Whamcloud - gitweb
LU-12703 utils: reset rootpath in llapi_search_rootpath()
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lustre/ptlrpc/pack_generic.c
33  *
34  * (Un)packing of OST requests
35  *
36  * Author: Peter J. Braam <braam@clusterfs.com>
37  * Author: Phil Schwan <phil@clusterfs.com>
38  * Author: Eric Barton <eeb@clusterfs.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_RPC
42
43 #include <libcfs/libcfs.h>
44
45 #include <llog_swab.h>
46 #include <lustre_net.h>
47 #include <lustre_swab.h>
48 #include <obd_cksum.h>
49 #include <obd_class.h>
50 #include <obd_support.h>
51 #include <obj_update.h>
52
53 #include "ptlrpc_internal.h"
54
55 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
56 {
57         return cfs_size_round(offsetof(struct lustre_msg_v2,
58                                        lm_buflens[count]));
59 }
60
61 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
62 {
63         LASSERT(count > 0);
64
65         switch (magic) {
66         case LUSTRE_MSG_MAGIC_V2:
67                 return lustre_msg_hdr_size_v2(count);
68         default:
69                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
70                 return 0;
71         }
72 }
73
74 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
75                             __u32 index)
76 {
77         if (inout)
78                 lustre_set_req_swabbed(req, index);
79         else
80                 lustre_set_rep_swabbed(req, index);
81 }
82
83 bool ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
84                           __u32 index)
85 {
86         if (inout)
87                 return (ptlrpc_req_need_swab(req) &&
88                         !lustre_req_swabbed(req, index));
89
90         return (ptlrpc_rep_need_swab(req) && !lustre_rep_swabbed(req, index));
91 }
92
93 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
94                                               enum lustre_msg_version version)
95 {
96         enum lustre_msg_version ver = lustre_msg_get_version(msg);
97
98         return (ver & LUSTRE_VERSION_MASK) != version;
99 }
100
101 int lustre_msg_check_version(struct lustre_msg *msg,
102                              enum lustre_msg_version version)
103 {
104 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
105         switch (msg->lm_magic) {
106         case LUSTRE_MSG_MAGIC_V1:
107                 CERROR("msg v1 not supported - please upgrade you system\n");
108                 return -EINVAL;
109         case LUSTRE_MSG_MAGIC_V2:
110                 return lustre_msg_check_version_v2(msg, version);
111         default:
112                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
113                 return -EPROTO;
114         }
115 #undef LUSTRE_MSG_MAGIC_V1
116 }
117
118 /* early reply size */
119 __u32 lustre_msg_early_size()
120 {
121         __u32 pblen = sizeof(struct ptlrpc_body);
122
123         return lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
124 }
125 EXPORT_SYMBOL(lustre_msg_early_size);
126
127 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
128 {
129         __u32 size;
130         int i;
131
132         LASSERT(count > 0);
133         size = lustre_msg_hdr_size_v2(count);
134         for (i = 0; i < count; i++)
135                 size += cfs_size_round(lengths[i]);
136
137         return size;
138 }
139 EXPORT_SYMBOL(lustre_msg_size_v2);
140
141 /* This returns the size of the buffer that is required to hold a lustre_msg
142  * with the given sub-buffer lengths.
143  * NOTE: this should only be used for NEW requests, and should always be
144  *       in the form of a v2 request.  If this is a connection to a v1
145  *       target then the first buffer will be stripped because the ptlrpc
146  *       data is part of the lustre_msg_v1 header. b=14043 */
147 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
148 {
149         __u32 size[] = { sizeof(struct ptlrpc_body) };
150
151         if (!lens) {
152                 LASSERT(count == 1);
153                 lens = size;
154         }
155
156         LASSERT(count > 0);
157         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
158
159         switch (magic) {
160         case LUSTRE_MSG_MAGIC_V2:
161                 return lustre_msg_size_v2(count, lens);
162         default:
163                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
164                 return 0;
165         }
166 }
167
168 /* This is used to determine the size of a buffer that was already packed
169  * and will correctly handle the different message formats. */
170 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
171 {
172         switch (msg->lm_magic) {
173         case LUSTRE_MSG_MAGIC_V2:
174                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
175         default:
176                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
177                 return 0;
178         }
179 }
180 EXPORT_SYMBOL(lustre_packed_msg_size);
181
182 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
183                         char **bufs)
184 {
185         char *ptr;
186         int i;
187
188         LASSERT(count > 0);
189
190         msg->lm_bufcount = count;
191         /* XXX: lm_secflvr uninitialized here */
192         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
193
194         for (i = 0; i < count; i++)
195                 msg->lm_buflens[i] = lens[i];
196
197         if (bufs == NULL)
198                 return;
199
200         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
201         for (i = 0; i < count; i++) {
202                 char *tmp = bufs[i];
203
204                 if (tmp)
205                         memcpy(ptr, tmp, lens[i]);
206                 ptr += cfs_size_round(lens[i]);
207         }
208 }
209 EXPORT_SYMBOL(lustre_init_msg_v2);
210
211 static int lustre_pack_request_v2(struct ptlrpc_request *req,
212                                   int count, __u32 *lens, char **bufs)
213 {
214         int reqlen, rc;
215
216         reqlen = lustre_msg_size_v2(count, lens);
217
218         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
219         if (rc)
220                 return rc;
221
222         req->rq_reqlen = reqlen;
223
224         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
225         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
226         return 0;
227 }
228
229 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
230                         __u32 *lens, char **bufs)
231 {
232         __u32 size[] = { sizeof(struct ptlrpc_body) };
233
234         if (!lens) {
235                 LASSERT(count == 1);
236                 lens = size;
237         }
238
239         LASSERT(count > 0);
240         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
241
242         /* only use new format, we don't need to be compatible with 1.4 */
243         magic = LUSTRE_MSG_MAGIC_V2;
244
245         switch (magic) {
246         case LUSTRE_MSG_MAGIC_V2:
247                 return lustre_pack_request_v2(req, count, lens, bufs);
248         default:
249                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
250                 return -EINVAL;
251         }
252 }
253
254 #if RS_DEBUG
255 struct list_head ptlrpc_rs_debug_lru =
256         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
257 spinlock_t ptlrpc_rs_debug_lock;
258
259 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
260 do {                                                                    \
261         spin_lock(&ptlrpc_rs_debug_lock);                               \
262         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
263         spin_unlock(&ptlrpc_rs_debug_lock);                             \
264 } while (0)
265
266 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
267 do {                                                                    \
268         spin_lock(&ptlrpc_rs_debug_lock);                               \
269         list_del(&(rs)->rs_debug_list);                         \
270         spin_unlock(&ptlrpc_rs_debug_lock);                             \
271 } while (0)
272 #else
273 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
274 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
275 #endif
276
277 struct ptlrpc_reply_state *
278 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
279 {
280         struct ptlrpc_reply_state *rs = NULL;
281
282         spin_lock(&svcpt->scp_rep_lock);
283
284         /* See if we have anything in a pool, and wait if nothing */
285         while (list_empty(&svcpt->scp_rep_idle)) {
286                 struct l_wait_info      lwi;
287                 int                     rc;
288
289                 spin_unlock(&svcpt->scp_rep_lock);
290                 /* If we cannot get anything for some long time, we better
291                  * bail out instead of waiting infinitely */
292                 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
293                 rc = l_wait_event(svcpt->scp_rep_waitq,
294                                   !list_empty(&svcpt->scp_rep_idle), &lwi);
295                 if (rc != 0)
296                         goto out;
297                 spin_lock(&svcpt->scp_rep_lock);
298         }
299
300         rs = list_entry(svcpt->scp_rep_idle.next,
301                             struct ptlrpc_reply_state, rs_list);
302         list_del(&rs->rs_list);
303
304         spin_unlock(&svcpt->scp_rep_lock);
305
306         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
307         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
308         rs->rs_svcpt = svcpt;
309         rs->rs_prealloc = 1;
310 out:
311         return rs;
312 }
313
314 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
315 {
316         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
317
318         spin_lock(&svcpt->scp_rep_lock);
319         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
320         spin_unlock(&svcpt->scp_rep_lock);
321         wake_up(&svcpt->scp_rep_waitq);
322 }
323
324 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
325                          __u32 *lens, char **bufs, int flags)
326 {
327         struct ptlrpc_reply_state *rs;
328         int                        msg_len, rc;
329         ENTRY;
330
331         LASSERT(req->rq_reply_state == NULL);
332         LASSERT(count > 0);
333
334         if ((flags & LPRFL_EARLY_REPLY) == 0) {
335                 spin_lock(&req->rq_lock);
336                 req->rq_packed_final = 1;
337                 spin_unlock(&req->rq_lock);
338         }
339
340         msg_len = lustre_msg_size_v2(count, lens);
341         rc = sptlrpc_svc_alloc_rs(req, msg_len);
342         if (rc)
343                 RETURN(rc);
344
345         rs = req->rq_reply_state;
346         atomic_set(&rs->rs_refcount, 1);        /* 1 ref for rq_reply_state */
347         rs->rs_cb_id.cbid_fn = reply_out_callback;
348         rs->rs_cb_id.cbid_arg = rs;
349         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
350         INIT_LIST_HEAD(&rs->rs_exp_list);
351         INIT_LIST_HEAD(&rs->rs_obd_list);
352         INIT_LIST_HEAD(&rs->rs_list);
353         spin_lock_init(&rs->rs_lock);
354
355         req->rq_replen = msg_len;
356         req->rq_reply_state = rs;
357         req->rq_repmsg = rs->rs_msg;
358
359         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
360         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
361
362         PTLRPC_RS_DEBUG_LRU_ADD(rs);
363
364         RETURN(0);
365 }
366 EXPORT_SYMBOL(lustre_pack_reply_v2);
367
368 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
369                             char **bufs, int flags)
370 {
371         int rc = 0;
372         __u32 size[] = { sizeof(struct ptlrpc_body) };
373
374         if (!lens) {
375                 LASSERT(count == 1);
376                 lens = size;
377         }
378
379         LASSERT(count > 0);
380         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
381
382         switch (req->rq_reqmsg->lm_magic) {
383         case LUSTRE_MSG_MAGIC_V2:
384                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
385                 break;
386         default:
387                 LASSERTF(0, "incorrect message magic: %08x\n",
388                          req->rq_reqmsg->lm_magic);
389                 rc = -EINVAL;
390         }
391         if (rc != 0)
392                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
393                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
394         return rc;
395 }
396
397 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
398                       char **bufs)
399 {
400         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
401 }
402 EXPORT_SYMBOL(lustre_pack_reply);
403
404 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
405 {
406         __u32 i, offset, buflen, bufcount;
407
408         LASSERT(m != NULL);
409         LASSERT(m->lm_bufcount > 0);
410
411         bufcount = m->lm_bufcount;
412         if (unlikely(n >= bufcount)) {
413                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
414                        m, n, bufcount);
415                 return NULL;
416         }
417
418         buflen = m->lm_buflens[n];
419         if (unlikely(buflen < min_size)) {
420                 CERROR("msg %p buffer[%d] size %d too small "
421                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
422                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
423                 return NULL;
424         }
425
426         offset = lustre_msg_hdr_size_v2(bufcount);
427         for (i = 0; i < n; i++)
428                 offset += cfs_size_round(m->lm_buflens[i]);
429
430         return (char *)m + offset;
431 }
432
433 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
434 {
435         switch (m->lm_magic) {
436         case LUSTRE_MSG_MAGIC_V2:
437                 return lustre_msg_buf_v2(m, n, min_size);
438         default:
439                 LASSERTF(0, "incorrect message magic: %08x (msg:%p)\n",
440                          m->lm_magic, m);
441                 return NULL;
442         }
443 }
444 EXPORT_SYMBOL(lustre_msg_buf);
445
446 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
447                                 unsigned int newlen, int move_data)
448 {
449         char   *tail = NULL, *newpos;
450         int     tail_len = 0, n;
451
452         LASSERT(msg);
453         LASSERT(msg->lm_bufcount > segment);
454         LASSERT(msg->lm_buflens[segment] >= newlen);
455
456         if (msg->lm_buflens[segment] == newlen)
457                 goto out;
458
459         if (move_data && msg->lm_bufcount > segment + 1) {
460                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
461                 for (n = segment + 1; n < msg->lm_bufcount; n++)
462                         tail_len += cfs_size_round(msg->lm_buflens[n]);
463         }
464
465         msg->lm_buflens[segment] = newlen;
466
467         if (tail && tail_len) {
468                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
469                 LASSERT(newpos <= tail);
470                 if (newpos != tail)
471                         memmove(newpos, tail, tail_len);
472         }
473 out:
474         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
475 }
476
477 /*
478  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
479  * we also move data forward from @segment + 1.
480  *
481  * if @newlen == 0, we remove the segment completely, but we still keep the
482  * totally bufcount the same to save possible data moving. this will leave a
483  * unused segment with size 0 at the tail, but that's ok.
484  *
485  * return new msg size after shrinking.
486  *
487  * CAUTION:
488  * + if any buffers higher than @segment has been filled in, must call shrink
489  *   with non-zero @move_data.
490  * + caller should NOT keep pointers to msg buffers which higher than @segment
491  *   after call shrink.
492  */
493 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
494                       unsigned int newlen, int move_data)
495 {
496         switch (msg->lm_magic) {
497         case LUSTRE_MSG_MAGIC_V2:
498                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
499         default:
500                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
501         }
502 }
503 EXPORT_SYMBOL(lustre_shrink_msg);
504
505 static int lustre_grow_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
506                               unsigned int newlen)
507 {
508         char *tail = NULL, *newpos;
509         int tail_len = 0, n;
510
511         LASSERT(msg);
512         LASSERT(msg->lm_bufcount > segment);
513         LASSERT(msg->lm_buflens[segment] <= newlen);
514
515         if (msg->lm_buflens[segment] == newlen)
516                 goto out;
517
518         if (msg->lm_bufcount > segment + 1) {
519                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
520                 for (n = segment + 1; n < msg->lm_bufcount; n++)
521                         tail_len += cfs_size_round(msg->lm_buflens[n]);
522         }
523
524         msg->lm_buflens[segment] = newlen;
525
526         if (tail && tail_len) {
527                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
528                 memmove(newpos, tail, tail_len);
529         }
530 out:
531         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
532 }
533
534 /*
535  * for @msg, grow @segment to size @newlen.
536  * Always move higher buffer forward.
537  *
538  * return new msg size after growing.
539  *
540  * CAUTION:
541  * - caller must make sure there is enough space in allocated message buffer
542  * - caller should NOT keep pointers to msg buffers which higher than @segment
543  *   after call shrink.
544  */
545 int lustre_grow_msg(struct lustre_msg *msg, int segment, unsigned int newlen)
546 {
547         switch (msg->lm_magic) {
548         case LUSTRE_MSG_MAGIC_V2:
549                 return lustre_grow_msg_v2(msg, segment, newlen);
550         default:
551                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
552         }
553 }
554 EXPORT_SYMBOL(lustre_grow_msg);
555
556 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
557 {
558         PTLRPC_RS_DEBUG_LRU_DEL(rs);
559
560         LASSERT(atomic_read(&rs->rs_refcount) == 0);
561         LASSERT(!rs->rs_difficult || rs->rs_handled);
562         LASSERT(!rs->rs_on_net);
563         LASSERT(!rs->rs_scheduled);
564         LASSERT(rs->rs_export == NULL);
565         LASSERT(rs->rs_nlocks == 0);
566         LASSERT(list_empty(&rs->rs_exp_list));
567         LASSERT(list_empty(&rs->rs_obd_list));
568
569         sptlrpc_svc_free_rs(rs);
570 }
571
572 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
573 {
574         int swabbed, required_len, i, buflen;
575
576         /* Now we know the sender speaks my language. */
577         required_len = lustre_msg_hdr_size_v2(0);
578         if (len < required_len) {
579                 /* can't even look inside the message */
580                 CERROR("message length %d too small for lustre_msg\n", len);
581                 return -EINVAL;
582         }
583
584         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
585
586         if (swabbed) {
587                 __swab32s(&m->lm_magic);
588                 __swab32s(&m->lm_bufcount);
589                 __swab32s(&m->lm_secflvr);
590                 __swab32s(&m->lm_repsize);
591                 __swab32s(&m->lm_cksum);
592                 __swab32s(&m->lm_flags);
593                 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
594                 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
595         }
596
597         if (m->lm_bufcount == 0 || m->lm_bufcount > PTLRPC_MAX_BUFCOUNT) {
598                 CERROR("message bufcount %d is not valid\n", m->lm_bufcount);
599                 return -EINVAL;
600         }
601         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
602         if (len < required_len) {
603                 /* didn't receive all the buffer lengths */
604                 CERROR("message length %d too small for %d buflens\n",
605                        len, m->lm_bufcount);
606                 return -EINVAL;
607         }
608
609         for (i = 0; i < m->lm_bufcount; i++) {
610                 if (swabbed)
611                         __swab32s(&m->lm_buflens[i]);
612                 buflen = cfs_size_round(m->lm_buflens[i]);
613                 if (buflen < 0 || buflen > PTLRPC_MAX_BUFLEN) {
614                         CERROR("buffer %d length %d is not valid\n", i, buflen);
615                         return -EINVAL;
616                 }
617                 required_len += buflen;
618         }
619         if (len < required_len || required_len > PTLRPC_MAX_BUFLEN) {
620                 CERROR("len: %d, required_len %d, bufcount: %d\n",
621                        len, required_len, m->lm_bufcount);
622                 for (i = 0; i < m->lm_bufcount; i++)
623                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
624                 return -EINVAL;
625         }
626
627         return swabbed;
628 }
629
630 int __lustre_unpack_msg(struct lustre_msg *m, int len)
631 {
632         int required_len, rc;
633         ENTRY;
634
635         /* We can provide a slightly better error log, if we check the
636          * message magic and version first.  In the future, struct
637          * lustre_msg may grow, and we'd like to log a version mismatch,
638          * rather than a short message.
639          *
640          */
641         required_len = offsetof(struct lustre_msg, lm_magic) +
642                        sizeof(m->lm_magic);
643         if (len < required_len) {
644                 /* can't even look inside the message */
645                 CERROR("message length %d too small for magic/version check\n",
646                        len);
647                 RETURN(-EINVAL);
648         }
649
650         rc = lustre_unpack_msg_v2(m, len);
651
652         RETURN(rc);
653 }
654 EXPORT_SYMBOL(__lustre_unpack_msg);
655
656 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
657 {
658         int rc;
659         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
660         if (rc == 1) {
661                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
662                 rc = 0;
663         }
664         return rc;
665 }
666
667 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
668 {
669         int rc;
670         rc = __lustre_unpack_msg(req->rq_repmsg, len);
671         if (rc == 1) {
672                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
673                 rc = 0;
674         }
675         return rc;
676 }
677
678 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
679                                                const int inout, int offset)
680 {
681         struct ptlrpc_body *pb;
682         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
683
684         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
685         if (!pb) {
686                 CERROR("error unpacking ptlrpc body\n");
687                 return -EFAULT;
688         }
689         if (ptlrpc_buf_need_swab(req, inout, offset)) {
690                 lustre_swab_ptlrpc_body(pb);
691                 ptlrpc_buf_set_swabbed(req, inout, offset);
692         }
693
694         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
695                  CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
696                  return -EINVAL;
697         }
698
699         if (!inout)
700                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
701
702         return 0;
703 }
704
705 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
706 {
707         switch (req->rq_reqmsg->lm_magic) {
708         case LUSTRE_MSG_MAGIC_V2:
709                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
710         default:
711                 CERROR("bad lustre msg magic: %08x\n",
712                        req->rq_reqmsg->lm_magic);
713                 return -EINVAL;
714         }
715 }
716
717 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
718 {
719         switch (req->rq_repmsg->lm_magic) {
720         case LUSTRE_MSG_MAGIC_V2:
721                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
722         default:
723                 CERROR("bad lustre msg magic: %08x\n",
724                        req->rq_repmsg->lm_magic);
725                 return -EINVAL;
726         }
727 }
728
729 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
730 {
731         if (n >= m->lm_bufcount)
732                 return 0;
733
734         return m->lm_buflens[n];
735 }
736
737 /**
738  * lustre_msg_buflen - return the length of buffer \a n in message \a m
739  * \param m lustre_msg (request or reply) to look at
740  * \param n message index (base 0)
741  *
742  * returns zero for non-existent message indices
743  */
744 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
745 {
746         switch (m->lm_magic) {
747         case LUSTRE_MSG_MAGIC_V2:
748                 return lustre_msg_buflen_v2(m, n);
749         default:
750                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
751                 return 0;
752         }
753 }
754 EXPORT_SYMBOL(lustre_msg_buflen);
755
756 static inline void
757 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
758 {
759         if (n >= m->lm_bufcount)
760                 LBUG();
761
762         m->lm_buflens[n] = len;
763 }
764
765 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
766 {
767         switch (m->lm_magic) {
768         case LUSTRE_MSG_MAGIC_V2:
769                 lustre_msg_set_buflen_v2(m, n, len);
770                 return;
771         default:
772                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
773         }
774 }
775
776 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
777  * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
778 __u32 lustre_msg_bufcount(struct lustre_msg *m)
779 {
780         switch (m->lm_magic) {
781         case LUSTRE_MSG_MAGIC_V2:
782                 return m->lm_bufcount;
783         default:
784                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
785                 return 0;
786         }
787 }
788
789 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
790 {
791         /* max_len == 0 means the string should fill the buffer */
792         char *str;
793         __u32 slen, blen;
794
795         switch (m->lm_magic) {
796         case LUSTRE_MSG_MAGIC_V2:
797                 str = lustre_msg_buf_v2(m, index, 0);
798                 blen = lustre_msg_buflen_v2(m, index);
799                 break;
800         default:
801                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
802         }
803
804         if (str == NULL) {
805                 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
806                 return NULL;
807         }
808
809         slen = strnlen(str, blen);
810
811         if (slen == blen) {                     /* not NULL terminated */
812                 CERROR("can't unpack non-NULL terminated string in "
813                         "msg %p buffer[%d] len %d\n", m, index, blen);
814                 return NULL;
815         }
816         if (blen > PTLRPC_MAX_BUFLEN) {
817                 CERROR("buffer length of msg %p buffer[%d] is invalid(%d)\n",
818                        m, index, blen);
819                 return NULL;
820         }
821
822         if (max_len == 0) {
823                 if (slen != blen - 1) {
824                         CERROR("can't unpack short string in msg %p "
825                                "buffer[%d] len %d: strlen %d\n",
826                                m, index, blen, slen);
827                         return NULL;
828                 }
829         } else if (slen > max_len) {
830                 CERROR("can't unpack oversized string in msg %p "
831                        "buffer[%d] len %d strlen %d: max %d expected\n",
832                        m, index, blen, slen, max_len);
833                 return NULL;
834         }
835
836         return str;
837 }
838
839 /* Wrap up the normal fixed length cases */
840 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
841                                       __u32 min_size, void *swabber)
842 {
843         void *ptr = NULL;
844
845         LASSERT(msg != NULL);
846         switch (msg->lm_magic) {
847         case LUSTRE_MSG_MAGIC_V2:
848                 ptr = lustre_msg_buf_v2(msg, index, min_size);
849                 break;
850         default:
851                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
852         }
853
854         if (ptr != NULL && swabber != NULL)
855                 ((void (*)(void *))swabber)(ptr);
856
857         return ptr;
858 }
859
860 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
861 {
862         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
863                                  sizeof(struct ptlrpc_body_v2));
864 }
865
866 enum lustre_msghdr lustre_msghdr_get_flags(struct lustre_msg *msg)
867 {
868         switch (msg->lm_magic) {
869         case LUSTRE_MSG_MAGIC_V2:
870                 /* already in host endian */
871                 return msg->lm_flags;
872         default:
873                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
874                 return 0;
875         }
876 }
877 EXPORT_SYMBOL(lustre_msghdr_get_flags);
878
879 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
880 {
881         switch (msg->lm_magic) {
882         case LUSTRE_MSG_MAGIC_V2:
883                 msg->lm_flags = flags;
884                 return;
885         default:
886                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
887         }
888 }
889
890 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
891 {
892         switch (msg->lm_magic) {
893         case LUSTRE_MSG_MAGIC_V2: {
894                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
895                 if (pb != NULL)
896                         return pb->pb_flags;
897
898                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
899         }
900         /* fallthrough */
901         default:
902                 /* flags might be printed in debug code while message
903                  * uninitialized */
904                 return 0;
905         }
906 }
907 EXPORT_SYMBOL(lustre_msg_get_flags);
908
909 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
910 {
911         switch (msg->lm_magic) {
912         case LUSTRE_MSG_MAGIC_V2: {
913                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
914                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
915                 pb->pb_flags |= flags;
916                 return;
917         }
918         default:
919                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
920         }
921 }
922 EXPORT_SYMBOL(lustre_msg_add_flags);
923
924 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
925 {
926         switch (msg->lm_magic) {
927         case LUSTRE_MSG_MAGIC_V2: {
928                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
929                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
930                 pb->pb_flags = flags;
931                 return;
932         }
933         default:
934                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
935         }
936 }
937
938 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
939 {
940         switch (msg->lm_magic) {
941         case LUSTRE_MSG_MAGIC_V2: {
942                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
943                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
944                 pb->pb_flags &= ~flags;
945
946                 return;
947         }
948         default:
949                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
950         }
951 }
952 EXPORT_SYMBOL(lustre_msg_clear_flags);
953
954 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
955 {
956         switch (msg->lm_magic) {
957         case LUSTRE_MSG_MAGIC_V2: {
958                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
959                 if (pb != NULL)
960                         return pb->pb_op_flags;
961
962                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
963         }
964         /* fallthrough */
965         default:
966                 return 0;
967         }
968 }
969
970 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
971 {
972         switch (msg->lm_magic) {
973         case LUSTRE_MSG_MAGIC_V2: {
974                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
975                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
976                 pb->pb_op_flags |= flags;
977                 return;
978         }
979         default:
980                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
981         }
982 }
983 EXPORT_SYMBOL(lustre_msg_add_op_flags);
984
985 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
986 {
987         switch (msg->lm_magic) {
988         case LUSTRE_MSG_MAGIC_V2: {
989                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
990                 if (pb == NULL) {
991                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
992                         return NULL;
993                 }
994                 return &pb->pb_handle;
995         }
996         default:
997                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
998                 return NULL;
999         }
1000 }
1001
1002 __u32 lustre_msg_get_type(struct lustre_msg *msg)
1003 {
1004         switch (msg->lm_magic) {
1005         case LUSTRE_MSG_MAGIC_V2: {
1006                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1007                 if (pb == NULL) {
1008                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1009                         return PTL_RPC_MSG_ERR;
1010                 }
1011                 return pb->pb_type;
1012         }
1013         default:
1014                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1015                 return PTL_RPC_MSG_ERR;
1016         }
1017 }
1018 EXPORT_SYMBOL(lustre_msg_get_type);
1019
1020 enum lustre_msg_version lustre_msg_get_version(struct lustre_msg *msg)
1021 {
1022         switch (msg->lm_magic) {
1023         case LUSTRE_MSG_MAGIC_V2: {
1024                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1025                 if (pb == NULL) {
1026                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1027                         return 0;
1028                 }
1029                 return pb->pb_version;
1030         }
1031         default:
1032                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1033                 return 0;
1034         }
1035 }
1036
1037 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
1038 {
1039         switch (msg->lm_magic) {
1040         case LUSTRE_MSG_MAGIC_V2: {
1041                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1042                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1043                 pb->pb_version |= version;
1044                 return;
1045         }
1046         default:
1047                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1048         }
1049 }
1050
1051 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
1052 {
1053         switch (msg->lm_magic) {
1054         case LUSTRE_MSG_MAGIC_V2: {
1055                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1056                 if (pb == NULL) {
1057                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1058                         return 0;
1059                 }
1060                 return pb->pb_opc;
1061         }
1062         default:
1063                 CERROR("incorrect message magic: %08x (msg:%p)\n",
1064                        msg->lm_magic, msg);
1065                 return 0;
1066         }
1067 }
1068 EXPORT_SYMBOL(lustre_msg_get_opc);
1069
1070 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1071 {
1072         switch (msg->lm_magic) {
1073         case LUSTRE_MSG_MAGIC_V2: {
1074                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1075                 if (pb == NULL) {
1076                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1077                         return 0;
1078                 }
1079                 return pb->pb_last_xid;
1080         }
1081         default:
1082                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1083                 return 0;
1084         }
1085 }
1086 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1087
1088 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1089 {
1090         switch (msg->lm_magic) {
1091         case LUSTRE_MSG_MAGIC_V2: {
1092                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1093                 if (!pb) {
1094                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1095                         return 0;
1096                 }
1097                 return pb->pb_tag;
1098         }
1099         default:
1100                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1101                 return 0;
1102         }
1103 }
1104 EXPORT_SYMBOL(lustre_msg_get_tag);
1105
1106 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1107 {
1108         switch (msg->lm_magic) {
1109         case LUSTRE_MSG_MAGIC_V2: {
1110                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1111                 if (pb == NULL) {
1112                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1113                         return 0;
1114                 }
1115                 return pb->pb_last_committed;
1116         }
1117         default:
1118                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1119                 return 0;
1120         }
1121 }
1122 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1123
1124 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1125 {
1126         switch (msg->lm_magic) {
1127         case LUSTRE_MSG_MAGIC_V2: {
1128                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1129                 if (pb == NULL) {
1130                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1131                         return NULL;
1132                 }
1133                 return pb->pb_pre_versions;
1134         }
1135         default:
1136                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1137                 return NULL;
1138         }
1139 }
1140 EXPORT_SYMBOL(lustre_msg_get_versions);
1141
1142 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1143 {
1144         switch (msg->lm_magic) {
1145         case LUSTRE_MSG_MAGIC_V2: {
1146                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1147                 if (pb == NULL) {
1148                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1149                         return 0;
1150                 }
1151                 return pb->pb_transno;
1152         }
1153         default:
1154                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1155                 return 0;
1156         }
1157 }
1158 EXPORT_SYMBOL(lustre_msg_get_transno);
1159
1160 int lustre_msg_get_status(struct lustre_msg *msg)
1161 {
1162         switch (msg->lm_magic) {
1163         case LUSTRE_MSG_MAGIC_V2: {
1164                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1165                 if (pb != NULL)
1166                         return pb->pb_status;
1167                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1168         }
1169         /* fallthrough */
1170         default:
1171                 /* status might be printed in debug code while message
1172                 * uninitialized */
1173                 return -EINVAL;
1174         }
1175 }
1176 EXPORT_SYMBOL(lustre_msg_get_status);
1177
1178 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1179 {
1180         switch (msg->lm_magic) {
1181         case LUSTRE_MSG_MAGIC_V2: {
1182                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1183                 if (pb == NULL) {
1184                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1185                         return -EINVAL;
1186                 }
1187                 return pb->pb_slv;
1188         }
1189         default:
1190                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1191                 return -EINVAL;
1192         }
1193 }
1194
1195
1196 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1197 {
1198         switch (msg->lm_magic) {
1199         case LUSTRE_MSG_MAGIC_V2: {
1200                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1201                 if (pb == NULL) {
1202                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1203                         return;
1204                 }
1205                 pb->pb_slv = slv;
1206                 return;
1207         }
1208         default:
1209                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1210                 return;
1211         }
1212 }
1213
1214 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1215 {
1216         switch (msg->lm_magic) {
1217         case LUSTRE_MSG_MAGIC_V2: {
1218                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1219                 if (pb == NULL) {
1220                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1221                         return -EINVAL;
1222                 }
1223                 return pb->pb_limit;
1224         }
1225         default:
1226                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1227                 return -EINVAL;
1228         }
1229 }
1230
1231
1232 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1233 {
1234         switch (msg->lm_magic) {
1235         case LUSTRE_MSG_MAGIC_V2: {
1236                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1237                 if (pb == NULL) {
1238                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1239                         return;
1240                 }
1241                 pb->pb_limit = limit;
1242                 return;
1243         }
1244         default:
1245                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1246                 return;
1247         }
1248 }
1249
1250 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1251 {
1252         switch (msg->lm_magic) {
1253         case LUSTRE_MSG_MAGIC_V2: {
1254                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1255                 if (pb == NULL) {
1256                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1257                         return 0;
1258                 }
1259                 return pb->pb_conn_cnt;
1260         }
1261         default:
1262                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1263                 return 0;
1264         }
1265 }
1266 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1267
1268 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1269 {
1270         switch (msg->lm_magic) {
1271         case LUSTRE_MSG_MAGIC_V2:
1272                 return msg->lm_magic;
1273         default:
1274                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1275                 return 0;
1276         }
1277 }
1278
1279 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1280 {
1281         switch (msg->lm_magic) {
1282         case LUSTRE_MSG_MAGIC_V2: {
1283                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1284                 if (pb == NULL) {
1285                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1286                         return 0;
1287                 }
1288                 return pb->pb_timeout;
1289         }
1290         default:
1291                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1292                 return 0;
1293         }
1294 }
1295
1296 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1297 {
1298         switch (msg->lm_magic) {
1299         case LUSTRE_MSG_MAGIC_V2: {
1300                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1301                 if (pb == NULL) {
1302                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1303                         return 0;
1304                 }
1305                 return pb->pb_service_time;
1306         }
1307         default:
1308                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1309                 return 0;
1310         }
1311 }
1312
1313 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1314 {
1315         switch (msg->lm_magic) {
1316         case LUSTRE_MSG_MAGIC_V2: {
1317                 struct ptlrpc_body *pb;
1318
1319                 /* the old pltrpc_body_v2 is smaller; doesn't include jobid */
1320                 if (msg->lm_buflens[MSG_PTLRPC_BODY_OFF] <
1321                     sizeof(struct ptlrpc_body))
1322                         return NULL;
1323
1324                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1325                                           sizeof(struct ptlrpc_body));
1326                 if (!pb)
1327                         return NULL;
1328
1329                 return pb->pb_jobid;
1330         }
1331         default:
1332                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1333                 return NULL;
1334         }
1335 }
1336 EXPORT_SYMBOL(lustre_msg_get_jobid);
1337
1338 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1339 {
1340         switch (msg->lm_magic) {
1341         case LUSTRE_MSG_MAGIC_V2:
1342                 return msg->lm_cksum;
1343         default:
1344                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1345                 return 0;
1346         }
1347 }
1348
1349 __u64 lustre_msg_get_mbits(struct lustre_msg *msg)
1350 {
1351         switch (msg->lm_magic) {
1352         case LUSTRE_MSG_MAGIC_V2: {
1353                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1354                 if (pb == NULL) {
1355                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1356                         return 0;
1357                 }
1358                 return pb->pb_mbits;
1359         }
1360         default:
1361                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1362                 return 0;
1363         }
1364 }
1365
1366 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1367 {
1368         switch (msg->lm_magic) {
1369         case LUSTRE_MSG_MAGIC_V2: {
1370                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1371                 __u32 len = lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1372
1373                 unsigned int hsize = 4;
1374                 __u32 crc;
1375
1376                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1377                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1378                                        len, NULL, 0, (unsigned char *)&crc,
1379                                        &hsize);
1380                 return crc;
1381         }
1382         default:
1383                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1384                 return 0;
1385         }
1386 }
1387
1388 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1389 {
1390         switch (msg->lm_magic) {
1391         case LUSTRE_MSG_MAGIC_V2: {
1392                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1393                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1394                 pb->pb_handle = *handle;
1395                 return;
1396         }
1397         default:
1398                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1399         }
1400 }
1401
1402 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1403 {
1404         switch (msg->lm_magic) {
1405         case LUSTRE_MSG_MAGIC_V2: {
1406                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1407                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1408                 pb->pb_type = type;
1409                 return;
1410                 }
1411         default:
1412                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1413         }
1414 }
1415
1416 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1417 {
1418         switch (msg->lm_magic) {
1419         case LUSTRE_MSG_MAGIC_V2: {
1420                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1421                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1422                 pb->pb_opc = opc;
1423                 return;
1424         }
1425         default:
1426                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1427         }
1428 }
1429
1430 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1431 {
1432         switch (msg->lm_magic) {
1433         case LUSTRE_MSG_MAGIC_V2: {
1434                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1435                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1436                 pb->pb_last_xid = last_xid;
1437                 return;
1438         }
1439         default:
1440                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1441         }
1442 }
1443 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1444
1445 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1446 {
1447         switch (msg->lm_magic) {
1448         case LUSTRE_MSG_MAGIC_V2: {
1449                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1450                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1451                 pb->pb_tag = tag;
1452                 return;
1453         }
1454         default:
1455                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1456         }
1457 }
1458 EXPORT_SYMBOL(lustre_msg_set_tag);
1459
1460 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1461 {
1462         switch (msg->lm_magic) {
1463         case LUSTRE_MSG_MAGIC_V2: {
1464                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1465                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1466                 pb->pb_last_committed = last_committed;
1467                 return;
1468         }
1469         default:
1470                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1471         }
1472 }
1473
1474 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1475 {
1476         switch (msg->lm_magic) {
1477         case LUSTRE_MSG_MAGIC_V2: {
1478                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1479                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1480                 pb->pb_pre_versions[0] = versions[0];
1481                 pb->pb_pre_versions[1] = versions[1];
1482                 pb->pb_pre_versions[2] = versions[2];
1483                 pb->pb_pre_versions[3] = versions[3];
1484                 return;
1485         }
1486         default:
1487                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1488         }
1489 }
1490 EXPORT_SYMBOL(lustre_msg_set_versions);
1491
1492 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1493 {
1494         switch (msg->lm_magic) {
1495         case LUSTRE_MSG_MAGIC_V2: {
1496                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1497                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1498                 pb->pb_transno = transno;
1499                 return;
1500         }
1501         default:
1502                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1503         }
1504 }
1505 EXPORT_SYMBOL(lustre_msg_set_transno);
1506
1507 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1508 {
1509         switch (msg->lm_magic) {
1510         case LUSTRE_MSG_MAGIC_V2: {
1511                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1512                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1513                 pb->pb_status = status;
1514                 return;
1515         }
1516         default:
1517                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1518         }
1519 }
1520 EXPORT_SYMBOL(lustre_msg_set_status);
1521
1522 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1523 {
1524         switch (msg->lm_magic) {
1525         case LUSTRE_MSG_MAGIC_V2: {
1526                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1527                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1528                 pb->pb_conn_cnt = conn_cnt;
1529                 return;
1530         }
1531         default:
1532                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1533         }
1534 }
1535
1536 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1537 {
1538         switch (msg->lm_magic) {
1539         case LUSTRE_MSG_MAGIC_V2: {
1540                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1541                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1542                 pb->pb_timeout = timeout;
1543                 return;
1544         }
1545         default:
1546                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1547         }
1548 }
1549
1550 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1551 {
1552         switch (msg->lm_magic) {
1553         case LUSTRE_MSG_MAGIC_V2: {
1554                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1555                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1556                 pb->pb_service_time = service_time;
1557                 return;
1558         }
1559         default:
1560                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1561         }
1562 }
1563
1564 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1565 {
1566         switch (msg->lm_magic) {
1567         case LUSTRE_MSG_MAGIC_V2: {
1568                 __u32 opc = lustre_msg_get_opc(msg);
1569                 struct ptlrpc_body *pb;
1570
1571                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1572                  * See the comment in ptlrpc_request_pack(). */
1573                 if (!opc || opc == LDLM_BL_CALLBACK ||
1574                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1575                         return;
1576
1577                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1578                                        sizeof(struct ptlrpc_body));
1579                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1580
1581                 if (jobid != NULL)
1582                         memcpy(pb->pb_jobid, jobid, sizeof(pb->pb_jobid));
1583                 else if (pb->pb_jobid[0] == '\0')
1584                         lustre_get_jobid(pb->pb_jobid, sizeof(pb->pb_jobid));
1585                 return;
1586         }
1587         default:
1588                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1589         }
1590 }
1591 EXPORT_SYMBOL(lustre_msg_set_jobid);
1592
1593 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1594 {
1595         switch (msg->lm_magic) {
1596         case LUSTRE_MSG_MAGIC_V2:
1597                 msg->lm_cksum = cksum;
1598                 return;
1599         default:
1600                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1601         }
1602 }
1603
1604 void lustre_msg_set_mbits(struct lustre_msg *msg, __u64 mbits)
1605 {
1606         switch (msg->lm_magic) {
1607         case LUSTRE_MSG_MAGIC_V2: {
1608                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1609
1610                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1611                 pb->pb_mbits = mbits;
1612                 return;
1613         }
1614         default:
1615                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1616         }
1617 }
1618
1619 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1620 {
1621         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1622
1623         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1624                                          req->rq_pill.rc_area[RCL_SERVER]);
1625         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1626                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1627 }
1628 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1629
1630 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1631 {
1632         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1633         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1634                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1635 }
1636
1637 /**
1638  * Send a remote set_info_async.
1639  *
1640  * This may go from client to server or server to client.
1641  */
1642 int do_set_info_async(struct obd_import *imp,
1643                       int opcode, int version,
1644                       size_t keylen, void *key,
1645                       size_t vallen, void *val,
1646                       struct ptlrpc_request_set *set)
1647 {
1648         struct ptlrpc_request *req;
1649         char                  *tmp;
1650         int                    rc;
1651         ENTRY;
1652
1653         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1654         if (req == NULL)
1655                 RETURN(-ENOMEM);
1656
1657         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1658                              RCL_CLIENT, keylen);
1659         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1660                              RCL_CLIENT, vallen);
1661         rc = ptlrpc_request_pack(req, version, opcode);
1662         if (rc) {
1663                 ptlrpc_request_free(req);
1664                 RETURN(rc);
1665         }
1666
1667         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1668         memcpy(tmp, key, keylen);
1669         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1670         memcpy(tmp, val, vallen);
1671
1672         ptlrpc_request_set_replen(req);
1673
1674         if (set) {
1675                 ptlrpc_set_add_req(set, req);
1676                 ptlrpc_check_set(NULL, set);
1677         } else {
1678                 rc = ptlrpc_queue_wait(req);
1679                 ptlrpc_req_finished(req);
1680         }
1681
1682         RETURN(rc);
1683 }
1684 EXPORT_SYMBOL(do_set_info_async);
1685
1686 /* byte flipping routines for all wire types declared in
1687  * lustre_idl.h implemented here.
1688  */
1689 void lustre_swab_ptlrpc_body(struct ptlrpc_body *body)
1690 {
1691         __swab32s(&body->pb_type);
1692         __swab32s(&body->pb_version);
1693         __swab32s(&body->pb_opc);
1694         __swab32s(&body->pb_status);
1695         __swab64s(&body->pb_last_xid);
1696         __swab16s(&body->pb_tag);
1697         CLASSERT(offsetof(typeof(*body), pb_padding0) != 0);
1698         CLASSERT(offsetof(typeof(*body), pb_padding1) != 0);
1699         __swab64s(&body->pb_last_committed);
1700         __swab64s(&body->pb_transno);
1701         __swab32s(&body->pb_flags);
1702         __swab32s(&body->pb_op_flags);
1703         __swab32s(&body->pb_conn_cnt);
1704         __swab32s(&body->pb_timeout);
1705         __swab32s(&body->pb_service_time);
1706         __swab32s(&body->pb_limit);
1707         __swab64s(&body->pb_slv);
1708         __swab64s(&body->pb_pre_versions[0]);
1709         __swab64s(&body->pb_pre_versions[1]);
1710         __swab64s(&body->pb_pre_versions[2]);
1711         __swab64s(&body->pb_pre_versions[3]);
1712         __swab64s(&body->pb_mbits);
1713         CLASSERT(offsetof(typeof(*body), pb_padding64_0) != 0);
1714         CLASSERT(offsetof(typeof(*body), pb_padding64_1) != 0);
1715         CLASSERT(offsetof(typeof(*body), pb_padding64_2) != 0);
1716         /* While we need to maintain compatibility between
1717          * clients and servers without ptlrpc_body_v2 (< 2.3)
1718          * do not swab any fields beyond pb_jobid, as we are
1719          * using this swab function for both ptlrpc_body
1720          * and ptlrpc_body_v2. */
1721         /* pb_jobid is an ASCII string and should not be swabbed */
1722         CLASSERT(offsetof(typeof(*body), pb_jobid) != 0);
1723 }
1724
1725 void lustre_swab_connect(struct obd_connect_data *ocd)
1726 {
1727         __swab64s(&ocd->ocd_connect_flags);
1728         __swab32s(&ocd->ocd_version);
1729         __swab32s(&ocd->ocd_grant);
1730         __swab64s(&ocd->ocd_ibits_known);
1731         __swab32s(&ocd->ocd_index);
1732         __swab32s(&ocd->ocd_brw_size);
1733         /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1734          * they are 8-byte values */
1735         __swab16s(&ocd->ocd_grant_tax_kb);
1736         __swab32s(&ocd->ocd_grant_max_blks);
1737         __swab64s(&ocd->ocd_transno);
1738         __swab32s(&ocd->ocd_group);
1739         __swab32s(&ocd->ocd_cksum_types);
1740         __swab32s(&ocd->ocd_instance);
1741         /* Fields after ocd_cksum_types are only accessible by the receiver
1742          * if the corresponding flag in ocd_connect_flags is set. Accessing
1743          * any field after ocd_maxbytes on the receiver without a valid flag
1744          * may result in out-of-bound memory access and kernel oops. */
1745         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1746                 __swab32s(&ocd->ocd_max_easize);
1747         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1748                 __swab64s(&ocd->ocd_maxbytes);
1749         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1750                 __swab16s(&ocd->ocd_maxmodrpcs);
1751         CLASSERT(offsetof(typeof(*ocd), padding0) != 0);
1752         CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1753         if (ocd->ocd_connect_flags & OBD_CONNECT_FLAGS2)
1754                 __swab64s(&ocd->ocd_connect_flags2);
1755         CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1756         CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1757         CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1758         CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1759         CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1760         CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1761         CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1762         CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1763         CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1764         CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1765         CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1766         CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1767         CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1768 }
1769
1770 static void lustre_swab_ost_layout(struct ost_layout *ol)
1771 {
1772         __swab32s(&ol->ol_stripe_size);
1773         __swab32s(&ol->ol_stripe_count);
1774         __swab64s(&ol->ol_comp_start);
1775         __swab64s(&ol->ol_comp_end);
1776         __swab32s(&ol->ol_comp_id);
1777 }
1778
1779 void lustre_swab_obdo (struct obdo  *o)
1780 {
1781         __swab64s(&o->o_valid);
1782         lustre_swab_ost_id(&o->o_oi);
1783         __swab64s(&o->o_parent_seq);
1784         __swab64s(&o->o_size);
1785         __swab64s(&o->o_mtime);
1786         __swab64s(&o->o_atime);
1787         __swab64s(&o->o_ctime);
1788         __swab64s(&o->o_blocks);
1789         __swab64s(&o->o_grant);
1790         __swab32s(&o->o_blksize);
1791         __swab32s(&o->o_mode);
1792         __swab32s(&o->o_uid);
1793         __swab32s(&o->o_gid);
1794         __swab32s(&o->o_flags);
1795         __swab32s(&o->o_nlink);
1796         __swab32s(&o->o_parent_oid);
1797         __swab32s(&o->o_misc);
1798         __swab64s(&o->o_ioepoch);
1799         __swab32s(&o->o_stripe_idx);
1800         __swab32s(&o->o_parent_ver);
1801         lustre_swab_ost_layout(&o->o_layout);
1802         __swab32s(&o->o_layout_version);
1803         __swab32s(&o->o_uid_h);
1804         __swab32s(&o->o_gid_h);
1805         __swab64s(&o->o_data_version);
1806         __swab32s(&o->o_projid);
1807         CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1808         CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1809         CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1810
1811 }
1812 EXPORT_SYMBOL(lustre_swab_obdo);
1813
1814 void lustre_swab_obd_statfs (struct obd_statfs *os)
1815 {
1816         __swab64s(&os->os_type);
1817         __swab64s(&os->os_blocks);
1818         __swab64s(&os->os_bfree);
1819         __swab64s(&os->os_bavail);
1820         __swab64s(&os->os_files);
1821         __swab64s(&os->os_ffree);
1822         /* no need to swab os_fsid */
1823         __swab32s(&os->os_bsize);
1824         __swab32s(&os->os_namelen);
1825         __swab64s(&os->os_maxbytes);
1826         __swab32s(&os->os_state);
1827         __swab32s(&os->os_fprecreated);
1828         __swab32s(&os->os_granted);
1829         CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1830         CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1831         CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1832         CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1833         CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1834         CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1835         CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1836 }
1837
1838 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1839 {
1840         lustre_swab_ost_id(&ioo->ioo_oid);
1841         __swab32s(&ioo->ioo_max_brw);
1842         __swab32s(&ioo->ioo_bufcnt);
1843 }
1844
1845 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1846 {
1847         __swab64s(&nbr->rnb_offset);
1848         __swab32s(&nbr->rnb_len);
1849         __swab32s(&nbr->rnb_flags);
1850 }
1851
1852 void lustre_swab_ost_body (struct ost_body *b)
1853 {
1854         lustre_swab_obdo (&b->oa);
1855 }
1856
1857 void lustre_swab_ost_last_id(u64 *id)
1858 {
1859         __swab64s(id);
1860 }
1861
1862 void lustre_swab_generic_32s(__u32 *val)
1863 {
1864         __swab32s(val);
1865 }
1866
1867 void lustre_swab_gl_lquota_desc(struct ldlm_gl_lquota_desc *desc)
1868 {
1869         lustre_swab_lu_fid(&desc->gl_id.qid_fid);
1870         __swab64s(&desc->gl_flags);
1871         __swab64s(&desc->gl_ver);
1872         __swab64s(&desc->gl_hardlimit);
1873         __swab64s(&desc->gl_softlimit);
1874         __swab64s(&desc->gl_time);
1875         CLASSERT(offsetof(typeof(*desc), gl_pad2) != 0);
1876 }
1877 EXPORT_SYMBOL(lustre_swab_gl_lquota_desc);
1878
1879 void lustre_swab_gl_barrier_desc(struct ldlm_gl_barrier_desc *desc)
1880 {
1881         __swab32s(&desc->lgbd_status);
1882         __swab32s(&desc->lgbd_timeout);
1883         CLASSERT(offsetof(typeof(*desc), lgbd_padding) != 0);
1884 }
1885 EXPORT_SYMBOL(lustre_swab_gl_barrier_desc);
1886
1887 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1888 {
1889         __swab64s(&lvb->lvb_size);
1890         __swab64s(&lvb->lvb_mtime);
1891         __swab64s(&lvb->lvb_atime);
1892         __swab64s(&lvb->lvb_ctime);
1893         __swab64s(&lvb->lvb_blocks);
1894 }
1895 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1896
1897 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1898 {
1899         __swab64s(&lvb->lvb_size);
1900         __swab64s(&lvb->lvb_mtime);
1901         __swab64s(&lvb->lvb_atime);
1902         __swab64s(&lvb->lvb_ctime);
1903         __swab64s(&lvb->lvb_blocks);
1904         __swab32s(&lvb->lvb_mtime_ns);
1905         __swab32s(&lvb->lvb_atime_ns);
1906         __swab32s(&lvb->lvb_ctime_ns);
1907         __swab32s(&lvb->lvb_padding);
1908 }
1909 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1910
1911 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1912 {
1913         __swab64s(&lvb->lvb_flags);
1914         __swab64s(&lvb->lvb_id_may_rel);
1915         __swab64s(&lvb->lvb_id_rel);
1916         __swab64s(&lvb->lvb_id_qunit);
1917         __swab64s(&lvb->lvb_pad1);
1918 }
1919 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1920
1921 void lustre_swab_barrier_lvb(struct barrier_lvb *lvb)
1922 {
1923         __swab32s(&lvb->lvb_status);
1924         __swab32s(&lvb->lvb_index);
1925         CLASSERT(offsetof(typeof(*lvb), lvb_padding) != 0);
1926 }
1927 EXPORT_SYMBOL(lustre_swab_barrier_lvb);
1928
1929 void lustre_swab_mdt_body (struct mdt_body *b)
1930 {
1931         lustre_swab_lu_fid(&b->mbo_fid1);
1932         lustre_swab_lu_fid(&b->mbo_fid2);
1933         /* handle is opaque */
1934         __swab64s(&b->mbo_valid);
1935         __swab64s(&b->mbo_size);
1936         __swab64s(&b->mbo_mtime);
1937         __swab64s(&b->mbo_atime);
1938         __swab64s(&b->mbo_ctime);
1939         __swab64s(&b->mbo_blocks);
1940         __swab64s(&b->mbo_version);
1941         __swab64s(&b->mbo_t_state);
1942         __swab32s(&b->mbo_fsuid);
1943         __swab32s(&b->mbo_fsgid);
1944         __swab32s(&b->mbo_capability);
1945         __swab32s(&b->mbo_mode);
1946         __swab32s(&b->mbo_uid);
1947         __swab32s(&b->mbo_gid);
1948         __swab32s(&b->mbo_flags);
1949         __swab32s(&b->mbo_rdev);
1950         __swab32s(&b->mbo_nlink);
1951         __swab32s(&b->mbo_layout_gen);
1952         __swab32s(&b->mbo_suppgid);
1953         __swab32s(&b->mbo_eadatasize);
1954         __swab32s(&b->mbo_aclsize);
1955         __swab32s(&b->mbo_max_mdsize);
1956         CLASSERT(offsetof(typeof(*b), mbo_unused3) != 0);
1957         __swab32s(&b->mbo_uid_h);
1958         __swab32s(&b->mbo_gid_h);
1959         __swab32s(&b->mbo_projid);
1960         __swab64s(&b->mbo_dom_size);
1961         __swab64s(&b->mbo_dom_blocks);
1962         CLASSERT(offsetof(typeof(*b), mbo_padding_8) != 0);
1963         CLASSERT(offsetof(typeof(*b), mbo_padding_9) != 0);
1964         CLASSERT(offsetof(typeof(*b), mbo_padding_10) != 0);
1965 }
1966
1967 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b)
1968 {
1969         /* mio_open_handle is opaque */
1970         CLASSERT(offsetof(typeof(*b), mio_unused1) != 0);
1971         CLASSERT(offsetof(typeof(*b), mio_unused2) != 0);
1972         CLASSERT(offsetof(typeof(*b), mio_padding) != 0);
1973 }
1974
1975 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1976 {
1977         int i;
1978
1979         __swab32s(&mti->mti_lustre_ver);
1980         __swab32s(&mti->mti_stripe_index);
1981         __swab32s(&mti->mti_config_ver);
1982         __swab32s(&mti->mti_flags);
1983         __swab32s(&mti->mti_instance);
1984         __swab32s(&mti->mti_nid_count);
1985         CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1986         for (i = 0; i < MTI_NIDS_MAX; i++)
1987                 __swab64s(&mti->mti_nids[i]);
1988 }
1989
1990 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1991 {
1992         __u8 i;
1993
1994         __swab64s(&entry->mne_version);
1995         __swab32s(&entry->mne_instance);
1996         __swab32s(&entry->mne_index);
1997         __swab32s(&entry->mne_length);
1998
1999         /* mne_nid_(count|type) must be one byte size because we're gonna
2000          * access it w/o swapping. */
2001         CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
2002         CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
2003
2004         /* remove this assertion if ipv6 is supported. */
2005         LASSERT(entry->mne_nid_type == 0);
2006         for (i = 0; i < entry->mne_nid_count; i++) {
2007                 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
2008                 __swab64s(&entry->u.nids[i]);
2009         }
2010 }
2011 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
2012
2013 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
2014 {
2015         __swab64s(&body->mcb_offset);
2016         __swab32s(&body->mcb_units);
2017         __swab16s(&body->mcb_type);
2018 }
2019
2020 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
2021 {
2022         __swab64s(&body->mcr_offset);
2023         __swab64s(&body->mcr_size);
2024 }
2025
2026 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
2027 {
2028         __swab64s (&i->dqi_bgrace);
2029         __swab64s (&i->dqi_igrace);
2030         __swab32s (&i->dqi_flags);
2031         __swab32s (&i->dqi_valid);
2032 }
2033
2034 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
2035 {
2036         __swab64s (&b->dqb_ihardlimit);
2037         __swab64s (&b->dqb_isoftlimit);
2038         __swab64s (&b->dqb_curinodes);
2039         __swab64s (&b->dqb_bhardlimit);
2040         __swab64s (&b->dqb_bsoftlimit);
2041         __swab64s (&b->dqb_curspace);
2042         __swab64s (&b->dqb_btime);
2043         __swab64s (&b->dqb_itime);
2044         __swab32s (&b->dqb_valid);
2045         CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
2046 }
2047
2048 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
2049 {
2050         __swab32s (&q->qc_cmd);
2051         __swab32s (&q->qc_type);
2052         __swab32s (&q->qc_id);
2053         __swab32s (&q->qc_stat);
2054         lustre_swab_obd_dqinfo (&q->qc_dqinfo);
2055         lustre_swab_obd_dqblk (&q->qc_dqblk);
2056 }
2057
2058 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
2059 {
2060         lustre_swab_lu_fid(&gf->gf_fid);
2061         __swab64s(&gf->gf_recno);
2062         __swab32s(&gf->gf_linkno);
2063         __swab32s(&gf->gf_pathlen);
2064 }
2065 EXPORT_SYMBOL(lustre_swab_fid2path);
2066
2067 static void lustre_swab_fiemap_extent(struct fiemap_extent *fm_extent)
2068 {
2069         __swab64s(&fm_extent->fe_logical);
2070         __swab64s(&fm_extent->fe_physical);
2071         __swab64s(&fm_extent->fe_length);
2072         __swab32s(&fm_extent->fe_flags);
2073         __swab32s(&fm_extent->fe_device);
2074 }
2075
2076 void lustre_swab_fiemap(struct fiemap *fiemap)
2077 {
2078         __u32 i;
2079
2080         __swab64s(&fiemap->fm_start);
2081         __swab64s(&fiemap->fm_length);
2082         __swab32s(&fiemap->fm_flags);
2083         __swab32s(&fiemap->fm_mapped_extents);
2084         __swab32s(&fiemap->fm_extent_count);
2085         __swab32s(&fiemap->fm_reserved);
2086
2087         for (i = 0; i < fiemap->fm_mapped_extents; i++)
2088                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
2089 }
2090
2091 void lustre_swab_idx_info(struct idx_info *ii)
2092 {
2093         __swab32s(&ii->ii_magic);
2094         __swab32s(&ii->ii_flags);
2095         __swab16s(&ii->ii_count);
2096         __swab32s(&ii->ii_attrs);
2097         lustre_swab_lu_fid(&ii->ii_fid);
2098         __swab64s(&ii->ii_version);
2099         __swab64s(&ii->ii_hash_start);
2100         __swab64s(&ii->ii_hash_end);
2101         __swab16s(&ii->ii_keysize);
2102         __swab16s(&ii->ii_recsize);
2103 }
2104
2105 void lustre_swab_lip_header(struct lu_idxpage *lip)
2106 {
2107         /* swab header */
2108         __swab32s(&lip->lip_magic);
2109         __swab16s(&lip->lip_flags);
2110         __swab16s(&lip->lip_nr);
2111 }
2112 EXPORT_SYMBOL(lustre_swab_lip_header);
2113
2114 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2115 {
2116         __swab32s(&rr->rr_opcode);
2117         __swab32s(&rr->rr_cap);
2118         __swab32s(&rr->rr_fsuid);
2119         /* rr_fsuid_h is unused */
2120         __swab32s(&rr->rr_fsgid);
2121         /* rr_fsgid_h is unused */
2122         __swab32s(&rr->rr_suppgid1);
2123         /* rr_suppgid1_h is unused */
2124         __swab32s(&rr->rr_suppgid2);
2125         /* rr_suppgid2_h is unused */
2126         lustre_swab_lu_fid(&rr->rr_fid1);
2127         lustre_swab_lu_fid(&rr->rr_fid2);
2128         __swab64s(&rr->rr_mtime);
2129         __swab64s(&rr->rr_atime);
2130         __swab64s(&rr->rr_ctime);
2131         __swab64s(&rr->rr_size);
2132         __swab64s(&rr->rr_blocks);
2133         __swab32s(&rr->rr_bias);
2134         __swab32s(&rr->rr_mode);
2135         __swab32s(&rr->rr_flags);
2136         __swab32s(&rr->rr_flags_h);
2137         __swab32s(&rr->rr_umask);
2138         __swab16s(&rr->rr_mirror_id);
2139
2140         CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2141 };
2142
2143 void lustre_swab_lov_desc (struct lov_desc *ld)
2144 {
2145         __swab32s (&ld->ld_tgt_count);
2146         __swab32s (&ld->ld_active_tgt_count);
2147         __swab32s (&ld->ld_default_stripe_count);
2148         __swab32s (&ld->ld_pattern);
2149         __swab64s (&ld->ld_default_stripe_size);
2150         __swab64s (&ld->ld_default_stripe_offset);
2151         __swab32s (&ld->ld_qos_maxage);
2152         /* uuid endian insensitive */
2153 }
2154 EXPORT_SYMBOL(lustre_swab_lov_desc);
2155
2156 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2157 {
2158         __swab32s (&ld->ld_tgt_count);
2159         __swab32s (&ld->ld_active_tgt_count);
2160         __swab32s (&ld->ld_default_stripe_count);
2161         __swab32s (&ld->ld_pattern);
2162         __swab64s (&ld->ld_default_hash_size);
2163         __swab32s (&ld->ld_qos_maxage);
2164         /* uuid endian insensitive */
2165 }
2166
2167 /* This structure is always in little-endian */
2168 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2169 {
2170         int i;
2171
2172         __swab32s(&lmm1->lmv_magic);
2173         __swab32s(&lmm1->lmv_stripe_count);
2174         __swab32s(&lmm1->lmv_master_mdt_index);
2175         __swab32s(&lmm1->lmv_hash_type);
2176         __swab32s(&lmm1->lmv_layout_version);
2177         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2178                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2179 }
2180
2181 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2182 {
2183         switch (lmm->lmv_magic) {
2184         case LMV_MAGIC_V1:
2185                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2186                 break;
2187         default:
2188                 break;
2189         }
2190 }
2191 EXPORT_SYMBOL(lustre_swab_lmv_mds_md);
2192
2193 void lustre_swab_lmv_user_md_objects(struct lmv_user_mds_data *lmd,
2194                                      int stripe_count)
2195 {
2196         int i;
2197
2198         for (i = 0; i < stripe_count; i++)
2199                 __swab32s(&(lmd[i].lum_mds));
2200 }
2201 EXPORT_SYMBOL(lustre_swab_lmv_user_md_objects);
2202
2203
2204 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2205 {
2206         __u32 count;
2207
2208         if (lum->lum_magic == LMV_MAGIC_FOREIGN) {
2209                 __swab32s(&lum->lum_magic);
2210                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_length);
2211                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_type);
2212                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_flags);
2213                 return;
2214         }
2215
2216         count = lum->lum_stripe_count;
2217         __swab32s(&lum->lum_magic);
2218         __swab32s(&lum->lum_stripe_count);
2219         __swab32s(&lum->lum_stripe_offset);
2220         __swab32s(&lum->lum_hash_type);
2221         __swab32s(&lum->lum_type);
2222         CLASSERT(offsetof(typeof(*lum), lum_padding1) != 0);
2223         switch (lum->lum_magic) {
2224         case LMV_USER_MAGIC_SPECIFIC:
2225                 count = lum->lum_stripe_count;
2226                 /* fallthrough */
2227         case __swab32(LMV_USER_MAGIC_SPECIFIC):
2228                 lustre_swab_lmv_user_md_objects(lum->lum_objects, count);
2229                 break;
2230         default:
2231                 break;
2232         }
2233 }
2234 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2235
2236 static void lustre_print_v1v3(unsigned int lvl, struct lov_user_md *lum,
2237                               const char *msg)
2238 {
2239         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2240         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2241         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2242         CDEBUG(lvl, "\tlmm_object_id: %llu\n", lmm_oi_id(&lum->lmm_oi));
2243         CDEBUG(lvl, "\tlmm_object_gr: %llu\n", lmm_oi_seq(&lum->lmm_oi));
2244         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2245         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2246         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2247                lum->lmm_stripe_offset);
2248         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2249                 struct lov_user_md_v3 *v3 = (void *)lum;
2250                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2251         }
2252         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2253                 struct lov_user_md_v3 *v3 = (void *)lum;
2254                 int i;
2255
2256                 if (v3->lmm_pool_name[0] != '\0')
2257                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2258
2259                 CDEBUG(lvl, "\ttarget list:\n");
2260                 for (i = 0; i < v3->lmm_stripe_count; i++)
2261                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2262         }
2263 }
2264
2265 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2266                           const char *msg)
2267 {
2268         struct lov_comp_md_v1   *comp_v1;
2269         int                      i;
2270
2271         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2272                 return;
2273
2274         if (lum->lmm_magic == LOV_USER_MAGIC_V1 ||
2275             lum->lmm_magic == LOV_USER_MAGIC_V3) {
2276                 lustre_print_v1v3(lvl, lum, msg);
2277                 return;
2278         }
2279
2280         if (lum->lmm_magic != LOV_USER_MAGIC_COMP_V1) {
2281                 CDEBUG(lvl, "%s: bad magic: %x\n", msg, lum->lmm_magic);
2282                 return;
2283         }
2284
2285         comp_v1 = (struct lov_comp_md_v1 *)lum;
2286         CDEBUG(lvl, "%s: lov_comp_md_v1 %p:\n", msg, lum);
2287         CDEBUG(lvl, "\tlcm_magic: %#x\n", comp_v1->lcm_magic);
2288         CDEBUG(lvl, "\tlcm_size: %#x\n", comp_v1->lcm_size);
2289         CDEBUG(lvl, "\tlcm_layout_gen: %#x\n", comp_v1->lcm_layout_gen);
2290         CDEBUG(lvl, "\tlcm_flags: %#x\n", comp_v1->lcm_flags);
2291         CDEBUG(lvl, "\tlcm_entry_count: %#x\n\n", comp_v1->lcm_entry_count);
2292         CDEBUG(lvl, "\tlcm_mirror_count: %#x\n\n", comp_v1->lcm_mirror_count);
2293
2294         for (i = 0; i < comp_v1->lcm_entry_count; i++) {
2295                 struct lov_comp_md_entry_v1 *ent = &comp_v1->lcm_entries[i];
2296                 struct lov_user_md *v1;
2297
2298                 CDEBUG(lvl, "\tentry %d:\n", i);
2299                 CDEBUG(lvl, "\tlcme_id: %#x\n", ent->lcme_id);
2300                 CDEBUG(lvl, "\tlcme_flags: %#x\n", ent->lcme_flags);
2301                 if (ent->lcme_flags & LCME_FL_NOSYNC)
2302                         CDEBUG(lvl, "\tlcme_timestamp: %llu\n",
2303                                         ent->lcme_timestamp);
2304                 CDEBUG(lvl, "\tlcme_extent.e_start: %llu\n",
2305                        ent->lcme_extent.e_start);
2306                 CDEBUG(lvl, "\tlcme_extent.e_end: %llu\n",
2307                        ent->lcme_extent.e_end);
2308                 CDEBUG(lvl, "\tlcme_offset: %#x\n", ent->lcme_offset);
2309                 CDEBUG(lvl, "\tlcme_size: %#x\n\n", ent->lcme_size);
2310
2311                 v1 = (struct lov_user_md *)((char *)comp_v1 +
2312                                 comp_v1->lcm_entries[i].lcme_offset);
2313                 lustre_print_v1v3(lvl, v1, msg);
2314         }
2315 }
2316 EXPORT_SYMBOL(lustre_print_user_md);
2317
2318 static void lustre_swab_lmm_oi(struct ost_id *oi)
2319 {
2320         __swab64s(&oi->oi.oi_id);
2321         __swab64s(&oi->oi.oi_seq);
2322 }
2323
2324 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2325 {
2326         ENTRY;
2327         __swab32s(&lum->lmm_magic);
2328         __swab32s(&lum->lmm_pattern);
2329         lustre_swab_lmm_oi(&lum->lmm_oi);
2330         __swab32s(&lum->lmm_stripe_size);
2331         __swab16s(&lum->lmm_stripe_count);
2332         __swab16s(&lum->lmm_stripe_offset);
2333         EXIT;
2334 }
2335
2336 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2337 {
2338         ENTRY;
2339         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2340         lustre_swab_lov_user_md_common(lum);
2341         EXIT;
2342 }
2343 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2344
2345 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2346 {
2347         ENTRY;
2348         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2349         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2350         /* lmm_pool_name nothing to do with char */
2351         EXIT;
2352 }
2353 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2354
2355 void lustre_swab_lov_comp_md_v1(struct lov_comp_md_v1 *lum)
2356 {
2357         struct lov_comp_md_entry_v1     *ent;
2358         struct lov_user_md_v1   *v1;
2359         struct lov_user_md_v3   *v3;
2360         int     i;
2361         bool    cpu_endian;
2362         __u32   off, size;
2363         __u16   ent_count, stripe_count;
2364         ENTRY;
2365
2366         cpu_endian = lum->lcm_magic == LOV_USER_MAGIC_COMP_V1;
2367         ent_count = lum->lcm_entry_count;
2368         if (!cpu_endian)
2369                 __swab16s(&ent_count);
2370
2371         CDEBUG(D_IOCTL, "swabbing lov_user_comp_md v1\n");
2372         __swab32s(&lum->lcm_magic);
2373         __swab32s(&lum->lcm_size);
2374         __swab32s(&lum->lcm_layout_gen);
2375         __swab16s(&lum->lcm_flags);
2376         __swab16s(&lum->lcm_entry_count);
2377         __swab16s(&lum->lcm_mirror_count);
2378         CLASSERT(offsetof(typeof(*lum), lcm_padding1) != 0);
2379         CLASSERT(offsetof(typeof(*lum), lcm_padding2) != 0);
2380
2381         for (i = 0; i < ent_count; i++) {
2382                 ent = &lum->lcm_entries[i];
2383                 off = ent->lcme_offset;
2384                 size = ent->lcme_size;
2385
2386                 if (!cpu_endian) {
2387                         __swab32s(&off);
2388                         __swab32s(&size);
2389                 }
2390                 __swab32s(&ent->lcme_id);
2391                 __swab32s(&ent->lcme_flags);
2392                 __swab64s(&ent->lcme_timestamp);
2393                 __swab64s(&ent->lcme_extent.e_start);
2394                 __swab64s(&ent->lcme_extent.e_end);
2395                 __swab32s(&ent->lcme_offset);
2396                 __swab32s(&ent->lcme_size);
2397                 __swab32s(&ent->lcme_layout_gen);
2398                 CLASSERT(offsetof(typeof(*ent), lcme_padding_1) != 0);
2399
2400                 v1 = (struct lov_user_md_v1 *)((char *)lum + off);
2401                 stripe_count = v1->lmm_stripe_count;
2402                 if (!cpu_endian)
2403                         __swab16s(&stripe_count);
2404
2405                 if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V1) ||
2406                     v1->lmm_magic == LOV_USER_MAGIC_V1) {
2407                         lustre_swab_lov_user_md_v1(v1);
2408                         if (size > sizeof(*v1))
2409                                 lustre_swab_lov_user_md_objects(v1->lmm_objects,
2410                                                                 stripe_count);
2411                 } else if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V3) ||
2412                            v1->lmm_magic == LOV_USER_MAGIC_V3 ||
2413                            v1->lmm_magic == __swab32(LOV_USER_MAGIC_SPECIFIC) ||
2414                            v1->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2415                         v3 = (struct lov_user_md_v3 *)v1;
2416                         lustre_swab_lov_user_md_v3(v3);
2417                         if (size > sizeof(*v3))
2418                                 lustre_swab_lov_user_md_objects(v3->lmm_objects,
2419                                                                 stripe_count);
2420                 } else {
2421                         CERROR("Invalid magic %#x\n", v1->lmm_magic);
2422                 }
2423         }
2424 }
2425 EXPORT_SYMBOL(lustre_swab_lov_comp_md_v1);
2426
2427 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2428                                      int stripe_count)
2429 {
2430         int i;
2431         ENTRY;
2432         for (i = 0; i < stripe_count; i++) {
2433                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2434                 __swab32s(&(lod[i].l_ost_gen));
2435                 __swab32s(&(lod[i].l_ost_idx));
2436         }
2437         EXIT;
2438 }
2439 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2440
2441 void lustre_swab_lov_user_md(struct lov_user_md *lum, size_t size)
2442 {
2443         struct lov_user_md_v1 *v1;
2444         struct lov_user_md_v3 *v3;
2445         struct lov_foreign_md *lfm;
2446         __u16 stripe_count;
2447         ENTRY;
2448
2449         CDEBUG(D_IOCTL, "swabbing lov_user_md\n");
2450         switch (lum->lmm_magic) {
2451         case __swab32(LOV_MAGIC_V1):
2452         case LOV_USER_MAGIC_V1:
2453         {
2454                 v1 = (struct lov_user_md_v1 *)lum;
2455                 stripe_count = v1->lmm_stripe_count;
2456
2457                 if (lum->lmm_magic != LOV_USER_MAGIC_V1)
2458                         __swab16s(&stripe_count);
2459
2460                 lustre_swab_lov_user_md_v1(v1);
2461                 if (size > sizeof(*v1))
2462                         lustre_swab_lov_user_md_objects(v1->lmm_objects,
2463                                                         stripe_count);
2464
2465                 break;
2466         }
2467         case __swab32(LOV_MAGIC_V3):
2468         case LOV_USER_MAGIC_V3:
2469         {
2470                 v3 = (struct lov_user_md_v3 *)lum;
2471                 stripe_count = v3->lmm_stripe_count;
2472
2473                 if (lum->lmm_magic != LOV_USER_MAGIC_V3)
2474                         __swab16s(&stripe_count);
2475
2476                 lustre_swab_lov_user_md_v3(v3);
2477                 if (size > sizeof(*v3))
2478                         lustre_swab_lov_user_md_objects(v3->lmm_objects,
2479                                                         stripe_count);
2480                 break;
2481         }
2482         case __swab32(LOV_USER_MAGIC_SPECIFIC):
2483         case LOV_USER_MAGIC_SPECIFIC:
2484         {
2485                 v3 = (struct lov_user_md_v3 *)lum;
2486                 stripe_count = v3->lmm_stripe_count;
2487
2488                 if (lum->lmm_magic != LOV_USER_MAGIC_SPECIFIC)
2489                         __swab16s(&stripe_count);
2490
2491                 lustre_swab_lov_user_md_v3(v3);
2492                 lustre_swab_lov_user_md_objects(v3->lmm_objects, stripe_count);
2493                 break;
2494         }
2495         case __swab32(LOV_MAGIC_COMP_V1):
2496         case LOV_USER_MAGIC_COMP_V1:
2497                 lustre_swab_lov_comp_md_v1((struct lov_comp_md_v1 *)lum);
2498                 break;
2499         case __swab32(LOV_MAGIC_FOREIGN):
2500         case LOV_USER_MAGIC_FOREIGN:
2501         {
2502                 lfm = (struct lov_foreign_md *)lum;
2503                 __swab32s(&lfm->lfm_magic);
2504                 __swab32s(&lfm->lfm_length);
2505                 __swab32s(&lfm->lfm_type);
2506                 __swab32s(&lfm->lfm_flags);
2507                 break;
2508         }
2509         default:
2510                 CDEBUG(D_IOCTL, "Invalid LOV magic %08x\n", lum->lmm_magic);
2511         }
2512 }
2513 EXPORT_SYMBOL(lustre_swab_lov_user_md);
2514
2515 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2516 {
2517         ENTRY;
2518         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2519         __swab32s(&lmm->lmm_magic);
2520         __swab32s(&lmm->lmm_pattern);
2521         lustre_swab_lmm_oi(&lmm->lmm_oi);
2522         __swab32s(&lmm->lmm_stripe_size);
2523         __swab16s(&lmm->lmm_stripe_count);
2524         __swab16s(&lmm->lmm_layout_gen);
2525         EXIT;
2526 }
2527 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2528
2529 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2530 {
2531         int  i;
2532
2533         for (i = 0; i < RES_NAME_SIZE; i++)
2534                 __swab64s (&id->name[i]);
2535 }
2536
2537 void lustre_swab_ldlm_policy_data(union ldlm_wire_policy_data *d)
2538 {
2539         /* the lock data is a union and the first two fields are always an
2540          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2541          * data the same way. */
2542         __swab64s(&d->l_extent.start);
2543         __swab64s(&d->l_extent.end);
2544         __swab64s(&d->l_extent.gid);
2545         __swab64s(&d->l_flock.lfw_owner);
2546         __swab32s(&d->l_flock.lfw_pid);
2547 }
2548
2549 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2550 {
2551         __swab64s(&i->opc);
2552 }
2553
2554 void lustre_swab_ldlm_resource_desc(struct ldlm_resource_desc *r)
2555 {
2556         __swab32s(&r->lr_type);
2557         CLASSERT(offsetof(typeof(*r), lr_pad) != 0);
2558         lustre_swab_ldlm_res_id(&r->lr_name);
2559 }
2560
2561 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2562 {
2563         lustre_swab_ldlm_resource_desc (&l->l_resource);
2564         __swab32s (&l->l_req_mode);
2565         __swab32s (&l->l_granted_mode);
2566         lustre_swab_ldlm_policy_data (&l->l_policy_data);
2567 }
2568
2569 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2570 {
2571         __swab32s (&rq->lock_flags);
2572         lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2573         __swab32s (&rq->lock_count);
2574         /* lock_handle[] opaque */
2575 }
2576
2577 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2578 {
2579         __swab32s (&r->lock_flags);
2580         CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2581         lustre_swab_ldlm_lock_desc (&r->lock_desc);
2582         /* lock_handle opaque */
2583         __swab64s (&r->lock_policy_res1);
2584         __swab64s (&r->lock_policy_res2);
2585 }
2586
2587 void lustre_swab_quota_body(struct quota_body *b)
2588 {
2589         lustre_swab_lu_fid(&b->qb_fid);
2590         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2591         __swab32s(&b->qb_flags);
2592         __swab64s(&b->qb_count);
2593         __swab64s(&b->qb_usage);
2594         __swab64s(&b->qb_slv_ver);
2595 }
2596
2597 /* Dump functions */
2598 void dump_ioo(struct obd_ioobj *ioo)
2599 {
2600         CDEBUG(D_RPCTRACE,
2601                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2602                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2603                ioo->ioo_bufcnt);
2604 }
2605
2606 void dump_rniobuf(struct niobuf_remote *nb)
2607 {
2608         CDEBUG(D_RPCTRACE, "niobuf_remote: offset=%llu, len=%d, flags=%x\n",
2609                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2610 }
2611
2612 void dump_obdo(struct obdo *oa)
2613 {
2614         u64 valid = oa->o_valid;
2615
2616         CDEBUG(D_RPCTRACE, "obdo: o_valid = %#llx\n", valid);
2617         if (valid & OBD_MD_FLID)
2618                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2619         if (valid & OBD_MD_FLFID)
2620                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = %#llx\n",
2621                        oa->o_parent_seq);
2622         if (valid & OBD_MD_FLSIZE)
2623                 CDEBUG(D_RPCTRACE, "obdo: o_size = %lld\n", oa->o_size);
2624         if (valid & OBD_MD_FLMTIME)
2625                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = %lld\n", oa->o_mtime);
2626         if (valid & OBD_MD_FLATIME)
2627                 CDEBUG(D_RPCTRACE, "obdo: o_atime = %lld\n", oa->o_atime);
2628         if (valid & OBD_MD_FLCTIME)
2629                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = %lld\n", oa->o_ctime);
2630         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2631                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = %lld\n", oa->o_blocks);
2632         if (valid & OBD_MD_FLGRANT)
2633                 CDEBUG(D_RPCTRACE, "obdo: o_grant = %lld\n", oa->o_grant);
2634         if (valid & OBD_MD_FLBLKSZ)
2635                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2636         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2637                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2638                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2639                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2640         if (valid & OBD_MD_FLUID)
2641                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2642         if (valid & OBD_MD_FLUID)
2643                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2644         if (valid & OBD_MD_FLGID)
2645                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2646         if (valid & OBD_MD_FLGID)
2647                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2648         if (valid & OBD_MD_FLFLAGS)
2649                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2650         if (valid & OBD_MD_FLNLINK)
2651                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2652         else if (valid & OBD_MD_FLCKSUM)
2653                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2654                        oa->o_nlink);
2655         if (valid & OBD_MD_FLPARENT)
2656                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2657                        oa->o_parent_oid);
2658         if (valid & OBD_MD_FLFID) {
2659                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2660                        oa->o_stripe_idx);
2661                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2662                        oa->o_parent_ver);
2663         }
2664         if (valid & OBD_MD_FLHANDLE)
2665                 CDEBUG(D_RPCTRACE, "obdo: o_handle = %lld\n",
2666                        oa->o_handle.cookie);
2667 }
2668
2669 void dump_ost_body(struct ost_body *ob)
2670 {
2671         dump_obdo(&ob->oa);
2672 }
2673
2674 void dump_rcs(__u32 *rc)
2675 {
2676         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2677 }
2678
2679 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2680 {
2681         LASSERT(req->rq_reqmsg);
2682
2683         switch (req->rq_reqmsg->lm_magic) {
2684         case LUSTRE_MSG_MAGIC_V2:
2685                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2686         default:
2687                 CERROR("bad lustre msg magic: %#08X\n",
2688                        req->rq_reqmsg->lm_magic);
2689         }
2690         return 0;
2691 }
2692
2693 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2694 {
2695         if (unlikely(!req->rq_repmsg))
2696                 return 0;
2697
2698         switch (req->rq_repmsg->lm_magic) {
2699         case LUSTRE_MSG_MAGIC_V2:
2700                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2701         default:
2702                 /* uninitialized yet */
2703                 return 0;
2704         }
2705 }
2706
2707 void _debug_req(struct ptlrpc_request *req,
2708                 struct libcfs_debug_msg_data *msgdata, const char *fmt, ...)
2709 {
2710         bool req_ok = req->rq_reqmsg != NULL;
2711         bool rep_ok = false;
2712         lnet_nid_t nid = LNET_NID_ANY;
2713         struct va_format vaf;
2714         va_list args;
2715         int rep_flags = -1;
2716         int rep_status = -1;
2717
2718         spin_lock(&req->rq_early_free_lock);
2719         if (req->rq_repmsg)
2720                 rep_ok = true;
2721
2722         if (ptlrpc_req_need_swab(req)) {
2723                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2724                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2725         }
2726
2727         if (rep_ok) {
2728                 rep_flags = lustre_msg_get_flags(req->rq_repmsg);
2729                 rep_status = lustre_msg_get_status(req->rq_repmsg);
2730         }
2731         spin_unlock(&req->rq_early_free_lock);
2732
2733         if (req->rq_import && req->rq_import->imp_connection)
2734                 nid = req->rq_import->imp_connection->c_peer.nid;
2735         else if (req->rq_export && req->rq_export->exp_connection)
2736                 nid = req->rq_export->exp_connection->c_peer.nid;
2737
2738         va_start(args, fmt);
2739         vaf.fmt = fmt;
2740         vaf.va = &args;
2741         libcfs_debug_msg(msgdata,
2742                          "%pV req@%p x%llu/t%lld(%lld) o%d->%s@%s:%d/%d lens %d/%d e %d to %lld dl %lld ref %d fl " REQ_FLAGS_FMT "/%x/%x rc %d/%d job:'%s'\n",
2743                          &vaf,
2744                          req, req->rq_xid, req->rq_transno,
2745                          req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2746                          req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2747                          req->rq_import ?
2748                          req->rq_import->imp_obd->obd_name :
2749                          req->rq_export ?
2750                          req->rq_export->exp_client_uuid.uuid :
2751                          "<?>",
2752                          libcfs_nid2str(nid),
2753                          req->rq_request_portal, req->rq_reply_portal,
2754                          req->rq_reqlen, req->rq_replen,
2755                          req->rq_early_count, (s64)req->rq_timedout,
2756                          (s64)req->rq_deadline,
2757                          atomic_read(&req->rq_refcount),
2758                          DEBUG_REQ_FLAGS(req),
2759                          req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2760                          rep_flags, req->rq_status, rep_status,
2761                          req_ok ? lustre_msg_get_jobid(req->rq_reqmsg) ?: ""
2762                                 : "");
2763         va_end(args);
2764 }
2765 EXPORT_SYMBOL(_debug_req);
2766
2767 void lustre_swab_lustre_capa(struct lustre_capa *c)
2768 {
2769         lustre_swab_lu_fid(&c->lc_fid);
2770         __swab64s (&c->lc_opc);
2771         __swab64s (&c->lc_uid);
2772         __swab64s (&c->lc_gid);
2773         __swab32s (&c->lc_flags);
2774         __swab32s (&c->lc_keyid);
2775         __swab32s (&c->lc_timeout);
2776         __swab32s (&c->lc_expiry);
2777 }
2778
2779 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2780 {
2781         __swab64s (&k->lk_seq);
2782         __swab32s (&k->lk_keyid);
2783         CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2784 }
2785
2786 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2787 {
2788         __swab32s(&state->hus_states);
2789         __swab32s(&state->hus_archive_id);
2790 }
2791
2792 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2793 {
2794         __swab32s(&hss->hss_valid);
2795         __swab64s(&hss->hss_setmask);
2796         __swab64s(&hss->hss_clearmask);
2797         __swab32s(&hss->hss_archive_id);
2798 }
2799
2800 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2801 {
2802         __swab64s(&extent->offset);
2803         __swab64s(&extent->length);
2804 }
2805
2806 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2807 {
2808         __swab32s(&action->hca_state);
2809         __swab32s(&action->hca_action);
2810         lustre_swab_hsm_extent(&action->hca_location);
2811 }
2812
2813 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2814 {
2815         lustre_swab_lu_fid(&hui->hui_fid);
2816         lustre_swab_hsm_extent(&hui->hui_extent);
2817 }
2818
2819 void lustre_swab_lu_extent(struct lu_extent *le)
2820 {
2821         __swab64s(&le->e_start);
2822         __swab64s(&le->e_end);
2823 }
2824
2825 void lustre_swab_layout_intent(struct layout_intent *li)
2826 {
2827         __swab32s(&li->li_opc);
2828         __swab32s(&li->li_flags);
2829         lustre_swab_lu_extent(&li->li_extent);
2830 }
2831
2832 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2833 {
2834         lustre_swab_lu_fid(&hpk->hpk_fid);
2835         __swab64s(&hpk->hpk_cookie);
2836         __swab64s(&hpk->hpk_extent.offset);
2837         __swab64s(&hpk->hpk_extent.length);
2838         __swab16s(&hpk->hpk_flags);
2839         __swab16s(&hpk->hpk_errval);
2840 }
2841
2842 void lustre_swab_hsm_request(struct hsm_request *hr)
2843 {
2844         __swab32s(&hr->hr_action);
2845         __swab32s(&hr->hr_archive_id);
2846         __swab64s(&hr->hr_flags);
2847         __swab32s(&hr->hr_itemcount);
2848         __swab32s(&hr->hr_data_len);
2849 }
2850
2851 void lustre_swab_object_update(struct object_update *ou)
2852 {
2853         struct object_update_param *param;
2854         size_t  i;
2855
2856         __swab16s(&ou->ou_type);
2857         __swab16s(&ou->ou_params_count);
2858         __swab32s(&ou->ou_result_size);
2859         __swab32s(&ou->ou_flags);
2860         __swab32s(&ou->ou_padding1);
2861         __swab64s(&ou->ou_batchid);
2862         lustre_swab_lu_fid(&ou->ou_fid);
2863         param = &ou->ou_params[0];
2864         for (i = 0; i < ou->ou_params_count; i++) {
2865                 __swab16s(&param->oup_len);
2866                 __swab16s(&param->oup_padding);
2867                 __swab32s(&param->oup_padding2);
2868                 param = (struct object_update_param *)((char *)param +
2869                          object_update_param_size(param));
2870         }
2871 }
2872
2873 void lustre_swab_object_update_request(struct object_update_request *our)
2874 {
2875         size_t i;
2876         __swab32s(&our->ourq_magic);
2877         __swab16s(&our->ourq_count);
2878         __swab16s(&our->ourq_padding);
2879         for (i = 0; i < our->ourq_count; i++) {
2880                 struct object_update *ou;
2881
2882                 ou = object_update_request_get(our, i, NULL);
2883                 if (ou == NULL)
2884                         return;
2885                 lustre_swab_object_update(ou);
2886         }
2887 }
2888
2889 void lustre_swab_object_update_result(struct object_update_result *our)
2890 {
2891         __swab32s(&our->our_rc);
2892         __swab16s(&our->our_datalen);
2893         __swab16s(&our->our_padding);
2894 }
2895
2896 void lustre_swab_object_update_reply(struct object_update_reply *our)
2897 {
2898         size_t i;
2899
2900         __swab32s(&our->ourp_magic);
2901         __swab16s(&our->ourp_count);
2902         __swab16s(&our->ourp_padding);
2903         for (i = 0; i < our->ourp_count; i++) {
2904                 struct object_update_result *ourp;
2905
2906                 __swab16s(&our->ourp_lens[i]);
2907                 ourp = object_update_result_get(our, i, NULL);
2908                 if (ourp == NULL)
2909                         return;
2910                 lustre_swab_object_update_result(ourp);
2911         }
2912 }
2913
2914 void lustre_swab_out_update_header(struct out_update_header *ouh)
2915 {
2916         __swab32s(&ouh->ouh_magic);
2917         __swab32s(&ouh->ouh_count);
2918         __swab32s(&ouh->ouh_inline_length);
2919         __swab32s(&ouh->ouh_reply_size);
2920 }
2921 EXPORT_SYMBOL(lustre_swab_out_update_header);
2922
2923 void lustre_swab_out_update_buffer(struct out_update_buffer *oub)
2924 {
2925         __swab32s(&oub->oub_size);
2926         __swab32s(&oub->oub_padding);
2927 }
2928 EXPORT_SYMBOL(lustre_swab_out_update_buffer);
2929
2930 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2931 {
2932         __swab64s(&msl->msl_flags);
2933 }
2934
2935 void lustre_swab_close_data(struct close_data *cd)
2936 {
2937         lustre_swab_lu_fid(&cd->cd_fid);
2938         __swab64s(&cd->cd_data_version);
2939 }
2940
2941 void lustre_swab_close_data_resync_done(struct close_data_resync_done *resync)
2942 {
2943         int i;
2944
2945         __swab32s(&resync->resync_count);
2946         /* after swab, resync_count must in CPU endian */
2947         if (resync->resync_count <= INLINE_RESYNC_ARRAY_SIZE) {
2948                 for (i = 0; i < resync->resync_count; i++)
2949                         __swab32s(&resync->resync_ids_inline[i]);
2950         }
2951 }
2952 EXPORT_SYMBOL(lustre_swab_close_data_resync_done);
2953
2954 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2955 {
2956         __swab32s(&lr->lr_event);
2957         __swab32s(&lr->lr_index);
2958         __swab32s(&lr->lr_flags);
2959         __swab32s(&lr->lr_valid);
2960         __swab32s(&lr->lr_speed);
2961         __swab16s(&lr->lr_version);
2962         __swab16s(&lr->lr_active);
2963         __swab16s(&lr->lr_param);
2964         __swab16s(&lr->lr_async_windows);
2965         __swab32s(&lr->lr_flags);
2966         lustre_swab_lu_fid(&lr->lr_fid);
2967         lustre_swab_lu_fid(&lr->lr_fid2);
2968         __swab32s(&lr->lr_comp_id);
2969         CLASSERT(offsetof(typeof(*lr), lr_padding_0) != 0);
2970         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2971         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2972         CLASSERT(offsetof(typeof(*lr), lr_padding_3) != 0);
2973 }
2974
2975 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2976 {
2977         __swab32s(&lr->lr_status);
2978         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2979         __swab64s(&lr->lr_repaired);
2980 }
2981
2982 static void lustre_swab_orphan_rec(struct lu_orphan_rec *rec)
2983 {
2984         lustre_swab_lu_fid(&rec->lor_fid);
2985         __swab32s(&rec->lor_uid);
2986         __swab32s(&rec->lor_gid);
2987 }
2988
2989 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2990 {
2991         lustre_swab_lu_fid(&ent->loe_key);
2992         lustre_swab_orphan_rec(&ent->loe_rec);
2993 }
2994 EXPORT_SYMBOL(lustre_swab_orphan_ent);
2995
2996 void lustre_swab_orphan_ent_v2(struct lu_orphan_ent_v2 *ent)
2997 {
2998         lustre_swab_lu_fid(&ent->loe_key);
2999         lustre_swab_orphan_rec(&ent->loe_rec.lor_rec);
3000         lustre_swab_ost_layout(&ent->loe_rec.lor_layout);
3001         CLASSERT(offsetof(typeof(ent->loe_rec), lor_padding) != 0);
3002 }
3003 EXPORT_SYMBOL(lustre_swab_orphan_ent_v2);
3004
3005 void lustre_swab_orphan_ent_v3(struct lu_orphan_ent_v3 *ent)
3006 {
3007         lustre_swab_lu_fid(&ent->loe_key);
3008         lustre_swab_orphan_rec(&ent->loe_rec.lor_rec);
3009         lustre_swab_ost_layout(&ent->loe_rec.lor_layout);
3010         __swab32s(&ent->loe_rec.lor_layout_version);
3011         __swab32s(&ent->loe_rec.lor_range);
3012         CLASSERT(offsetof(typeof(ent->loe_rec), lor_padding_1) != 0);
3013         CLASSERT(offsetof(typeof(ent->loe_rec), lor_padding_2) != 0);
3014 }
3015 EXPORT_SYMBOL(lustre_swab_orphan_ent_v3);
3016
3017 void lustre_swab_ladvise(struct lu_ladvise *ladvise)
3018 {
3019         __swab16s(&ladvise->lla_advice);
3020         __swab16s(&ladvise->lla_value1);
3021         __swab32s(&ladvise->lla_value2);
3022         __swab64s(&ladvise->lla_start);
3023         __swab64s(&ladvise->lla_end);
3024         __swab32s(&ladvise->lla_value3);
3025         __swab32s(&ladvise->lla_value4);
3026 }
3027 EXPORT_SYMBOL(lustre_swab_ladvise);
3028
3029 void lustre_swab_ladvise_hdr(struct ladvise_hdr *ladvise_hdr)
3030 {
3031         __swab32s(&ladvise_hdr->lah_magic);
3032         __swab32s(&ladvise_hdr->lah_count);
3033         __swab64s(&ladvise_hdr->lah_flags);
3034         __swab32s(&ladvise_hdr->lah_value1);
3035         __swab32s(&ladvise_hdr->lah_value2);
3036         __swab64s(&ladvise_hdr->lah_value3);
3037 }
3038 EXPORT_SYMBOL(lustre_swab_ladvise_hdr);