Whamcloud - gitweb
199383cd6e8e3811a4a4dfbb8b61e5d1b937a2b5
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2015, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/pack_generic.c
37  *
38  * (Un)packing of OST requests
39  *
40  * Author: Peter J. Braam <braam@clusterfs.com>
41  * Author: Phil Schwan <phil@clusterfs.com>
42  * Author: Eric Barton <eeb@clusterfs.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_RPC
46
47 #include <libcfs/libcfs.h>
48
49 #include <lustre/ll_fiemap.h>
50
51 #include <llog_swab.h>
52 #include <lustre_net.h>
53 #include <lustre_swab.h>
54 #include <obd_cksum.h>
55 #include <obd_class.h>
56 #include <obd_support.h>
57 #include <obj_update.h>
58
59 #include "ptlrpc_internal.h"
60
61 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
62 {
63         return cfs_size_round(offsetof(struct lustre_msg_v2,
64                                        lm_buflens[count]));
65 }
66
67 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
68 {
69         switch (magic) {
70         case LUSTRE_MSG_MAGIC_V2:
71                 return lustre_msg_hdr_size_v2(count);
72         default:
73                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
74                 return 0;
75         }
76 }
77
78 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
79                             __u32 index)
80 {
81         if (inout)
82                 lustre_set_req_swabbed(req, index);
83         else
84                 lustre_set_rep_swabbed(req, index);
85 }
86
87 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
88                          __u32 index)
89 {
90         if (inout)
91                 return (ptlrpc_req_need_swab(req) &&
92                         !lustre_req_swabbed(req, index));
93         else
94                 return (ptlrpc_rep_need_swab(req) &&
95                         !lustre_rep_swabbed(req, index));
96 }
97
98 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
99                                                 __u32 version)
100 {
101         __u32 ver = lustre_msg_get_version(msg);
102         return (ver & LUSTRE_VERSION_MASK) != version;
103 }
104
105 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version)
106 {
107 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
108         switch (msg->lm_magic) {
109         case LUSTRE_MSG_MAGIC_V1:
110                 CERROR("msg v1 not supported - please upgrade you system\n");
111                 return -EINVAL;
112         case LUSTRE_MSG_MAGIC_V2:
113                 return lustre_msg_check_version_v2(msg, version);
114         default:
115                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
116                 return -EPROTO;
117         }
118 #undef LUSTRE_MSG_MAGIC_V1
119 }
120
121 /* early reply size */
122 __u32 lustre_msg_early_size()
123 {
124         static __u32 size;
125         if (!size) {
126                 /* Always reply old ptlrpc_body_v2 to keep interoprability
127                  * with the old client (< 2.3) which doesn't have pb_jobid
128                  * in the ptlrpc_body.
129                  *
130                  * XXX Remove this whenever we dorp interoprability with such
131                  *     client.
132                  */
133                 __u32 pblen = sizeof(struct ptlrpc_body_v2);
134                 size = lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
135         }
136         return size;
137 }
138 EXPORT_SYMBOL(lustre_msg_early_size);
139
140 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
141 {
142         __u32 size;
143         int i;
144
145         size = lustre_msg_hdr_size_v2(count);
146         for (i = 0; i < count; i++)
147                 size += cfs_size_round(lengths[i]);
148
149         return size;
150 }
151 EXPORT_SYMBOL(lustre_msg_size_v2);
152
153 /* This returns the size of the buffer that is required to hold a lustre_msg
154  * with the given sub-buffer lengths.
155  * NOTE: this should only be used for NEW requests, and should always be
156  *       in the form of a v2 request.  If this is a connection to a v1
157  *       target then the first buffer will be stripped because the ptlrpc
158  *       data is part of the lustre_msg_v1 header. b=14043 */
159 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
160 {
161         __u32 size[] = { sizeof(struct ptlrpc_body) };
162
163         if (!lens) {
164                 LASSERT(count == 1);
165                 lens = size;
166         }
167
168         LASSERT(count > 0);
169         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
170
171         switch (magic) {
172         case LUSTRE_MSG_MAGIC_V2:
173                 return lustre_msg_size_v2(count, lens);
174         default:
175                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
176                 return 0;
177         }
178 }
179
180 /* This is used to determine the size of a buffer that was already packed
181  * and will correctly handle the different message formats. */
182 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
183 {
184         switch (msg->lm_magic) {
185         case LUSTRE_MSG_MAGIC_V2:
186                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
187         default:
188                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
189                 return 0;
190         }
191 }
192
193 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
194                         char **bufs)
195 {
196         char *ptr;
197         int i;
198
199         msg->lm_bufcount = count;
200         /* XXX: lm_secflvr uninitialized here */
201         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
202
203         for (i = 0; i < count; i++)
204                 msg->lm_buflens[i] = lens[i];
205
206         if (bufs == NULL)
207                 return;
208
209         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
210         for (i = 0; i < count; i++) {
211                 char *tmp = bufs[i];
212                 LOGL(tmp, lens[i], ptr);
213         }
214 }
215 EXPORT_SYMBOL(lustre_init_msg_v2);
216
217 static int lustre_pack_request_v2(struct ptlrpc_request *req,
218                                   int count, __u32 *lens, char **bufs)
219 {
220         int reqlen, rc;
221
222         reqlen = lustre_msg_size_v2(count, lens);
223
224         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
225         if (rc)
226                 return rc;
227
228         req->rq_reqlen = reqlen;
229
230         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
231         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
232         return 0;
233 }
234
235 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
236                         __u32 *lens, char **bufs)
237 {
238         __u32 size[] = { sizeof(struct ptlrpc_body) };
239
240         if (!lens) {
241                 LASSERT(count == 1);
242                 lens = size;
243         }
244
245         LASSERT(count > 0);
246         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
247
248         /* only use new format, we don't need to be compatible with 1.4 */
249         magic = LUSTRE_MSG_MAGIC_V2;
250
251         switch (magic) {
252         case LUSTRE_MSG_MAGIC_V2:
253                 return lustre_pack_request_v2(req, count, lens, bufs);
254         default:
255                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
256                 return -EINVAL;
257         }
258 }
259
260 #if RS_DEBUG
261 struct list_head ptlrpc_rs_debug_lru =
262         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
263 spinlock_t ptlrpc_rs_debug_lock;
264
265 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
266 do {                                                                    \
267         spin_lock(&ptlrpc_rs_debug_lock);                               \
268         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
269         spin_unlock(&ptlrpc_rs_debug_lock);                             \
270 } while (0)
271
272 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
273 do {                                                                    \
274         spin_lock(&ptlrpc_rs_debug_lock);                               \
275         list_del(&(rs)->rs_debug_list);                         \
276         spin_unlock(&ptlrpc_rs_debug_lock);                             \
277 } while (0)
278 #else
279 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
280 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
281 #endif
282
283 struct ptlrpc_reply_state *
284 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
285 {
286         struct ptlrpc_reply_state *rs = NULL;
287
288         spin_lock(&svcpt->scp_rep_lock);
289
290         /* See if we have anything in a pool, and wait if nothing */
291         while (list_empty(&svcpt->scp_rep_idle)) {
292                 struct l_wait_info      lwi;
293                 int                     rc;
294
295                 spin_unlock(&svcpt->scp_rep_lock);
296                 /* If we cannot get anything for some long time, we better
297                  * bail out instead of waiting infinitely */
298                 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
299                 rc = l_wait_event(svcpt->scp_rep_waitq,
300                                   !list_empty(&svcpt->scp_rep_idle), &lwi);
301                 if (rc != 0)
302                         goto out;
303                 spin_lock(&svcpt->scp_rep_lock);
304         }
305
306         rs = list_entry(svcpt->scp_rep_idle.next,
307                             struct ptlrpc_reply_state, rs_list);
308         list_del(&rs->rs_list);
309
310         spin_unlock(&svcpt->scp_rep_lock);
311
312         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
313         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
314         rs->rs_svcpt = svcpt;
315         rs->rs_prealloc = 1;
316 out:
317         return rs;
318 }
319
320 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
321 {
322         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
323
324         spin_lock(&svcpt->scp_rep_lock);
325         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
326         spin_unlock(&svcpt->scp_rep_lock);
327         wake_up(&svcpt->scp_rep_waitq);
328 }
329
330 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
331                          __u32 *lens, char **bufs, int flags)
332 {
333         struct ptlrpc_reply_state *rs;
334         int                        msg_len, rc;
335         ENTRY;
336
337         LASSERT(req->rq_reply_state == NULL);
338
339         if ((flags & LPRFL_EARLY_REPLY) == 0) {
340                 spin_lock(&req->rq_lock);
341                 req->rq_packed_final = 1;
342                 spin_unlock(&req->rq_lock);
343         }
344
345         msg_len = lustre_msg_size_v2(count, lens);
346         rc = sptlrpc_svc_alloc_rs(req, msg_len);
347         if (rc)
348                 RETURN(rc);
349
350         rs = req->rq_reply_state;
351         atomic_set(&rs->rs_refcount, 1);        /* 1 ref for rq_reply_state */
352         rs->rs_cb_id.cbid_fn = reply_out_callback;
353         rs->rs_cb_id.cbid_arg = rs;
354         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
355         INIT_LIST_HEAD(&rs->rs_exp_list);
356         INIT_LIST_HEAD(&rs->rs_obd_list);
357         INIT_LIST_HEAD(&rs->rs_list);
358         spin_lock_init(&rs->rs_lock);
359
360         req->rq_replen = msg_len;
361         req->rq_reply_state = rs;
362         req->rq_repmsg = rs->rs_msg;
363
364         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
365         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
366
367         PTLRPC_RS_DEBUG_LRU_ADD(rs);
368
369         RETURN(0);
370 }
371 EXPORT_SYMBOL(lustre_pack_reply_v2);
372
373 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
374                             char **bufs, int flags)
375 {
376         int rc = 0;
377         __u32 size[] = { sizeof(struct ptlrpc_body) };
378
379         if (!lens) {
380                 LASSERT(count == 1);
381                 lens = size;
382         }
383
384         LASSERT(count > 0);
385         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
386
387         switch (req->rq_reqmsg->lm_magic) {
388         case LUSTRE_MSG_MAGIC_V2:
389                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
390                 break;
391         default:
392                 LASSERTF(0, "incorrect message magic: %08x\n",
393                          req->rq_reqmsg->lm_magic);
394                 rc = -EINVAL;
395         }
396         if (rc != 0)
397                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
398                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
399         return rc;
400 }
401
402 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
403                       char **bufs)
404 {
405         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
406 }
407 EXPORT_SYMBOL(lustre_pack_reply);
408
409 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
410 {
411         __u32 i, offset, buflen, bufcount;
412
413         LASSERT(m != NULL);
414
415         bufcount = m->lm_bufcount;
416         if (unlikely(n >= bufcount)) {
417                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
418                        m, n, bufcount);
419                 return NULL;
420         }
421
422         buflen = m->lm_buflens[n];
423         if (unlikely(buflen < min_size)) {
424                 CERROR("msg %p buffer[%d] size %d too small "
425                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
426                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
427                 return NULL;
428         }
429
430         offset = lustre_msg_hdr_size_v2(bufcount);
431         for (i = 0; i < n; i++)
432                 offset += cfs_size_round(m->lm_buflens[i]);
433
434         return (char *)m + offset;
435 }
436
437 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
438 {
439         switch (m->lm_magic) {
440         case LUSTRE_MSG_MAGIC_V2:
441                 return lustre_msg_buf_v2(m, n, min_size);
442         default:
443                 LASSERTF(0, "incorrect message magic: %08x (msg:%p)\n",
444                          m->lm_magic, m);
445                 return NULL;
446         }
447 }
448 EXPORT_SYMBOL(lustre_msg_buf);
449
450 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
451                                 unsigned int newlen, int move_data)
452 {
453         char   *tail = NULL, *newpos;
454         int     tail_len = 0, n;
455
456         LASSERT(msg);
457         LASSERT(msg->lm_bufcount > segment);
458         LASSERT(msg->lm_buflens[segment] >= newlen);
459
460         if (msg->lm_buflens[segment] == newlen)
461                 goto out;
462
463         if (move_data && msg->lm_bufcount > segment + 1) {
464                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
465                 for (n = segment + 1; n < msg->lm_bufcount; n++)
466                         tail_len += cfs_size_round(msg->lm_buflens[n]);
467         }
468
469         msg->lm_buflens[segment] = newlen;
470
471         if (tail && tail_len) {
472                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
473                 LASSERT(newpos <= tail);
474                 if (newpos != tail)
475                         memmove(newpos, tail, tail_len);
476         }
477 out:
478         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
479 }
480
481 /*
482  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
483  * we also move data forward from @segment + 1.
484  *
485  * if @newlen == 0, we remove the segment completely, but we still keep the
486  * totally bufcount the same to save possible data moving. this will leave a
487  * unused segment with size 0 at the tail, but that's ok.
488  *
489  * return new msg size after shrinking.
490  *
491  * CAUTION:
492  * + if any buffers higher than @segment has been filled in, must call shrink
493  *   with non-zero @move_data.
494  * + caller should NOT keep pointers to msg buffers which higher than @segment
495  *   after call shrink.
496  */
497 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
498                       unsigned int newlen, int move_data)
499 {
500         switch (msg->lm_magic) {
501         case LUSTRE_MSG_MAGIC_V2:
502                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
503         default:
504                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
505         }
506 }
507 EXPORT_SYMBOL(lustre_shrink_msg);
508
509 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
510 {
511         PTLRPC_RS_DEBUG_LRU_DEL(rs);
512
513         LASSERT(atomic_read(&rs->rs_refcount) == 0);
514         LASSERT(!rs->rs_difficult || rs->rs_handled);
515         LASSERT(!rs->rs_on_net);
516         LASSERT(!rs->rs_scheduled);
517         LASSERT(rs->rs_export == NULL);
518         LASSERT(rs->rs_nlocks == 0);
519         LASSERT(list_empty(&rs->rs_exp_list));
520         LASSERT(list_empty(&rs->rs_obd_list));
521
522         sptlrpc_svc_free_rs(rs);
523 }
524
525 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
526 {
527         int swabbed, required_len, i;
528
529         /* Now we know the sender speaks my language. */
530         required_len = lustre_msg_hdr_size_v2(0);
531         if (len < required_len) {
532                 /* can't even look inside the message */
533                 CERROR("message length %d too small for lustre_msg\n", len);
534                 return -EINVAL;
535         }
536
537         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
538
539         if (swabbed) {
540                 __swab32s(&m->lm_magic);
541                 __swab32s(&m->lm_bufcount);
542                 __swab32s(&m->lm_secflvr);
543                 __swab32s(&m->lm_repsize);
544                 __swab32s(&m->lm_cksum);
545                 __swab32s(&m->lm_flags);
546                 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
547                 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
548         }
549
550         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
551         if (len < required_len) {
552                 /* didn't receive all the buffer lengths */
553                 CERROR ("message length %d too small for %d buflens\n",
554                         len, m->lm_bufcount);
555                 return -EINVAL;
556         }
557
558         for (i = 0; i < m->lm_bufcount; i++) {
559                 if (swabbed)
560                         __swab32s(&m->lm_buflens[i]);
561                 required_len += cfs_size_round(m->lm_buflens[i]);
562         }
563
564         if (len < required_len) {
565                 CERROR("len: %d, required_len %d\n", len, required_len);
566                 CERROR("bufcount: %d\n", m->lm_bufcount);
567                 for (i = 0; i < m->lm_bufcount; i++)
568                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
569                 return -EINVAL;
570         }
571
572         return swabbed;
573 }
574
575 int __lustre_unpack_msg(struct lustre_msg *m, int len)
576 {
577         int required_len, rc;
578         ENTRY;
579
580         /* We can provide a slightly better error log, if we check the
581          * message magic and version first.  In the future, struct
582          * lustre_msg may grow, and we'd like to log a version mismatch,
583          * rather than a short message.
584          *
585          */
586         required_len = offsetof(struct lustre_msg, lm_magic) +
587                        sizeof(m->lm_magic);
588         if (len < required_len) {
589                 /* can't even look inside the message */
590                 CERROR("message length %d too small for magic/version check\n",
591                        len);
592                 RETURN(-EINVAL);
593         }
594
595         rc = lustre_unpack_msg_v2(m, len);
596
597         RETURN(rc);
598 }
599 EXPORT_SYMBOL(__lustre_unpack_msg);
600
601 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
602 {
603         int rc;
604         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
605         if (rc == 1) {
606                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
607                 rc = 0;
608         }
609         return rc;
610 }
611
612 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
613 {
614         int rc;
615         rc = __lustre_unpack_msg(req->rq_repmsg, len);
616         if (rc == 1) {
617                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
618                 rc = 0;
619         }
620         return rc;
621 }
622
623 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
624                                                const int inout, int offset)
625 {
626         struct ptlrpc_body *pb;
627         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
628
629         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
630         if (!pb) {
631                 CERROR("error unpacking ptlrpc body\n");
632                 return -EFAULT;
633         }
634         if (ptlrpc_buf_need_swab(req, inout, offset)) {
635                 lustre_swab_ptlrpc_body(pb);
636                 ptlrpc_buf_set_swabbed(req, inout, offset);
637         }
638
639         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
640                  CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
641                  return -EINVAL;
642         }
643
644         if (!inout)
645                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
646
647         return 0;
648 }
649
650 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
651 {
652         switch (req->rq_reqmsg->lm_magic) {
653         case LUSTRE_MSG_MAGIC_V2:
654                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
655         default:
656                 CERROR("bad lustre msg magic: %08x\n",
657                        req->rq_reqmsg->lm_magic);
658                 return -EINVAL;
659         }
660 }
661
662 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
663 {
664         switch (req->rq_repmsg->lm_magic) {
665         case LUSTRE_MSG_MAGIC_V2:
666                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
667         default:
668                 CERROR("bad lustre msg magic: %08x\n",
669                        req->rq_repmsg->lm_magic);
670                 return -EINVAL;
671         }
672 }
673
674 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
675 {
676         if (n >= m->lm_bufcount)
677                 return 0;
678
679         return m->lm_buflens[n];
680 }
681
682 /**
683  * lustre_msg_buflen - return the length of buffer \a n in message \a m
684  * \param m lustre_msg (request or reply) to look at
685  * \param n message index (base 0)
686  *
687  * returns zero for non-existent message indices
688  */
689 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
690 {
691         switch (m->lm_magic) {
692         case LUSTRE_MSG_MAGIC_V2:
693                 return lustre_msg_buflen_v2(m, n);
694         default:
695                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
696                 return 0;
697         }
698 }
699 EXPORT_SYMBOL(lustre_msg_buflen);
700
701 static inline void
702 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
703 {
704         if (n >= m->lm_bufcount)
705                 LBUG();
706
707         m->lm_buflens[n] = len;
708 }
709
710 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
711 {
712         switch (m->lm_magic) {
713         case LUSTRE_MSG_MAGIC_V2:
714                 lustre_msg_set_buflen_v2(m, n, len);
715                 return;
716         default:
717                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
718         }
719 }
720
721 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
722  * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
723 __u32 lustre_msg_bufcount(struct lustre_msg *m)
724 {
725         switch (m->lm_magic) {
726         case LUSTRE_MSG_MAGIC_V2:
727                 return m->lm_bufcount;
728         default:
729                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
730                 return 0;
731         }
732 }
733
734 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
735 {
736         /* max_len == 0 means the string should fill the buffer */
737         char *str;
738         __u32 slen, blen;
739
740         switch (m->lm_magic) {
741         case LUSTRE_MSG_MAGIC_V2:
742                 str = lustre_msg_buf_v2(m, index, 0);
743                 blen = lustre_msg_buflen_v2(m, index);
744                 break;
745         default:
746                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
747         }
748
749         if (str == NULL) {
750                 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
751                 return NULL;
752         }
753
754         slen = strnlen(str, blen);
755
756         if (slen == blen) {                     /* not NULL terminated */
757                 CERROR("can't unpack non-NULL terminated string in "
758                         "msg %p buffer[%d] len %d\n", m, index, blen);
759                 return NULL;
760         }
761
762         if (max_len == 0) {
763                 if (slen != blen - 1) {
764                         CERROR("can't unpack short string in msg %p "
765                                "buffer[%d] len %d: strlen %d\n",
766                                m, index, blen, slen);
767                         return NULL;
768                 }
769         } else if (slen > max_len) {
770                 CERROR("can't unpack oversized string in msg %p "
771                        "buffer[%d] len %d strlen %d: max %d expected\n",
772                        m, index, blen, slen, max_len);
773                 return NULL;
774         }
775
776         return str;
777 }
778
779 /* Wrap up the normal fixed length cases */
780 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
781                                       __u32 min_size, void *swabber)
782 {
783         void *ptr = NULL;
784
785         LASSERT(msg != NULL);
786         switch (msg->lm_magic) {
787         case LUSTRE_MSG_MAGIC_V2:
788                 ptr = lustre_msg_buf_v2(msg, index, min_size);
789                 break;
790         default:
791                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
792         }
793
794         if (ptr != NULL && swabber != NULL)
795                 ((void (*)(void *))swabber)(ptr);
796
797         return ptr;
798 }
799
800 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
801 {
802         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
803                                  sizeof(struct ptlrpc_body_v2));
804 }
805
806 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg)
807 {
808         switch (msg->lm_magic) {
809         case LUSTRE_MSG_MAGIC_V2:
810                 /* already in host endian */
811                 return msg->lm_flags;
812         default:
813                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
814                 return 0;
815         }
816 }
817 EXPORT_SYMBOL(lustre_msghdr_get_flags);
818
819 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
820 {
821         switch (msg->lm_magic) {
822         case LUSTRE_MSG_MAGIC_V2:
823                 msg->lm_flags = flags;
824                 return;
825         default:
826                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
827         }
828 }
829
830 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
831 {
832         switch (msg->lm_magic) {
833         case LUSTRE_MSG_MAGIC_V2: {
834                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
835                 if (pb != NULL)
836                         return pb->pb_flags;
837
838                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
839         }
840         /* no break */
841         default:
842                 /* flags might be printed in debug code while message
843                  * uninitialized */
844                 return 0;
845         }
846 }
847 EXPORT_SYMBOL(lustre_msg_get_flags);
848
849 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
850 {
851         switch (msg->lm_magic) {
852         case LUSTRE_MSG_MAGIC_V2: {
853                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
854                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
855                 pb->pb_flags |= flags;
856                 return;
857         }
858         default:
859                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
860         }
861 }
862 EXPORT_SYMBOL(lustre_msg_add_flags);
863
864 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
865 {
866         switch (msg->lm_magic) {
867         case LUSTRE_MSG_MAGIC_V2: {
868                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
869                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
870                 pb->pb_flags = flags;
871                 return;
872         }
873         default:
874                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
875         }
876 }
877
878 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
879 {
880         switch (msg->lm_magic) {
881         case LUSTRE_MSG_MAGIC_V2: {
882                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
883                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
884                 pb->pb_flags &= ~(MSG_GEN_FLAG_MASK & flags);
885                 return;
886         }
887         default:
888                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
889         }
890 }
891 EXPORT_SYMBOL(lustre_msg_clear_flags);
892
893 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
894 {
895         switch (msg->lm_magic) {
896         case LUSTRE_MSG_MAGIC_V2: {
897                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
898                 if (pb != NULL)
899                         return pb->pb_op_flags;
900
901                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
902         }
903         /* no break */
904         default:
905                 return 0;
906         }
907 }
908
909 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
910 {
911         switch (msg->lm_magic) {
912         case LUSTRE_MSG_MAGIC_V2: {
913                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
914                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
915                 pb->pb_op_flags |= flags;
916                 return;
917         }
918         default:
919                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
920         }
921 }
922 EXPORT_SYMBOL(lustre_msg_add_op_flags);
923
924 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
925 {
926         switch (msg->lm_magic) {
927         case LUSTRE_MSG_MAGIC_V2: {
928                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
929                 if (pb == NULL) {
930                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
931                         return NULL;
932                 }
933                 return &pb->pb_handle;
934         }
935         default:
936                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
937                 return NULL;
938         }
939 }
940
941 __u32 lustre_msg_get_type(struct lustre_msg *msg)
942 {
943         switch (msg->lm_magic) {
944         case LUSTRE_MSG_MAGIC_V2: {
945                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
946                 if (pb == NULL) {
947                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
948                         return PTL_RPC_MSG_ERR;
949                 }
950                 return pb->pb_type;
951         }
952         default:
953                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
954                 return PTL_RPC_MSG_ERR;
955         }
956 }
957 EXPORT_SYMBOL(lustre_msg_get_type);
958
959 __u32 lustre_msg_get_version(struct lustre_msg *msg)
960 {
961         switch (msg->lm_magic) {
962         case LUSTRE_MSG_MAGIC_V2: {
963                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
964                 if (pb == NULL) {
965                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
966                         return 0;
967                 }
968                 return pb->pb_version;
969         }
970         default:
971                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
972                 return 0;
973         }
974 }
975
976 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
977 {
978         switch (msg->lm_magic) {
979         case LUSTRE_MSG_MAGIC_V2: {
980                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
981                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
982                 pb->pb_version |= version;
983                 return;
984         }
985         default:
986                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
987         }
988 }
989
990 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
991 {
992         switch (msg->lm_magic) {
993         case LUSTRE_MSG_MAGIC_V2: {
994                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
995                 if (pb == NULL) {
996                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
997                         return 0;
998                 }
999                 return pb->pb_opc;
1000         }
1001         default:
1002                 CERROR("incorrect message magic: %08x (msg:%p)\n",
1003                        msg->lm_magic, msg);
1004                 return 0;
1005         }
1006 }
1007 EXPORT_SYMBOL(lustre_msg_get_opc);
1008
1009 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1010 {
1011         switch (msg->lm_magic) {
1012         case LUSTRE_MSG_MAGIC_V2: {
1013                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1014                 if (pb == NULL) {
1015                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1016                         return 0;
1017                 }
1018                 return pb->pb_last_xid;
1019         }
1020         default:
1021                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1022                 return 0;
1023         }
1024 }
1025 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1026
1027 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1028 {
1029         switch (msg->lm_magic) {
1030         case LUSTRE_MSG_MAGIC_V2: {
1031                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1032                 if (!pb) {
1033                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1034                         return 0;
1035                 }
1036                 return pb->pb_tag;
1037         }
1038         default:
1039                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1040                 return 0;
1041         }
1042 }
1043 EXPORT_SYMBOL(lustre_msg_get_tag);
1044
1045 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1046 {
1047         switch (msg->lm_magic) {
1048         case LUSTRE_MSG_MAGIC_V2: {
1049                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1050                 if (pb == NULL) {
1051                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1052                         return 0;
1053                 }
1054                 return pb->pb_last_committed;
1055         }
1056         default:
1057                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1058                 return 0;
1059         }
1060 }
1061 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1062
1063 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1064 {
1065         switch (msg->lm_magic) {
1066         case LUSTRE_MSG_MAGIC_V2: {
1067                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1068                 if (pb == NULL) {
1069                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1070                         return NULL;
1071                 }
1072                 return pb->pb_pre_versions;
1073         }
1074         default:
1075                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1076                 return NULL;
1077         }
1078 }
1079 EXPORT_SYMBOL(lustre_msg_get_versions);
1080
1081 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1082 {
1083         switch (msg->lm_magic) {
1084         case LUSTRE_MSG_MAGIC_V2: {
1085                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1086                 if (pb == NULL) {
1087                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1088                         return 0;
1089                 }
1090                 return pb->pb_transno;
1091         }
1092         default:
1093                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1094                 return 0;
1095         }
1096 }
1097 EXPORT_SYMBOL(lustre_msg_get_transno);
1098
1099 int lustre_msg_get_status(struct lustre_msg *msg)
1100 {
1101         switch (msg->lm_magic) {
1102         case LUSTRE_MSG_MAGIC_V2: {
1103                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1104                 if (pb != NULL)
1105                         return pb->pb_status;
1106                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1107         }
1108         /* no break */
1109         default:
1110                 /* status might be printed in debug code while message
1111                 * uninitialized */
1112                 return -EINVAL;
1113         }
1114 }
1115 EXPORT_SYMBOL(lustre_msg_get_status);
1116
1117 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1118 {
1119         switch (msg->lm_magic) {
1120         case LUSTRE_MSG_MAGIC_V2: {
1121                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1122                 if (pb == NULL) {
1123                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1124                         return -EINVAL;
1125                 }
1126                 return pb->pb_slv;
1127         }
1128         default:
1129                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1130                 return -EINVAL;
1131         }
1132 }
1133
1134
1135 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1136 {
1137         switch (msg->lm_magic) {
1138         case LUSTRE_MSG_MAGIC_V2: {
1139                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1140                 if (pb == NULL) {
1141                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1142                         return;
1143                 }
1144                 pb->pb_slv = slv;
1145                 return;
1146         }
1147         default:
1148                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1149                 return;
1150         }
1151 }
1152
1153 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1154 {
1155         switch (msg->lm_magic) {
1156         case LUSTRE_MSG_MAGIC_V2: {
1157                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1158                 if (pb == NULL) {
1159                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1160                         return -EINVAL;
1161                 }
1162                 return pb->pb_limit;
1163         }
1164         default:
1165                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1166                 return -EINVAL;
1167         }
1168 }
1169
1170
1171 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1172 {
1173         switch (msg->lm_magic) {
1174         case LUSTRE_MSG_MAGIC_V2: {
1175                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1176                 if (pb == NULL) {
1177                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1178                         return;
1179                 }
1180                 pb->pb_limit = limit;
1181                 return;
1182         }
1183         default:
1184                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1185                 return;
1186         }
1187 }
1188
1189 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1190 {
1191         switch (msg->lm_magic) {
1192         case LUSTRE_MSG_MAGIC_V2: {
1193                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1194                 if (pb == NULL) {
1195                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1196                         return 0;
1197                 }
1198                 return pb->pb_conn_cnt;
1199         }
1200         default:
1201                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1202                 return 0;
1203         }
1204 }
1205 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1206
1207 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1208 {
1209         switch (msg->lm_magic) {
1210         case LUSTRE_MSG_MAGIC_V2:
1211                 return msg->lm_magic;
1212         default:
1213                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1214                 return 0;
1215         }
1216 }
1217
1218 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1219 {
1220         switch (msg->lm_magic) {
1221         case LUSTRE_MSG_MAGIC_V2: {
1222                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1223                 if (pb == NULL) {
1224                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1225                         return 0;
1226                 }
1227                 return pb->pb_timeout;
1228         }
1229         default:
1230                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1231                 return 0;
1232         }
1233 }
1234
1235 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1236 {
1237         switch (msg->lm_magic) {
1238         case LUSTRE_MSG_MAGIC_V2: {
1239                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1240                 if (pb == NULL) {
1241                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1242                         return 0;
1243                 }
1244                 return pb->pb_service_time;
1245         }
1246         default:
1247                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1248                 return 0;
1249         }
1250 }
1251
1252 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1253 {
1254         switch (msg->lm_magic) {
1255         case LUSTRE_MSG_MAGIC_V2: {
1256                 struct ptlrpc_body *pb =
1257                         lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1258                                           sizeof(struct ptlrpc_body));
1259                 if (!pb)
1260                         return NULL;
1261
1262                 return pb->pb_jobid;
1263         }
1264         default:
1265                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1266                 return NULL;
1267         }
1268 }
1269 EXPORT_SYMBOL(lustre_msg_get_jobid);
1270
1271 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1272 {
1273         switch (msg->lm_magic) {
1274         case LUSTRE_MSG_MAGIC_V2:
1275                 return msg->lm_cksum;
1276         default:
1277                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1278                 return 0;
1279         }
1280 }
1281
1282 __u64 lustre_msg_get_mbits(struct lustre_msg *msg)
1283 {
1284         switch (msg->lm_magic) {
1285         case LUSTRE_MSG_MAGIC_V2: {
1286                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1287                 if (pb == NULL) {
1288                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1289                         return 0;
1290                 }
1291                 return pb->pb_mbits;
1292         }
1293         default:
1294                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1295                 return 0;
1296         }
1297 }
1298
1299 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1300 {
1301         switch (msg->lm_magic) {
1302         case LUSTRE_MSG_MAGIC_V2: {
1303                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1304                 __u32 len = lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1305
1306                 unsigned int hsize = 4;
1307                 __u32 crc;
1308
1309                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1310                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1311                                        len, NULL, 0, (unsigned char *)&crc,
1312                                        &hsize);
1313                 return crc;
1314         }
1315         default:
1316                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1317                 return 0;
1318         }
1319 }
1320
1321 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1322 {
1323         switch (msg->lm_magic) {
1324         case LUSTRE_MSG_MAGIC_V2: {
1325                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1326                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1327                 pb->pb_handle = *handle;
1328                 return;
1329         }
1330         default:
1331                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1332         }
1333 }
1334
1335 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1336 {
1337         switch (msg->lm_magic) {
1338         case LUSTRE_MSG_MAGIC_V2: {
1339                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1340                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1341                 pb->pb_type = type;
1342                 return;
1343                 }
1344         default:
1345                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1346         }
1347 }
1348
1349 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1350 {
1351         switch (msg->lm_magic) {
1352         case LUSTRE_MSG_MAGIC_V2: {
1353                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1354                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1355                 pb->pb_opc = opc;
1356                 return;
1357         }
1358         default:
1359                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1360         }
1361 }
1362
1363 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1364 {
1365         switch (msg->lm_magic) {
1366         case LUSTRE_MSG_MAGIC_V2: {
1367                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1368                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1369                 pb->pb_last_xid = last_xid;
1370                 return;
1371         }
1372         default:
1373                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1374         }
1375 }
1376 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1377
1378 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1379 {
1380         switch (msg->lm_magic) {
1381         case LUSTRE_MSG_MAGIC_V2: {
1382                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1383                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1384                 pb->pb_tag = tag;
1385                 return;
1386         }
1387         default:
1388                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1389         }
1390 }
1391 EXPORT_SYMBOL(lustre_msg_set_tag);
1392
1393 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1394 {
1395         switch (msg->lm_magic) {
1396         case LUSTRE_MSG_MAGIC_V2: {
1397                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1398                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1399                 pb->pb_last_committed = last_committed;
1400                 return;
1401         }
1402         default:
1403                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1404         }
1405 }
1406
1407 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1408 {
1409         switch (msg->lm_magic) {
1410         case LUSTRE_MSG_MAGIC_V2: {
1411                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1412                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1413                 pb->pb_pre_versions[0] = versions[0];
1414                 pb->pb_pre_versions[1] = versions[1];
1415                 pb->pb_pre_versions[2] = versions[2];
1416                 pb->pb_pre_versions[3] = versions[3];
1417                 return;
1418         }
1419         default:
1420                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1421         }
1422 }
1423 EXPORT_SYMBOL(lustre_msg_set_versions);
1424
1425 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1426 {
1427         switch (msg->lm_magic) {
1428         case LUSTRE_MSG_MAGIC_V2: {
1429                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1430                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1431                 pb->pb_transno = transno;
1432                 return;
1433         }
1434         default:
1435                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1436         }
1437 }
1438 EXPORT_SYMBOL(lustre_msg_set_transno);
1439
1440 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1441 {
1442         switch (msg->lm_magic) {
1443         case LUSTRE_MSG_MAGIC_V2: {
1444                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1445                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1446                 pb->pb_status = status;
1447                 return;
1448         }
1449         default:
1450                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1451         }
1452 }
1453 EXPORT_SYMBOL(lustre_msg_set_status);
1454
1455 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1456 {
1457         switch (msg->lm_magic) {
1458         case LUSTRE_MSG_MAGIC_V2: {
1459                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1460                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1461                 pb->pb_conn_cnt = conn_cnt;
1462                 return;
1463         }
1464         default:
1465                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1466         }
1467 }
1468
1469 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1470 {
1471         switch (msg->lm_magic) {
1472         case LUSTRE_MSG_MAGIC_V2: {
1473                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1474                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1475                 pb->pb_timeout = timeout;
1476                 return;
1477         }
1478         default:
1479                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1480         }
1481 }
1482
1483 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1484 {
1485         switch (msg->lm_magic) {
1486         case LUSTRE_MSG_MAGIC_V2: {
1487                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1488                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1489                 pb->pb_service_time = service_time;
1490                 return;
1491         }
1492         default:
1493                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1494         }
1495 }
1496
1497 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1498 {
1499         switch (msg->lm_magic) {
1500         case LUSTRE_MSG_MAGIC_V2: {
1501                 __u32 opc = lustre_msg_get_opc(msg);
1502                 struct ptlrpc_body *pb;
1503
1504                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1505                  * See the comment in ptlrpc_request_pack(). */
1506                 if (!opc || opc == LDLM_BL_CALLBACK ||
1507                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1508                         return;
1509
1510                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1511                                        sizeof(struct ptlrpc_body));
1512                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1513
1514                 if (jobid != NULL)
1515                         memcpy(pb->pb_jobid, jobid, LUSTRE_JOBID_SIZE);
1516                 else if (pb->pb_jobid[0] == '\0')
1517                         lustre_get_jobid(pb->pb_jobid);
1518                 return;
1519         }
1520         default:
1521                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1522         }
1523 }
1524 EXPORT_SYMBOL(lustre_msg_set_jobid);
1525
1526 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1527 {
1528         switch (msg->lm_magic) {
1529         case LUSTRE_MSG_MAGIC_V2:
1530                 msg->lm_cksum = cksum;
1531                 return;
1532         default:
1533                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1534         }
1535 }
1536
1537 void lustre_msg_set_mbits(struct lustre_msg *msg, __u64 mbits)
1538 {
1539         switch (msg->lm_magic) {
1540         case LUSTRE_MSG_MAGIC_V2: {
1541                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1542
1543                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1544                 pb->pb_mbits = mbits;
1545                 return;
1546         }
1547         default:
1548                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1549         }
1550 }
1551
1552 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1553 {
1554         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1555
1556         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1557                                          req->rq_pill.rc_area[RCL_SERVER]);
1558         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1559                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1560 }
1561 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1562
1563 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1564 {
1565         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1566         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1567                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1568 }
1569
1570 /**
1571  * Send a remote set_info_async.
1572  *
1573  * This may go from client to server or server to client.
1574  */
1575 int do_set_info_async(struct obd_import *imp,
1576                       int opcode, int version,
1577                       size_t keylen, void *key,
1578                       size_t vallen, void *val,
1579                       struct ptlrpc_request_set *set)
1580 {
1581         struct ptlrpc_request *req;
1582         char                  *tmp;
1583         int                    rc;
1584         ENTRY;
1585
1586         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1587         if (req == NULL)
1588                 RETURN(-ENOMEM);
1589
1590         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1591                              RCL_CLIENT, keylen);
1592         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1593                              RCL_CLIENT, vallen);
1594         rc = ptlrpc_request_pack(req, version, opcode);
1595         if (rc) {
1596                 ptlrpc_request_free(req);
1597                 RETURN(rc);
1598         }
1599
1600         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1601         memcpy(tmp, key, keylen);
1602         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1603         memcpy(tmp, val, vallen);
1604
1605         ptlrpc_request_set_replen(req);
1606
1607         if (set) {
1608                 ptlrpc_set_add_req(set, req);
1609                 ptlrpc_check_set(NULL, set);
1610         } else {
1611                 rc = ptlrpc_queue_wait(req);
1612                 ptlrpc_req_finished(req);
1613         }
1614
1615         RETURN(rc);
1616 }
1617 EXPORT_SYMBOL(do_set_info_async);
1618
1619 /* byte flipping routines for all wire types declared in
1620  * lustre_idl.h implemented here.
1621  */
1622 void lustre_swab_ptlrpc_body(struct ptlrpc_body *b)
1623 {
1624         __swab32s (&b->pb_type);
1625         __swab32s (&b->pb_version);
1626         __swab32s (&b->pb_opc);
1627         __swab32s (&b->pb_status);
1628         __swab64s (&b->pb_last_xid);
1629         __swab16s (&b->pb_tag);
1630         __swab64s (&b->pb_last_committed);
1631         __swab64s (&b->pb_transno);
1632         __swab32s (&b->pb_flags);
1633         __swab32s (&b->pb_op_flags);
1634         __swab32s (&b->pb_conn_cnt);
1635         __swab32s (&b->pb_timeout);
1636         __swab32s (&b->pb_service_time);
1637         __swab32s (&b->pb_limit);
1638         __swab64s (&b->pb_slv);
1639         __swab64s (&b->pb_pre_versions[0]);
1640         __swab64s (&b->pb_pre_versions[1]);
1641         __swab64s (&b->pb_pre_versions[2]);
1642         __swab64s (&b->pb_pre_versions[3]);
1643         __swab64s(&b->pb_mbits);
1644         CLASSERT(offsetof(typeof(*b), pb_padding0) != 0);
1645         CLASSERT(offsetof(typeof(*b), pb_padding1) != 0);
1646         CLASSERT(offsetof(typeof(*b), pb_padding64_0) != 0);
1647         CLASSERT(offsetof(typeof(*b), pb_padding64_1) != 0);
1648         CLASSERT(offsetof(typeof(*b), pb_padding64_2) != 0);
1649         /* While we need to maintain compatibility between
1650          * clients and servers without ptlrpc_body_v2 (< 2.3)
1651          * do not swab any fields beyond pb_jobid, as we are
1652          * using this swab function for both ptlrpc_body
1653          * and ptlrpc_body_v2. */
1654         CLASSERT(offsetof(typeof(*b), pb_jobid) != 0);
1655 }
1656
1657 void lustre_swab_connect(struct obd_connect_data *ocd)
1658 {
1659         __swab64s(&ocd->ocd_connect_flags);
1660         __swab32s(&ocd->ocd_version);
1661         __swab32s(&ocd->ocd_grant);
1662         __swab64s(&ocd->ocd_ibits_known);
1663         __swab32s(&ocd->ocd_index);
1664         __swab32s(&ocd->ocd_brw_size);
1665         /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1666          * they are 8-byte values */
1667         __swab16s(&ocd->ocd_grant_tax_kb);
1668         __swab32s(&ocd->ocd_grant_max_blks);
1669         __swab64s(&ocd->ocd_transno);
1670         __swab32s(&ocd->ocd_group);
1671         __swab32s(&ocd->ocd_cksum_types);
1672         __swab32s(&ocd->ocd_instance);
1673         /* Fields after ocd_cksum_types are only accessible by the receiver
1674          * if the corresponding flag in ocd_connect_flags is set. Accessing
1675          * any field after ocd_maxbytes on the receiver without a valid flag
1676          * may result in out-of-bound memory access and kernel oops. */
1677         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1678                 __swab32s(&ocd->ocd_max_easize);
1679         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1680                 __swab64s(&ocd->ocd_maxbytes);
1681         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1682                 __swab16s(&ocd->ocd_maxmodrpcs);
1683         CLASSERT(offsetof(typeof(*ocd), padding0) != 0);
1684         CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1685         if (ocd->ocd_connect_flags & OBD_CONNECT_FLAGS2)
1686                 __swab64s(&ocd->ocd_connect_flags2);
1687         CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1688         CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1689         CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1690         CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1691         CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1692         CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1693         CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1694         CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1695         CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1696         CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1697         CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1698         CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1699         CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1700 }
1701
1702 void lustre_swab_obdo (struct obdo  *o)
1703 {
1704         __swab64s (&o->o_valid);
1705         lustre_swab_ost_id(&o->o_oi);
1706         __swab64s (&o->o_parent_seq);
1707         __swab64s (&o->o_size);
1708         __swab64s (&o->o_mtime);
1709         __swab64s (&o->o_atime);
1710         __swab64s (&o->o_ctime);
1711         __swab64s (&o->o_blocks);
1712         __swab64s (&o->o_grant);
1713         __swab32s (&o->o_blksize);
1714         __swab32s (&o->o_mode);
1715         __swab32s (&o->o_uid);
1716         __swab32s (&o->o_gid);
1717         __swab32s (&o->o_flags);
1718         __swab32s (&o->o_nlink);
1719         __swab32s (&o->o_parent_oid);
1720         __swab32s (&o->o_misc);
1721         __swab64s (&o->o_ioepoch);
1722         __swab32s (&o->o_stripe_idx);
1723         __swab32s (&o->o_parent_ver);
1724         /* o_handle is opaque */
1725         /* o_lcookie is swabbed elsewhere */
1726         __swab32s (&o->o_uid_h);
1727         __swab32s (&o->o_gid_h);
1728         __swab64s (&o->o_data_version);
1729         CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1730         CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1731         CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1732
1733 }
1734 EXPORT_SYMBOL(lustre_swab_obdo);
1735
1736 void lustre_swab_obd_statfs (struct obd_statfs *os)
1737 {
1738         __swab64s (&os->os_type);
1739         __swab64s (&os->os_blocks);
1740         __swab64s (&os->os_bfree);
1741         __swab64s (&os->os_bavail);
1742         __swab64s (&os->os_files);
1743         __swab64s (&os->os_ffree);
1744         /* no need to swab os_fsid */
1745         __swab32s (&os->os_bsize);
1746         __swab32s (&os->os_namelen);
1747         __swab64s (&os->os_maxbytes);
1748         __swab32s (&os->os_state);
1749         CLASSERT(offsetof(typeof(*os), os_fprecreated) != 0);
1750         CLASSERT(offsetof(typeof(*os), os_spare2) != 0);
1751         CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1752         CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1753         CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1754         CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1755         CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1756         CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1757         CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1758 }
1759
1760 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1761 {
1762         lustre_swab_ost_id(&ioo->ioo_oid);
1763         __swab32s(&ioo->ioo_max_brw);
1764         __swab32s(&ioo->ioo_bufcnt);
1765 }
1766
1767 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1768 {
1769         __swab64s(&nbr->rnb_offset);
1770         __swab32s(&nbr->rnb_len);
1771         __swab32s(&nbr->rnb_flags);
1772 }
1773
1774 void lustre_swab_ost_body (struct ost_body *b)
1775 {
1776         lustre_swab_obdo (&b->oa);
1777 }
1778
1779 void lustre_swab_ost_last_id(u64 *id)
1780 {
1781         __swab64s(id);
1782 }
1783
1784 void lustre_swab_generic_32s(__u32 *val)
1785 {
1786         __swab32s(val);
1787 }
1788
1789 void lustre_swab_gl_desc(union ldlm_gl_desc *desc)
1790 {
1791         lustre_swab_lu_fid(&desc->lquota_desc.gl_id.qid_fid);
1792         __swab64s(&desc->lquota_desc.gl_flags);
1793         __swab64s(&desc->lquota_desc.gl_ver);
1794         __swab64s(&desc->lquota_desc.gl_hardlimit);
1795         __swab64s(&desc->lquota_desc.gl_softlimit);
1796         __swab64s(&desc->lquota_desc.gl_time);
1797         CLASSERT(offsetof(typeof(desc->lquota_desc), gl_pad2) != 0);
1798 }
1799
1800 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1801 {
1802         __swab64s(&lvb->lvb_size);
1803         __swab64s(&lvb->lvb_mtime);
1804         __swab64s(&lvb->lvb_atime);
1805         __swab64s(&lvb->lvb_ctime);
1806         __swab64s(&lvb->lvb_blocks);
1807 }
1808 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1809
1810 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1811 {
1812         __swab64s(&lvb->lvb_size);
1813         __swab64s(&lvb->lvb_mtime);
1814         __swab64s(&lvb->lvb_atime);
1815         __swab64s(&lvb->lvb_ctime);
1816         __swab64s(&lvb->lvb_blocks);
1817         __swab32s(&lvb->lvb_mtime_ns);
1818         __swab32s(&lvb->lvb_atime_ns);
1819         __swab32s(&lvb->lvb_ctime_ns);
1820         __swab32s(&lvb->lvb_padding);
1821 }
1822 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1823
1824 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1825 {
1826         __swab64s(&lvb->lvb_flags);
1827         __swab64s(&lvb->lvb_id_may_rel);
1828         __swab64s(&lvb->lvb_id_rel);
1829         __swab64s(&lvb->lvb_id_qunit);
1830         __swab64s(&lvb->lvb_pad1);
1831 }
1832 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1833
1834 void lustre_swab_mdt_body (struct mdt_body *b)
1835 {
1836         lustre_swab_lu_fid(&b->mbo_fid1);
1837         lustre_swab_lu_fid(&b->mbo_fid2);
1838         /* handle is opaque */
1839         __swab64s(&b->mbo_valid);
1840         __swab64s(&b->mbo_size);
1841         __swab64s(&b->mbo_mtime);
1842         __swab64s(&b->mbo_atime);
1843         __swab64s(&b->mbo_ctime);
1844         __swab64s(&b->mbo_blocks);
1845         __swab64s(&b->mbo_ioepoch);
1846         __swab64s(&b->mbo_t_state);
1847         __swab32s(&b->mbo_fsuid);
1848         __swab32s(&b->mbo_fsgid);
1849         __swab32s(&b->mbo_capability);
1850         __swab32s(&b->mbo_mode);
1851         __swab32s(&b->mbo_uid);
1852         __swab32s(&b->mbo_gid);
1853         __swab32s(&b->mbo_flags);
1854         __swab32s(&b->mbo_rdev);
1855         __swab32s(&b->mbo_nlink);
1856         CLASSERT(offsetof(typeof(*b), mbo_unused2) != 0);
1857         __swab32s(&b->mbo_suppgid);
1858         __swab32s(&b->mbo_eadatasize);
1859         __swab32s(&b->mbo_aclsize);
1860         __swab32s(&b->mbo_max_mdsize);
1861         CLASSERT(offsetof(typeof(*b), mbo_unused3) != 0);
1862         __swab32s(&b->mbo_uid_h);
1863         __swab32s(&b->mbo_gid_h);
1864         CLASSERT(offsetof(typeof(*b), mbo_padding_5) != 0);
1865 }
1866
1867 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b)
1868 {
1869         /* mio_handle is opaque */
1870         CLASSERT(offsetof(typeof(*b), mio_unused1) != 0);
1871         CLASSERT(offsetof(typeof(*b), mio_unused2) != 0);
1872         CLASSERT(offsetof(typeof(*b), mio_padding) != 0);
1873 }
1874
1875 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1876 {
1877         int i;
1878         __swab32s(&mti->mti_lustre_ver);
1879         __swab32s(&mti->mti_stripe_index);
1880         __swab32s(&mti->mti_config_ver);
1881         __swab32s(&mti->mti_flags);
1882         __swab32s(&mti->mti_instance);
1883         __swab32s(&mti->mti_nid_count);
1884         CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1885         for (i = 0; i < MTI_NIDS_MAX; i++)
1886                 __swab64s(&mti->mti_nids[i]);
1887 }
1888
1889 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1890 {
1891         __u8 i;
1892
1893         __swab64s(&entry->mne_version);
1894         __swab32s(&entry->mne_instance);
1895         __swab32s(&entry->mne_index);
1896         __swab32s(&entry->mne_length);
1897
1898         /* mne_nid_(count|type) must be one byte size because we're gonna
1899          * access it w/o swapping. */
1900         CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
1901         CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
1902
1903         /* remove this assertion if ipv6 is supported. */
1904         LASSERT(entry->mne_nid_type == 0);
1905         for (i = 0; i < entry->mne_nid_count; i++) {
1906                 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1907                 __swab64s(&entry->u.nids[i]);
1908         }
1909 }
1910 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
1911
1912 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
1913 {
1914         __swab64s(&body->mcb_offset);
1915         __swab32s(&body->mcb_units);
1916         __swab16s(&body->mcb_type);
1917 }
1918
1919 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
1920 {
1921         __swab64s(&body->mcr_offset);
1922         __swab64s(&body->mcr_size);
1923 }
1924
1925 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
1926 {
1927         __swab64s (&i->dqi_bgrace);
1928         __swab64s (&i->dqi_igrace);
1929         __swab32s (&i->dqi_flags);
1930         __swab32s (&i->dqi_valid);
1931 }
1932
1933 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
1934 {
1935         __swab64s (&b->dqb_ihardlimit);
1936         __swab64s (&b->dqb_isoftlimit);
1937         __swab64s (&b->dqb_curinodes);
1938         __swab64s (&b->dqb_bhardlimit);
1939         __swab64s (&b->dqb_bsoftlimit);
1940         __swab64s (&b->dqb_curspace);
1941         __swab64s (&b->dqb_btime);
1942         __swab64s (&b->dqb_itime);
1943         __swab32s (&b->dqb_valid);
1944         CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
1945 }
1946
1947 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
1948 {
1949         __swab32s (&q->qc_cmd);
1950         __swab32s (&q->qc_type);
1951         __swab32s (&q->qc_id);
1952         __swab32s (&q->qc_stat);
1953         lustre_swab_obd_dqinfo (&q->qc_dqinfo);
1954         lustre_swab_obd_dqblk (&q->qc_dqblk);
1955 }
1956
1957 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
1958 {
1959         lustre_swab_lu_fid(&gf->gf_fid);
1960         __swab64s(&gf->gf_recno);
1961         __swab32s(&gf->gf_linkno);
1962         __swab32s(&gf->gf_pathlen);
1963 }
1964 EXPORT_SYMBOL(lustre_swab_fid2path);
1965
1966 static void lustre_swab_fiemap_extent(struct fiemap_extent *fm_extent)
1967 {
1968         __swab64s(&fm_extent->fe_logical);
1969         __swab64s(&fm_extent->fe_physical);
1970         __swab64s(&fm_extent->fe_length);
1971         __swab32s(&fm_extent->fe_flags);
1972         __swab32s(&fm_extent->fe_device);
1973 }
1974
1975 void lustre_swab_fiemap(struct fiemap *fiemap)
1976 {
1977         __u32 i;
1978
1979         __swab64s(&fiemap->fm_start);
1980         __swab64s(&fiemap->fm_length);
1981         __swab32s(&fiemap->fm_flags);
1982         __swab32s(&fiemap->fm_mapped_extents);
1983         __swab32s(&fiemap->fm_extent_count);
1984         __swab32s(&fiemap->fm_reserved);
1985
1986         for (i = 0; i < fiemap->fm_mapped_extents; i++)
1987                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
1988 }
1989
1990 void lustre_swab_idx_info(struct idx_info *ii)
1991 {
1992         __swab32s(&ii->ii_magic);
1993         __swab32s(&ii->ii_flags);
1994         __swab16s(&ii->ii_count);
1995         __swab32s(&ii->ii_attrs);
1996         lustre_swab_lu_fid(&ii->ii_fid);
1997         __swab64s(&ii->ii_version);
1998         __swab64s(&ii->ii_hash_start);
1999         __swab64s(&ii->ii_hash_end);
2000         __swab16s(&ii->ii_keysize);
2001         __swab16s(&ii->ii_recsize);
2002 }
2003
2004 void lustre_swab_lip_header(struct lu_idxpage *lip)
2005 {
2006         /* swab header */
2007         __swab32s(&lip->lip_magic);
2008         __swab16s(&lip->lip_flags);
2009         __swab16s(&lip->lip_nr);
2010 }
2011 EXPORT_SYMBOL(lustre_swab_lip_header);
2012
2013 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2014 {
2015         __swab32s(&rr->rr_opcode);
2016         __swab32s(&rr->rr_cap);
2017         __swab32s(&rr->rr_fsuid);
2018         /* rr_fsuid_h is unused */
2019         __swab32s(&rr->rr_fsgid);
2020         /* rr_fsgid_h is unused */
2021         __swab32s(&rr->rr_suppgid1);
2022         /* rr_suppgid1_h is unused */
2023         __swab32s(&rr->rr_suppgid2);
2024         /* rr_suppgid2_h is unused */
2025         lustre_swab_lu_fid(&rr->rr_fid1);
2026         lustre_swab_lu_fid(&rr->rr_fid2);
2027         __swab64s(&rr->rr_mtime);
2028         __swab64s(&rr->rr_atime);
2029         __swab64s(&rr->rr_ctime);
2030         __swab64s(&rr->rr_size);
2031         __swab64s(&rr->rr_blocks);
2032         __swab32s(&rr->rr_bias);
2033         __swab32s(&rr->rr_mode);
2034         __swab32s(&rr->rr_flags);
2035         __swab32s(&rr->rr_flags_h);
2036         __swab32s(&rr->rr_umask);
2037
2038         CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2039 };
2040
2041 void lustre_swab_lov_desc (struct lov_desc *ld)
2042 {
2043         __swab32s (&ld->ld_tgt_count);
2044         __swab32s (&ld->ld_active_tgt_count);
2045         __swab32s (&ld->ld_default_stripe_count);
2046         __swab32s (&ld->ld_pattern);
2047         __swab64s (&ld->ld_default_stripe_size);
2048         __swab64s (&ld->ld_default_stripe_offset);
2049         __swab32s (&ld->ld_qos_maxage);
2050         /* uuid endian insensitive */
2051 }
2052 EXPORT_SYMBOL(lustre_swab_lov_desc);
2053
2054 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2055 {
2056         __swab32s (&ld->ld_tgt_count);
2057         __swab32s (&ld->ld_active_tgt_count);
2058         __swab32s (&ld->ld_default_stripe_count);
2059         __swab32s (&ld->ld_pattern);
2060         __swab64s (&ld->ld_default_hash_size);
2061         __swab32s (&ld->ld_qos_maxage);
2062         /* uuid endian insensitive */
2063 }
2064
2065 /* This structure is always in little-endian */
2066 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2067 {
2068         int i;
2069
2070         __swab32s(&lmm1->lmv_magic);
2071         __swab32s(&lmm1->lmv_stripe_count);
2072         __swab32s(&lmm1->lmv_master_mdt_index);
2073         __swab32s(&lmm1->lmv_hash_type);
2074         __swab32s(&lmm1->lmv_layout_version);
2075         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2076                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2077 }
2078
2079 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2080 {
2081         switch (lmm->lmv_magic) {
2082         case LMV_MAGIC_V1:
2083                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2084                 break;
2085         default:
2086                 break;
2087         }
2088 }
2089 EXPORT_SYMBOL(lustre_swab_lmv_mds_md);
2090
2091 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2092 {
2093         __swab32s(&lum->lum_magic);
2094         __swab32s(&lum->lum_stripe_count);
2095         __swab32s(&lum->lum_stripe_offset);
2096         __swab32s(&lum->lum_hash_type);
2097         __swab32s(&lum->lum_type);
2098         CLASSERT(offsetof(typeof(*lum), lum_padding1) != 0);
2099 }
2100 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2101
2102 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2103                           const char *msg)
2104 {
2105         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2106                 return;
2107
2108         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2109         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2110         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2111         CDEBUG(lvl, "\tlmm_object_id: "LPU64"\n", lmm_oi_id(&lum->lmm_oi));
2112         CDEBUG(lvl, "\tlmm_object_gr: "LPU64"\n", lmm_oi_seq(&lum->lmm_oi));
2113         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2114         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2115         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2116                lum->lmm_stripe_offset);
2117         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2118                 struct lov_user_md_v3 *v3 = (void *)lum;
2119                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2120         }
2121         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2122                 struct lov_user_md_v3 *v3 = (void *)lum;
2123                 int i;
2124
2125                 if (v3->lmm_pool_name[0] != '\0')
2126                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2127
2128                 CDEBUG(lvl, "\ttarget list:\n");
2129                 for (i = 0; i < v3->lmm_stripe_count; i++)
2130                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2131         }
2132 }
2133 EXPORT_SYMBOL(lustre_print_user_md);
2134
2135 static void lustre_swab_lmm_oi(struct ost_id *oi)
2136 {
2137         __swab64s(&oi->oi.oi_id);
2138         __swab64s(&oi->oi.oi_seq);
2139 }
2140
2141 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2142 {
2143         ENTRY;
2144         __swab32s(&lum->lmm_magic);
2145         __swab32s(&lum->lmm_pattern);
2146         lustre_swab_lmm_oi(&lum->lmm_oi);
2147         __swab32s(&lum->lmm_stripe_size);
2148         __swab16s(&lum->lmm_stripe_count);
2149         __swab16s(&lum->lmm_stripe_offset);
2150         EXIT;
2151 }
2152
2153 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2154 {
2155         ENTRY;
2156         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2157         lustre_swab_lov_user_md_common(lum);
2158         EXIT;
2159 }
2160 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2161
2162 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2163 {
2164         ENTRY;
2165         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2166         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2167         /* lmm_pool_name nothing to do with char */
2168         EXIT;
2169 }
2170 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2171
2172 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2173 {
2174         ENTRY;
2175         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2176         __swab32s(&lmm->lmm_magic);
2177         __swab32s(&lmm->lmm_pattern);
2178         lustre_swab_lmm_oi(&lmm->lmm_oi);
2179         __swab32s(&lmm->lmm_stripe_size);
2180         __swab16s(&lmm->lmm_stripe_count);
2181         __swab16s(&lmm->lmm_layout_gen);
2182         EXIT;
2183 }
2184 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2185
2186 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2187                                      int stripe_count)
2188 {
2189         int i;
2190         ENTRY;
2191         for (i = 0; i < stripe_count; i++) {
2192                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2193                 __swab32s(&(lod[i].l_ost_gen));
2194                 __swab32s(&(lod[i].l_ost_idx));
2195         }
2196         EXIT;
2197 }
2198 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2199
2200 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2201 {
2202         int  i;
2203
2204         for (i = 0; i < RES_NAME_SIZE; i++)
2205                 __swab64s (&id->name[i]);
2206 }
2207
2208 void lustre_swab_ldlm_policy_data(union ldlm_wire_policy_data *d)
2209 {
2210         /* the lock data is a union and the first two fields are always an
2211          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2212          * data the same way. */
2213         __swab64s(&d->l_extent.start);
2214         __swab64s(&d->l_extent.end);
2215         __swab64s(&d->l_extent.gid);
2216         __swab64s(&d->l_flock.lfw_owner);
2217         __swab32s(&d->l_flock.lfw_pid);
2218 }
2219
2220 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2221 {
2222         __swab64s(&i->opc);
2223 }
2224
2225 void lustre_swab_ldlm_resource_desc(struct ldlm_resource_desc *r)
2226 {
2227         __swab32s(&r->lr_type);
2228         CLASSERT(offsetof(typeof(*r), lr_pad) != 0);
2229         lustre_swab_ldlm_res_id(&r->lr_name);
2230 }
2231
2232 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2233 {
2234         lustre_swab_ldlm_resource_desc (&l->l_resource);
2235         __swab32s (&l->l_req_mode);
2236         __swab32s (&l->l_granted_mode);
2237         lustre_swab_ldlm_policy_data (&l->l_policy_data);
2238 }
2239
2240 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2241 {
2242         __swab32s (&rq->lock_flags);
2243         lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2244         __swab32s (&rq->lock_count);
2245         /* lock_handle[] opaque */
2246 }
2247
2248 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2249 {
2250         __swab32s (&r->lock_flags);
2251         CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2252         lustre_swab_ldlm_lock_desc (&r->lock_desc);
2253         /* lock_handle opaque */
2254         __swab64s (&r->lock_policy_res1);
2255         __swab64s (&r->lock_policy_res2);
2256 }
2257
2258 void lustre_swab_quota_body(struct quota_body *b)
2259 {
2260         lustre_swab_lu_fid(&b->qb_fid);
2261         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2262         __swab32s(&b->qb_flags);
2263         __swab64s(&b->qb_count);
2264         __swab64s(&b->qb_usage);
2265         __swab64s(&b->qb_slv_ver);
2266 }
2267
2268 /* Dump functions */
2269 void dump_ioo(struct obd_ioobj *ioo)
2270 {
2271         CDEBUG(D_RPCTRACE,
2272                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2273                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2274                ioo->ioo_bufcnt);
2275 }
2276
2277 void dump_rniobuf(struct niobuf_remote *nb)
2278 {
2279         CDEBUG(D_RPCTRACE, "niobuf_remote: offset="LPU64", len=%d, flags=%x\n",
2280                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2281 }
2282
2283 void dump_obdo(struct obdo *oa)
2284 {
2285         u64 valid = oa->o_valid;
2286
2287         CDEBUG(D_RPCTRACE, "obdo: o_valid = "LPX64"\n", valid);
2288         if (valid & OBD_MD_FLID)
2289                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2290         if (valid & OBD_MD_FLFID)
2291                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = "LPX64"\n",
2292                        oa->o_parent_seq);
2293         if (valid & OBD_MD_FLSIZE)
2294                 CDEBUG(D_RPCTRACE, "obdo: o_size = "LPD64"\n", oa->o_size);
2295         if (valid & OBD_MD_FLMTIME)
2296                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = "LPD64"\n", oa->o_mtime);
2297         if (valid & OBD_MD_FLATIME)
2298                 CDEBUG(D_RPCTRACE, "obdo: o_atime = "LPD64"\n", oa->o_atime);
2299         if (valid & OBD_MD_FLCTIME)
2300                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = "LPD64"\n", oa->o_ctime);
2301         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2302                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = "LPD64"\n", oa->o_blocks);
2303         if (valid & OBD_MD_FLGRANT)
2304                 CDEBUG(D_RPCTRACE, "obdo: o_grant = "LPD64"\n", oa->o_grant);
2305         if (valid & OBD_MD_FLBLKSZ)
2306                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2307         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2308                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2309                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2310                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2311         if (valid & OBD_MD_FLUID)
2312                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2313         if (valid & OBD_MD_FLUID)
2314                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2315         if (valid & OBD_MD_FLGID)
2316                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2317         if (valid & OBD_MD_FLGID)
2318                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2319         if (valid & OBD_MD_FLFLAGS)
2320                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2321         if (valid & OBD_MD_FLNLINK)
2322                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2323         else if (valid & OBD_MD_FLCKSUM)
2324                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2325                        oa->o_nlink);
2326         if (valid & OBD_MD_FLGENER)
2327                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2328                        oa->o_parent_oid);
2329         if (valid & OBD_MD_FLEPOCH)
2330                 CDEBUG(D_RPCTRACE, "obdo: o_ioepoch = "LPD64"\n",
2331                        oa->o_ioepoch);
2332         if (valid & OBD_MD_FLFID) {
2333                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2334                        oa->o_stripe_idx);
2335                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2336                        oa->o_parent_ver);
2337         }
2338         if (valid & OBD_MD_FLHANDLE)
2339                 CDEBUG(D_RPCTRACE, "obdo: o_handle = "LPD64"\n",
2340                        oa->o_handle.cookie);
2341 }
2342
2343 void dump_ost_body(struct ost_body *ob)
2344 {
2345         dump_obdo(&ob->oa);
2346 }
2347
2348 void dump_rcs(__u32 *rc)
2349 {
2350         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2351 }
2352
2353 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2354 {
2355         LASSERT(req->rq_reqmsg);
2356
2357         switch (req->rq_reqmsg->lm_magic) {
2358         case LUSTRE_MSG_MAGIC_V2:
2359                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2360         default:
2361                 CERROR("bad lustre msg magic: %#08X\n",
2362                        req->rq_reqmsg->lm_magic);
2363         }
2364         return 0;
2365 }
2366
2367 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2368 {
2369         LASSERT(req->rq_repmsg);
2370
2371         switch (req->rq_repmsg->lm_magic) {
2372         case LUSTRE_MSG_MAGIC_V2:
2373                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2374         default:
2375                 /* uninitialized yet */
2376                 return 0;
2377         }
2378 }
2379
2380 void _debug_req(struct ptlrpc_request *req,
2381                 struct libcfs_debug_msg_data *msgdata,
2382                 const char *fmt, ... )
2383 {
2384         int req_ok = req->rq_reqmsg != NULL;
2385         int rep_ok = req->rq_repmsg != NULL;
2386         lnet_nid_t nid = LNET_NID_ANY;
2387         va_list args;
2388
2389         if (ptlrpc_req_need_swab(req)) {
2390                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2391                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2392         }
2393
2394         if (req->rq_import && req->rq_import->imp_connection)
2395                 nid = req->rq_import->imp_connection->c_peer.nid;
2396         else if (req->rq_export && req->rq_export->exp_connection)
2397                 nid = req->rq_export->exp_connection->c_peer.nid;
2398
2399         va_start(args, fmt);
2400         libcfs_debug_vmsg2(msgdata, fmt, args,
2401                            " req@%p x"LPU64"/t"LPD64"("LPD64") o%d->%s@%s:%d/%d"
2402                            " lens %d/%d e %d to %d dl "CFS_TIME_T" ref %d "
2403                            "fl "REQ_FLAGS_FMT"/%x/%x rc %d/%d\n",
2404                            req, req->rq_xid, req->rq_transno,
2405                            req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2406                            req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2407                            req->rq_import ?
2408                                 req->rq_import->imp_obd->obd_name :
2409                                 req->rq_export ?
2410                                         req->rq_export->exp_client_uuid.uuid :
2411                                         "<?>",
2412                            libcfs_nid2str(nid),
2413                            req->rq_request_portal, req->rq_reply_portal,
2414                            req->rq_reqlen, req->rq_replen,
2415                            req->rq_early_count, req->rq_timedout,
2416                            req->rq_deadline,
2417                            atomic_read(&req->rq_refcount),
2418                            DEBUG_REQ_FLAGS(req),
2419                            req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2420                            rep_ok ? lustre_msg_get_flags(req->rq_repmsg) : -1,
2421                            req->rq_status,
2422                            rep_ok ? lustre_msg_get_status(req->rq_repmsg) : -1);
2423         va_end(args);
2424 }
2425 EXPORT_SYMBOL(_debug_req);
2426
2427 void lustre_swab_lustre_capa(struct lustre_capa *c)
2428 {
2429         lustre_swab_lu_fid(&c->lc_fid);
2430         __swab64s (&c->lc_opc);
2431         __swab64s (&c->lc_uid);
2432         __swab64s (&c->lc_gid);
2433         __swab32s (&c->lc_flags);
2434         __swab32s (&c->lc_keyid);
2435         __swab32s (&c->lc_timeout);
2436         __swab32s (&c->lc_expiry);
2437 }
2438
2439 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2440 {
2441         __swab64s (&k->lk_seq);
2442         __swab32s (&k->lk_keyid);
2443         CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2444 }
2445
2446 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2447 {
2448         __swab32s(&state->hus_states);
2449         __swab32s(&state->hus_archive_id);
2450 }
2451
2452 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2453 {
2454         __swab32s(&hss->hss_valid);
2455         __swab64s(&hss->hss_setmask);
2456         __swab64s(&hss->hss_clearmask);
2457         __swab32s(&hss->hss_archive_id);
2458 }
2459
2460 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2461 {
2462         __swab64s(&extent->offset);
2463         __swab64s(&extent->length);
2464 }
2465
2466 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2467 {
2468         __swab32s(&action->hca_state);
2469         __swab32s(&action->hca_action);
2470         lustre_swab_hsm_extent(&action->hca_location);
2471 }
2472
2473 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2474 {
2475         lustre_swab_lu_fid(&hui->hui_fid);
2476         lustre_swab_hsm_extent(&hui->hui_extent);
2477 }
2478
2479 void lustre_swab_layout_intent(struct layout_intent *li)
2480 {
2481         __swab32s(&li->li_opc);
2482         __swab32s(&li->li_flags);
2483         __swab64s(&li->li_start);
2484         __swab64s(&li->li_end);
2485 }
2486
2487 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2488 {
2489         lustre_swab_lu_fid(&hpk->hpk_fid);
2490         __swab64s(&hpk->hpk_cookie);
2491         __swab64s(&hpk->hpk_extent.offset);
2492         __swab64s(&hpk->hpk_extent.length);
2493         __swab16s(&hpk->hpk_flags);
2494         __swab16s(&hpk->hpk_errval);
2495 }
2496
2497 void lustre_swab_hsm_request(struct hsm_request *hr)
2498 {
2499         __swab32s(&hr->hr_action);
2500         __swab32s(&hr->hr_archive_id);
2501         __swab64s(&hr->hr_flags);
2502         __swab32s(&hr->hr_itemcount);
2503         __swab32s(&hr->hr_data_len);
2504 }
2505
2506 void lustre_swab_object_update(struct object_update *ou)
2507 {
2508         struct object_update_param *param;
2509         size_t  i;
2510
2511         __swab16s(&ou->ou_type);
2512         __swab16s(&ou->ou_params_count);
2513         __swab32s(&ou->ou_result_size);
2514         __swab32s(&ou->ou_flags);
2515         __swab32s(&ou->ou_padding1);
2516         __swab64s(&ou->ou_batchid);
2517         lustre_swab_lu_fid(&ou->ou_fid);
2518         param = &ou->ou_params[0];
2519         for (i = 0; i < ou->ou_params_count; i++) {
2520                 __swab16s(&param->oup_len);
2521                 __swab16s(&param->oup_padding);
2522                 __swab32s(&param->oup_padding2);
2523                 param = (struct object_update_param *)((char *)param +
2524                          object_update_param_size(param));
2525         }
2526 }
2527
2528 void lustre_swab_object_update_request(struct object_update_request *our)
2529 {
2530         size_t i;
2531         __swab32s(&our->ourq_magic);
2532         __swab16s(&our->ourq_count);
2533         __swab16s(&our->ourq_padding);
2534         for (i = 0; i < our->ourq_count; i++) {
2535                 struct object_update *ou;
2536
2537                 ou = object_update_request_get(our, i, NULL);
2538                 if (ou == NULL)
2539                         return;
2540                 lustre_swab_object_update(ou);
2541         }
2542 }
2543
2544 void lustre_swab_object_update_result(struct object_update_result *our)
2545 {
2546         __swab32s(&our->our_rc);
2547         __swab16s(&our->our_datalen);
2548         __swab16s(&our->our_padding);
2549 }
2550
2551 void lustre_swab_object_update_reply(struct object_update_reply *our)
2552 {
2553         size_t i;
2554
2555         __swab32s(&our->ourp_magic);
2556         __swab16s(&our->ourp_count);
2557         __swab16s(&our->ourp_padding);
2558         for (i = 0; i < our->ourp_count; i++) {
2559                 struct object_update_result *ourp;
2560
2561                 __swab16s(&our->ourp_lens[i]);
2562                 ourp = object_update_result_get(our, i, NULL);
2563                 if (ourp == NULL)
2564                         return;
2565                 lustre_swab_object_update_result(ourp);
2566         }
2567 }
2568
2569 void lustre_swab_out_update_header(struct out_update_header *ouh)
2570 {
2571         __swab32s(&ouh->ouh_magic);
2572         __swab32s(&ouh->ouh_count);
2573         __swab32s(&ouh->ouh_inline_length);
2574         __swab32s(&ouh->ouh_reply_size);
2575 }
2576 EXPORT_SYMBOL(lustre_swab_out_update_header);
2577
2578 void lustre_swab_out_update_buffer(struct out_update_buffer *oub)
2579 {
2580         __swab32s(&oub->oub_size);
2581         __swab32s(&oub->oub_padding);
2582 }
2583 EXPORT_SYMBOL(lustre_swab_out_update_buffer);
2584
2585 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2586 {
2587         __swab64s(&msl->msl_flags);
2588 }
2589
2590 void lustre_swab_close_data(struct close_data *cd)
2591 {
2592         lustre_swab_lu_fid(&cd->cd_fid);
2593         __swab64s(&cd->cd_data_version);
2594 }
2595
2596 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2597 {
2598         __swab32s(&lr->lr_event);
2599         __swab32s(&lr->lr_index);
2600         __swab32s(&lr->lr_flags);
2601         __swab32s(&lr->lr_valid);
2602         __swab32s(&lr->lr_speed);
2603         __swab16s(&lr->lr_version);
2604         __swab16s(&lr->lr_active);
2605         __swab16s(&lr->lr_param);
2606         __swab16s(&lr->lr_async_windows);
2607         __swab32s(&lr->lr_flags);
2608         lustre_swab_lu_fid(&lr->lr_fid);
2609         lustre_swab_lu_fid(&lr->lr_fid2);
2610         lustre_swab_lu_fid(&lr->lr_fid3);
2611         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2612         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2613 }
2614
2615 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2616 {
2617         __swab32s(&lr->lr_status);
2618         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2619         __swab64s(&lr->lr_repaired);
2620 }
2621
2622 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2623 {
2624         lustre_swab_lu_fid(&ent->loe_key);
2625         lustre_swab_lu_fid(&ent->loe_rec.lor_fid);
2626         __swab32s(&ent->loe_rec.lor_uid);
2627         __swab32s(&ent->loe_rec.lor_gid);
2628 }
2629 EXPORT_SYMBOL(lustre_swab_orphan_ent);
2630
2631 void lustre_swab_ladvise(struct lu_ladvise *ladvise)
2632 {
2633         __swab64s(&ladvise->lla_start);
2634         __swab64s(&ladvise->lla_end);
2635         __swab64s(&ladvise->lla_advice);
2636         CLASSERT(offsetof(typeof(*ladvise), lla_padding) != 0);
2637 }
2638 EXPORT_SYMBOL(lustre_swab_ladvise);
2639
2640 void lustre_swab_ladvise_hdr(struct ladvise_hdr *ladvise_hdr)
2641 {
2642         __swab32s(&ladvise_hdr->lah_magic);
2643         __swab32s(&ladvise_hdr->lah_count);
2644         __swab64s(&ladvise_hdr->lah_flags);
2645         CLASSERT(offsetof(typeof(*ladvise_hdr), lah_padding1) != 0);
2646         CLASSERT(offsetof(typeof(*ladvise_hdr), lah_padding2) != 0);
2647 }
2648 EXPORT_SYMBOL(lustre_swab_ladvise_hdr);