (&b->pb_type);
1606         __swab32s (&b->pb_version);
1607         __swab32s (&b->pb_opc);
1608         __swab32s (&b->pb_status);
1609         __swab64s (&b->pb_last_xid);
1610         __swab16s (&b->pb_tag);
1611         __swab64s (&b->pb_last_committed);
1612         __swab64s (&b->pb_transno);
1613         __swab32s (&b->pb_flags);
1614         __swab32s (&b->pb_op_flags);
1615         __swab32s (&b->pb_conn_cnt);
1616         __swab32s (&b->pb_timeout);
1617         __swab32s (&b->pb_service_time);
1618         __swab32s (&b->pb_limit);
1619         __swab64s (&b->pb_slv);
1620         __swab64s (&b->pb_pre_versions[0]);
1621         __swab64s (&b->pb_pre_versions[1]);
1622         __swab64s (&b->pb_pre_versions[2]);
1623         __swab64s (&b->pb_pre_versions[3]);
1624         CLASSERT(offsetof(typeof(*b), pb_padding0) != 0);
1625         CLASSERT(offsetof(typeof(*b), pb_padding1) != 0);
1626         CLASSERT(offsetof(typeof(*b), pb_padding) != 0);
1627         /* While we need to maintain compatibility between
1628          * clients and servers without ptlrpc_body_v2 (< 2.3)
1629          * do not swab any fields beyond pb_jobid, as we are
1630          * using this swab function for both ptlrpc_body
1631          * and ptlrpc_body_v2. */
1632         CLASSERT(offsetof(typeof(*b), pb_jobid) != 0);
1633 }
1634
1635 void lustre_swab_connect(struct obd_connect_data *ocd)
1636 {
1637         __swab64s(&ocd->ocd_connect_flags);
1638         __swab32s(&ocd->ocd_version);
1639         __swab32s(&ocd->ocd_grant);
1640         __swab64s(&ocd->ocd_ibits_known);
1641         __swab32s(&ocd->ocd_index);
1642         __swab32s(&ocd->ocd_brw_size);
1643         /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1644          * they are 8-byte values */
1645         __swab16s(&ocd->ocd_grant_extent);
1646         __swab32s(&ocd->ocd_unused);
1647         __swab64s(&ocd->ocd_transno);
1648         __swab32s(&ocd->ocd_group);
1649         __swab32s(&ocd->ocd_cksum_types);
1650         __swab32s(&ocd->ocd_instance);
1651         /* Fields after ocd_cksum_types are only accessible by the receiver
1652          * if the corresponding flag in ocd_connect_flags is set. Accessing
1653          * any field after ocd_maxbytes on the receiver without a valid flag
1654          * may result in out-of-bound memory access and kernel oops. */
1655         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1656                 __swab32s(&ocd->ocd_max_easize);
1657         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1658                 __swab64s(&ocd->ocd_maxbytes);
1659         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1660                 __swab16s(&ocd->ocd_maxmodrpcs);
1661         CLASSERT(offsetof(typeof(*ocd), padding0) != 0);
1662         CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1663         CLASSERT(offsetof(typeof(*ocd), padding2) != 0);
1664         CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1665         CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1666         CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1667         CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1668         CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1669         CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1670         CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1671         CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1672         CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1673         CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1674         CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1675         CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1676         CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1677 }
1678
1679 void lustre_swab_obdo (struct obdo  *o)
1680 {
1681         __swab64s (&o->o_valid);
1682         lustre_swab_ost_id(&o->o_oi);
1683         __swab64s (&o->o_parent_seq);
1684         __swab64s (&o->o_size);
1685         __swab64s (&o->o_mtime);
1686         __swab64s (&o->o_atime);
1687         __swab64s (&o->o_ctime);
1688         __swab64s (&o->o_blocks);
1689         __swab64s (&o->o_grant);
1690         __swab32s (&o->o_blksize);
1691         __swab32s (&o->o_mode);
1692         __swab32s (&o->o_uid);
1693         __swab32s (&o->o_gid);
1694         __swab32s (&o->o_flags);
1695         __swab32s (&o->o_nlink);
1696         __swab32s (&o->o_parent_oid);
1697         __swab32s (&o->o_misc);
1698         __swab64s (&o->o_ioepoch);
1699         __swab32s (&o->o_stripe_idx);
1700         __swab32s (&o->o_parent_ver);
1701         /* o_handle is opaque */
1702         /* o_lcookie is swabbed elsewhere */
1703         __swab32s (&o->o_uid_h);
1704         __swab32s (&o->o_gid_h);
1705         __swab64s (&o->o_data_version);
1706         CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1707         CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1708         CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1709
1710 }
1711 EXPORT_SYMBOL(lustre_swab_obdo);
1712
1713 void lustre_swab_obd_statfs (struct obd_statfs *os)
1714 {
1715         __swab64s (&os->os_type);
1716         __swab64s (&os->os_blocks);
1717         __swab64s (&os->os_bfree);
1718         __swab64s (&os->os_bavail);
1719         __swab64s (&os->os_files);
1720         __swab64s (&os->os_ffree);
1721         /* no need to swab os_fsid */
1722         __swab32s (&os->os_bsize);
1723         __swab32s (&os->os_namelen);
1724         __swab64s (&os->os_maxbytes);
1725         __swab32s (&os->os_state);
1726         CLASSERT(offsetof(typeof(*os), os_fprecreated) != 0);
1727         CLASSERT(offsetof(typeof(*os), os_spare2) != 0);
1728         CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1729         CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1730         CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1731         CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1732         CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1733         CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1734         CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1735 }
1736
1737 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1738 {
1739         lustre_swab_ost_id(&ioo->ioo_oid);
1740         __swab32s(&ioo->ioo_max_brw);
1741         __swab32s(&ioo->ioo_bufcnt);
1742 }
1743
1744 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1745 {
1746         __swab64s(&nbr->rnb_offset);
1747         __swab32s(&nbr->rnb_len);
1748         __swab32s(&nbr->rnb_flags);
1749 }
1750
1751 void lustre_swab_ost_body (struct ost_body *b)
1752 {
1753         lustre_swab_obdo (&b->oa);
1754 }
1755
1756 void lustre_swab_ost_last_id(u64 *id)
1757 {
1758         __swab64s(id);
1759 }
1760
1761 void lustre_swab_generic_32s(__u32 *val)
1762 {
1763         __swab32s(val);
1764 }
1765
1766 void lustre_swab_gl_desc(union ldlm_gl_desc *desc)
1767 {
1768         lustre_swab_lu_fid(&desc->lquota_desc.gl_id.qid_fid);
1769         __swab64s(&desc->lquota_desc.gl_flags);
1770         __swab64s(&desc->lquota_desc.gl_ver);
1771         __swab64s(&desc->lquota_desc.gl_hardlimit);
1772         __swab64s(&desc->lquota_desc.gl_softlimit);
1773         __swab64s(&desc->lquota_desc.gl_time);
1774         CLASSERT(offsetof(typeof(desc->lquota_desc), gl_pad2) != 0);
1775 }
1776
1777 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1778 {
1779         __swab64s(&lvb->lvb_size);
1780         __swab64s(&lvb->lvb_mtime);
1781         __swab64s(&lvb->lvb_atime);
1782         __swab64s(&lvb->lvb_ctime);
1783         __swab64s(&lvb->lvb_blocks);
1784 }
1785 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1786
1787 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1788 {
1789         __swab64s(&lvb->lvb_size);
1790         __swab64s(&lvb->lvb_mtime);
1791         __swab64s(&lvb->lvb_atime);
1792         __swab64s(&lvb->lvb_ctime);
1793         __swab64s(&lvb->lvb_blocks);
1794         __swab32s(&lvb->lvb_mtime_ns);
1795         __swab32s(&lvb->lvb_atime_ns);
1796         __swab32s(&lvb->lvb_ctime_ns);
1797         __swab32s(&lvb->lvb_padding);
1798 }
1799 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1800
1801 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1802 {
1803         __swab64s(&lvb->lvb_flags);
1804         __swab64s(&lvb->lvb_id_may_rel);
1805         __swab64s(&lvb->lvb_id_rel);
1806         __swab64s(&lvb->lvb_id_qunit);
1807         __swab64s(&lvb->lvb_pad1);
1808 }
1809 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1810
1811 void lustre_swab_mdt_body (struct mdt_body *b)
1812 {
1813         lustre_swab_lu_fid(&b->mbo_fid1);
1814         lustre_swab_lu_fid(&b->mbo_fid2);
1815         /* handle is opaque */
1816         __swab64s(&b->mbo_valid);
1817         __swab64s(&b->mbo_size);
1818         __swab64s(&b->mbo_mtime);
1819         __swab64s(&b->mbo_atime);
1820         __swab64s(&b->mbo_ctime);
1821         __swab64s(&b->mbo_blocks);
1822         __swab64s(&b->mbo_ioepoch);
1823         __swab64s(&b->mbo_t_state);
1824         __swab32s(&b->mbo_fsuid);
1825         __swab32s(&b->mbo_fsgid);
1826         __swab32s(&b->mbo_capability);
1827         __swab32s(&b->mbo_mode);
1828         __swab32s(&b->mbo_uid);
1829         __swab32s(&b->mbo_gid);
1830         __swab32s(&b->mbo_flags);
1831         __swab32s(&b->mbo_rdev);
1832         __swab32s(&b->mbo_nlink);
1833         CLASSERT(offsetof(typeof(*b), mbo_unused2) != 0);
1834         __swab32s(&b->mbo_suppgid);
1835         __swab32s(&b->mbo_eadatasize);
1836         __swab32s(&b->mbo_aclsize);
1837         __swab32s(&b->mbo_max_mdsize);
1838         CLASSERT(offsetof(typeof(*b), mbo_unused3) != 0);
1839         __swab32s(&b->mbo_uid_h);
1840         __swab32s(&b->mbo_gid_h);
1841         CLASSERT(offsetof(typeof(*b), mbo_padding_5) != 0);
1842 }
1843
1844 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b)
1845 {
1846         /* mio_handle is opaque */
1847         CLASSERT(offsetof(typeof(*b), mio_unused1) != 0);
1848         CLASSERT(offsetof(typeof(*b), mio_unused2) != 0);
1849         CLASSERT(offsetof(typeof(*b), mio_padding) != 0);
1850 }
1851
1852 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1853 {
1854         int i;
1855         __swab32s(&mti->mti_lustre_ver);
1856         __swab32s(&mti->mti_stripe_index);
1857         __swab32s(&mti->mti_config_ver);
1858         __swab32s(&mti->mti_flags);
1859         __swab32s(&mti->mti_instance);
1860         __swab32s(&mti->mti_nid_count);
1861         CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1862         for (i = 0; i < MTI_NIDS_MAX; i++)
1863                 __swab64s(&mti->mti_nids[i]);
1864 }
1865
1866 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1867 {
1868         __u8 i;
1869
1870         __swab64s(&entry->mne_version);
1871         __swab32s(&entry->mne_instance);
1872         __swab32s(&entry->mne_index);
1873         __swab32s(&entry->mne_length);
1874
1875         /* mne_nid_(count|type) must be one byte size because we're gonna
1876          * access it w/o swapping. */
1877         CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
1878         CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
1879
1880         /* remove this assertion if ipv6 is supported. */
1881         LASSERT(entry->mne_nid_type == 0);
1882         for (i = 0; i < entry->mne_nid_count; i++) {
1883                 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1884                 __swab64s(&entry->u.nids[i]);
1885         }
1886 }
1887 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
1888
1889 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
1890 {
1891         __swab64s(&body->mcb_offset);
1892         __swab32s(&body->mcb_units);
1893         __swab16s(&body->mcb_type);
1894 }
1895
1896 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
1897 {
1898         __swab64s(&body->mcr_offset);
1899         __swab64s(&body->mcr_size);
1900 }
1901
1902 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
1903 {
1904         __swab64s (&i->dqi_bgrace);
1905         __swab64s (&i->dqi_igrace);
1906         __swab32s (&i->dqi_flags);
1907         __swab32s (&i->dqi_valid);
1908 }
1909
1910 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
1911 {
1912         __swab64s (&b->dqb_ihardlimit);
1913         __swab64s (&b->dqb_isoftlimit);
1914         __swab64s (&b->dqb_curinodes);
1915         __swab64s (&b->dqb_bhardlimit);
1916         __swab64s (&b->dqb_bsoftlimit);
1917         __swab64s (&b->dqb_curspace);
1918         __swab64s (&b->dqb_btime);
1919         __swab64s (&b->dqb_itime);
1920         __swab32s (&b->dqb_valid);
1921         CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
1922 }
1923
1924 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
1925 {
1926         __swab32s (&q->qc_cmd);
1927         __swab32s (&q->qc_type);
1928         __swab32s (&q->qc_id);
1929         __swab32s (&q->qc_stat);
1930         lustre_swab_obd_dqinfo (&q->qc_dqinfo);
1931         lustre_swab_obd_dqblk (&q->qc_dqblk);
1932 }
1933
1934 void lustre_swab_mdt_remote_perm (struct mdt_remote_perm *p)
1935 {
1936         __swab32s (&p->rp_uid);
1937         __swab32s (&p->rp_gid);
1938         __swab32s (&p->rp_fsuid);
1939         __swab32s (&p->rp_fsuid_h);
1940         __swab32s (&p->rp_fsgid);
1941         __swab32s (&p->rp_fsgid_h);
1942         __swab32s (&p->rp_access_perm);
1943         __swab32s (&p->rp_padding);
1944 };
1945 EXPORT_SYMBOL(lustre_swab_mdt_remote_perm);
1946
1947 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
1948 {
1949         lustre_swab_lu_fid(&gf->gf_fid);
1950         __swab64s(&gf->gf_recno);
1951         __swab32s(&gf->gf_linkno);
1952         __swab32s(&gf->gf_pathlen);
1953 }
1954 EXPORT_SYMBOL(lustre_swab_fid2path);
1955
1956 static void lustre_swab_fiemap_extent(struct ll_fiemap_extent *fm_extent)
1957 {
1958         __swab64s(&fm_extent->fe_logical);
1959         __swab64s(&fm_extent->fe_physical);
1960         __swab64s(&fm_extent->fe_length);
1961         __swab32s(&fm_extent->fe_flags);
1962         __swab32s(&fm_extent->fe_device);
1963 }
1964
1965 void lustre_swab_fiemap(struct ll_user_fiemap *fiemap)
1966 {
1967         __u32 i;
1968
1969         __swab64s(&fiemap->fm_start);
1970         __swab64s(&fiemap->fm_length);
1971         __swab32s(&fiemap->fm_flags);
1972         __swab32s(&fiemap->fm_mapped_extents);
1973         __swab32s(&fiemap->fm_extent_count);
1974         __swab32s(&fiemap->fm_reserved);
1975
1976         for (i = 0; i < fiemap->fm_mapped_extents; i++)
1977                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
1978 }
1979
1980 void lustre_swab_idx_info(struct idx_info *ii)
1981 {
1982         __swab32s(&ii->ii_magic);
1983         __swab32s(&ii->ii_flags);
1984         __swab16s(&ii->ii_count);
1985         __swab32s(&ii->ii_attrs);
1986         lustre_swab_lu_fid(&ii->ii_fid);
1987         __swab64s(&ii->ii_version);
1988         __swab64s(&ii->ii_hash_start);
1989         __swab64s(&ii->ii_hash_end);
1990         __swab16s(&ii->ii_keysize);
1991         __swab16s(&ii->ii_recsize);
1992 }
1993
1994 void lustre_swab_lip_header(struct lu_idxpage *lip)
1995 {
1996         /* swab header */
1997         __swab32s(&lip->lip_magic);
1998         __swab16s(&lip->lip_flags);
1999         __swab16s(&lip->lip_nr);
2000 }
2001 EXPORT_SYMBOL(lustre_swab_lip_header);
2002
2003 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2004 {
2005         __swab32s(&rr->rr_opcode);
2006         __swab32s(&rr->rr_cap);
2007         __swab32s(&rr->rr_fsuid);
2008         /* rr_fsuid_h is unused */
2009         __swab32s(&rr->rr_fsgid);
2010         /* rr_fsgid_h is unused */
2011         __swab32s(&rr->rr_suppgid1);
2012         /* rr_suppgid1_h is unused */
2013         __swab32s(&rr->rr_suppgid2);
2014         /* rr_suppgid2_h is unused */
2015         lustre_swab_lu_fid(&rr->rr_fid1);
2016         lustre_swab_lu_fid(&rr->rr_fid2);
2017         __swab64s(&rr->rr_mtime);
2018         __swab64s(&rr->rr_atime);
2019         __swab64s(&rr->rr_ctime);
2020         __swab64s(&rr->rr_size);
2021         __swab64s(&rr->rr_blocks);
2022         __swab32s(&rr->rr_bias);
2023         __swab32s(&rr->rr_mode);
2024         __swab32s(&rr->rr_flags);
2025         __swab32s(&rr->rr_flags_h);
2026         __swab32s(&rr->rr_umask);
2027
2028         CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2029 };
2030
2031 void lustre_swab_lov_desc (struct lov_desc *ld)
2032 {
2033         __swab32s (&ld->ld_tgt_count);
2034         __swab32s (&ld->ld_active_tgt_count);
2035         __swab32s (&ld->ld_default_stripe_count);
2036         __swab32s (&ld->ld_pattern);
2037         __swab64s (&ld->ld_default_stripe_size);
2038         __swab64s (&ld->ld_default_stripe_offset);
2039         __swab32s (&ld->ld_qos_maxage);
2040         /* uuid endian insensitive */
2041 }
2042 EXPORT_SYMBOL(lustre_swab_lov_desc);
2043
2044 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2045 {
2046         __swab32s (&ld->ld_tgt_count);
2047         __swab32s (&ld->ld_active_tgt_count);
2048         __swab32s (&ld->ld_default_stripe_count);
2049         __swab32s (&ld->ld_pattern);
2050         __swab64s (&ld->ld_default_hash_size);
2051         __swab32s (&ld->ld_qos_maxage);
2052         /* uuid endian insensitive */
2053 }
2054
2055 /* This structure is always in little-endian */
2056 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2057 {
2058         int i;
2059
2060         __swab32s(&lmm1->lmv_magic);
2061         __swab32s(&lmm1->lmv_stripe_count);
2062         __swab32s(&lmm1->lmv_master_mdt_index);
2063         __swab32s(&lmm1->lmv_hash_type);
2064         __swab32s(&lmm1->lmv_layout_version);
2065         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2066                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2067 }
2068
2069 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2070 {
2071         switch (lmm->lmv_magic) {
2072         case LMV_MAGIC_V1:
2073                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2074                 break;
2075         default:
2076                 break;
2077         }
2078 }
2079
2080 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2081 {
2082         __swab32s(&lum->lum_magic);
2083         __swab32s(&lum->lum_stripe_count);
2084         __swab32s(&lum->lum_stripe_offset);
2085         __swab32s(&lum->lum_hash_type);
2086         __swab32s(&lum->lum_type);
2087         CLASSERT(offsetof(typeof(*lum), lum_padding1) != 0);
2088 }
2089 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2090
2091 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2092                           const char *msg)
2093 {
2094         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2095                 return;
2096
2097         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2098         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2099         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2100         CDEBUG(lvl, "\tlmm_object_id: "LPU64"\n", lmm_oi_id(&lum->lmm_oi));
2101         CDEBUG(lvl, "\tlmm_object_gr: "LPU64"\n", lmm_oi_seq(&lum->lmm_oi));
2102         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2103         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2104         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2105                lum->lmm_stripe_offset);
2106         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2107                 struct lov_user_md_v3 *v3 = (void *)lum;
2108                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2109         }
2110         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2111                 struct lov_user_md_v3 *v3 = (void *)lum;
2112                 int i;
2113
2114                 if (v3->lmm_pool_name[0] != '\0')
2115                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2116
2117                 CDEBUG(lvl, "\ttarget list:\n");
2118                 for (i = 0; i < v3->lmm_stripe_count; i++)
2119                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2120         }
2121 }
2122 EXPORT_SYMBOL(lustre_print_user_md);
2123
2124 static void lustre_swab_lmm_oi(struct ost_id *oi)
2125 {
2126         __swab64s(&oi->oi.oi_id);
2127         __swab64s(&oi->oi.oi_seq);
2128 }
2129
2130 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2131 {
2132         ENTRY;
2133         __swab32s(&lum->lmm_magic);
2134         __swab32s(&lum->lmm_pattern);
2135         lustre_swab_lmm_oi(&lum->lmm_oi);
2136         __swab32s(&lum->lmm_stripe_size);
2137         __swab16s(&lum->lmm_stripe_count);
2138         __swab16s(&lum->lmm_stripe_offset);
2139         EXIT;
2140 }
2141
2142 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2143 {
2144         ENTRY;
2145         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2146         lustre_swab_lov_user_md_common(lum);
2147         EXIT;
2148 }
2149 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2150
2151 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2152 {
2153         ENTRY;
2154         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2155         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2156         /* lmm_pool_name nothing to do with char */
2157         EXIT;
2158 }
2159 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2160
2161 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2162 {
2163         ENTRY;
2164         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2165         __swab32s(&lmm->lmm_magic);
2166         __swab32s(&lmm->lmm_pattern);
2167         lustre_swab_lmm_oi(&lmm->lmm_oi);
2168         __swab32s(&lmm->lmm_stripe_size);
2169         __swab16s(&lmm->lmm_stripe_count);
2170         __swab16s(&lmm->lmm_layout_gen);
2171         EXIT;
2172 }
2173 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2174
2175 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2176                                      int stripe_count)
2177 {
2178         int i;
2179         ENTRY;
2180         for (i = 0; i < stripe_count; i++) {
2181                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2182                 __swab32s(&(lod[i].l_ost_gen));
2183                 __swab32s(&(lod[i].l_ost_idx));
2184         }
2185         EXIT;
2186 }
2187 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2188
2189 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2190 {
2191         int  i;
2192
2193         for (i = 0; i < RES_NAME_SIZE; i++)
2194                 __swab64s (&id->name[i]);
2195 }
2196
2197 void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d)
2198 {
2199         /* the lock data is a union and the first two fields are always an
2200          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2201          * data the same way. */
2202         __swab64s(&d->l_extent.start);
2203         __swab64s(&d->l_extent.end);
2204         __swab64s(&d->l_extent.gid);
2205         __swab64s(&d->l_flock.lfw_owner);
2206         __swab32s(&d->l_flock.lfw_pid);
2207 }
2208
2209 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2210 {
2211         __swab64s (&i->opc);
2212 }
2213
2214 void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r)
2215 {
2216         __swab32s (&r->lr_type);
2217         CLASSERT(offsetof(typeof(*r), lr_padding) != 0);
2218         lustre_swab_ldlm_res_id (&r->lr_name);
2219 }
2220
2221 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2222 {
2223         lustre_swab_ldlm_resource_desc (&l->l_resource);
2224         __swab32s (&l->l_req_mode);
2225         __swab32s (&l->l_granted_mode);
2226         lustre_swab_ldlm_policy_data (&l->l_policy_data);
2227 }
2228
2229 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2230 {
2231         __swab32s (&rq->lock_flags);
2232         lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2233         __swab32s (&rq->lock_count);
2234         /* lock_handle[] opaque */
2235 }
2236
2237 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2238 {
2239         __swab32s (&r->lock_flags);
2240         CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2241         lustre_swab_ldlm_lock_desc (&r->lock_desc);
2242         /* lock_handle opaque */
2243         __swab64s (&r->lock_policy_res1);
2244         __swab64s (&r->lock_policy_res2);
2245 }
2246
2247 void lustre_swab_quota_body(struct quota_body *b)
2248 {
2249         lustre_swab_lu_fid(&b->qb_fid);
2250         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2251         __swab32s(&b->qb_flags);
2252         __swab64s(&b->qb_count);
2253         __swab64s(&b->qb_usage);
2254         __swab64s(&b->qb_slv_ver);
2255 }
2256
2257 /* Dump functions */
2258 void dump_ioo(struct obd_ioobj *ioo)
2259 {
2260         CDEBUG(D_RPCTRACE,
2261                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2262                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2263                ioo->ioo_bufcnt);
2264 }
2265
2266 void dump_rniobuf(struct niobuf_remote *nb)
2267 {
2268         CDEBUG(D_RPCTRACE, "niobuf_remote: offset="LPU64", len=%d, flags=%x\n",
2269                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2270 }
2271
2272 void dump_obdo(struct obdo *oa)
2273 {
2274         u64 valid = oa->o_valid;
2275
2276         CDEBUG(D_RPCTRACE, "obdo: o_valid = "LPX64"\n", valid);
2277         if (valid & OBD_MD_FLID)
2278                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2279         if (valid & OBD_MD_FLFID)
2280                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = "LPX64"\n",
2281                        oa->o_parent_seq);
2282         if (valid & OBD_MD_FLSIZE)
2283                 CDEBUG(D_RPCTRACE, "obdo: o_size = "LPD64"\n", oa->o_size);
2284         if (valid & OBD_MD_FLMTIME)
2285                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = "LPD64"\n", oa->o_mtime);
2286         if (valid & OBD_MD_FLATIME)
2287                 CDEBUG(D_RPCTRACE, "obdo: o_atime = "LPD64"\n", oa->o_atime);
2288         if (valid & OBD_MD_FLCTIME)
2289                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = "LPD64"\n", oa->o_ctime);
2290         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2291                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = "LPD64"\n", oa->o_blocks);
2292         if (valid & OBD_MD_FLGRANT)
2293                 CDEBUG(D_RPCTRACE, "obdo: o_grant = "LPD64"\n", oa->o_grant);
2294         if (valid & OBD_MD_FLBLKSZ)
2295                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2296         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2297                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2298                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2299                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2300         if (valid & OBD_MD_FLUID)
2301                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2302         if (valid & OBD_MD_FLUID)
2303                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2304         if (valid & OBD_MD_FLGID)
2305                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2306         if (valid & OBD_MD_FLGID)
2307                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2308         if (valid & OBD_MD_FLFLAGS)
2309                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2310         if (valid & OBD_MD_FLNLINK)
2311                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2312         else if (valid & OBD_MD_FLCKSUM)
2313                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2314                        oa->o_nlink);
2315         if (valid & OBD_MD_FLGENER)
2316                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2317                        oa->o_parent_oid);
2318         if (valid & OBD_MD_FLEPOCH)
2319                 CDEBUG(D_RPCTRACE, "obdo: o_ioepoch = "LPD64"\n",
2320                        oa->o_ioepoch);
2321         if (valid & OBD_MD_FLFID) {
2322                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2323                        oa->o_stripe_idx);
2324                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2325                        oa->o_parent_ver);
2326         }
2327         if (valid & OBD_MD_FLHANDLE)
2328                 CDEBUG(D_RPCTRACE, "obdo: o_handle = "LPD64"\n",
2329                        oa->o_handle.cookie);
2330 }
2331
2332 void dump_ost_body(struct ost_body *ob)
2333 {
2334         dump_obdo(&ob->oa);
2335 }
2336
2337 void dump_rcs(__u32 *rc)
2338 {
2339         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2340 }
2341
2342 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2343 {
2344         LASSERT(req->rq_reqmsg);
2345
2346         switch (req->rq_reqmsg->lm_magic) {
2347         case LUSTRE_MSG_MAGIC_V2:
2348                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2349         default:
2350                 CERROR("bad lustre msg magic: %#08X\n",
2351                        req->rq_reqmsg->lm_magic);
2352         }
2353         return 0;
2354 }
2355
2356 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2357 {
2358         LASSERT(req->rq_repmsg);
2359
2360         switch (req->rq_repmsg->lm_magic) {
2361         case LUSTRE_MSG_MAGIC_V2:
2362                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2363         default:
2364                 /* uninitialized yet */
2365                 return 0;
2366         }
2367 }
2368
2369 void _debug_req(struct ptlrpc_request *req,
2370                 struct libcfs_debug_msg_data *msgdata,
2371                 const char *fmt, ... )
2372 {
2373         int req_ok = req->rq_reqmsg != NULL;
2374         int rep_ok = req->rq_repmsg != NULL;
2375         lnet_nid_t nid = LNET_NID_ANY;
2376         va_list args;
2377
2378         if (ptlrpc_req_need_swab(req)) {
2379                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2380                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2381         }
2382
2383         if (req->rq_import && req->rq_import->imp_connection)
2384                 nid = req->rq_import->imp_connection->c_peer.nid;
2385         else if (req->rq_export && req->rq_export->exp_connection)
2386                 nid = req->rq_export->exp_connection->c_peer.nid;
2387
2388         va_start(args, fmt);
2389         libcfs_debug_vmsg2(msgdata, fmt, args,
2390                            " req@%p x"LPU64"/t"LPD64"("LPD64") o%d->%s@%s:%d/%d"
2391                            " lens %d/%d e %d to %d dl "CFS_TIME_T" ref %d "
2392                            "fl "REQ_FLAGS_FMT"/%x/%x rc %d/%d\n",
2393                            req, req->rq_xid, req->rq_transno,
2394                            req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2395                            req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2396                            req->rq_import ?
2397                                 req->rq_import->imp_obd->obd_name :
2398                                 req->rq_export ?
2399                                         req->rq_export->exp_client_uuid.uuid :
2400                                         "<?>",
2401                            libcfs_nid2str(nid),
2402                            req->rq_request_portal, req->rq_reply_portal,
2403                            req->rq_reqlen, req->rq_replen,
2404                            req->rq_early_count, req->rq_timedout,
2405                            req->rq_deadline,
2406                            atomic_read(&req->rq_refcount),
2407                            DEBUG_REQ_FLAGS(req),
2408                            req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2409                            rep_ok ? lustre_msg_get_flags(req->rq_repmsg) : -1,
2410                            req->rq_status,
2411                            rep_ok ? lustre_msg_get_status(req->rq_repmsg) : -1);
2412         va_end(args);
2413 }
2414 EXPORT_SYMBOL(_debug_req);
2415
2416 void lustre_swab_lustre_capa(struct lustre_capa *c)
2417 {
2418         lustre_swab_lu_fid(&c->lc_fid);
2419         __swab64s (&c->lc_opc);
2420         __swab64s (&c->lc_uid);
2421         __swab64s (&c->lc_gid);
2422         __swab32s (&c->lc_flags);
2423         __swab32s (&c->lc_keyid);
2424         __swab32s (&c->lc_timeout);
2425         __swab32s (&c->lc_expiry);
2426 }
2427
2428 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2429 {
2430         __swab64s (&k->lk_seq);
2431         __swab32s (&k->lk_keyid);
2432         CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2433 }
2434
2435 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2436 {
2437         __swab32s(&state->hus_states);
2438         __swab32s(&state->hus_archive_id);
2439 }
2440
2441 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2442 {
2443         __swab32s(&hss->hss_valid);
2444         __swab64s(&hss->hss_setmask);
2445         __swab64s(&hss->hss_clearmask);
2446         __swab32s(&hss->hss_archive_id);
2447 }
2448
2449 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2450 {
2451         __swab64s(&extent->offset);
2452         __swab64s(&extent->length);
2453 }
2454
2455 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2456 {
2457         __swab32s(&action->hca_state);
2458         __swab32s(&action->hca_action);
2459         lustre_swab_hsm_extent(&action->hca_location);
2460 }
2461
2462 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2463 {
2464         lustre_swab_lu_fid(&hui->hui_fid);
2465         lustre_swab_hsm_extent(&hui->hui_extent);
2466 }
2467
2468 void lustre_swab_layout_intent(struct layout_intent *li)
2469 {
2470         __swab32s(&li->li_opc);
2471         __swab32s(&li->li_flags);
2472         __swab64s(&li->li_start);
2473         __swab64s(&li->li_end);
2474 }
2475
2476 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2477 {
2478         lustre_swab_lu_fid(&hpk->hpk_fid);
2479         __swab64s(&hpk->hpk_cookie);
2480         __swab64s(&hpk->hpk_extent.offset);
2481         __swab64s(&hpk->hpk_extent.length);
2482         __swab16s(&hpk->hpk_flags);
2483         __swab16s(&hpk->hpk_errval);
2484 }
2485
2486 void lustre_swab_hsm_request(struct hsm_request *hr)
2487 {
2488         __swab32s(&hr->hr_action);
2489         __swab32s(&hr->hr_archive_id);
2490         __swab64s(&hr->hr_flags);
2491         __swab32s(&hr->hr_itemcount);
2492         __swab32s(&hr->hr_data_len);
2493 }
2494
2495 void lustre_swab_object_update(struct object_update *ou)
2496 {
2497         struct object_update_param *param;
2498         size_t  i;
2499
2500         __swab16s(&ou->ou_type);
2501         __swab16s(&ou->ou_params_count);
2502         __swab32s(&ou->ou_master_index);
2503         __swab32s(&ou->ou_flags);
2504         __swab32s(&ou->ou_padding1);
2505         __swab64s(&ou->ou_batchid);
2506         lustre_swab_lu_fid(&ou->ou_fid);
2507         param = &ou->ou_params[0];
2508         for (i = 0; i < ou->ou_params_count; i++) {
2509                 __swab16s(&param->oup_len);
2510                 __swab16s(&param->oup_padding);
2511                 __swab32s(&param->oup_padding2);
2512                 param = (struct object_update_param *)((char *)param +
2513                          object_update_param_size(param));
2514         }
2515 }
2516
2517 void lustre_swab_object_update_request(struct object_update_request *our)
2518 {
2519         size_t i;
2520         __swab32s(&our->ourq_magic);
2521         __swab16s(&our->ourq_count);
2522         __swab16s(&our->ourq_padding);
2523         for (i = 0; i < our->ourq_count; i++) {
2524                 struct object_update *ou;
2525
2526                 ou = object_update_request_get(our, i, NULL);
2527                 if (ou == NULL)
2528                         return;
2529                 lustre_swab_object_update(ou);
2530         }
2531 }
2532
2533 void lustre_swab_object_update_result(struct object_update_result *our)
2534 {
2535         __swab32s(&our->our_rc);
2536         __swab16s(&our->our_datalen);
2537         __swab16s(&our->our_padding);
2538 }
2539
2540 void lustre_swab_object_update_reply(struct object_update_reply *our)
2541 {
2542         size_t i;
2543
2544         __swab32s(&our->ourp_magic);
2545         __swab16s(&our->ourp_count);
2546         __swab16s(&our->ourp_padding);
2547         for (i = 0; i < our->ourp_count; i++) {
2548                 struct object_update_result *ourp;
2549
2550                 __swab16s(&our->ourp_lens[i]);
2551                 ourp = object_update_result_get(our, i, NULL);
2552                 if (ourp == NULL)
2553                         return;
2554                 lustre_swab_object_update_result(ourp);
2555         }
2556 }
2557
2558 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2559 {
2560         __swab64s(&msl->msl_flags);
2561 }
2562
2563 void lustre_swab_close_data(struct close_data *cd)
2564 {
2565         lustre_swab_lu_fid(&cd->cd_fid);
2566         __swab64s(&cd->cd_data_version);
2567 }
2568
2569 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2570 {
2571         __swab32s(&lr->lr_event);
2572         __swab32s(&lr->lr_index);
2573         __swab32s(&lr->lr_flags);
2574         __swab32s(&lr->lr_valid);
2575         __swab32s(&lr->lr_speed);
2576         __swab16s(&lr->lr_version);
2577         __swab16s(&lr->lr_active);
2578         __swab16s(&lr->lr_param);
2579         __swab16s(&lr->lr_async_windows);
2580         __swab32s(&lr->lr_flags);
2581         lustre_swab_lu_fid(&lr->lr_fid);
2582         lustre_swab_lu_fid(&lr->lr_fid2);
2583         lustre_swab_lu_fid(&lr->lr_fid3);
2584         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2585         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2586 }
2587
2588 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2589 {
2590         __swab32s(&lr->lr_status);
2591         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2592         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2593 }
2594
2595 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2596 {
2597         lustre_swab_lu_fid(&ent->loe_key);
2598         lustre_swab_lu_fid(&ent->loe_rec.lor_fid);
2599         __swab32s(&ent->loe_rec.lor_uid);
2600         __swab32s(&ent->loe_rec.lor_gid);
2601 }
2602 EXPORT_SYMBOL(lustre_swab_orphan_ent);