Whamcloud - gitweb
LU-1842 quota: new quota RPC format
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Whamcloud, Inc.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/pack_generic.c
37  *
38  * (Un)packing of OST requests
39  *
40  * Author: Peter J. Braam <braam@clusterfs.com>
41  * Author: Phil Schwan <phil@clusterfs.com>
42  * Author: Eric Barton <eeb@clusterfs.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_RPC
46 #ifndef __KERNEL__
47 # include <liblustre.h>
48 #endif
49
50 #include <libcfs/libcfs.h>
51
52 #include <obd_support.h>
53 #include <obd_class.h>
54 #include <lustre_net.h>
55 #include <obd_cksum.h>
56 #include <lustre/ll_fiemap.h>
57
58 static inline int lustre_msg_hdr_size_v2(int count)
59 {
60         return cfs_size_round(offsetof(struct lustre_msg_v2,
61                                        lm_buflens[count]));
62 }
63
64 int lustre_msg_hdr_size(__u32 magic, int count)
65 {
66         switch (magic) {
67         case LUSTRE_MSG_MAGIC_V2:
68                 return lustre_msg_hdr_size_v2(count);
69         default:
70                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
71                 return -EINVAL;
72         }
73 }
74 EXPORT_SYMBOL(lustre_msg_hdr_size);
75
76 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
77                             int index)
78 {
79         if (inout)
80                 lustre_set_req_swabbed(req, index);
81         else
82                 lustre_set_rep_swabbed(req, index);
83 }
84 EXPORT_SYMBOL(ptlrpc_buf_set_swabbed);
85
86 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
87                          int index)
88 {
89         if (inout)
90                 return (ptlrpc_req_need_swab(req) &&
91                         !lustre_req_swabbed(req, index));
92         else
93                 return (ptlrpc_rep_need_swab(req) &&
94                         !lustre_rep_swabbed(req, index));
95 }
96 EXPORT_SYMBOL(ptlrpc_buf_need_swab);
97
98 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
99                                               __u32 version)
100 {
101         __u32 ver = lustre_msg_get_version(msg);
102         return (ver & LUSTRE_VERSION_MASK) != version;
103 }
104
105 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version)
106 {
107         switch (msg->lm_magic) {
108         case LUSTRE_MSG_MAGIC_V1:
109                 CERROR("msg v1 not supported - please upgrade you system\n");
110                 return -EINVAL;
111         case LUSTRE_MSG_MAGIC_V2:
112                 return lustre_msg_check_version_v2(msg, version);
113         default:
114                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
115                 return 0;
116         }
117 }
118 EXPORT_SYMBOL(lustre_msg_check_version);
119
120 /* early reply size */
121 int lustre_msg_early_size()
122 {
123         static int size = 0;
124         if (!size) {
125                 /* Always reply old ptlrpc_body_v2 to keep interoprability
126                  * with the old client (< 2.3) which doesn't have pb_jobid
127                  * in the ptlrpc_body.
128                  *
129                  * XXX Remove this whenever we dorp interoprability with such
130                  *     client.
131                  */
132                 __u32 pblen = sizeof(struct ptlrpc_body_v2);
133                 size = lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
134         }
135         return size;
136 }
137 EXPORT_SYMBOL(lustre_msg_early_size);
138
139 int lustre_msg_size_v2(int count, __u32 *lengths)
140 {
141         int size;
142         int i;
143
144         size = lustre_msg_hdr_size_v2(count);
145         for (i = 0; i < count; i++)
146                 size += cfs_size_round(lengths[i]);
147
148         return size;
149 }
150 EXPORT_SYMBOL(lustre_msg_size_v2);
151
152 /* This returns the size of the buffer that is required to hold a lustre_msg
153  * with the given sub-buffer lengths.
154  * NOTE: this should only be used for NEW requests, and should always be
155  *       in the form of a v2 request.  If this is a connection to a v1
156  *       target then the first buffer will be stripped because the ptlrpc
157  *       data is part of the lustre_msg_v1 header. b=14043 */
158 int lustre_msg_size(__u32 magic, int count, __u32 *lens)
159 {
160         __u32 size[] = { sizeof(struct ptlrpc_body) };
161
162         if (!lens) {
163                 LASSERT(count == 1);
164                 lens = size;
165         }
166
167         LASSERT(count > 0);
168         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
169
170         switch (magic) {
171         case LUSTRE_MSG_MAGIC_V2:
172                 return lustre_msg_size_v2(count, lens);
173         default:
174                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
175                 return -EINVAL;
176         }
177 }
178 EXPORT_SYMBOL(lustre_msg_size);
179
180 /* This is used to determine the size of a buffer that was already packed
181  * and will correctly handle the different message formats. */
182 int lustre_packed_msg_size(struct lustre_msg *msg)
183 {
184         switch (msg->lm_magic) {
185         case LUSTRE_MSG_MAGIC_V2:
186                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
187         default:
188                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
189                 return 0;
190         }
191 }
192 EXPORT_SYMBOL(lustre_packed_msg_size);
193
194 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
195                         char **bufs)
196 {
197         char *ptr;
198         int i;
199
200         msg->lm_bufcount = count;
201         /* XXX: lm_secflvr uninitialized here */
202         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
203
204         for (i = 0; i < count; i++)
205                 msg->lm_buflens[i] = lens[i];
206
207         if (bufs == NULL)
208                 return;
209
210         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
211         for (i = 0; i < count; i++) {
212                 char *tmp = bufs[i];
213                 LOGL(tmp, lens[i], ptr);
214         }
215 }
216 EXPORT_SYMBOL(lustre_init_msg_v2);
217
218 static int lustre_pack_request_v2(struct ptlrpc_request *req,
219                                   int count, __u32 *lens, char **bufs)
220 {
221         int reqlen, rc;
222
223         reqlen = lustre_msg_size_v2(count, lens);
224
225         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
226         if (rc)
227                 return rc;
228
229         req->rq_reqlen = reqlen;
230
231         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
232         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
233         return 0;
234 }
235
236 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
237                         __u32 *lens, char **bufs)
238 {
239         __u32 size[] = { sizeof(struct ptlrpc_body) };
240
241         if (!lens) {
242                 LASSERT(count == 1);
243                 lens = size;
244         }
245
246         LASSERT(count > 0);
247         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
248
249         /* only use new format, we don't need to be compatible with 1.4 */
250         magic = LUSTRE_MSG_MAGIC_V2;
251
252         switch (magic) {
253         case LUSTRE_MSG_MAGIC_V2:
254                 return lustre_pack_request_v2(req, count, lens, bufs);
255         default:
256                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
257                 return -EINVAL;
258         }
259 }
260 EXPORT_SYMBOL(lustre_pack_request);
261
262 #if RS_DEBUG
263 CFS_LIST_HEAD(ptlrpc_rs_debug_lru);
264 cfs_spinlock_t ptlrpc_rs_debug_lock;
265
266 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
267 do {                                                                    \
268         cfs_spin_lock(&ptlrpc_rs_debug_lock);                           \
269         cfs_list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);  \
270         cfs_spin_unlock(&ptlrpc_rs_debug_lock);                         \
271 } while (0)
272
273 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)             \
274 do {                                            \
275         cfs_spin_lock(&ptlrpc_rs_debug_lock);   \
276         cfs_list_del(&(rs)->rs_debug_list);     \
277         cfs_spin_unlock(&ptlrpc_rs_debug_lock); \
278 } while (0)
279 #else
280 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
281 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
282 #endif
283
284 struct ptlrpc_reply_state *
285 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
286 {
287         struct ptlrpc_reply_state *rs = NULL;
288
289         cfs_spin_lock(&svcpt->scp_rep_lock);
290
291         /* See if we have anything in a pool, and wait if nothing */
292         while (cfs_list_empty(&svcpt->scp_rep_idle)) {
293                 struct l_wait_info      lwi;
294                 int                     rc;
295
296                 cfs_spin_unlock(&svcpt->scp_rep_lock);
297                 /* If we cannot get anything for some long time, we better
298                  * bail out instead of waiting infinitely */
299                 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
300                 rc = l_wait_event(svcpt->scp_rep_waitq,
301                                   !cfs_list_empty(&svcpt->scp_rep_idle), &lwi);
302                 if (rc != 0)
303                         goto out;
304                 cfs_spin_lock(&svcpt->scp_rep_lock);
305         }
306
307         rs = cfs_list_entry(svcpt->scp_rep_idle.next,
308                             struct ptlrpc_reply_state, rs_list);
309         cfs_list_del(&rs->rs_list);
310
311         cfs_spin_unlock(&svcpt->scp_rep_lock);
312
313         LASSERT(rs != NULL);
314         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
315         rs->rs_svcpt = svcpt;
316         rs->rs_prealloc = 1;
317 out:
318         return rs;
319 }
320
321 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
322 {
323         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
324
325         cfs_spin_lock(&svcpt->scp_rep_lock);
326         cfs_list_add(&rs->rs_list, &svcpt->scp_rep_idle);
327         cfs_spin_unlock(&svcpt->scp_rep_lock);
328         cfs_waitq_signal(&svcpt->scp_rep_waitq);
329 }
330
331 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
332                          __u32 *lens, char **bufs, int flags)
333 {
334         struct ptlrpc_reply_state *rs;
335         int                        msg_len, rc;
336         ENTRY;
337
338         LASSERT(req->rq_reply_state == NULL);
339
340         if ((flags & LPRFL_EARLY_REPLY) == 0) {
341                 cfs_spin_lock(&req->rq_lock);
342                 req->rq_packed_final = 1;
343                 cfs_spin_unlock(&req->rq_lock);
344         }
345
346         msg_len = lustre_msg_size_v2(count, lens);
347         rc = sptlrpc_svc_alloc_rs(req, msg_len);
348         if (rc)
349                 RETURN(rc);
350
351         rs = req->rq_reply_state;
352         cfs_atomic_set(&rs->rs_refcount, 1);    /* 1 ref for rq_reply_state */
353         rs->rs_cb_id.cbid_fn = reply_out_callback;
354         rs->rs_cb_id.cbid_arg = rs;
355         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
356         CFS_INIT_LIST_HEAD(&rs->rs_exp_list);
357         CFS_INIT_LIST_HEAD(&rs->rs_obd_list);
358         CFS_INIT_LIST_HEAD(&rs->rs_list);
359         cfs_spin_lock_init(&rs->rs_lock);
360
361         req->rq_replen = msg_len;
362         req->rq_reply_state = rs;
363         req->rq_repmsg = rs->rs_msg;
364
365         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
366         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
367
368         PTLRPC_RS_DEBUG_LRU_ADD(rs);
369
370         RETURN(0);
371 }
372 EXPORT_SYMBOL(lustre_pack_reply_v2);
373
374 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
375                             char **bufs, int flags)
376 {
377         int rc = 0;
378         __u32 size[] = { sizeof(struct ptlrpc_body) };
379
380         if (!lens) {
381                 LASSERT(count == 1);
382                 lens = size;
383         }
384
385         LASSERT(count > 0);
386         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
387
388         switch (req->rq_reqmsg->lm_magic) {
389         case LUSTRE_MSG_MAGIC_V2:
390                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
391                 break;
392         default:
393                 LASSERTF(0, "incorrect message magic: %08x\n",
394                          req->rq_reqmsg->lm_magic);
395                 rc = -EINVAL;
396         }
397         if (rc != 0)
398                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
399                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
400         return rc;
401 }
402 EXPORT_SYMBOL(lustre_pack_reply_flags);
403
404 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
405                       char **bufs)
406 {
407         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
408 }
409 EXPORT_SYMBOL(lustre_pack_reply);
410
411 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, int n, int min_size)
412 {
413         int i, offset, buflen, bufcount;
414
415         LASSERT(m != NULL);
416         LASSERT(n >= 0);
417
418         bufcount = m->lm_bufcount;
419         if (unlikely(n >= bufcount)) {
420                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
421                        m, n, bufcount);
422                 return NULL;
423         }
424
425         buflen = m->lm_buflens[n];
426         if (unlikely(buflen < min_size)) {
427                 CERROR("msg %p buffer[%d] size %d too small "
428                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
429                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
430                 return NULL;
431         }
432
433         offset = lustre_msg_hdr_size_v2(bufcount);
434         for (i = 0; i < n; i++)
435                 offset += cfs_size_round(m->lm_buflens[i]);
436
437         return (char *)m + offset;
438 }
439
440 void *lustre_msg_buf(struct lustre_msg *m, int n, int min_size)
441 {
442         switch (m->lm_magic) {
443         case LUSTRE_MSG_MAGIC_V2:
444                 return lustre_msg_buf_v2(m, n, min_size);
445         default:
446                 LASSERTF(0, "incorrect message magic: %08x(msg:%p)\n", m->lm_magic, m);
447                 return NULL;
448         }
449 }
450 EXPORT_SYMBOL(lustre_msg_buf);
451
452 int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, int segment,
453                          unsigned int newlen, int move_data)
454 {
455         char   *tail = NULL, *newpos;
456         int     tail_len = 0, n;
457
458         LASSERT(msg);
459         LASSERT(msg->lm_bufcount > segment);
460         LASSERT(msg->lm_buflens[segment] >= newlen);
461
462         if (msg->lm_buflens[segment] == newlen)
463                 goto out;
464
465         if (move_data && msg->lm_bufcount > segment + 1) {
466                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
467                 for (n = segment + 1; n < msg->lm_bufcount; n++)
468                         tail_len += cfs_size_round(msg->lm_buflens[n]);
469         }
470
471         msg->lm_buflens[segment] = newlen;
472
473         if (tail && tail_len) {
474                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
475                 LASSERT(newpos <= tail);
476                 if (newpos != tail)
477                         memmove(newpos, tail, tail_len);
478         }
479 out:
480         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
481 }
482
483 /*
484  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
485  * we also move data forward from @segment + 1.
486  *
487  * if @newlen == 0, we remove the segment completely, but we still keep the
488  * totally bufcount the same to save possible data moving. this will leave a
489  * unused segment with size 0 at the tail, but that's ok.
490  *
491  * return new msg size after shrinking.
492  *
493  * CAUTION:
494  * + if any buffers higher than @segment has been filled in, must call shrink
495  *   with non-zero @move_data.
496  * + caller should NOT keep pointers to msg buffers which higher than @segment
497  *   after call shrink.
498  */
499 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
500                       unsigned int newlen, int move_data)
501 {
502         switch (msg->lm_magic) {
503         case LUSTRE_MSG_MAGIC_V2:
504                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
505         default:
506                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
507         }
508 }
509 EXPORT_SYMBOL(lustre_shrink_msg);
510
511 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
512 {
513         PTLRPC_RS_DEBUG_LRU_DEL(rs);
514
515         LASSERT (cfs_atomic_read(&rs->rs_refcount) == 0);
516         LASSERT (!rs->rs_difficult || rs->rs_handled);
517         LASSERT (!rs->rs_on_net);
518         LASSERT (!rs->rs_scheduled);
519         LASSERT (rs->rs_export == NULL);
520         LASSERT (rs->rs_nlocks == 0);
521         LASSERT (cfs_list_empty(&rs->rs_exp_list));
522         LASSERT (cfs_list_empty(&rs->rs_obd_list));
523
524         sptlrpc_svc_free_rs(rs);
525 }
526 EXPORT_SYMBOL(lustre_free_reply_state);
527
528 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
529 {
530         int swabbed, required_len, i;
531
532         /* Now we know the sender speaks my language. */
533         required_len = lustre_msg_hdr_size_v2(0);
534         if (len < required_len) {
535                 /* can't even look inside the message */
536                 CERROR("message length %d too small for lustre_msg\n", len);
537                 return -EINVAL;
538         }
539
540         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
541
542         if (swabbed) {
543                 __swab32s(&m->lm_magic);
544                 __swab32s(&m->lm_bufcount);
545                 __swab32s(&m->lm_secflvr);
546                 __swab32s(&m->lm_repsize);
547                 __swab32s(&m->lm_cksum);
548                 __swab32s(&m->lm_flags);
549                 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
550                 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
551         }
552
553         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
554         if (len < required_len) {
555                 /* didn't receive all the buffer lengths */
556                 CERROR ("message length %d too small for %d buflens\n",
557                         len, m->lm_bufcount);
558                 return -EINVAL;
559         }
560
561         for (i = 0; i < m->lm_bufcount; i++) {
562                 if (swabbed)
563                         __swab32s(&m->lm_buflens[i]);
564                 required_len += cfs_size_round(m->lm_buflens[i]);
565         }
566
567         if (len < required_len) {
568                 CERROR("len: %d, required_len %d\n", len, required_len);
569                 CERROR("bufcount: %d\n", m->lm_bufcount);
570                 for (i = 0; i < m->lm_bufcount; i++)
571                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
572                 return -EINVAL;
573         }
574
575         return swabbed;
576 }
577
578 int __lustre_unpack_msg(struct lustre_msg *m, int len)
579 {
580         int required_len, rc;
581         ENTRY;
582
583         /* We can provide a slightly better error log, if we check the
584          * message magic and version first.  In the future, struct
585          * lustre_msg may grow, and we'd like to log a version mismatch,
586          * rather than a short message.
587          *
588          */
589         required_len = offsetof(struct lustre_msg, lm_magic) +
590                        sizeof(m->lm_magic);
591         if (len < required_len) {
592                 /* can't even look inside the message */
593                 CERROR("message length %d too small for magic/version check\n",
594                        len);
595                 RETURN(-EINVAL);
596         }
597
598         rc = lustre_unpack_msg_v2(m, len);
599
600         RETURN(rc);
601 }
602 EXPORT_SYMBOL(__lustre_unpack_msg);
603
604 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
605 {
606         int rc;
607         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
608         if (rc == 1) {
609                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
610                 rc = 0;
611         }
612         return rc;
613 }
614 EXPORT_SYMBOL(ptlrpc_unpack_req_msg);
615
616 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
617 {
618         int rc;
619         rc = __lustre_unpack_msg(req->rq_repmsg, len);
620         if (rc == 1) {
621                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
622                 rc = 0;
623         }
624         return rc;
625 }
626 EXPORT_SYMBOL(ptlrpc_unpack_rep_msg);
627
628 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
629                                                const int inout, int offset)
630 {
631         struct ptlrpc_body *pb;
632         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
633
634         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
635         if (!pb) {
636                 CERROR("error unpacking ptlrpc body\n");
637                 return -EFAULT;
638         }
639         if (ptlrpc_buf_need_swab(req, inout, offset)) {
640                 lustre_swab_ptlrpc_body(pb);
641                 ptlrpc_buf_set_swabbed(req, inout, offset);
642         }
643
644         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
645                  CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
646                  return -EINVAL;
647         }
648
649         return 0;
650 }
651
652 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
653 {
654         switch (req->rq_reqmsg->lm_magic) {
655         case LUSTRE_MSG_MAGIC_V2:
656                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
657         default:
658                 CERROR("bad lustre msg magic: %08x\n",
659                        req->rq_reqmsg->lm_magic);
660                 return -EINVAL;
661         }
662 }
663
664 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
665 {
666         switch (req->rq_repmsg->lm_magic) {
667         case LUSTRE_MSG_MAGIC_V2:
668                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
669         default:
670                 CERROR("bad lustre msg magic: %08x\n",
671                        req->rq_repmsg->lm_magic);
672                 return -EINVAL;
673         }
674 }
675
676 static inline int lustre_msg_buflen_v2(struct lustre_msg_v2 *m, int n)
677 {
678         if (n >= m->lm_bufcount)
679                 return 0;
680
681         return m->lm_buflens[n];
682 }
683
684 /**
685  * lustre_msg_buflen - return the length of buffer \a n in message \a m
686  * \param m lustre_msg (request or reply) to look at
687  * \param n message index (base 0)
688  *
689  * returns zero for non-existent message indices
690  */
691 int lustre_msg_buflen(struct lustre_msg *m, int n)
692 {
693         switch (m->lm_magic) {
694         case LUSTRE_MSG_MAGIC_V2:
695                 return lustre_msg_buflen_v2(m, n);
696         default:
697                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
698                 return -EINVAL;
699         }
700 }
701 EXPORT_SYMBOL(lustre_msg_buflen);
702
703 static inline void
704 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, int n, int len)
705 {
706         if (n >= m->lm_bufcount)
707                 LBUG();
708
709         m->lm_buflens[n] = len;
710 }
711
712 void lustre_msg_set_buflen(struct lustre_msg *m, int n, int len)
713 {
714         switch (m->lm_magic) {
715         case LUSTRE_MSG_MAGIC_V2:
716                 lustre_msg_set_buflen_v2(m, n, len);
717                 return;
718         default:
719                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
720         }
721 }
722
723 EXPORT_SYMBOL(lustre_msg_set_buflen);
724
725 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
726  * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
727 int lustre_msg_bufcount(struct lustre_msg *m)
728 {
729         switch (m->lm_magic) {
730         case LUSTRE_MSG_MAGIC_V2:
731                 return m->lm_bufcount;
732         default:
733                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
734                 return -EINVAL;
735         }
736 }
737 EXPORT_SYMBOL(lustre_msg_bufcount);
738
739 char *lustre_msg_string(struct lustre_msg *m, int index, int max_len)
740 {
741         /* max_len == 0 means the string should fill the buffer */
742         char *str;
743         int slen, blen;
744
745         switch (m->lm_magic) {
746         case LUSTRE_MSG_MAGIC_V2:
747                 str = lustre_msg_buf_v2(m, index, 0);
748                 blen = lustre_msg_buflen_v2(m, index);
749                 break;
750         default:
751                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
752         }
753
754         if (str == NULL) {
755                 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
756                 return NULL;
757         }
758
759         slen = strnlen(str, blen);
760
761         if (slen == blen) {                     /* not NULL terminated */
762                 CERROR("can't unpack non-NULL terminated string in "
763                         "msg %p buffer[%d] len %d\n", m, index, blen);
764                 return NULL;
765         }
766
767         if (max_len == 0) {
768                 if (slen != blen - 1) {
769                         CERROR("can't unpack short string in msg %p "
770                                "buffer[%d] len %d: strlen %d\n",
771                                m, index, blen, slen);
772                         return NULL;
773                 }
774         } else if (slen > max_len) {
775                 CERROR("can't unpack oversized string in msg %p "
776                        "buffer[%d] len %d strlen %d: max %d expected\n",
777                        m, index, blen, slen, max_len);
778                 return NULL;
779         }
780
781         return str;
782 }
783 EXPORT_SYMBOL(lustre_msg_string);
784
785 /* Wrap up the normal fixed length cases */
786 static inline void *__lustre_swab_buf(struct lustre_msg *msg, int index,
787                                       int min_size, void *swabber)
788 {
789         void *ptr = NULL;
790
791         LASSERT(msg != NULL);
792         switch (msg->lm_magic) {
793         case LUSTRE_MSG_MAGIC_V2:
794                 ptr = lustre_msg_buf_v2(msg, index, min_size);
795                 break;
796         default:
797                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
798         }
799
800         if (ptr && swabber)
801                 ((void (*)(void *))swabber)(ptr);
802
803         return ptr;
804 }
805
806 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
807 {
808         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
809                                  sizeof(struct ptlrpc_body_v2));
810 }
811
812 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg)
813 {
814         switch (msg->lm_magic) {
815         case LUSTRE_MSG_MAGIC_V1:
816         case LUSTRE_MSG_MAGIC_V1_SWABBED:
817                 return 0;
818         case LUSTRE_MSG_MAGIC_V2:
819                 /* already in host endian */
820                 return msg->lm_flags;
821         default:
822                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
823                 return 0;
824         }
825 }
826 EXPORT_SYMBOL(lustre_msghdr_get_flags);
827
828 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
829 {
830         switch (msg->lm_magic) {
831         case LUSTRE_MSG_MAGIC_V1:
832                 return;
833         case LUSTRE_MSG_MAGIC_V2:
834                 msg->lm_flags = flags;
835                 return;
836         default:
837                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
838         }
839 }
840
841 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
842 {
843         switch (msg->lm_magic) {
844         case LUSTRE_MSG_MAGIC_V2: {
845                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
846                 if (!pb) {
847                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
848                         return 0;
849                 }
850                 return pb->pb_flags;
851         }
852         default:
853                 /* flags might be printed in debug code while message
854                  * uninitialized */
855                 return 0;
856         }
857 }
858 EXPORT_SYMBOL(lustre_msg_get_flags);
859
860 void lustre_msg_add_flags(struct lustre_msg *msg, int flags)
861 {
862         switch (msg->lm_magic) {
863         case LUSTRE_MSG_MAGIC_V2: {
864                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
865                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
866                 pb->pb_flags |= flags;
867                 return;
868         }
869         default:
870                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
871         }
872 }
873 EXPORT_SYMBOL(lustre_msg_add_flags);
874
875 void lustre_msg_set_flags(struct lustre_msg *msg, int flags)
876 {
877         switch (msg->lm_magic) {
878         case LUSTRE_MSG_MAGIC_V2: {
879                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
880                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
881                 pb->pb_flags = flags;
882                 return;
883         }
884         default:
885                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
886         }
887 }
888 EXPORT_SYMBOL(lustre_msg_set_flags);
889
890 void lustre_msg_clear_flags(struct lustre_msg *msg, int flags)
891 {
892         switch (msg->lm_magic) {
893         case LUSTRE_MSG_MAGIC_V2: {
894                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
895                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
896                 pb->pb_flags &= ~(MSG_GEN_FLAG_MASK & flags);
897                 return;
898         }
899         default:
900                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
901         }
902 }
903 EXPORT_SYMBOL(lustre_msg_clear_flags);
904
905 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
906 {
907         switch (msg->lm_magic) {
908         case LUSTRE_MSG_MAGIC_V2: {
909                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
910                 if (!pb) {
911                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
912                         return 0;
913                 }
914                 return pb->pb_op_flags;
915         }
916         default:
917                 return 0;
918         }
919 }
920 EXPORT_SYMBOL(lustre_msg_get_op_flags);
921
922 void lustre_msg_add_op_flags(struct lustre_msg *msg, int flags)
923 {
924         switch (msg->lm_magic) {
925         case LUSTRE_MSG_MAGIC_V2: {
926                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
927                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
928                 pb->pb_op_flags |= flags;
929                 return;
930         }
931         default:
932                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
933         }
934 }
935 EXPORT_SYMBOL(lustre_msg_add_op_flags);
936
937 void lustre_msg_set_op_flags(struct lustre_msg *msg, int flags)
938 {
939         switch (msg->lm_magic) {
940         case LUSTRE_MSG_MAGIC_V2: {
941                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
942                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
943                 pb->pb_op_flags |= flags;
944                 return;
945         }
946         default:
947                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
948         }
949 }
950 EXPORT_SYMBOL(lustre_msg_set_op_flags);
951
952 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
953 {
954         switch (msg->lm_magic) {
955         case LUSTRE_MSG_MAGIC_V2: {
956                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
957                 if (!pb) {
958                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
959                         return NULL;
960                 }
961                 return &pb->pb_handle;
962         }
963         default:
964                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
965                 return NULL;
966         }
967 }
968 EXPORT_SYMBOL(lustre_msg_get_handle);
969
970 __u32 lustre_msg_get_type(struct lustre_msg *msg)
971 {
972         switch (msg->lm_magic) {
973         case LUSTRE_MSG_MAGIC_V2: {
974                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
975                 if (!pb) {
976                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
977                         return PTL_RPC_MSG_ERR;
978                 }
979                 return pb->pb_type;
980         }
981         default:
982                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
983                 return PTL_RPC_MSG_ERR;
984         }
985 }
986 EXPORT_SYMBOL(lustre_msg_get_type);
987
988 __u32 lustre_msg_get_version(struct lustre_msg *msg)
989 {
990         switch (msg->lm_magic) {
991         case LUSTRE_MSG_MAGIC_V2: {
992                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
993                 if (!pb) {
994                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
995                         return 0;
996                 }
997                 return pb->pb_version;
998         }
999         default:
1000                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1001                 return 0;
1002         }
1003 }
1004 EXPORT_SYMBOL(lustre_msg_get_version);
1005
1006 void lustre_msg_add_version(struct lustre_msg *msg, int version)
1007 {
1008         switch (msg->lm_magic) {
1009         case LUSTRE_MSG_MAGIC_V2: {
1010                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1011                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1012                 pb->pb_version |= version;
1013                 return;
1014         }
1015         default:
1016                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1017         }
1018 }
1019 EXPORT_SYMBOL(lustre_msg_add_version);
1020
1021 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
1022 {
1023         switch (msg->lm_magic) {
1024         case LUSTRE_MSG_MAGIC_V2: {
1025                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1026                 if (!pb) {
1027                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1028                         return 0;
1029                 }
1030                 return pb->pb_opc;
1031         }
1032         default:
1033                 CERROR("incorrect message magic: %08x(msg:%p)\n", msg->lm_magic, msg);
1034                 LBUG();
1035                 return 0;
1036         }
1037 }
1038 EXPORT_SYMBOL(lustre_msg_get_opc);
1039
1040 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1041 {
1042         switch (msg->lm_magic) {
1043         case LUSTRE_MSG_MAGIC_V2: {
1044                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1045                 if (!pb) {
1046                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1047                         return 0;
1048                 }
1049                 return pb->pb_last_xid;
1050         }
1051         default:
1052                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1053                 return 0;
1054         }
1055 }
1056 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1057
1058 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1059 {
1060         switch (msg->lm_magic) {
1061         case LUSTRE_MSG_MAGIC_V2: {
1062                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1063                 if (!pb) {
1064                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1065                         return 0;
1066                 }
1067                 return pb->pb_last_committed;
1068         }
1069         default:
1070                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1071                 return 0;
1072         }
1073 }
1074 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1075
1076 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1077 {
1078         switch (msg->lm_magic) {
1079         case LUSTRE_MSG_MAGIC_V1:
1080                 return NULL;
1081         case LUSTRE_MSG_MAGIC_V2: {
1082                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1083                 if (!pb) {
1084                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1085                         return NULL;
1086                 }
1087                 return pb->pb_pre_versions;
1088         }
1089         default:
1090                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1091                 return NULL;
1092         }
1093 }
1094 EXPORT_SYMBOL(lustre_msg_get_versions);
1095
1096 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1097 {
1098         switch (msg->lm_magic) {
1099         case LUSTRE_MSG_MAGIC_V2: {
1100                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1101                 if (!pb) {
1102                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1103                         return 0;
1104                 }
1105                 return pb->pb_transno;
1106         }
1107         default:
1108                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1109                 return 0;
1110         }
1111 }
1112 EXPORT_SYMBOL(lustre_msg_get_transno);
1113
1114 int lustre_msg_get_status(struct lustre_msg *msg)
1115 {
1116         switch (msg->lm_magic) {
1117         case LUSTRE_MSG_MAGIC_V2: {
1118                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1119                 if (!pb) {
1120                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1121                         return -EINVAL;
1122                 }
1123                 return pb->pb_status;
1124         }
1125         default:
1126                 /* status might be printed in debug code while message
1127                  * uninitialized */
1128                 return -EINVAL;
1129         }
1130 }
1131 EXPORT_SYMBOL(lustre_msg_get_status);
1132
1133 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1134 {
1135         switch (msg->lm_magic) {
1136         case LUSTRE_MSG_MAGIC_V2: {
1137                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1138                 if (!pb) {
1139                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1140                         return -EINVAL;
1141                 }
1142                 return pb->pb_slv;
1143         }
1144         default:
1145                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1146                 return -EINVAL;
1147         }
1148 }
1149 EXPORT_SYMBOL(lustre_msg_get_slv);
1150
1151
1152 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1153 {
1154         switch (msg->lm_magic) {
1155         case LUSTRE_MSG_MAGIC_V2: {
1156                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1157                 if (!pb) {
1158                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1159                         return;
1160                 }
1161                 pb->pb_slv = slv;
1162                 return;
1163         }
1164         default:
1165                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1166                 return;
1167         }
1168 }
1169 EXPORT_SYMBOL(lustre_msg_set_slv);
1170
1171 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1172 {
1173         switch (msg->lm_magic) {
1174         case LUSTRE_MSG_MAGIC_V2: {
1175                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1176                 if (!pb) {
1177                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1178                         return -EINVAL;
1179                 }
1180                 return pb->pb_limit;
1181         }
1182         default:
1183                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1184                 return -EINVAL;
1185         }
1186 }
1187 EXPORT_SYMBOL(lustre_msg_get_limit);
1188
1189
1190 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1191 {
1192         switch (msg->lm_magic) {
1193         case LUSTRE_MSG_MAGIC_V2: {
1194                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1195                 if (!pb) {
1196                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1197                         return;
1198                 }
1199                 pb->pb_limit = limit;
1200                 return;
1201         }
1202         default:
1203                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1204                 return;
1205         }
1206 }
1207 EXPORT_SYMBOL(lustre_msg_set_limit);
1208
1209 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1210 {
1211         switch (msg->lm_magic) {
1212         case LUSTRE_MSG_MAGIC_V2: {
1213                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1214                 if (!pb) {
1215                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1216                         return 0;
1217                 }
1218                 return pb->pb_conn_cnt;
1219         }
1220         default:
1221                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1222                 return 0;
1223         }
1224 }
1225 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1226
1227 int lustre_msg_is_v1(struct lustre_msg *msg)
1228 {
1229         switch (msg->lm_magic) {
1230         case LUSTRE_MSG_MAGIC_V1:
1231         case LUSTRE_MSG_MAGIC_V1_SWABBED:
1232                 return 1;
1233         default:
1234                 return 0;
1235         }
1236 }
1237 EXPORT_SYMBOL(lustre_msg_is_v1);
1238
1239 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1240 {
1241         switch (msg->lm_magic) {
1242         case LUSTRE_MSG_MAGIC_V2:
1243                 return msg->lm_magic;
1244         default:
1245                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1246                 return 0;
1247         }
1248 }
1249 EXPORT_SYMBOL(lustre_msg_get_magic);
1250
1251 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1252 {
1253         switch (msg->lm_magic) {
1254         case LUSTRE_MSG_MAGIC_V1:
1255         case LUSTRE_MSG_MAGIC_V1_SWABBED:
1256                 return 0;
1257         case LUSTRE_MSG_MAGIC_V2: {
1258                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1259                 if (!pb) {
1260                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1261                         return 0;
1262
1263                 }
1264                 return pb->pb_timeout;
1265         }
1266         default:
1267                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1268                 return 0;
1269         }
1270 }
1271
1272 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1273 {
1274         switch (msg->lm_magic) {
1275         case LUSTRE_MSG_MAGIC_V1:
1276         case LUSTRE_MSG_MAGIC_V1_SWABBED:
1277                 return 0;
1278         case LUSTRE_MSG_MAGIC_V2: {
1279                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1280                 if (!pb) {
1281                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1282                         return 0;
1283
1284                 }
1285                 return pb->pb_service_time;
1286         }
1287         default:
1288                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1289                 return 0;
1290         }
1291 }
1292
1293 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1294 {
1295         switch (msg->lm_magic) {
1296         case LUSTRE_MSG_MAGIC_V1:
1297         case LUSTRE_MSG_MAGIC_V1_SWABBED:
1298                 return NULL;
1299         case LUSTRE_MSG_MAGIC_V2: {
1300                 struct ptlrpc_body *pb =
1301                         lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1302                                           sizeof(struct ptlrpc_body));
1303                 if (!pb)
1304                         return NULL;
1305
1306                 return pb->pb_jobid;
1307         }
1308         default:
1309                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1310                 return NULL;
1311         }
1312 }
1313 EXPORT_SYMBOL(lustre_msg_get_jobid);
1314
1315 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1316 {
1317         switch (msg->lm_magic) {
1318         case LUSTRE_MSG_MAGIC_V2:
1319                 return msg->lm_cksum;
1320         default:
1321                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1322                 return 0;
1323         }
1324 }
1325
1326 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 50, 0)
1327 /*
1328  * In 1.6 and 1.8 the checksum was computed only on struct ptlrpc_body as
1329  * it was in 1.6 (88 bytes, smaller than the full size in 1.8).  It makes
1330  * more sense to compute the checksum on the full ptlrpc_body, regardless
1331  * of what size it is, but in order to keep interoperability with 1.8 we
1332  * can optionally also checksum only the first 88 bytes (caller decides). */
1333 # define ptlrpc_body_cksum_size_compat18         88
1334
1335 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg, int compat18)
1336 #else
1337 # warning "remove checksum compatibility support for b1_8"
1338 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1339 #endif
1340 {
1341         switch (msg->lm_magic) {
1342         case LUSTRE_MSG_MAGIC_V2: {
1343                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1344 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 50, 0)
1345                 __u32 crc;
1346                 unsigned int hsize = 4;
1347                 __u32 len = compat18 ? ptlrpc_body_cksum_size_compat18 :
1348                             lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1349                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1350                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1351                                        len, NULL, 0, (unsigned char *)&crc,
1352                                        &hsize);
1353                 return crc;
1354 #else
1355 # warning "remove checksum compatibility support for b1_8"
1356                 __u32 crc;
1357                 unsigned int hsize = 4;
1358                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1359                                    lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF),
1360                                    NULL, 0, (unsigned char *)&crc, &hsize);
1361                 return crc;
1362 #endif
1363         }
1364         default:
1365                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1366                 return 0;
1367         }
1368 }
1369
1370 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1371 {
1372         switch (msg->lm_magic) {
1373         case LUSTRE_MSG_MAGIC_V2: {
1374                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1375                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1376                 pb->pb_handle = *handle;
1377                 return;
1378         }
1379         default:
1380                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1381         }
1382 }
1383 EXPORT_SYMBOL(lustre_msg_set_handle);
1384
1385 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1386 {
1387         switch (msg->lm_magic) {
1388         case LUSTRE_MSG_MAGIC_V2: {
1389                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1390                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1391                 pb->pb_type = type;
1392                 return;
1393         }
1394         default:
1395                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1396         }
1397 }
1398 EXPORT_SYMBOL(lustre_msg_set_type);
1399
1400 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1401 {
1402         switch (msg->lm_magic) {
1403         case LUSTRE_MSG_MAGIC_V2: {
1404                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1405                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1406                 pb->pb_opc = opc;
1407                 return;
1408         }
1409         default:
1410                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1411         }
1412 }
1413 EXPORT_SYMBOL(lustre_msg_set_opc);
1414
1415 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1416 {
1417         switch (msg->lm_magic) {
1418         case LUSTRE_MSG_MAGIC_V2: {
1419                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1420                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1421                 pb->pb_last_xid = last_xid;
1422                 return;
1423         }
1424         default:
1425                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1426         }
1427 }
1428 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1429
1430 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1431 {
1432         switch (msg->lm_magic) {
1433         case LUSTRE_MSG_MAGIC_V2: {
1434                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1435                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1436                 pb->pb_last_committed = last_committed;
1437                 return;
1438         }
1439         default:
1440                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1441         }
1442 }
1443 EXPORT_SYMBOL(lustre_msg_set_last_committed);
1444
1445 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1446 {
1447         switch (msg->lm_magic) {
1448         case LUSTRE_MSG_MAGIC_V1:
1449                 return;
1450         case LUSTRE_MSG_MAGIC_V2: {
1451                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1452                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1453                 pb->pb_pre_versions[0] = versions[0];
1454                 pb->pb_pre_versions[1] = versions[1];
1455                 pb->pb_pre_versions[2] = versions[2];
1456                 pb->pb_pre_versions[3] = versions[3];
1457                 return;
1458         }
1459         default:
1460                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1461         }
1462 }
1463 EXPORT_SYMBOL(lustre_msg_set_versions);
1464
1465 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1466 {
1467         switch (msg->lm_magic) {
1468         case LUSTRE_MSG_MAGIC_V2: {
1469                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1470                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1471                 pb->pb_transno = transno;
1472                 return;
1473         }
1474         default:
1475                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1476         }
1477 }
1478 EXPORT_SYMBOL(lustre_msg_set_transno);
1479
1480 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1481 {
1482         switch (msg->lm_magic) {
1483         case LUSTRE_MSG_MAGIC_V2: {
1484                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1485                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1486                 pb->pb_status = status;
1487                 return;
1488         }
1489         default:
1490                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1491         }
1492 }
1493 EXPORT_SYMBOL(lustre_msg_set_status);
1494
1495 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1496 {
1497         switch (msg->lm_magic) {
1498         case LUSTRE_MSG_MAGIC_V2: {
1499                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1500                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1501                 pb->pb_conn_cnt = conn_cnt;
1502                 return;
1503         }
1504         default:
1505                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1506         }
1507 }
1508 EXPORT_SYMBOL(lustre_msg_set_conn_cnt);
1509
1510 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1511 {
1512         switch (msg->lm_magic) {
1513         case LUSTRE_MSG_MAGIC_V1:
1514                 return;
1515         case LUSTRE_MSG_MAGIC_V2: {
1516                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1517                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1518                 pb->pb_timeout = timeout;
1519                 return;
1520         }
1521         default:
1522                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1523         }
1524 }
1525
1526 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1527 {
1528         switch (msg->lm_magic) {
1529         case LUSTRE_MSG_MAGIC_V1:
1530                 return;
1531         case LUSTRE_MSG_MAGIC_V2: {
1532                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1533                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1534                 pb->pb_service_time = service_time;
1535                 return;
1536         }
1537         default:
1538                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1539         }
1540 }
1541
1542 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1543 {
1544         switch (msg->lm_magic) {
1545         case LUSTRE_MSG_MAGIC_V1:
1546                 return;
1547         case LUSTRE_MSG_MAGIC_V2: {
1548                 __u32 opc = lustre_msg_get_opc(msg);
1549                 struct ptlrpc_body *pb;
1550
1551                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1552                  * See the comment in ptlrpc_request_pack(). */
1553                 if (!opc || opc == LDLM_BL_CALLBACK ||
1554                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1555                         return;
1556
1557                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1558                                        sizeof(struct ptlrpc_body));
1559                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1560
1561                 if (jobid != NULL)
1562                         memcpy(pb->pb_jobid, jobid, JOBSTATS_JOBID_SIZE);
1563                 else if (pb->pb_jobid[0] == '\0')
1564                         lustre_get_jobid(pb->pb_jobid);
1565                 return;
1566         }
1567         default:
1568                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1569         }
1570 }
1571 EXPORT_SYMBOL(lustre_msg_set_jobid);
1572
1573 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1574 {
1575         switch (msg->lm_magic) {
1576         case LUSTRE_MSG_MAGIC_V1:
1577                 return;
1578         case LUSTRE_MSG_MAGIC_V2:
1579                 msg->lm_cksum = cksum;
1580                 return;
1581         default:
1582                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1583         }
1584 }
1585
1586
1587 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1588 {
1589         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1590
1591         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1592                                          req->rq_pill.rc_area[RCL_SERVER]);
1593         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1594                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1595 }
1596 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1597
1598 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1599 {
1600         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1601         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1602                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1603 }
1604 EXPORT_SYMBOL(ptlrpc_req_set_repsize);
1605
1606 /**
1607  * Send a remote set_info_async.
1608  *
1609  * This may go from client to server or server to client.
1610  */
1611 int do_set_info_async(struct obd_import *imp,
1612                       int opcode, int version,
1613                       obd_count keylen, void *key,
1614                       obd_count vallen, void *val,
1615                       struct ptlrpc_request_set *set)
1616 {
1617         struct ptlrpc_request *req;
1618         char                  *tmp;
1619         int                    rc;
1620         ENTRY;
1621
1622         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1623         if (req == NULL)
1624                 RETURN(-ENOMEM);
1625
1626         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1627                              RCL_CLIENT, keylen);
1628         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1629                              RCL_CLIENT, vallen);
1630         rc = ptlrpc_request_pack(req, version, opcode);
1631         if (rc) {
1632                 ptlrpc_request_free(req);
1633                 RETURN(rc);
1634         }
1635
1636         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1637         memcpy(tmp, key, keylen);
1638         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1639         memcpy(tmp, val, vallen);
1640
1641         ptlrpc_request_set_replen(req);
1642
1643         if (set) {
1644                 ptlrpc_set_add_req(set, req);
1645                 ptlrpc_check_set(NULL, set);
1646         } else {
1647                 rc = ptlrpc_queue_wait(req);
1648                 ptlrpc_req_finished(req);
1649         }
1650
1651         RETURN(rc);
1652 }
1653 EXPORT_SYMBOL(do_set_info_async);
1654
1655 /* byte flipping routines for all wire types declared in
1656  * lustre_idl.h implemented here.
1657  */
1658 void lustre_swab_ptlrpc_body(struct ptlrpc_body *b)
1659 {
1660         __swab32s (&b->pb_type);
1661         __swab32s (&b->pb_version);
1662         __swab32s (&b->pb_opc);
1663         __swab32s (&b->pb_status);
1664         __swab64s (&b->pb_last_xid);
1665         __swab64s (&b->pb_last_seen);
1666         __swab64s (&b->pb_last_committed);
1667         __swab64s (&b->pb_transno);
1668         __swab32s (&b->pb_flags);
1669         __swab32s (&b->pb_op_flags);
1670         __swab32s (&b->pb_conn_cnt);
1671         __swab32s (&b->pb_timeout);
1672         __swab32s (&b->pb_service_time);
1673         __swab32s (&b->pb_limit);
1674         __swab64s (&b->pb_slv);
1675         __swab64s (&b->pb_pre_versions[0]);
1676         __swab64s (&b->pb_pre_versions[1]);
1677         __swab64s (&b->pb_pre_versions[2]);
1678         __swab64s (&b->pb_pre_versions[3]);
1679         CLASSERT(offsetof(typeof(*b), pb_padding) != 0);
1680         /* While we need to maintain compatibility between
1681          * clients and servers without ptlrpc_body_v2 (< 2.3)
1682          * do not swab any fields beyond pb_jobid, as we are
1683          * using this swab function for both ptlrpc_body
1684          * and ptlrpc_body_v2. */
1685         CLASSERT(offsetof(typeof(*b), pb_jobid) != 0);
1686 }
1687 EXPORT_SYMBOL(lustre_swab_ptlrpc_body);
1688
1689 void lustre_swab_connect(struct obd_connect_data *ocd)
1690 {
1691         __swab64s(&ocd->ocd_connect_flags);
1692         __swab32s(&ocd->ocd_version);
1693         __swab32s(&ocd->ocd_grant);
1694         __swab64s(&ocd->ocd_ibits_known);
1695         __swab32s(&ocd->ocd_index);
1696         __swab32s(&ocd->ocd_brw_size);
1697         /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1698          * they are 8-byte values */
1699         __swab16s(&ocd->ocd_grant_extent);
1700         __swab32s(&ocd->ocd_unused);
1701         __swab64s(&ocd->ocd_transno);
1702         __swab32s(&ocd->ocd_group);
1703         __swab32s(&ocd->ocd_cksum_types);
1704         __swab32s(&ocd->ocd_instance);
1705         /* Fields after ocd_cksum_types are only accessible by the receiver
1706          * if the corresponding flag in ocd_connect_flags is set. Accessing
1707          * any field after ocd_maxbytes on the receiver without a valid flag
1708          * may result in out-of-bound memory access and kernel oops. */
1709         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1710                 __swab32s(&ocd->ocd_max_easize);
1711         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1712                 __swab64s(&ocd->ocd_maxbytes);
1713         CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1714         CLASSERT(offsetof(typeof(*ocd), padding2) != 0);
1715         CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1716         CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1717         CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1718         CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1719         CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1720         CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1721         CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1722         CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1723         CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1724         CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1725         CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1726         CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1727         CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1728 }
1729
1730 void lustre_swab_obdo (struct obdo  *o)
1731 {
1732         __swab64s (&o->o_valid);
1733         __swab64s (&o->o_id);
1734         __swab64s (&o->o_seq);
1735         __swab64s (&o->o_parent_seq);
1736         __swab64s (&o->o_size);
1737         __swab64s (&o->o_mtime);
1738         __swab64s (&o->o_atime);
1739         __swab64s (&o->o_ctime);
1740         __swab64s (&o->o_blocks);
1741         __swab64s (&o->o_grant);
1742         __swab32s (&o->o_blksize);
1743         __swab32s (&o->o_mode);
1744         __swab32s (&o->o_uid);
1745         __swab32s (&o->o_gid);
1746         __swab32s (&o->o_flags);
1747         __swab32s (&o->o_nlink);
1748         __swab32s (&o->o_parent_oid);
1749         __swab32s (&o->o_misc);
1750         __swab64s (&o->o_ioepoch);
1751         __swab32s (&o->o_stripe_idx);
1752         __swab32s (&o->o_parent_ver);
1753         /* o_handle is opaque */
1754         /* o_lcookie is swabbed elsewhere */
1755         __swab32s (&o->o_uid_h);
1756         __swab32s (&o->o_gid_h);
1757         __swab64s (&o->o_data_version);
1758         CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1759         CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1760         CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1761
1762 }
1763 EXPORT_SYMBOL(lustre_swab_obdo);
1764
1765 void lustre_swab_obd_statfs (struct obd_statfs *os)
1766 {
1767         __swab64s (&os->os_type);
1768         __swab64s (&os->os_blocks);
1769         __swab64s (&os->os_bfree);
1770         __swab64s (&os->os_bavail);
1771         __swab64s (&os->os_files);
1772         __swab64s (&os->os_ffree);
1773         /* no need to swab os_fsid */
1774         __swab32s (&os->os_bsize);
1775         __swab32s (&os->os_namelen);
1776         __swab64s (&os->os_maxbytes);
1777         __swab32s (&os->os_state);
1778         CLASSERT(offsetof(typeof(*os), os_spare1) != 0);
1779         CLASSERT(offsetof(typeof(*os), os_spare2) != 0);
1780         CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1781         CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1782         CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1783         CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1784         CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1785         CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1786         CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1787 }
1788 EXPORT_SYMBOL(lustre_swab_obd_statfs);
1789
1790 void lustre_swab_obd_ioobj (struct obd_ioobj *ioo)
1791 {
1792         __swab64s (&ioo->ioo_id);
1793         __swab64s (&ioo->ioo_seq);
1794         __swab32s (&ioo->ioo_type);
1795         __swab32s (&ioo->ioo_bufcnt);
1796 }
1797 EXPORT_SYMBOL(lustre_swab_obd_ioobj);
1798
1799 void lustre_swab_niobuf_remote (struct niobuf_remote *nbr)
1800 {
1801         __swab64s (&nbr->offset);
1802         __swab32s (&nbr->len);
1803         __swab32s (&nbr->flags);
1804 }
1805 EXPORT_SYMBOL(lustre_swab_niobuf_remote);
1806
1807 void lustre_swab_ost_body (struct ost_body *b)
1808 {
1809         lustre_swab_obdo (&b->oa);
1810 }
1811 EXPORT_SYMBOL(lustre_swab_ost_body);
1812
1813 void lustre_swab_ost_last_id(obd_id *id)
1814 {
1815         __swab64s(id);
1816 }
1817 EXPORT_SYMBOL(lustre_swab_ost_last_id);
1818
1819 void lustre_swab_generic_32s(__u32 *val)
1820 {
1821         __swab32s(val);
1822 }
1823 EXPORT_SYMBOL(lustre_swab_generic_32s);
1824
1825 void lustre_swab_lvb(union ldlm_wire_lvb *lvb)
1826 {
1827         /* The ldlm_wire_lvb union represents all the possible LVB types.
1828          * Unfortunately, there is no way to know what member of the union we
1829          * are dealing with at this point. Therefore, all LVB structures must
1830          * have fields of the same types, although used for different purposes
1831          */
1832         __swab64s(&lvb->l_ost.lvb_size);
1833         __swab64s(&lvb->l_ost.lvb_mtime);
1834         __swab64s(&lvb->l_ost.lvb_atime);
1835         __swab64s(&lvb->l_ost.lvb_ctime);
1836         __swab64s(&lvb->l_ost.lvb_blocks);
1837 }
1838 EXPORT_SYMBOL(lustre_swab_lvb);
1839
1840 void lustre_swab_mdt_body (struct mdt_body *b)
1841 {
1842         lustre_swab_lu_fid (&b->fid1);
1843         lustre_swab_lu_fid (&b->fid2);
1844         /* handle is opaque */
1845         __swab64s (&b->valid);
1846         __swab64s (&b->size);
1847         __swab64s (&b->mtime);
1848         __swab64s (&b->atime);
1849         __swab64s (&b->ctime);
1850         __swab64s (&b->blocks);
1851         __swab64s (&b->ioepoch);
1852         __swab64s (&b->ino);
1853         __swab32s (&b->fsuid);
1854         __swab32s (&b->fsgid);
1855         __swab32s (&b->capability);
1856         __swab32s (&b->mode);
1857         __swab32s (&b->uid);
1858         __swab32s (&b->gid);
1859         __swab32s (&b->flags);
1860         __swab32s (&b->rdev);
1861         __swab32s (&b->nlink);
1862         __swab32s (&b->generation);
1863         __swab32s (&b->suppgid);
1864         __swab32s (&b->eadatasize);
1865         __swab32s (&b->aclsize);
1866         __swab32s (&b->max_mdsize);
1867         __swab32s (&b->max_cookiesize);
1868         __swab32s (&b->uid_h);
1869         __swab32s (&b->gid_h);
1870         CLASSERT(offsetof(typeof(*b), padding_5) != 0);
1871 }
1872 EXPORT_SYMBOL(lustre_swab_mdt_body);
1873
1874 void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b)
1875 {
1876         /* handle is opaque */
1877          __swab64s (&b->ioepoch);
1878          __swab32s (&b->flags);
1879          CLASSERT(offsetof(typeof(*b), padding) != 0);
1880 }
1881 EXPORT_SYMBOL(lustre_swab_mdt_ioepoch);
1882
1883 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1884 {
1885         int i;
1886         __swab32s(&mti->mti_lustre_ver);
1887         __swab32s(&mti->mti_stripe_index);
1888         __swab32s(&mti->mti_config_ver);
1889         __swab32s(&mti->mti_flags);
1890         __swab32s(&mti->mti_instance);
1891         __swab32s(&mti->mti_nid_count);
1892         CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1893         for (i = 0; i < MTI_NIDS_MAX; i++)
1894                 __swab64s(&mti->mti_nids[i]);
1895 }
1896 EXPORT_SYMBOL(lustre_swab_mgs_target_info);
1897
1898 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1899 {
1900         int i;
1901
1902         __swab64s(&entry->mne_version);
1903         __swab32s(&entry->mne_instance);
1904         __swab32s(&entry->mne_index);
1905         __swab32s(&entry->mne_length);
1906
1907         /* mne_nid_(count|type) must be one byte size because we're gonna
1908          * access it w/o swapping. */
1909         CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
1910         CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
1911
1912         /* remove this assertion if ipv6 is supported. */
1913         LASSERT(entry->mne_nid_type == 0);
1914         for (i = 0; i < entry->mne_nid_count; i++) {
1915                 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1916                 __swab64s(&entry->u.nids[i]);
1917         }
1918 }
1919 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
1920
1921 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
1922 {
1923         __swab64s(&body->mcb_offset);
1924         __swab32s(&body->mcb_units);
1925         __swab16s(&body->mcb_type);
1926 }
1927 EXPORT_SYMBOL(lustre_swab_mgs_config_body);
1928
1929 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
1930 {
1931         __swab64s(&body->mcr_offset);
1932         __swab64s(&body->mcr_size);
1933 }
1934 EXPORT_SYMBOL(lustre_swab_mgs_config_res);
1935
1936 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
1937 {
1938         __swab64s (&i->dqi_bgrace);
1939         __swab64s (&i->dqi_igrace);
1940         __swab32s (&i->dqi_flags);
1941         __swab32s (&i->dqi_valid);
1942 }
1943
1944 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
1945 {
1946         __swab64s (&b->dqb_ihardlimit);
1947         __swab64s (&b->dqb_isoftlimit);
1948         __swab64s (&b->dqb_curinodes);
1949         __swab64s (&b->dqb_bhardlimit);
1950         __swab64s (&b->dqb_bsoftlimit);
1951         __swab64s (&b->dqb_curspace);
1952         __swab64s (&b->dqb_btime);
1953         __swab64s (&b->dqb_itime);
1954         __swab32s (&b->dqb_valid);
1955         CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
1956 }
1957
1958 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
1959 {
1960         __swab32s (&q->qc_cmd);
1961         __swab32s (&q->qc_type);
1962         __swab32s (&q->qc_id);
1963         __swab32s (&q->qc_stat);
1964         lustre_swab_obd_dqinfo (&q->qc_dqinfo);
1965         lustre_swab_obd_dqblk (&q->qc_dqblk);
1966 }
1967 EXPORT_SYMBOL(lustre_swab_obd_quotactl);
1968
1969 void lustre_swab_quota_adjust_qunit (struct quota_adjust_qunit *q)
1970 {
1971         __swab32s (&q->qaq_flags);
1972         __swab32s (&q->qaq_id);
1973         __swab64s (&q->qaq_bunit_sz);
1974         __swab64s (&q->qaq_iunit_sz);
1975         __swab64s (&q->padding1);
1976 }
1977 EXPORT_SYMBOL(lustre_swab_quota_adjust_qunit);
1978
1979 void lustre_swab_mdt_remote_perm (struct mdt_remote_perm *p)
1980 {
1981         __swab32s (&p->rp_uid);
1982         __swab32s (&p->rp_gid);
1983         __swab32s (&p->rp_fsuid);
1984         __swab32s (&p->rp_fsuid_h);
1985         __swab32s (&p->rp_fsgid);
1986         __swab32s (&p->rp_fsgid_h);
1987         __swab32s (&p->rp_access_perm);
1988         __swab32s (&p->rp_padding);
1989 };
1990 EXPORT_SYMBOL(lustre_swab_mdt_remote_perm);
1991
1992 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
1993 {
1994         lustre_swab_lu_fid(&gf->gf_fid);
1995         __swab64s(&gf->gf_recno);
1996         __swab32s(&gf->gf_linkno);
1997         __swab32s(&gf->gf_pathlen);
1998 }
1999 EXPORT_SYMBOL(lustre_swab_fid2path);
2000
2001 void lustre_swab_fiemap_extent(struct ll_fiemap_extent *fm_extent)
2002 {
2003         __swab64s(&fm_extent->fe_logical);
2004         __swab64s(&fm_extent->fe_physical);
2005         __swab64s(&fm_extent->fe_length);
2006         __swab32s(&fm_extent->fe_flags);
2007         __swab32s(&fm_extent->fe_device);
2008 }
2009
2010 void lustre_swab_fiemap(struct ll_user_fiemap *fiemap)
2011 {
2012         int i;
2013
2014         __swab64s(&fiemap->fm_start);
2015         __swab64s(&fiemap->fm_length);
2016         __swab32s(&fiemap->fm_flags);
2017         __swab32s(&fiemap->fm_mapped_extents);
2018         __swab32s(&fiemap->fm_extent_count);
2019         __swab32s(&fiemap->fm_reserved);
2020
2021         for (i = 0; i < fiemap->fm_mapped_extents; i++)
2022                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
2023 }
2024 EXPORT_SYMBOL(lustre_swab_fiemap);
2025
2026 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2027 {
2028         __swab32s (&rr->rr_opcode);
2029         __swab32s (&rr->rr_cap);
2030         __swab32s (&rr->rr_fsuid);
2031         /* rr_fsuid_h is unused */
2032         __swab32s (&rr->rr_fsgid);
2033         /* rr_fsgid_h is unused */
2034         __swab32s (&rr->rr_suppgid1);
2035         /* rr_suppgid1_h is unused */
2036         __swab32s (&rr->rr_suppgid2);
2037         /* rr_suppgid2_h is unused */
2038         lustre_swab_lu_fid (&rr->rr_fid1);
2039         lustre_swab_lu_fid (&rr->rr_fid2);
2040         __swab64s (&rr->rr_mtime);
2041         __swab64s (&rr->rr_atime);
2042         __swab64s (&rr->rr_ctime);
2043         __swab64s (&rr->rr_size);
2044         __swab64s (&rr->rr_blocks);
2045         __swab32s (&rr->rr_bias);
2046         __swab32s (&rr->rr_mode);
2047         __swab32s (&rr->rr_flags);
2048
2049         CLASSERT(offsetof(typeof(*rr), rr_padding_2) != 0);
2050         CLASSERT(offsetof(typeof(*rr), rr_padding_3) != 0);
2051         CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2052 };
2053 EXPORT_SYMBOL(lustre_swab_mdt_rec_reint);
2054
2055 void lustre_swab_lov_desc (struct lov_desc *ld)
2056 {
2057         __swab32s (&ld->ld_tgt_count);
2058         __swab32s (&ld->ld_active_tgt_count);
2059         __swab32s (&ld->ld_default_stripe_count);
2060         __swab32s (&ld->ld_pattern);
2061         __swab64s (&ld->ld_default_stripe_size);
2062         __swab64s (&ld->ld_default_stripe_offset);
2063         __swab32s (&ld->ld_qos_maxage);
2064         /* uuid endian insensitive */
2065 }
2066 EXPORT_SYMBOL(lustre_swab_lov_desc);
2067
2068 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2069 {
2070         __swab32s (&ld->ld_tgt_count);
2071         __swab32s (&ld->ld_active_tgt_count);
2072         __swab32s (&ld->ld_default_stripe_count);
2073         __swab32s (&ld->ld_pattern);
2074         __swab64s (&ld->ld_default_hash_size);
2075         __swab32s (&ld->ld_qos_maxage);
2076         /* uuid endian insensitive */
2077 }
2078
2079 void lustre_swab_lmv_stripe_md (struct lmv_stripe_md *mea)
2080 {
2081         __swab32s(&mea->mea_magic);
2082         __swab32s(&mea->mea_count);
2083         __swab32s(&mea->mea_master);
2084         CLASSERT(offsetof(typeof(*mea), mea_padding) != 0);
2085 }
2086
2087
2088 static void print_lum (struct lov_user_md *lum)
2089 {
2090         CDEBUG(D_OTHER, "lov_user_md %p:\n", lum);
2091         CDEBUG(D_OTHER, "\tlmm_magic: %#x\n", lum->lmm_magic);
2092         CDEBUG(D_OTHER, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2093         CDEBUG(D_OTHER, "\tlmm_object_id: "LPU64"\n", lum->lmm_object_id);
2094         CDEBUG(D_OTHER, "\tlmm_object_gr: "LPU64"\n", lum->lmm_object_seq);
2095         CDEBUG(D_OTHER, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2096         CDEBUG(D_OTHER, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2097         CDEBUG(D_OTHER, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2098                lum->u.lum_stripe_offset);
2099 }
2100
2101 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2102 {
2103         ENTRY;
2104         __swab32s(&lum->lmm_magic);
2105         __swab32s(&lum->lmm_pattern);
2106         __swab64s(&lum->lmm_object_id);
2107         __swab64s(&lum->lmm_object_seq);
2108         __swab32s(&lum->lmm_stripe_size);
2109         __swab16s(&lum->lmm_stripe_count);
2110         __swab16s(&lum->u.lum_stripe_offset);
2111         print_lum(lum);
2112         EXIT;
2113 }
2114
2115 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2116 {
2117         ENTRY;
2118         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2119         lustre_swab_lov_user_md_common(lum);
2120         EXIT;
2121 }
2122 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2123
2124 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2125 {
2126         ENTRY;
2127         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2128         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2129         /* lmm_pool_name nothing to do with char */
2130         EXIT;
2131 }
2132 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2133
2134 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2135 {
2136         ENTRY;
2137         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2138         __swab32s(&lmm->lmm_magic);
2139         __swab32s(&lmm->lmm_pattern);
2140         __swab64s(&lmm->lmm_object_id);
2141         __swab64s(&lmm->lmm_object_seq);
2142         __swab32s(&lmm->lmm_stripe_size);
2143         __swab16s(&lmm->lmm_stripe_count);
2144         __swab16s(&lmm->lmm_layout_gen);
2145         EXIT;
2146 }
2147 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2148
2149 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2150                                      int stripe_count)
2151 {
2152         int i;
2153         ENTRY;
2154         for (i = 0; i < stripe_count; i++) {
2155                 __swab64s(&(lod[i].l_object_id));
2156                 __swab64s(&(lod[i].l_object_seq));
2157                 __swab32s(&(lod[i].l_ost_gen));
2158                 __swab32s(&(lod[i].l_ost_idx));
2159         }
2160         EXIT;
2161 }
2162 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2163
2164 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2165 {
2166         int  i;
2167
2168         for (i = 0; i < RES_NAME_SIZE; i++)
2169                 __swab64s (&id->name[i]);
2170 }
2171 EXPORT_SYMBOL(lustre_swab_ldlm_res_id);
2172
2173 void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d)
2174 {
2175         /* the lock data is a union and the first two fields are always an
2176          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2177          * data the same way. */
2178         __swab64s(&d->l_extent.start);
2179         __swab64s(&d->l_extent.end);
2180         __swab64s(&d->l_extent.gid);
2181         __swab64s(&d->l_flock.lfw_owner);
2182         __swab32s(&d->l_flock.lfw_pid);
2183 }
2184 EXPORT_SYMBOL(lustre_swab_ldlm_policy_data);
2185
2186 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2187 {
2188         __swab64s (&i->opc);
2189 }
2190 EXPORT_SYMBOL(lustre_swab_ldlm_intent);
2191
2192 void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r)
2193 {
2194         __swab32s (&r->lr_type);
2195         CLASSERT(offsetof(typeof(*r), lr_padding) != 0);
2196         lustre_swab_ldlm_res_id (&r->lr_name);
2197 }
2198 EXPORT_SYMBOL(lustre_swab_ldlm_resource_desc);
2199
2200 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2201 {
2202         lustre_swab_ldlm_resource_desc (&l->l_resource);
2203         __swab32s (&l->l_req_mode);
2204         __swab32s (&l->l_granted_mode);
2205         lustre_swab_ldlm_policy_data (&l->l_policy_data);
2206 }
2207 EXPORT_SYMBOL(lustre_swab_ldlm_lock_desc);
2208
2209 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2210 {
2211         __swab32s (&rq->lock_flags);
2212         lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2213         __swab32s (&rq->lock_count);
2214         /* lock_handle[] opaque */
2215 }
2216 EXPORT_SYMBOL(lustre_swab_ldlm_request);
2217
2218 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2219 {
2220         __swab32s (&r->lock_flags);
2221         CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2222         lustre_swab_ldlm_lock_desc (&r->lock_desc);
2223         /* lock_handle opaque */
2224         __swab64s (&r->lock_policy_res1);
2225         __swab64s (&r->lock_policy_res2);
2226 }
2227 EXPORT_SYMBOL(lustre_swab_ldlm_reply);
2228
2229 /* no one calls this */
2230 int llog_log_swabbed(struct llog_log_hdr *hdr)
2231 {
2232         if (hdr->llh_hdr.lrh_type == __swab32(LLOG_HDR_MAGIC))
2233                 return 1;
2234         if (hdr->llh_hdr.lrh_type == LLOG_HDR_MAGIC)
2235                 return 0;
2236         return -1;
2237 }
2238
2239 void lustre_swab_qdata(struct qunit_data *d)
2240 {
2241         __swab32s (&d->qd_id);
2242         __swab32s (&d->qd_flags);
2243         __swab64s (&d->qd_count);
2244         __swab64s (&d->qd_qunit);
2245         CLASSERT(offsetof(typeof(*d), padding) != 0);
2246 }
2247 EXPORT_SYMBOL(lustre_swab_qdata);
2248
2249 void lustre_swab_quota_body(struct quota_body *b)
2250 {
2251         lustre_swab_lu_fid(&b->qb_fid);
2252         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2253         __swab32s(&b->qb_flags);
2254         __swab64s(&b->qb_count);
2255         __swab64s(&b->qb_usage);
2256         __swab64s(&b->qb_slv_ver);
2257 }
2258
2259 /* Dump functions */
2260 void dump_ioo(struct obd_ioobj *ioo)
2261 {
2262         CDEBUG(D_RPCTRACE,
2263                "obd_ioobj: ioo_id="LPD64", ioo_seq="LPD64", ioo_type=%d, "
2264                "ioo_bufct=%d\n", ioo->ioo_id, ioo->ioo_seq, ioo->ioo_type,
2265                ioo->ioo_bufcnt);
2266 }
2267 EXPORT_SYMBOL(dump_ioo);
2268
2269 void dump_rniobuf(struct niobuf_remote *nb)
2270 {
2271         CDEBUG(D_RPCTRACE, "niobuf_remote: offset="LPU64", len=%d, flags=%x\n",
2272                nb->offset, nb->len, nb->flags);
2273 }
2274 EXPORT_SYMBOL(dump_rniobuf);
2275
2276 void dump_obdo(struct obdo *oa)
2277 {
2278         __u32 valid = oa->o_valid;
2279
2280         CDEBUG(D_RPCTRACE, "obdo: o_valid = %08x\n", valid);
2281         if (valid & OBD_MD_FLID)
2282                 CDEBUG(D_RPCTRACE, "obdo: o_id = "LPD64"\n", oa->o_id);
2283         if (valid & OBD_MD_FLGROUP)
2284                 CDEBUG(D_RPCTRACE, "obdo: o_seq = "LPD64"\n", oa->o_seq);
2285         if (valid & OBD_MD_FLFID)
2286                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = "LPX64"\n",
2287                        oa->o_parent_seq);
2288         if (valid & OBD_MD_FLSIZE)
2289                 CDEBUG(D_RPCTRACE, "obdo: o_size = "LPD64"\n", oa->o_size);
2290         if (valid & OBD_MD_FLMTIME)
2291                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = "LPD64"\n", oa->o_mtime);
2292         if (valid & OBD_MD_FLATIME)
2293                 CDEBUG(D_RPCTRACE, "obdo: o_atime = "LPD64"\n", oa->o_atime);
2294         if (valid & OBD_MD_FLCTIME)
2295                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = "LPD64"\n", oa->o_ctime);
2296         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2297                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = "LPD64"\n", oa->o_blocks);
2298         if (valid & OBD_MD_FLGRANT)
2299                 CDEBUG(D_RPCTRACE, "obdo: o_grant = "LPD64"\n", oa->o_grant);
2300         if (valid & OBD_MD_FLBLKSZ)
2301                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2302         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2303                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2304                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2305                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2306         if (valid & OBD_MD_FLUID)
2307                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2308         if (valid & OBD_MD_FLUID)
2309                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2310         if (valid & OBD_MD_FLGID)
2311                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2312         if (valid & OBD_MD_FLGID)
2313                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2314         if (valid & OBD_MD_FLFLAGS)
2315                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2316         if (valid & OBD_MD_FLNLINK)
2317                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2318         else if (valid & OBD_MD_FLCKSUM)
2319                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2320                        oa->o_nlink);
2321         if (valid & OBD_MD_FLGENER)
2322                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2323                        oa->o_parent_oid);
2324         if (valid & OBD_MD_FLEPOCH)
2325                 CDEBUG(D_RPCTRACE, "obdo: o_ioepoch = "LPD64"\n",
2326                        oa->o_ioepoch);
2327         if (valid & OBD_MD_FLFID) {
2328                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2329                        oa->o_stripe_idx);
2330                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2331                        oa->o_parent_ver);
2332         }
2333         if (valid & OBD_MD_FLHANDLE)
2334                 CDEBUG(D_RPCTRACE, "obdo: o_handle = "LPD64"\n",
2335                        oa->o_handle.cookie);
2336         if (valid & OBD_MD_FLCOOKIE)
2337                 CDEBUG(D_RPCTRACE, "obdo: o_lcookie = "
2338                        "(llog_cookie dumping not yet implemented)\n");
2339 }
2340 EXPORT_SYMBOL(dump_obdo);
2341
2342 void dump_ost_body(struct ost_body *ob)
2343 {
2344         dump_obdo(&ob->oa);
2345 }
2346 EXPORT_SYMBOL(dump_ost_body);
2347
2348 void dump_rcs(__u32 *rc)
2349 {
2350         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2351 }
2352 EXPORT_SYMBOL(dump_rcs);
2353
2354 #ifdef __KERNEL__
2355
2356 /**
2357  * got qdata from request(req/rep)
2358  */
2359 struct qunit_data *quota_get_qdata(void *r, int is_req, int is_exp)
2360 {
2361         struct ptlrpc_request *req = (struct ptlrpc_request *)r;
2362         struct qunit_data *qdata;
2363         __u64  flags = is_exp ? req->rq_export->exp_connect_flags :
2364                        req->rq_import->imp_connect_data.ocd_connect_flags;
2365
2366         LASSERT(req);
2367         /* support for quota64 */
2368         LASSERT(flags & OBD_CONNECT_QUOTA64);
2369         /* support for change_qs */
2370         LASSERT(flags & OBD_CONNECT_CHANGE_QS);
2371
2372         if (is_req == QUOTA_REQUEST)
2373                 qdata = req_capsule_client_get(&req->rq_pill, &RMF_QUNIT_DATA);
2374         else
2375                 qdata = req_capsule_server_get(&req->rq_pill, &RMF_QUNIT_DATA);
2376         if (qdata == NULL)
2377                 return ERR_PTR(-EPROTO);
2378
2379         QDATA_SET_CHANGE_QS(qdata);
2380         return qdata;
2381 }
2382 EXPORT_SYMBOL(quota_get_qdata);
2383
2384 /**
2385  * copy qdata to request(req/rep)
2386  */
2387 int quota_copy_qdata(void *r, struct qunit_data *qdata, int is_req,
2388                      int is_exp)
2389 {
2390         struct ptlrpc_request *req = (struct ptlrpc_request *)r;
2391         void *target;
2392         __u64  flags = is_exp ? req->rq_export->exp_connect_flags :
2393                 req->rq_import->imp_connect_data.ocd_connect_flags;
2394
2395         LASSERT(req);
2396         LASSERT(qdata);
2397         /* support for quota64 */
2398         LASSERT(flags & OBD_CONNECT_QUOTA64);
2399         /* support for change_qs */
2400         LASSERT(flags & OBD_CONNECT_CHANGE_QS);
2401
2402         if (is_req == QUOTA_REQUEST)
2403                 target = req_capsule_client_get(&req->rq_pill, &RMF_QUNIT_DATA);
2404         else
2405                 target = req_capsule_server_get(&req->rq_pill, &RMF_QUNIT_DATA);
2406         if (target == NULL)
2407                 return -EPROTO;
2408
2409         LASSERT(target != qdata);
2410         memcpy(target, qdata, sizeof(*qdata));
2411         return 0;
2412 }
2413 EXPORT_SYMBOL(quota_copy_qdata);
2414 #endif /* __KERNEL__ */
2415
2416 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2417 {
2418         LASSERT(req->rq_reqmsg);
2419
2420         switch (req->rq_reqmsg->lm_magic) {
2421         case LUSTRE_MSG_MAGIC_V2:
2422                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2423         default:
2424                 CERROR("bad lustre msg magic: %#08X\n",
2425                        req->rq_reqmsg->lm_magic);
2426         }
2427         return 0;
2428 }
2429
2430 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2431 {
2432         LASSERT(req->rq_repmsg);
2433
2434         switch (req->rq_repmsg->lm_magic) {
2435         case LUSTRE_MSG_MAGIC_V2:
2436                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2437         default:
2438                 /* uninitialized yet */
2439                 return 0;
2440         }
2441 }
2442
2443 void _debug_req(struct ptlrpc_request *req,
2444                 struct libcfs_debug_msg_data *msgdata,
2445                 const char *fmt, ... )
2446 {
2447         int req_ok = req->rq_reqmsg != NULL;
2448         int rep_ok = req->rq_repmsg != NULL;
2449         lnet_nid_t nid = LNET_NID_ANY;
2450         va_list args;
2451
2452         if (ptlrpc_req_need_swab(req)) {
2453                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2454                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2455         }
2456
2457         if (req->rq_import && req->rq_import->imp_connection)
2458                 nid = req->rq_import->imp_connection->c_peer.nid;
2459         else if (req->rq_export && req->rq_export->exp_connection)
2460                 nid = req->rq_export->exp_connection->c_peer.nid;
2461
2462         va_start(args, fmt);
2463         libcfs_debug_vmsg2(msgdata, fmt, args,
2464                            " req@%p x"LPU64"/t"LPD64"("LPD64") o%d->%s@%s:%d/%d"
2465                            " lens %d/%d e %d to %d dl "CFS_TIME_T" ref %d "
2466                            "fl "REQ_FLAGS_FMT"/%x/%x rc %d/%d\n",
2467                            req, req->rq_xid, req->rq_transno,
2468                            req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2469                            req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2470                            req->rq_import ?
2471                                 req->rq_import->imp_obd->obd_name :
2472                                 req->rq_export ?
2473                                      req->rq_export->exp_client_uuid.uuid :
2474                                      "<?>",
2475                            libcfs_nid2str(nid),
2476                            req->rq_request_portal, req->rq_reply_portal,
2477                            req->rq_reqlen, req->rq_replen,
2478                            req->rq_early_count, req->rq_timedout,
2479                            req->rq_deadline,
2480                            cfs_atomic_read(&req->rq_refcount),
2481                            DEBUG_REQ_FLAGS(req),
2482                            req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2483                            rep_ok ? lustre_msg_get_flags(req->rq_repmsg) : -1,
2484                            req->rq_status,
2485                            rep_ok ? lustre_msg_get_status(req->rq_repmsg) : -1);
2486 }
2487 EXPORT_SYMBOL(_debug_req);
2488
2489 void lustre_swab_lustre_capa(struct lustre_capa *c)
2490 {
2491         lustre_swab_lu_fid(&c->lc_fid);
2492         __swab64s (&c->lc_opc);
2493         __swab64s (&c->lc_uid);
2494         __swab64s (&c->lc_gid);
2495         __swab32s (&c->lc_flags);
2496         __swab32s (&c->lc_keyid);
2497         __swab32s (&c->lc_timeout);
2498         __swab32s (&c->lc_expiry);
2499 }
2500 EXPORT_SYMBOL(lustre_swab_lustre_capa);
2501
2502 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2503 {
2504         __swab64s (&k->lk_seq);
2505         __swab32s (&k->lk_keyid);
2506         CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2507 }
2508 EXPORT_SYMBOL(lustre_swab_lustre_capa_key);
2509
2510 void lustre_swab_hsm_state(struct hsm_state_set_ioc *hssi)
2511 {
2512         lustre_swab_lu_fid(&hssi->hssi_fid);
2513         __swab64s(&hssi->hssi_setmask);
2514         __swab64s(&hssi->hssi_clearmask);
2515 }
2516 EXPORT_SYMBOL(lustre_swab_hsm_state);
2517
2518 void lustre_swab_hsm_user_request(struct hsm_user_request *hur)
2519 {
2520         int i;
2521
2522         __swab32s(&hur->hur_action);
2523         __swab32s(&hur->hur_itemcount);
2524         __swab32s(&hur->hur_data_len);
2525         for (i = 0; i < hur->hur_itemcount; i++) {
2526                 struct hsm_user_item *hui = &hur->hur_user_item[i];
2527                 lustre_swab_lu_fid(&hui->hui_fid);
2528                 __swab64s(&hui->hui_extent.offset);
2529                 __swab64s(&hui->hui_extent.length);
2530         }
2531         /* Note: data blob is not swabbed here */
2532 }
2533 EXPORT_SYMBOL(lustre_swab_hsm_user_request);
2534
2535 void lustre_swab_hsm_progress(struct hsm_progress *hp)
2536 {
2537         lustre_swab_lu_fid(&hp->hp_fid);
2538         __swab64s(&hp->hp_cookie);
2539         __swab64s(&hp->hp_extent.offset);
2540         __swab64s(&hp->hp_extent.length);
2541         __swab16s(&hp->hp_flags);
2542         __swab16s(&hp->hp_errval);
2543 }
2544 EXPORT_SYMBOL(lustre_swab_hsm_progress);
2545
2546