Whamcloud - gitweb
LU-9514 ptlrpc: free reply buffer earlier for open RPC
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2016, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lustre/ptlrpc/pack_generic.c
33  *
34  * (Un)packing of OST requests
35  *
36  * Author: Peter J. Braam <braam@clusterfs.com>
37  * Author: Phil Schwan <phil@clusterfs.com>
38  * Author: Eric Barton <eeb@clusterfs.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_RPC
42
43 #include <libcfs/libcfs.h>
44
45 #include <lustre/ll_fiemap.h>
46
47 #include <llog_swab.h>
48 #include <lustre_net.h>
49 #include <lustre_swab.h>
50 #include <obd_cksum.h>
51 #include <obd_class.h>
52 #include <obd_support.h>
53 #include <obj_update.h>
54
55 #include "ptlrpc_internal.h"
56
57 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
58 {
59         return cfs_size_round(offsetof(struct lustre_msg_v2,
60                                        lm_buflens[count]));
61 }
62
63 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
64 {
65         switch (magic) {
66         case LUSTRE_MSG_MAGIC_V2:
67                 return lustre_msg_hdr_size_v2(count);
68         default:
69                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
70                 return 0;
71         }
72 }
73
74 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
75                             __u32 index)
76 {
77         if (inout)
78                 lustre_set_req_swabbed(req, index);
79         else
80                 lustre_set_rep_swabbed(req, index);
81 }
82
83 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
84                          __u32 index)
85 {
86         if (inout)
87                 return (ptlrpc_req_need_swab(req) &&
88                         !lustre_req_swabbed(req, index));
89         else
90                 return (ptlrpc_rep_need_swab(req) &&
91                         !lustre_rep_swabbed(req, index));
92 }
93
94 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
95                                                 __u32 version)
96 {
97         __u32 ver = lustre_msg_get_version(msg);
98         return (ver & LUSTRE_VERSION_MASK) != version;
99 }
100
101 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version)
102 {
103 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
104         switch (msg->lm_magic) {
105         case LUSTRE_MSG_MAGIC_V1:
106                 CERROR("msg v1 not supported - please upgrade you system\n");
107                 return -EINVAL;
108         case LUSTRE_MSG_MAGIC_V2:
109                 return lustre_msg_check_version_v2(msg, version);
110         default:
111                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
112                 return -EPROTO;
113         }
114 #undef LUSTRE_MSG_MAGIC_V1
115 }
116
117 /* early reply size */
118 __u32 lustre_msg_early_size()
119 {
120         static __u32 size;
121         if (!size) {
122                 /* Always reply old ptlrpc_body_v2 to keep interoprability
123                  * with the old client (< 2.3) which doesn't have pb_jobid
124                  * in the ptlrpc_body.
125                  *
126                  * XXX Remove this whenever we dorp interoprability with such
127                  *     client.
128                  */
129                 __u32 pblen = sizeof(struct ptlrpc_body_v2);
130                 size = lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
131         }
132         return size;
133 }
134 EXPORT_SYMBOL(lustre_msg_early_size);
135
136 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
137 {
138         __u32 size;
139         int i;
140
141         size = lustre_msg_hdr_size_v2(count);
142         for (i = 0; i < count; i++)
143                 size += cfs_size_round(lengths[i]);
144
145         return size;
146 }
147 EXPORT_SYMBOL(lustre_msg_size_v2);
148
149 /* This returns the size of the buffer that is required to hold a lustre_msg
150  * with the given sub-buffer lengths.
151  * NOTE: this should only be used for NEW requests, and should always be
152  *       in the form of a v2 request.  If this is a connection to a v1
153  *       target then the first buffer will be stripped because the ptlrpc
154  *       data is part of the lustre_msg_v1 header. b=14043 */
155 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
156 {
157         __u32 size[] = { sizeof(struct ptlrpc_body) };
158
159         if (!lens) {
160                 LASSERT(count == 1);
161                 lens = size;
162         }
163
164         LASSERT(count > 0);
165         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
166
167         switch (magic) {
168         case LUSTRE_MSG_MAGIC_V2:
169                 return lustre_msg_size_v2(count, lens);
170         default:
171                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
172                 return 0;
173         }
174 }
175
176 /* This is used to determine the size of a buffer that was already packed
177  * and will correctly handle the different message formats. */
178 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
179 {
180         switch (msg->lm_magic) {
181         case LUSTRE_MSG_MAGIC_V2:
182                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
183         default:
184                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
185                 return 0;
186         }
187 }
188
189 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
190                         char **bufs)
191 {
192         char *ptr;
193         int i;
194
195         msg->lm_bufcount = count;
196         /* XXX: lm_secflvr uninitialized here */
197         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
198
199         for (i = 0; i < count; i++)
200                 msg->lm_buflens[i] = lens[i];
201
202         if (bufs == NULL)
203                 return;
204
205         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
206         for (i = 0; i < count; i++) {
207                 char *tmp = bufs[i];
208
209                 if (tmp)
210                         memcpy(ptr, tmp, lens[i]);
211                 ptr += cfs_size_round(lens[i]);
212         }
213 }
214 EXPORT_SYMBOL(lustre_init_msg_v2);
215
216 static int lustre_pack_request_v2(struct ptlrpc_request *req,
217                                   int count, __u32 *lens, char **bufs)
218 {
219         int reqlen, rc;
220
221         reqlen = lustre_msg_size_v2(count, lens);
222
223         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
224         if (rc)
225                 return rc;
226
227         req->rq_reqlen = reqlen;
228
229         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
230         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
231         return 0;
232 }
233
234 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
235                         __u32 *lens, char **bufs)
236 {
237         __u32 size[] = { sizeof(struct ptlrpc_body) };
238
239         if (!lens) {
240                 LASSERT(count == 1);
241                 lens = size;
242         }
243
244         LASSERT(count > 0);
245         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
246
247         /* only use new format, we don't need to be compatible with 1.4 */
248         magic = LUSTRE_MSG_MAGIC_V2;
249
250         switch (magic) {
251         case LUSTRE_MSG_MAGIC_V2:
252                 return lustre_pack_request_v2(req, count, lens, bufs);
253         default:
254                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
255                 return -EINVAL;
256         }
257 }
258
259 #if RS_DEBUG
260 struct list_head ptlrpc_rs_debug_lru =
261         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
262 spinlock_t ptlrpc_rs_debug_lock;
263
264 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
265 do {                                                                    \
266         spin_lock(&ptlrpc_rs_debug_lock);                               \
267         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
268         spin_unlock(&ptlrpc_rs_debug_lock);                             \
269 } while (0)
270
271 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
272 do {                                                                    \
273         spin_lock(&ptlrpc_rs_debug_lock);                               \
274         list_del(&(rs)->rs_debug_list);                         \
275         spin_unlock(&ptlrpc_rs_debug_lock);                             \
276 } while (0)
277 #else
278 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
279 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
280 #endif
281
282 struct ptlrpc_reply_state *
283 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
284 {
285         struct ptlrpc_reply_state *rs = NULL;
286
287         spin_lock(&svcpt->scp_rep_lock);
288
289         /* See if we have anything in a pool, and wait if nothing */
290         while (list_empty(&svcpt->scp_rep_idle)) {
291                 struct l_wait_info      lwi;
292                 int                     rc;
293
294                 spin_unlock(&svcpt->scp_rep_lock);
295                 /* If we cannot get anything for some long time, we better
296                  * bail out instead of waiting infinitely */
297                 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
298                 rc = l_wait_event(svcpt->scp_rep_waitq,
299                                   !list_empty(&svcpt->scp_rep_idle), &lwi);
300                 if (rc != 0)
301                         goto out;
302                 spin_lock(&svcpt->scp_rep_lock);
303         }
304
305         rs = list_entry(svcpt->scp_rep_idle.next,
306                             struct ptlrpc_reply_state, rs_list);
307         list_del(&rs->rs_list);
308
309         spin_unlock(&svcpt->scp_rep_lock);
310
311         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
312         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
313         rs->rs_svcpt = svcpt;
314         rs->rs_prealloc = 1;
315 out:
316         return rs;
317 }
318
319 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
320 {
321         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
322
323         spin_lock(&svcpt->scp_rep_lock);
324         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
325         spin_unlock(&svcpt->scp_rep_lock);
326         wake_up(&svcpt->scp_rep_waitq);
327 }
328
329 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
330                          __u32 *lens, char **bufs, int flags)
331 {
332         struct ptlrpc_reply_state *rs;
333         int                        msg_len, rc;
334         ENTRY;
335
336         LASSERT(req->rq_reply_state == NULL);
337
338         if ((flags & LPRFL_EARLY_REPLY) == 0) {
339                 spin_lock(&req->rq_lock);
340                 req->rq_packed_final = 1;
341                 spin_unlock(&req->rq_lock);
342         }
343
344         msg_len = lustre_msg_size_v2(count, lens);
345         rc = sptlrpc_svc_alloc_rs(req, msg_len);
346         if (rc)
347                 RETURN(rc);
348
349         rs = req->rq_reply_state;
350         atomic_set(&rs->rs_refcount, 1);        /* 1 ref for rq_reply_state */
351         rs->rs_cb_id.cbid_fn = reply_out_callback;
352         rs->rs_cb_id.cbid_arg = rs;
353         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
354         INIT_LIST_HEAD(&rs->rs_exp_list);
355         INIT_LIST_HEAD(&rs->rs_obd_list);
356         INIT_LIST_HEAD(&rs->rs_list);
357         spin_lock_init(&rs->rs_lock);
358
359         req->rq_replen = msg_len;
360         req->rq_reply_state = rs;
361         req->rq_repmsg = rs->rs_msg;
362
363         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
364         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
365
366         PTLRPC_RS_DEBUG_LRU_ADD(rs);
367
368         RETURN(0);
369 }
370 EXPORT_SYMBOL(lustre_pack_reply_v2);
371
372 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
373                             char **bufs, int flags)
374 {
375         int rc = 0;
376         __u32 size[] = { sizeof(struct ptlrpc_body) };
377
378         if (!lens) {
379                 LASSERT(count == 1);
380                 lens = size;
381         }
382
383         LASSERT(count > 0);
384         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
385
386         switch (req->rq_reqmsg->lm_magic) {
387         case LUSTRE_MSG_MAGIC_V2:
388                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
389                 break;
390         default:
391                 LASSERTF(0, "incorrect message magic: %08x\n",
392                          req->rq_reqmsg->lm_magic);
393                 rc = -EINVAL;
394         }
395         if (rc != 0)
396                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
397                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
398         return rc;
399 }
400
401 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
402                       char **bufs)
403 {
404         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
405 }
406 EXPORT_SYMBOL(lustre_pack_reply);
407
408 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
409 {
410         __u32 i, offset, buflen, bufcount;
411
412         LASSERT(m != NULL);
413
414         bufcount = m->lm_bufcount;
415         if (unlikely(n >= bufcount)) {
416                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
417                        m, n, bufcount);
418                 return NULL;
419         }
420
421         buflen = m->lm_buflens[n];
422         if (unlikely(buflen < min_size)) {
423                 CERROR("msg %p buffer[%d] size %d too small "
424                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
425                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
426                 return NULL;
427         }
428
429         offset = lustre_msg_hdr_size_v2(bufcount);
430         for (i = 0; i < n; i++)
431                 offset += cfs_size_round(m->lm_buflens[i]);
432
433         return (char *)m + offset;
434 }
435
436 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
437 {
438         switch (m->lm_magic) {
439         case LUSTRE_MSG_MAGIC_V2:
440                 return lustre_msg_buf_v2(m, n, min_size);
441         default:
442                 LASSERTF(0, "incorrect message magic: %08x (msg:%p)\n",
443                          m->lm_magic, m);
444                 return NULL;
445         }
446 }
447 EXPORT_SYMBOL(lustre_msg_buf);
448
449 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
450                                 unsigned int newlen, int move_data)
451 {
452         char   *tail = NULL, *newpos;
453         int     tail_len = 0, n;
454
455         LASSERT(msg);
456         LASSERT(msg->lm_bufcount > segment);
457         LASSERT(msg->lm_buflens[segment] >= newlen);
458
459         if (msg->lm_buflens[segment] == newlen)
460                 goto out;
461
462         if (move_data && msg->lm_bufcount > segment + 1) {
463                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
464                 for (n = segment + 1; n < msg->lm_bufcount; n++)
465                         tail_len += cfs_size_round(msg->lm_buflens[n]);
466         }
467
468         msg->lm_buflens[segment] = newlen;
469
470         if (tail && tail_len) {
471                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
472                 LASSERT(newpos <= tail);
473                 if (newpos != tail)
474                         memmove(newpos, tail, tail_len);
475         }
476 out:
477         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
478 }
479
480 /*
481  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
482  * we also move data forward from @segment + 1.
483  *
484  * if @newlen == 0, we remove the segment completely, but we still keep the
485  * totally bufcount the same to save possible data moving. this will leave a
486  * unused segment with size 0 at the tail, but that's ok.
487  *
488  * return new msg size after shrinking.
489  *
490  * CAUTION:
491  * + if any buffers higher than @segment has been filled in, must call shrink
492  *   with non-zero @move_data.
493  * + caller should NOT keep pointers to msg buffers which higher than @segment
494  *   after call shrink.
495  */
496 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
497                       unsigned int newlen, int move_data)
498 {
499         switch (msg->lm_magic) {
500         case LUSTRE_MSG_MAGIC_V2:
501                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
502         default:
503                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
504         }
505 }
506 EXPORT_SYMBOL(lustre_shrink_msg);
507
508 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
509 {
510         PTLRPC_RS_DEBUG_LRU_DEL(rs);
511
512         LASSERT(atomic_read(&rs->rs_refcount) == 0);
513         LASSERT(!rs->rs_difficult || rs->rs_handled);
514         LASSERT(!rs->rs_on_net);
515         LASSERT(!rs->rs_scheduled);
516         LASSERT(rs->rs_export == NULL);
517         LASSERT(rs->rs_nlocks == 0);
518         LASSERT(list_empty(&rs->rs_exp_list));
519         LASSERT(list_empty(&rs->rs_obd_list));
520
521         sptlrpc_svc_free_rs(rs);
522 }
523
524 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
525 {
526         int swabbed, required_len, i;
527
528         /* Now we know the sender speaks my language. */
529         required_len = lustre_msg_hdr_size_v2(0);
530         if (len < required_len) {
531                 /* can't even look inside the message */
532                 CERROR("message length %d too small for lustre_msg\n", len);
533                 return -EINVAL;
534         }
535
536         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
537
538         if (swabbed) {
539                 __swab32s(&m->lm_magic);
540                 __swab32s(&m->lm_bufcount);
541                 __swab32s(&m->lm_secflvr);
542                 __swab32s(&m->lm_repsize);
543                 __swab32s(&m->lm_cksum);
544                 __swab32s(&m->lm_flags);
545                 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
546                 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
547         }
548
549         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
550         if (len < required_len) {
551                 /* didn't receive all the buffer lengths */
552                 CERROR ("message length %d too small for %d buflens\n",
553                         len, m->lm_bufcount);
554                 return -EINVAL;
555         }
556
557         for (i = 0; i < m->lm_bufcount; i++) {
558                 if (swabbed)
559                         __swab32s(&m->lm_buflens[i]);
560                 required_len += cfs_size_round(m->lm_buflens[i]);
561         }
562
563         if (len < required_len) {
564                 CERROR("len: %d, required_len %d\n", len, required_len);
565                 CERROR("bufcount: %d\n", m->lm_bufcount);
566                 for (i = 0; i < m->lm_bufcount; i++)
567                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
568                 return -EINVAL;
569         }
570
571         return swabbed;
572 }
573
574 int __lustre_unpack_msg(struct lustre_msg *m, int len)
575 {
576         int required_len, rc;
577         ENTRY;
578
579         /* We can provide a slightly better error log, if we check the
580          * message magic and version first.  In the future, struct
581          * lustre_msg may grow, and we'd like to log a version mismatch,
582          * rather than a short message.
583          *
584          */
585         required_len = offsetof(struct lustre_msg, lm_magic) +
586                        sizeof(m->lm_magic);
587         if (len < required_len) {
588                 /* can't even look inside the message */
589                 CERROR("message length %d too small for magic/version check\n",
590                        len);
591                 RETURN(-EINVAL);
592         }
593
594         rc = lustre_unpack_msg_v2(m, len);
595
596         RETURN(rc);
597 }
598 EXPORT_SYMBOL(__lustre_unpack_msg);
599
600 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
601 {
602         int rc;
603         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
604         if (rc == 1) {
605                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
606                 rc = 0;
607         }
608         return rc;
609 }
610
611 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
612 {
613         int rc;
614         rc = __lustre_unpack_msg(req->rq_repmsg, len);
615         if (rc == 1) {
616                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
617                 rc = 0;
618         }
619         return rc;
620 }
621
622 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
623                                                const int inout, int offset)
624 {
625         struct ptlrpc_body *pb;
626         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
627
628         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
629         if (!pb) {
630                 CERROR("error unpacking ptlrpc body\n");
631                 return -EFAULT;
632         }
633         if (ptlrpc_buf_need_swab(req, inout, offset)) {
634                 lustre_swab_ptlrpc_body(pb);
635                 ptlrpc_buf_set_swabbed(req, inout, offset);
636         }
637
638         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
639                  CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
640                  return -EINVAL;
641         }
642
643         if (!inout)
644                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
645
646         return 0;
647 }
648
649 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
650 {
651         switch (req->rq_reqmsg->lm_magic) {
652         case LUSTRE_MSG_MAGIC_V2:
653                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
654         default:
655                 CERROR("bad lustre msg magic: %08x\n",
656                        req->rq_reqmsg->lm_magic);
657                 return -EINVAL;
658         }
659 }
660
661 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
662 {
663         switch (req->rq_repmsg->lm_magic) {
664         case LUSTRE_MSG_MAGIC_V2:
665                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
666         default:
667                 CERROR("bad lustre msg magic: %08x\n",
668                        req->rq_repmsg->lm_magic);
669                 return -EINVAL;
670         }
671 }
672
673 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
674 {
675         if (n >= m->lm_bufcount)
676                 return 0;
677
678         return m->lm_buflens[n];
679 }
680
681 /**
682  * lustre_msg_buflen - return the length of buffer \a n in message \a m
683  * \param m lustre_msg (request or reply) to look at
684  * \param n message index (base 0)
685  *
686  * returns zero for non-existent message indices
687  */
688 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
689 {
690         switch (m->lm_magic) {
691         case LUSTRE_MSG_MAGIC_V2:
692                 return lustre_msg_buflen_v2(m, n);
693         default:
694                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
695                 return 0;
696         }
697 }
698 EXPORT_SYMBOL(lustre_msg_buflen);
699
700 static inline void
701 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
702 {
703         if (n >= m->lm_bufcount)
704                 LBUG();
705
706         m->lm_buflens[n] = len;
707 }
708
709 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
710 {
711         switch (m->lm_magic) {
712         case LUSTRE_MSG_MAGIC_V2:
713                 lustre_msg_set_buflen_v2(m, n, len);
714                 return;
715         default:
716                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
717         }
718 }
719
720 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
721  * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
722 __u32 lustre_msg_bufcount(struct lustre_msg *m)
723 {
724         switch (m->lm_magic) {
725         case LUSTRE_MSG_MAGIC_V2:
726                 return m->lm_bufcount;
727         default:
728                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
729                 return 0;
730         }
731 }
732
733 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
734 {
735         /* max_len == 0 means the string should fill the buffer */
736         char *str;
737         __u32 slen, blen;
738
739         switch (m->lm_magic) {
740         case LUSTRE_MSG_MAGIC_V2:
741                 str = lustre_msg_buf_v2(m, index, 0);
742                 blen = lustre_msg_buflen_v2(m, index);
743                 break;
744         default:
745                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
746         }
747
748         if (str == NULL) {
749                 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
750                 return NULL;
751         }
752
753         slen = strnlen(str, blen);
754
755         if (slen == blen) {                     /* not NULL terminated */
756                 CERROR("can't unpack non-NULL terminated string in "
757                         "msg %p buffer[%d] len %d\n", m, index, blen);
758                 return NULL;
759         }
760
761         if (max_len == 0) {
762                 if (slen != blen - 1) {
763                         CERROR("can't unpack short string in msg %p "
764                                "buffer[%d] len %d: strlen %d\n",
765                                m, index, blen, slen);
766                         return NULL;
767                 }
768         } else if (slen > max_len) {
769                 CERROR("can't unpack oversized string in msg %p "
770                        "buffer[%d] len %d strlen %d: max %d expected\n",
771                        m, index, blen, slen, max_len);
772                 return NULL;
773         }
774
775         return str;
776 }
777
778 /* Wrap up the normal fixed length cases */
779 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
780                                       __u32 min_size, void *swabber)
781 {
782         void *ptr = NULL;
783
784         LASSERT(msg != NULL);
785         switch (msg->lm_magic) {
786         case LUSTRE_MSG_MAGIC_V2:
787                 ptr = lustre_msg_buf_v2(msg, index, min_size);
788                 break;
789         default:
790                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
791         }
792
793         if (ptr != NULL && swabber != NULL)
794                 ((void (*)(void *))swabber)(ptr);
795
796         return ptr;
797 }
798
799 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
800 {
801         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
802                                  sizeof(struct ptlrpc_body_v2));
803 }
804
805 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg)
806 {
807         switch (msg->lm_magic) {
808         case LUSTRE_MSG_MAGIC_V2:
809                 /* already in host endian */
810                 return msg->lm_flags;
811         default:
812                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
813                 return 0;
814         }
815 }
816 EXPORT_SYMBOL(lustre_msghdr_get_flags);
817
818 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
819 {
820         switch (msg->lm_magic) {
821         case LUSTRE_MSG_MAGIC_V2:
822                 msg->lm_flags = flags;
823                 return;
824         default:
825                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
826         }
827 }
828
829 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
830 {
831         switch (msg->lm_magic) {
832         case LUSTRE_MSG_MAGIC_V2: {
833                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
834                 if (pb != NULL)
835                         return pb->pb_flags;
836
837                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
838         }
839         /* no break */
840         default:
841                 /* flags might be printed in debug code while message
842                  * uninitialized */
843                 return 0;
844         }
845 }
846 EXPORT_SYMBOL(lustre_msg_get_flags);
847
848 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
849 {
850         switch (msg->lm_magic) {
851         case LUSTRE_MSG_MAGIC_V2: {
852                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
853                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
854                 pb->pb_flags |= flags;
855                 return;
856         }
857         default:
858                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
859         }
860 }
861 EXPORT_SYMBOL(lustre_msg_add_flags);
862
863 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
864 {
865         switch (msg->lm_magic) {
866         case LUSTRE_MSG_MAGIC_V2: {
867                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
868                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
869                 pb->pb_flags = flags;
870                 return;
871         }
872         default:
873                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
874         }
875 }
876
877 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
878 {
879         switch (msg->lm_magic) {
880         case LUSTRE_MSG_MAGIC_V2: {
881                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
882                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
883                 pb->pb_flags &= ~(MSG_GEN_FLAG_MASK & flags);
884                 return;
885         }
886         default:
887                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
888         }
889 }
890 EXPORT_SYMBOL(lustre_msg_clear_flags);
891
892 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
893 {
894         switch (msg->lm_magic) {
895         case LUSTRE_MSG_MAGIC_V2: {
896                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
897                 if (pb != NULL)
898                         return pb->pb_op_flags;
899
900                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
901         }
902         /* no break */
903         default:
904                 return 0;
905         }
906 }
907
908 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
909 {
910         switch (msg->lm_magic) {
911         case LUSTRE_MSG_MAGIC_V2: {
912                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
913                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
914                 pb->pb_op_flags |= flags;
915                 return;
916         }
917         default:
918                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
919         }
920 }
921 EXPORT_SYMBOL(lustre_msg_add_op_flags);
922
923 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
924 {
925         switch (msg->lm_magic) {
926         case LUSTRE_MSG_MAGIC_V2: {
927                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
928                 if (pb == NULL) {
929                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
930                         return NULL;
931                 }
932                 return &pb->pb_handle;
933         }
934         default:
935                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
936                 return NULL;
937         }
938 }
939
940 __u32 lustre_msg_get_type(struct lustre_msg *msg)
941 {
942         switch (msg->lm_magic) {
943         case LUSTRE_MSG_MAGIC_V2: {
944                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
945                 if (pb == NULL) {
946                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
947                         return PTL_RPC_MSG_ERR;
948                 }
949                 return pb->pb_type;
950         }
951         default:
952                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
953                 return PTL_RPC_MSG_ERR;
954         }
955 }
956 EXPORT_SYMBOL(lustre_msg_get_type);
957
958 __u32 lustre_msg_get_version(struct lustre_msg *msg)
959 {
960         switch (msg->lm_magic) {
961         case LUSTRE_MSG_MAGIC_V2: {
962                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
963                 if (pb == NULL) {
964                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
965                         return 0;
966                 }
967                 return pb->pb_version;
968         }
969         default:
970                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
971                 return 0;
972         }
973 }
974
975 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
976 {
977         switch (msg->lm_magic) {
978         case LUSTRE_MSG_MAGIC_V2: {
979                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
980                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
981                 pb->pb_version |= version;
982                 return;
983         }
984         default:
985                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
986         }
987 }
988
989 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
990 {
991         switch (msg->lm_magic) {
992         case LUSTRE_MSG_MAGIC_V2: {
993                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
994                 if (pb == NULL) {
995                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
996                         return 0;
997                 }
998                 return pb->pb_opc;
999         }
1000         default:
1001                 CERROR("incorrect message magic: %08x (msg:%p)\n",
1002                        msg->lm_magic, msg);
1003                 return 0;
1004         }
1005 }
1006 EXPORT_SYMBOL(lustre_msg_get_opc);
1007
1008 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1009 {
1010         switch (msg->lm_magic) {
1011         case LUSTRE_MSG_MAGIC_V2: {
1012                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1013                 if (pb == NULL) {
1014                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1015                         return 0;
1016                 }
1017                 return pb->pb_last_xid;
1018         }
1019         default:
1020                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1021                 return 0;
1022         }
1023 }
1024 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1025
1026 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1027 {
1028         switch (msg->lm_magic) {
1029         case LUSTRE_MSG_MAGIC_V2: {
1030                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1031                 if (!pb) {
1032                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1033                         return 0;
1034                 }
1035                 return pb->pb_tag;
1036         }
1037         default:
1038                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1039                 return 0;
1040         }
1041 }
1042 EXPORT_SYMBOL(lustre_msg_get_tag);
1043
1044 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1045 {
1046         switch (msg->lm_magic) {
1047         case LUSTRE_MSG_MAGIC_V2: {
1048                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1049                 if (pb == NULL) {
1050                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1051                         return 0;
1052                 }
1053                 return pb->pb_last_committed;
1054         }
1055         default:
1056                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1057                 return 0;
1058         }
1059 }
1060 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1061
1062 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1063 {
1064         switch (msg->lm_magic) {
1065         case LUSTRE_MSG_MAGIC_V2: {
1066                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1067                 if (pb == NULL) {
1068                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1069                         return NULL;
1070                 }
1071                 return pb->pb_pre_versions;
1072         }
1073         default:
1074                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1075                 return NULL;
1076         }
1077 }
1078 EXPORT_SYMBOL(lustre_msg_get_versions);
1079
1080 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1081 {
1082         switch (msg->lm_magic) {
1083         case LUSTRE_MSG_MAGIC_V2: {
1084                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1085                 if (pb == NULL) {
1086                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1087                         return 0;
1088                 }
1089                 return pb->pb_transno;
1090         }
1091         default:
1092                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1093                 return 0;
1094         }
1095 }
1096 EXPORT_SYMBOL(lustre_msg_get_transno);
1097
1098 int lustre_msg_get_status(struct lustre_msg *msg)
1099 {
1100         switch (msg->lm_magic) {
1101         case LUSTRE_MSG_MAGIC_V2: {
1102                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1103                 if (pb != NULL)
1104                         return pb->pb_status;
1105                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1106         }
1107         /* no break */
1108         default:
1109                 /* status might be printed in debug code while message
1110                 * uninitialized */
1111                 return -EINVAL;
1112         }
1113 }
1114 EXPORT_SYMBOL(lustre_msg_get_status);
1115
1116 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1117 {
1118         switch (msg->lm_magic) {
1119         case LUSTRE_MSG_MAGIC_V2: {
1120                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1121                 if (pb == NULL) {
1122                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1123                         return -EINVAL;
1124                 }
1125                 return pb->pb_slv;
1126         }
1127         default:
1128                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1129                 return -EINVAL;
1130         }
1131 }
1132
1133
1134 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1135 {
1136         switch (msg->lm_magic) {
1137         case LUSTRE_MSG_MAGIC_V2: {
1138                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1139                 if (pb == NULL) {
1140                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1141                         return;
1142                 }
1143                 pb->pb_slv = slv;
1144                 return;
1145         }
1146         default:
1147                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1148                 return;
1149         }
1150 }
1151
1152 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1153 {
1154         switch (msg->lm_magic) {
1155         case LUSTRE_MSG_MAGIC_V2: {
1156                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1157                 if (pb == NULL) {
1158                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1159                         return -EINVAL;
1160                 }
1161                 return pb->pb_limit;
1162         }
1163         default:
1164                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1165                 return -EINVAL;
1166         }
1167 }
1168
1169
1170 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1171 {
1172         switch (msg->lm_magic) {
1173         case LUSTRE_MSG_MAGIC_V2: {
1174                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1175                 if (pb == NULL) {
1176                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1177                         return;
1178                 }
1179                 pb->pb_limit = limit;
1180                 return;
1181         }
1182         default:
1183                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1184                 return;
1185         }
1186 }
1187
1188 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1189 {
1190         switch (msg->lm_magic) {
1191         case LUSTRE_MSG_MAGIC_V2: {
1192                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1193                 if (pb == NULL) {
1194                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1195                         return 0;
1196                 }
1197                 return pb->pb_conn_cnt;
1198         }
1199         default:
1200                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1201                 return 0;
1202         }
1203 }
1204 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1205
1206 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1207 {
1208         switch (msg->lm_magic) {
1209         case LUSTRE_MSG_MAGIC_V2:
1210                 return msg->lm_magic;
1211         default:
1212                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1213                 return 0;
1214         }
1215 }
1216
1217 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1218 {
1219         switch (msg->lm_magic) {
1220         case LUSTRE_MSG_MAGIC_V2: {
1221                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1222                 if (pb == NULL) {
1223                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1224                         return 0;
1225                 }
1226                 return pb->pb_timeout;
1227         }
1228         default:
1229                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1230                 return 0;
1231         }
1232 }
1233
1234 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1235 {
1236         switch (msg->lm_magic) {
1237         case LUSTRE_MSG_MAGIC_V2: {
1238                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1239                 if (pb == NULL) {
1240                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1241                         return 0;
1242                 }
1243                 return pb->pb_service_time;
1244         }
1245         default:
1246                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1247                 return 0;
1248         }
1249 }
1250
1251 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1252 {
1253         switch (msg->lm_magic) {
1254         case LUSTRE_MSG_MAGIC_V2: {
1255                 struct ptlrpc_body *pb =
1256                         lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1257                                           sizeof(struct ptlrpc_body));
1258                 if (!pb)
1259                         return NULL;
1260
1261                 return pb->pb_jobid;
1262         }
1263         default:
1264                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1265                 return NULL;
1266         }
1267 }
1268 EXPORT_SYMBOL(lustre_msg_get_jobid);
1269
1270 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1271 {
1272         switch (msg->lm_magic) {
1273         case LUSTRE_MSG_MAGIC_V2:
1274                 return msg->lm_cksum;
1275         default:
1276                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1277                 return 0;
1278         }
1279 }
1280
1281 __u64 lustre_msg_get_mbits(struct lustre_msg *msg)
1282 {
1283         switch (msg->lm_magic) {
1284         case LUSTRE_MSG_MAGIC_V2: {
1285                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1286                 if (pb == NULL) {
1287                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1288                         return 0;
1289                 }
1290                 return pb->pb_mbits;
1291         }
1292         default:
1293                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1294                 return 0;
1295         }
1296 }
1297
1298 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1299 {
1300         switch (msg->lm_magic) {
1301         case LUSTRE_MSG_MAGIC_V2: {
1302                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1303                 __u32 len = lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1304
1305                 unsigned int hsize = 4;
1306                 __u32 crc;
1307
1308                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1309                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1310                                        len, NULL, 0, (unsigned char *)&crc,
1311                                        &hsize);
1312                 return crc;
1313         }
1314         default:
1315                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1316                 return 0;
1317         }
1318 }
1319
1320 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1321 {
1322         switch (msg->lm_magic) {
1323         case LUSTRE_MSG_MAGIC_V2: {
1324                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1325                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1326                 pb->pb_handle = *handle;
1327                 return;
1328         }
1329         default:
1330                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1331         }
1332 }
1333
1334 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1335 {
1336         switch (msg->lm_magic) {
1337         case LUSTRE_MSG_MAGIC_V2: {
1338                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1339                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1340                 pb->pb_type = type;
1341                 return;
1342                 }
1343         default:
1344                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1345         }
1346 }
1347
1348 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1349 {
1350         switch (msg->lm_magic) {
1351         case LUSTRE_MSG_MAGIC_V2: {
1352                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1353                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1354                 pb->pb_opc = opc;
1355                 return;
1356         }
1357         default:
1358                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1359         }
1360 }
1361
1362 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1363 {
1364         switch (msg->lm_magic) {
1365         case LUSTRE_MSG_MAGIC_V2: {
1366                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1367                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1368                 pb->pb_last_xid = last_xid;
1369                 return;
1370         }
1371         default:
1372                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1373         }
1374 }
1375 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1376
1377 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1378 {
1379         switch (msg->lm_magic) {
1380         case LUSTRE_MSG_MAGIC_V2: {
1381                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1382                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1383                 pb->pb_tag = tag;
1384                 return;
1385         }
1386         default:
1387                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1388         }
1389 }
1390 EXPORT_SYMBOL(lustre_msg_set_tag);
1391
1392 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1393 {
1394         switch (msg->lm_magic) {
1395         case LUSTRE_MSG_MAGIC_V2: {
1396                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1397                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1398                 pb->pb_last_committed = last_committed;
1399                 return;
1400         }
1401         default:
1402                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1403         }
1404 }
1405
1406 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1407 {
1408         switch (msg->lm_magic) {
1409         case LUSTRE_MSG_MAGIC_V2: {
1410                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1411                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1412                 pb->pb_pre_versions[0] = versions[0];
1413                 pb->pb_pre_versions[1] = versions[1];
1414                 pb->pb_pre_versions[2] = versions[2];
1415                 pb->pb_pre_versions[3] = versions[3];
1416                 return;
1417         }
1418         default:
1419                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1420         }
1421 }
1422 EXPORT_SYMBOL(lustre_msg_set_versions);
1423
1424 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1425 {
1426         switch (msg->lm_magic) {
1427         case LUSTRE_MSG_MAGIC_V2: {
1428                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1429                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1430                 pb->pb_transno = transno;
1431                 return;
1432         }
1433         default:
1434                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1435         }
1436 }
1437 EXPORT_SYMBOL(lustre_msg_set_transno);
1438
1439 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1440 {
1441         switch (msg->lm_magic) {
1442         case LUSTRE_MSG_MAGIC_V2: {
1443                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1444                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1445                 pb->pb_status = status;
1446                 return;
1447         }
1448         default:
1449                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1450         }
1451 }
1452 EXPORT_SYMBOL(lustre_msg_set_status);
1453
1454 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1455 {
1456         switch (msg->lm_magic) {
1457         case LUSTRE_MSG_MAGIC_V2: {
1458                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1459                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1460                 pb->pb_conn_cnt = conn_cnt;
1461                 return;
1462         }
1463         default:
1464                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1465         }
1466 }
1467
1468 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1469 {
1470         switch (msg->lm_magic) {
1471         case LUSTRE_MSG_MAGIC_V2: {
1472                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1473                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1474                 pb->pb_timeout = timeout;
1475                 return;
1476         }
1477         default:
1478                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1479         }
1480 }
1481
1482 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1483 {
1484         switch (msg->lm_magic) {
1485         case LUSTRE_MSG_MAGIC_V2: {
1486                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1487                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1488                 pb->pb_service_time = service_time;
1489                 return;
1490         }
1491         default:
1492                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1493         }
1494 }
1495
1496 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1497 {
1498         switch (msg->lm_magic) {
1499         case LUSTRE_MSG_MAGIC_V2: {
1500                 __u32 opc = lustre_msg_get_opc(msg);
1501                 struct ptlrpc_body *pb;
1502
1503                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1504                  * See the comment in ptlrpc_request_pack(). */
1505                 if (!opc || opc == LDLM_BL_CALLBACK ||
1506                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1507                         return;
1508
1509                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1510                                        sizeof(struct ptlrpc_body));
1511                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1512
1513                 if (jobid != NULL)
1514                         memcpy(pb->pb_jobid, jobid, LUSTRE_JOBID_SIZE);
1515                 else if (pb->pb_jobid[0] == '\0')
1516                         lustre_get_jobid(pb->pb_jobid);
1517                 return;
1518         }
1519         default:
1520                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1521         }
1522 }
1523 EXPORT_SYMBOL(lustre_msg_set_jobid);
1524
1525 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1526 {
1527         switch (msg->lm_magic) {
1528         case LUSTRE_MSG_MAGIC_V2:
1529                 msg->lm_cksum = cksum;
1530                 return;
1531         default:
1532                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1533         }
1534 }
1535
1536 void lustre_msg_set_mbits(struct lustre_msg *msg, __u64 mbits)
1537 {
1538         switch (msg->lm_magic) {
1539         case LUSTRE_MSG_MAGIC_V2: {
1540                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1541
1542                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1543                 pb->pb_mbits = mbits;
1544                 return;
1545         }
1546         default:
1547                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1548         }
1549 }
1550
1551 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1552 {
1553         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1554
1555         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1556                                          req->rq_pill.rc_area[RCL_SERVER]);
1557         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1558                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1559 }
1560 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1561
1562 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1563 {
1564         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1565         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1566                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1567 }
1568
1569 /**
1570  * Send a remote set_info_async.
1571  *
1572  * This may go from client to server or server to client.
1573  */
1574 int do_set_info_async(struct obd_import *imp,
1575                       int opcode, int version,
1576                       size_t keylen, void *key,
1577                       size_t vallen, void *val,
1578                       struct ptlrpc_request_set *set)
1579 {
1580         struct ptlrpc_request *req;
1581         char                  *tmp;
1582         int                    rc;
1583         ENTRY;
1584
1585         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1586         if (req == NULL)
1587                 RETURN(-ENOMEM);
1588
1589         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1590                              RCL_CLIENT, keylen);
1591         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1592                              RCL_CLIENT, vallen);
1593         rc = ptlrpc_request_pack(req, version, opcode);
1594         if (rc) {
1595                 ptlrpc_request_free(req);
1596                 RETURN(rc);
1597         }
1598
1599         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1600         memcpy(tmp, key, keylen);
1601         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1602         memcpy(tmp, val, vallen);
1603
1604         ptlrpc_request_set_replen(req);
1605
1606         if (set) {
1607                 ptlrpc_set_add_req(set, req);
1608                 ptlrpc_check_set(NULL, set);
1609         } else {
1610                 rc = ptlrpc_queue_wait(req);
1611                 ptlrpc_req_finished(req);
1612         }
1613
1614         RETURN(rc);
1615 }
1616 EXPORT_SYMBOL(do_set_info_async);
1617
1618 /* byte flipping routines for all wire types declared in
1619  * lustre_idl.h implemented here.
1620  */
1621 void lustre_swab_ptlrpc_body(struct ptlrpc_body *b)
1622 {
1623         __swab32s (&b->pb_type);
1624         __swab32s (&b->pb_version);
1625         __swab32s (&b->pb_opc);
1626         __swab32s (&b->pb_status);
1627         __swab64s (&b->pb_last_xid);
1628         __swab16s (&b->pb_tag);
1629         __swab64s (&b->pb_last_committed);
1630         __swab64s (&b->pb_transno);
1631         __swab32s (&b->pb_flags);
1632         __swab32s (&b->pb_op_flags);
1633         __swab32s (&b->pb_conn_cnt);
1634         __swab32s (&b->pb_timeout);
1635         __swab32s (&b->pb_service_time);
1636         __swab32s (&b->pb_limit);
1637         __swab64s (&b->pb_slv);
1638         __swab64s (&b->pb_pre_versions[0]);
1639         __swab64s (&b->pb_pre_versions[1]);
1640         __swab64s (&b->pb_pre_versions[2]);
1641         __swab64s (&b->pb_pre_versions[3]);
1642         __swab64s(&b->pb_mbits);
1643         CLASSERT(offsetof(typeof(*b), pb_padding0) != 0);
1644         CLASSERT(offsetof(typeof(*b), pb_padding1) != 0);
1645         CLASSERT(offsetof(typeof(*b), pb_padding64_0) != 0);
1646         CLASSERT(offsetof(typeof(*b), pb_padding64_1) != 0);
1647         CLASSERT(offsetof(typeof(*b), pb_padding64_2) != 0);
1648         /* While we need to maintain compatibility between
1649          * clients and servers without ptlrpc_body_v2 (< 2.3)
1650          * do not swab any fields beyond pb_jobid, as we are
1651          * using this swab function for both ptlrpc_body
1652          * and ptlrpc_body_v2. */
1653         CLASSERT(offsetof(typeof(*b), pb_jobid) != 0);
1654 }
1655
1656 void lustre_swab_connect(struct obd_connect_data *ocd)
1657 {
1658         __swab64s(&ocd->ocd_connect_flags);
1659         __swab32s(&ocd->ocd_version);
1660         __swab32s(&ocd->ocd_grant);
1661         __swab64s(&ocd->ocd_ibits_known);
1662         __swab32s(&ocd->ocd_index);
1663         __swab32s(&ocd->ocd_brw_size);
1664         /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1665          * they are 8-byte values */
1666         __swab16s(&ocd->ocd_grant_tax_kb);
1667         __swab32s(&ocd->ocd_grant_max_blks);
1668         __swab64s(&ocd->ocd_transno);
1669         __swab32s(&ocd->ocd_group);
1670         __swab32s(&ocd->ocd_cksum_types);
1671         __swab32s(&ocd->ocd_instance);
1672         /* Fields after ocd_cksum_types are only accessible by the receiver
1673          * if the corresponding flag in ocd_connect_flags is set. Accessing
1674          * any field after ocd_maxbytes on the receiver without a valid flag
1675          * may result in out-of-bound memory access and kernel oops. */
1676         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1677                 __swab32s(&ocd->ocd_max_easize);
1678         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1679                 __swab64s(&ocd->ocd_maxbytes);
1680         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1681                 __swab16s(&ocd->ocd_maxmodrpcs);
1682         CLASSERT(offsetof(typeof(*ocd), padding0) != 0);
1683         CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1684         if (ocd->ocd_connect_flags & OBD_CONNECT_FLAGS2)
1685                 __swab64s(&ocd->ocd_connect_flags2);
1686         CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1687         CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1688         CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1689         CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1690         CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1691         CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1692         CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1693         CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1694         CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1695         CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1696         CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1697         CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1698         CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1699 }
1700
1701 static void lustre_swab_ost_layout(struct ost_layout *ol)
1702 {
1703         __swab32s(&ol->ol_stripe_size);
1704         __swab32s(&ol->ol_stripe_count);
1705         __swab64s(&ol->ol_comp_start);
1706         __swab64s(&ol->ol_comp_end);
1707         __swab32s(&ol->ol_comp_id);
1708 }
1709
1710 void lustre_swab_obdo (struct obdo  *o)
1711 {
1712         __swab64s(&o->o_valid);
1713         lustre_swab_ost_id(&o->o_oi);
1714         __swab64s(&o->o_parent_seq);
1715         __swab64s(&o->o_size);
1716         __swab64s(&o->o_mtime);
1717         __swab64s(&o->o_atime);
1718         __swab64s(&o->o_ctime);
1719         __swab64s(&o->o_blocks);
1720         __swab64s(&o->o_grant);
1721         __swab32s(&o->o_blksize);
1722         __swab32s(&o->o_mode);
1723         __swab32s(&o->o_uid);
1724         __swab32s(&o->o_gid);
1725         __swab32s(&o->o_flags);
1726         __swab32s(&o->o_nlink);
1727         __swab32s(&o->o_parent_oid);
1728         __swab32s(&o->o_misc);
1729         __swab64s(&o->o_ioepoch);
1730         __swab32s(&o->o_stripe_idx);
1731         __swab32s(&o->o_parent_ver);
1732         lustre_swab_ost_layout(&o->o_layout);
1733         CLASSERT(offsetof(typeof(*o), o_padding_3) != 0);
1734         __swab32s(&o->o_uid_h);
1735         __swab32s(&o->o_gid_h);
1736         __swab64s(&o->o_data_version);
1737         __swab32s(&o->o_projid);
1738         CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1739         CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1740         CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1741
1742 }
1743 EXPORT_SYMBOL(lustre_swab_obdo);
1744
1745 void lustre_swab_obd_statfs (struct obd_statfs *os)
1746 {
1747         __swab64s (&os->os_type);
1748         __swab64s (&os->os_blocks);
1749         __swab64s (&os->os_bfree);
1750         __swab64s (&os->os_bavail);
1751         __swab64s (&os->os_files);
1752         __swab64s (&os->os_ffree);
1753         /* no need to swab os_fsid */
1754         __swab32s (&os->os_bsize);
1755         __swab32s (&os->os_namelen);
1756         __swab64s (&os->os_maxbytes);
1757         __swab32s (&os->os_state);
1758         CLASSERT(offsetof(typeof(*os), os_fprecreated) != 0);
1759         CLASSERT(offsetof(typeof(*os), os_spare2) != 0);
1760         CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1761         CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1762         CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1763         CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1764         CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1765         CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1766         CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1767 }
1768
1769 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1770 {
1771         lustre_swab_ost_id(&ioo->ioo_oid);
1772         __swab32s(&ioo->ioo_max_brw);
1773         __swab32s(&ioo->ioo_bufcnt);
1774 }
1775
1776 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1777 {
1778         __swab64s(&nbr->rnb_offset);
1779         __swab32s(&nbr->rnb_len);
1780         __swab32s(&nbr->rnb_flags);
1781 }
1782
1783 void lustre_swab_ost_body (struct ost_body *b)
1784 {
1785         lustre_swab_obdo (&b->oa);
1786 }
1787
1788 void lustre_swab_ost_last_id(u64 *id)
1789 {
1790         __swab64s(id);
1791 }
1792
1793 void lustre_swab_generic_32s(__u32 *val)
1794 {
1795         __swab32s(val);
1796 }
1797
1798 void lustre_swab_gl_lquota_desc(struct ldlm_gl_lquota_desc *desc)
1799 {
1800         lustre_swab_lu_fid(&desc->gl_id.qid_fid);
1801         __swab64s(&desc->gl_flags);
1802         __swab64s(&desc->gl_ver);
1803         __swab64s(&desc->gl_hardlimit);
1804         __swab64s(&desc->gl_softlimit);
1805         __swab64s(&desc->gl_time);
1806         CLASSERT(offsetof(typeof(*desc), gl_pad2) != 0);
1807 }
1808 EXPORT_SYMBOL(lustre_swab_gl_lquota_desc);
1809
1810 void lustre_swab_gl_barrier_desc(struct ldlm_gl_barrier_desc *desc)
1811 {
1812         __swab32s(&desc->lgbd_status);
1813         __swab32s(&desc->lgbd_timeout);
1814         CLASSERT(offsetof(typeof(*desc), lgbd_padding) != 0);
1815 }
1816 EXPORT_SYMBOL(lustre_swab_gl_barrier_desc);
1817
1818 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1819 {
1820         __swab64s(&lvb->lvb_size);
1821         __swab64s(&lvb->lvb_mtime);
1822         __swab64s(&lvb->lvb_atime);
1823         __swab64s(&lvb->lvb_ctime);
1824         __swab64s(&lvb->lvb_blocks);
1825 }
1826 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1827
1828 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1829 {
1830         __swab64s(&lvb->lvb_size);
1831         __swab64s(&lvb->lvb_mtime);
1832         __swab64s(&lvb->lvb_atime);
1833         __swab64s(&lvb->lvb_ctime);
1834         __swab64s(&lvb->lvb_blocks);
1835         __swab32s(&lvb->lvb_mtime_ns);
1836         __swab32s(&lvb->lvb_atime_ns);
1837         __swab32s(&lvb->lvb_ctime_ns);
1838         __swab32s(&lvb->lvb_padding);
1839 }
1840 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1841
1842 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1843 {
1844         __swab64s(&lvb->lvb_flags);
1845         __swab64s(&lvb->lvb_id_may_rel);
1846         __swab64s(&lvb->lvb_id_rel);
1847         __swab64s(&lvb->lvb_id_qunit);
1848         __swab64s(&lvb->lvb_pad1);
1849 }
1850 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1851
1852 void lustre_swab_barrier_lvb(struct barrier_lvb *lvb)
1853 {
1854         __swab32s(&lvb->lvb_status);
1855         __swab32s(&lvb->lvb_index);
1856         CLASSERT(offsetof(typeof(*lvb), lvb_padding) != 0);
1857 }
1858 EXPORT_SYMBOL(lustre_swab_barrier_lvb);
1859
1860 void lustre_swab_mdt_body (struct mdt_body *b)
1861 {
1862         lustre_swab_lu_fid(&b->mbo_fid1);
1863         lustre_swab_lu_fid(&b->mbo_fid2);
1864         /* handle is opaque */
1865         __swab64s(&b->mbo_valid);
1866         __swab64s(&b->mbo_size);
1867         __swab64s(&b->mbo_mtime);
1868         __swab64s(&b->mbo_atime);
1869         __swab64s(&b->mbo_ctime);
1870         __swab64s(&b->mbo_blocks);
1871         __swab64s(&b->mbo_ioepoch);
1872         __swab64s(&b->mbo_t_state);
1873         __swab32s(&b->mbo_fsuid);
1874         __swab32s(&b->mbo_fsgid);
1875         __swab32s(&b->mbo_capability);
1876         __swab32s(&b->mbo_mode);
1877         __swab32s(&b->mbo_uid);
1878         __swab32s(&b->mbo_gid);
1879         __swab32s(&b->mbo_flags);
1880         __swab32s(&b->mbo_rdev);
1881         __swab32s(&b->mbo_nlink);
1882         CLASSERT(offsetof(typeof(*b), mbo_unused2) != 0);
1883         __swab32s(&b->mbo_suppgid);
1884         __swab32s(&b->mbo_eadatasize);
1885         __swab32s(&b->mbo_aclsize);
1886         __swab32s(&b->mbo_max_mdsize);
1887         CLASSERT(offsetof(typeof(*b), mbo_unused3) != 0);
1888         __swab32s(&b->mbo_uid_h);
1889         __swab32s(&b->mbo_gid_h);
1890         __swab32s(&b->mbo_projid);
1891         CLASSERT(offsetof(typeof(*b), mbo_padding_6) != 0);
1892         CLASSERT(offsetof(typeof(*b), mbo_padding_7) != 0);
1893         CLASSERT(offsetof(typeof(*b), mbo_padding_8) != 0);
1894         CLASSERT(offsetof(typeof(*b), mbo_padding_9) != 0);
1895         CLASSERT(offsetof(typeof(*b), mbo_padding_10) != 0);
1896 }
1897
1898 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b)
1899 {
1900         /* mio_handle is opaque */
1901         CLASSERT(offsetof(typeof(*b), mio_unused1) != 0);
1902         CLASSERT(offsetof(typeof(*b), mio_unused2) != 0);
1903         CLASSERT(offsetof(typeof(*b), mio_padding) != 0);
1904 }
1905
1906 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1907 {
1908         int i;
1909         __swab32s(&mti->mti_lustre_ver);
1910         __swab32s(&mti->mti_stripe_index);
1911         __swab32s(&mti->mti_config_ver);
1912         __swab32s(&mti->mti_flags);
1913         __swab32s(&mti->mti_instance);
1914         __swab32s(&mti->mti_nid_count);
1915         CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1916         for (i = 0; i < MTI_NIDS_MAX; i++)
1917                 __swab64s(&mti->mti_nids[i]);
1918 }
1919
1920 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1921 {
1922         __u8 i;
1923
1924         __swab64s(&entry->mne_version);
1925         __swab32s(&entry->mne_instance);
1926         __swab32s(&entry->mne_index);
1927         __swab32s(&entry->mne_length);
1928
1929         /* mne_nid_(count|type) must be one byte size because we're gonna
1930          * access it w/o swapping. */
1931         CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
1932         CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
1933
1934         /* remove this assertion if ipv6 is supported. */
1935         LASSERT(entry->mne_nid_type == 0);
1936         for (i = 0; i < entry->mne_nid_count; i++) {
1937                 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1938                 __swab64s(&entry->u.nids[i]);
1939         }
1940 }
1941 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
1942
1943 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
1944 {
1945         __swab64s(&body->mcb_offset);
1946         __swab32s(&body->mcb_units);
1947         __swab16s(&body->mcb_type);
1948 }
1949
1950 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
1951 {
1952         __swab64s(&body->mcr_offset);
1953         __swab64s(&body->mcr_size);
1954 }
1955
1956 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
1957 {
1958         __swab64s (&i->dqi_bgrace);
1959         __swab64s (&i->dqi_igrace);
1960         __swab32s (&i->dqi_flags);
1961         __swab32s (&i->dqi_valid);
1962 }
1963
1964 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
1965 {
1966         __swab64s (&b->dqb_ihardlimit);
1967         __swab64s (&b->dqb_isoftlimit);
1968         __swab64s (&b->dqb_curinodes);
1969         __swab64s (&b->dqb_bhardlimit);
1970         __swab64s (&b->dqb_bsoftlimit);
1971         __swab64s (&b->dqb_curspace);
1972         __swab64s (&b->dqb_btime);
1973         __swab64s (&b->dqb_itime);
1974         __swab32s (&b->dqb_valid);
1975         CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
1976 }
1977
1978 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
1979 {
1980         __swab32s (&q->qc_cmd);
1981         __swab32s (&q->qc_type);
1982         __swab32s (&q->qc_id);
1983         __swab32s (&q->qc_stat);
1984         lustre_swab_obd_dqinfo (&q->qc_dqinfo);
1985         lustre_swab_obd_dqblk (&q->qc_dqblk);
1986 }
1987
1988 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
1989 {
1990         lustre_swab_lu_fid(&gf->gf_fid);
1991         __swab64s(&gf->gf_recno);
1992         __swab32s(&gf->gf_linkno);
1993         __swab32s(&gf->gf_pathlen);
1994 }
1995 EXPORT_SYMBOL(lustre_swab_fid2path);
1996
1997 static void lustre_swab_fiemap_extent(struct fiemap_extent *fm_extent)
1998 {
1999         __swab64s(&fm_extent->fe_logical);
2000         __swab64s(&fm_extent->fe_physical);
2001         __swab64s(&fm_extent->fe_length);
2002         __swab32s(&fm_extent->fe_flags);
2003         __swab32s(&fm_extent->fe_device);
2004 }
2005
2006 void lustre_swab_fiemap(struct fiemap *fiemap)
2007 {
2008         __u32 i;
2009
2010         __swab64s(&fiemap->fm_start);
2011         __swab64s(&fiemap->fm_length);
2012         __swab32s(&fiemap->fm_flags);
2013         __swab32s(&fiemap->fm_mapped_extents);
2014         __swab32s(&fiemap->fm_extent_count);
2015         __swab32s(&fiemap->fm_reserved);
2016
2017         for (i = 0; i < fiemap->fm_mapped_extents; i++)
2018                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
2019 }
2020
2021 void lustre_swab_idx_info(struct idx_info *ii)
2022 {
2023         __swab32s(&ii->ii_magic);
2024         __swab32s(&ii->ii_flags);
2025         __swab16s(&ii->ii_count);
2026         __swab32s(&ii->ii_attrs);
2027         lustre_swab_lu_fid(&ii->ii_fid);
2028         __swab64s(&ii->ii_version);
2029         __swab64s(&ii->ii_hash_start);
2030         __swab64s(&ii->ii_hash_end);
2031         __swab16s(&ii->ii_keysize);
2032         __swab16s(&ii->ii_recsize);
2033 }
2034
2035 void lustre_swab_lip_header(struct lu_idxpage *lip)
2036 {
2037         /* swab header */
2038         __swab32s(&lip->lip_magic);
2039         __swab16s(&lip->lip_flags);
2040         __swab16s(&lip->lip_nr);
2041 }
2042 EXPORT_SYMBOL(lustre_swab_lip_header);
2043
2044 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2045 {
2046         __swab32s(&rr->rr_opcode);
2047         __swab32s(&rr->rr_cap);
2048         __swab32s(&rr->rr_fsuid);
2049         /* rr_fsuid_h is unused */
2050         __swab32s(&rr->rr_fsgid);
2051         /* rr_fsgid_h is unused */
2052         __swab32s(&rr->rr_suppgid1);
2053         /* rr_suppgid1_h is unused */
2054         __swab32s(&rr->rr_suppgid2);
2055         /* rr_suppgid2_h is unused */
2056         lustre_swab_lu_fid(&rr->rr_fid1);
2057         lustre_swab_lu_fid(&rr->rr_fid2);
2058         __swab64s(&rr->rr_mtime);
2059         __swab64s(&rr->rr_atime);
2060         __swab64s(&rr->rr_ctime);
2061         __swab64s(&rr->rr_size);
2062         __swab64s(&rr->rr_blocks);
2063         __swab32s(&rr->rr_bias);
2064         __swab32s(&rr->rr_mode);
2065         __swab32s(&rr->rr_flags);
2066         __swab32s(&rr->rr_flags_h);
2067         __swab32s(&rr->rr_umask);
2068
2069         CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2070 };
2071
2072 void lustre_swab_lov_desc (struct lov_desc *ld)
2073 {
2074         __swab32s (&ld->ld_tgt_count);
2075         __swab32s (&ld->ld_active_tgt_count);
2076         __swab32s (&ld->ld_default_stripe_count);
2077         __swab32s (&ld->ld_pattern);
2078         __swab64s (&ld->ld_default_stripe_size);
2079         __swab64s (&ld->ld_default_stripe_offset);
2080         __swab32s (&ld->ld_qos_maxage);
2081         /* uuid endian insensitive */
2082 }
2083 EXPORT_SYMBOL(lustre_swab_lov_desc);
2084
2085 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2086 {
2087         __swab32s (&ld->ld_tgt_count);
2088         __swab32s (&ld->ld_active_tgt_count);
2089         __swab32s (&ld->ld_default_stripe_count);
2090         __swab32s (&ld->ld_pattern);
2091         __swab64s (&ld->ld_default_hash_size);
2092         __swab32s (&ld->ld_qos_maxage);
2093         /* uuid endian insensitive */
2094 }
2095
2096 /* This structure is always in little-endian */
2097 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2098 {
2099         int i;
2100
2101         __swab32s(&lmm1->lmv_magic);
2102         __swab32s(&lmm1->lmv_stripe_count);
2103         __swab32s(&lmm1->lmv_master_mdt_index);
2104         __swab32s(&lmm1->lmv_hash_type);
2105         __swab32s(&lmm1->lmv_layout_version);
2106         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2107                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2108 }
2109
2110 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2111 {
2112         switch (lmm->lmv_magic) {
2113         case LMV_MAGIC_V1:
2114                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2115                 break;
2116         default:
2117                 break;
2118         }
2119 }
2120 EXPORT_SYMBOL(lustre_swab_lmv_mds_md);
2121
2122 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2123 {
2124         __swab32s(&lum->lum_magic);
2125         __swab32s(&lum->lum_stripe_count);
2126         __swab32s(&lum->lum_stripe_offset);
2127         __swab32s(&lum->lum_hash_type);
2128         __swab32s(&lum->lum_type);
2129         CLASSERT(offsetof(typeof(*lum), lum_padding1) != 0);
2130 }
2131 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2132
2133 static void lustre_print_v1v3(unsigned int lvl, struct lov_user_md *lum,
2134                               const char *msg)
2135 {
2136         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2137         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2138         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2139         CDEBUG(lvl, "\tlmm_object_id: %llu\n", lmm_oi_id(&lum->lmm_oi));
2140         CDEBUG(lvl, "\tlmm_object_gr: %llu\n", lmm_oi_seq(&lum->lmm_oi));
2141         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2142         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2143         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2144                lum->lmm_stripe_offset);
2145         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2146                 struct lov_user_md_v3 *v3 = (void *)lum;
2147                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2148         }
2149         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2150                 struct lov_user_md_v3 *v3 = (void *)lum;
2151                 int i;
2152
2153                 if (v3->lmm_pool_name[0] != '\0')
2154                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2155
2156                 CDEBUG(lvl, "\ttarget list:\n");
2157                 for (i = 0; i < v3->lmm_stripe_count; i++)
2158                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2159         }
2160 }
2161
2162 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2163                           const char *msg)
2164 {
2165         struct lov_comp_md_v1   *comp_v1;
2166         int                      i;
2167
2168         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2169                 return;
2170
2171         if (lum->lmm_magic == LOV_USER_MAGIC_V1 ||
2172             lum->lmm_magic == LOV_USER_MAGIC_V3) {
2173                 lustre_print_v1v3(lvl, lum, msg);
2174                 return;
2175         }
2176
2177         if (lum->lmm_magic != LOV_USER_MAGIC_COMP_V1) {
2178                 CDEBUG(lvl, "%s: bad magic: %x\n", msg, lum->lmm_magic);
2179                 return;
2180         }
2181
2182         comp_v1 = (struct lov_comp_md_v1 *)lum;
2183         CDEBUG(lvl, "%s: lov_comp_md_v1 %p:\n", msg, lum);
2184         CDEBUG(lvl, "\tlcm_magic: %#x\n", comp_v1->lcm_magic);
2185         CDEBUG(lvl, "\tlcm_size: %#x\n", comp_v1->lcm_size);
2186         CDEBUG(lvl, "\tlcm_layout_gen: %#x\n", comp_v1->lcm_layout_gen);
2187         CDEBUG(lvl, "\tlcm_flags: %#x\n", comp_v1->lcm_flags);
2188         CDEBUG(lvl, "\tlcm_entry_count: %#x\n\n", comp_v1->lcm_entry_count);
2189
2190         for (i = 0; i < comp_v1->lcm_entry_count; i++) {
2191                 struct lov_comp_md_entry_v1 *ent = &comp_v1->lcm_entries[i];
2192                 struct lov_user_md *v1;
2193
2194                 CDEBUG(lvl, "\tentry %d:\n", i);
2195                 CDEBUG(lvl, "\tlcme_id: %#x\n", ent->lcme_id);
2196                 CDEBUG(lvl, "\tlcme_flags: %#x\n", ent->lcme_flags);
2197                 CDEBUG(lvl, "\tlcme_extent.e_start: %llu\n",
2198                        ent->lcme_extent.e_start);
2199                 CDEBUG(lvl, "\tlcme_extent.e_end: %llu\n",
2200                        ent->lcme_extent.e_end);
2201                 CDEBUG(lvl, "\tlcme_offset: %#x\n", ent->lcme_offset);
2202                 CDEBUG(lvl, "\tlcme_size: %#x\n\n", ent->lcme_size);
2203
2204                 v1 = (struct lov_user_md *)((char *)comp_v1 +
2205                                 comp_v1->lcm_entries[i].lcme_offset);
2206                 lustre_print_v1v3(lvl, v1, msg);
2207         }
2208 }
2209 EXPORT_SYMBOL(lustre_print_user_md);
2210
2211 static void lustre_swab_lmm_oi(struct ost_id *oi)
2212 {
2213         __swab64s(&oi->oi.oi_id);
2214         __swab64s(&oi->oi.oi_seq);
2215 }
2216
2217 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2218 {
2219         ENTRY;
2220         __swab32s(&lum->lmm_magic);
2221         __swab32s(&lum->lmm_pattern);
2222         lustre_swab_lmm_oi(&lum->lmm_oi);
2223         __swab32s(&lum->lmm_stripe_size);
2224         __swab16s(&lum->lmm_stripe_count);
2225         __swab16s(&lum->lmm_stripe_offset);
2226         EXIT;
2227 }
2228
2229 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2230 {
2231         ENTRY;
2232         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2233         lustre_swab_lov_user_md_common(lum);
2234         EXIT;
2235 }
2236 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2237
2238 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2239 {
2240         ENTRY;
2241         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2242         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2243         /* lmm_pool_name nothing to do with char */
2244         EXIT;
2245 }
2246 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2247
2248 void lustre_swab_lov_comp_md_v1(struct lov_comp_md_v1 *lum)
2249 {
2250         struct lov_comp_md_entry_v1     *ent;
2251         struct lov_user_md_v1   *v1;
2252         struct lov_user_md_v3   *v3;
2253         int     i;
2254         bool    cpu_endian;
2255         __u32   off, size;
2256         __u16   ent_count, stripe_count;
2257         ENTRY;
2258
2259         cpu_endian = lum->lcm_magic == LOV_USER_MAGIC_COMP_V1;
2260         ent_count = lum->lcm_entry_count;
2261         if (!cpu_endian)
2262                 __swab16s(&ent_count);
2263
2264         CDEBUG(D_IOCTL, "swabbing lov_user_comp_md v1\n");
2265         __swab32s(&lum->lcm_magic);
2266         __swab32s(&lum->lcm_size);
2267         __swab32s(&lum->lcm_layout_gen);
2268         __swab16s(&lum->lcm_flags);
2269         __swab16s(&lum->lcm_entry_count);
2270         CLASSERT(offsetof(typeof(*lum), lcm_padding1) != 0);
2271         CLASSERT(offsetof(typeof(*lum), lcm_padding2) != 0);
2272
2273         for (i = 0; i < ent_count; i++) {
2274                 ent = &lum->lcm_entries[i];
2275                 off = ent->lcme_offset;
2276                 size = ent->lcme_size;
2277
2278                 if (!cpu_endian) {
2279                         __swab32s(&off);
2280                         __swab32s(&size);
2281                 }
2282                 __swab32s(&ent->lcme_id);
2283                 __swab32s(&ent->lcme_flags);
2284                 __swab64s(&ent->lcme_extent.e_start);
2285                 __swab64s(&ent->lcme_extent.e_end);
2286                 __swab32s(&ent->lcme_offset);
2287                 __swab32s(&ent->lcme_size);
2288                 CLASSERT(offsetof(typeof(*ent), lcme_padding) != 0);
2289
2290                 v1 = (struct lov_user_md_v1 *)((char *)lum + off);
2291                 stripe_count = v1->lmm_stripe_count;
2292                 if (!cpu_endian)
2293                         __swab16s(&stripe_count);
2294
2295                 if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V1) ||
2296                     v1->lmm_magic == LOV_USER_MAGIC_V1) {
2297                         lustre_swab_lov_user_md_v1(v1);
2298                         if (size > sizeof(*v1))
2299                                 lustre_swab_lov_user_md_objects(v1->lmm_objects,
2300                                                                 stripe_count);
2301                 } else if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V3) ||
2302                            v1->lmm_magic == LOV_USER_MAGIC_V3 ||
2303                            v1->lmm_magic == __swab32(LOV_USER_MAGIC_SPECIFIC) ||
2304                            v1->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2305                         v3 = (struct lov_user_md_v3 *)v1;
2306                         lustre_swab_lov_user_md_v3(v3);
2307                         if (size > sizeof(*v3))
2308                                 lustre_swab_lov_user_md_objects(v3->lmm_objects,
2309                                                                 stripe_count);
2310                 } else {
2311                         CERROR("Invalid magic %#x\n", v1->lmm_magic);
2312                 }
2313         }
2314 }
2315 EXPORT_SYMBOL(lustre_swab_lov_comp_md_v1);
2316
2317 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2318 {
2319         ENTRY;
2320         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2321         __swab32s(&lmm->lmm_magic);
2322         __swab32s(&lmm->lmm_pattern);
2323         lustre_swab_lmm_oi(&lmm->lmm_oi);
2324         __swab32s(&lmm->lmm_stripe_size);
2325         __swab16s(&lmm->lmm_stripe_count);
2326         __swab16s(&lmm->lmm_layout_gen);
2327         EXIT;
2328 }
2329 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2330
2331 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2332                                      int stripe_count)
2333 {
2334         int i;
2335         ENTRY;
2336         for (i = 0; i < stripe_count; i++) {
2337                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2338                 __swab32s(&(lod[i].l_ost_gen));
2339                 __swab32s(&(lod[i].l_ost_idx));
2340         }
2341         EXIT;
2342 }
2343 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2344
2345 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2346 {
2347         int  i;
2348
2349         for (i = 0; i < RES_NAME_SIZE; i++)
2350                 __swab64s (&id->name[i]);
2351 }
2352
2353 void lustre_swab_ldlm_policy_data(union ldlm_wire_policy_data *d)
2354 {
2355         /* the lock data is a union and the first two fields are always an
2356          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2357          * data the same way. */
2358         __swab64s(&d->l_extent.start);
2359         __swab64s(&d->l_extent.end);
2360         __swab64s(&d->l_extent.gid);
2361         __swab64s(&d->l_flock.lfw_owner);
2362         __swab32s(&d->l_flock.lfw_pid);
2363 }
2364
2365 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2366 {
2367         __swab64s(&i->opc);
2368 }
2369
2370 void lustre_swab_ldlm_resource_desc(struct ldlm_resource_desc *r)
2371 {
2372         __swab32s(&r->lr_type);
2373         CLASSERT(offsetof(typeof(*r), lr_pad) != 0);
2374         lustre_swab_ldlm_res_id(&r->lr_name);
2375 }
2376
2377 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2378 {
2379         lustre_swab_ldlm_resource_desc (&l->l_resource);
2380         __swab32s (&l->l_req_mode);
2381         __swab32s (&l->l_granted_mode);
2382         lustre_swab_ldlm_policy_data (&l->l_policy_data);
2383 }
2384
2385 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2386 {
2387         __swab32s (&rq->lock_flags);
2388         lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2389         __swab32s (&rq->lock_count);
2390         /* lock_handle[] opaque */
2391 }
2392
2393 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2394 {
2395         __swab32s (&r->lock_flags);
2396         CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2397         lustre_swab_ldlm_lock_desc (&r->lock_desc);
2398         /* lock_handle opaque */
2399         __swab64s (&r->lock_policy_res1);
2400         __swab64s (&r->lock_policy_res2);
2401 }
2402
2403 void lustre_swab_quota_body(struct quota_body *b)
2404 {
2405         lustre_swab_lu_fid(&b->qb_fid);
2406         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2407         __swab32s(&b->qb_flags);
2408         __swab64s(&b->qb_count);
2409         __swab64s(&b->qb_usage);
2410         __swab64s(&b->qb_slv_ver);
2411 }
2412
2413 /* Dump functions */
2414 void dump_ioo(struct obd_ioobj *ioo)
2415 {
2416         CDEBUG(D_RPCTRACE,
2417                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2418                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2419                ioo->ioo_bufcnt);
2420 }
2421
2422 void dump_rniobuf(struct niobuf_remote *nb)
2423 {
2424         CDEBUG(D_RPCTRACE, "niobuf_remote: offset=%llu, len=%d, flags=%x\n",
2425                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2426 }
2427
2428 void dump_obdo(struct obdo *oa)
2429 {
2430         u64 valid = oa->o_valid;
2431
2432         CDEBUG(D_RPCTRACE, "obdo: o_valid = %#llx\n", valid);
2433         if (valid & OBD_MD_FLID)
2434                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2435         if (valid & OBD_MD_FLFID)
2436                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = %#llx\n",
2437                        oa->o_parent_seq);
2438         if (valid & OBD_MD_FLSIZE)
2439                 CDEBUG(D_RPCTRACE, "obdo: o_size = %lld\n", oa->o_size);
2440         if (valid & OBD_MD_FLMTIME)
2441                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = %lld\n", oa->o_mtime);
2442         if (valid & OBD_MD_FLATIME)
2443                 CDEBUG(D_RPCTRACE, "obdo: o_atime = %lld\n", oa->o_atime);
2444         if (valid & OBD_MD_FLCTIME)
2445                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = %lld\n", oa->o_ctime);
2446         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2447                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = %lld\n", oa->o_blocks);
2448         if (valid & OBD_MD_FLGRANT)
2449                 CDEBUG(D_RPCTRACE, "obdo: o_grant = %lld\n", oa->o_grant);
2450         if (valid & OBD_MD_FLBLKSZ)
2451                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2452         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2453                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2454                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2455                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2456         if (valid & OBD_MD_FLUID)
2457                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2458         if (valid & OBD_MD_FLUID)
2459                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2460         if (valid & OBD_MD_FLGID)
2461                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2462         if (valid & OBD_MD_FLGID)
2463                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2464         if (valid & OBD_MD_FLFLAGS)
2465                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2466         if (valid & OBD_MD_FLNLINK)
2467                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2468         else if (valid & OBD_MD_FLCKSUM)
2469                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2470                        oa->o_nlink);
2471         if (valid & OBD_MD_FLGENER)
2472                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2473                        oa->o_parent_oid);
2474         if (valid & OBD_MD_FLEPOCH)
2475                 CDEBUG(D_RPCTRACE, "obdo: o_ioepoch = %lld\n",
2476                        oa->o_ioepoch);
2477         if (valid & OBD_MD_FLFID) {
2478                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2479                        oa->o_stripe_idx);
2480                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2481                        oa->o_parent_ver);
2482         }
2483         if (valid & OBD_MD_FLHANDLE)
2484                 CDEBUG(D_RPCTRACE, "obdo: o_handle = %lld\n",
2485                        oa->o_handle.cookie);
2486 }
2487
2488 void dump_ost_body(struct ost_body *ob)
2489 {
2490         dump_obdo(&ob->oa);
2491 }
2492
2493 void dump_rcs(__u32 *rc)
2494 {
2495         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2496 }
2497
2498 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2499 {
2500         LASSERT(req->rq_reqmsg);
2501
2502         switch (req->rq_reqmsg->lm_magic) {
2503         case LUSTRE_MSG_MAGIC_V2:
2504                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2505         default:
2506                 CERROR("bad lustre msg magic: %#08X\n",
2507                        req->rq_reqmsg->lm_magic);
2508         }
2509         return 0;
2510 }
2511
2512 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2513 {
2514         if (unlikely(!req->rq_repmsg))
2515                 return 0;
2516
2517         switch (req->rq_repmsg->lm_magic) {
2518         case LUSTRE_MSG_MAGIC_V2:
2519                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2520         default:
2521                 /* uninitialized yet */
2522                 return 0;
2523         }
2524 }
2525
2526 void _debug_req(struct ptlrpc_request *req,
2527                 struct libcfs_debug_msg_data *msgdata, const char *fmt, ...)
2528 {
2529         bool req_ok = req->rq_reqmsg != NULL;
2530         bool rep_ok = false;
2531         lnet_nid_t nid = LNET_NID_ANY;
2532         va_list args;
2533         int rep_flags = -1;
2534         int rep_status = -1;
2535
2536         spin_lock(&req->rq_early_free_lock);
2537         if (req->rq_repmsg)
2538                 rep_ok = true;
2539
2540         if (ptlrpc_req_need_swab(req)) {
2541                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2542                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2543         }
2544
2545         if (rep_ok) {
2546                 rep_flags = lustre_msg_get_flags(req->rq_repmsg);
2547                 rep_status = lustre_msg_get_status(req->rq_repmsg);
2548         }
2549         spin_unlock(&req->rq_early_free_lock);
2550
2551         if (req->rq_import && req->rq_import->imp_connection)
2552                 nid = req->rq_import->imp_connection->c_peer.nid;
2553         else if (req->rq_export && req->rq_export->exp_connection)
2554                 nid = req->rq_export->exp_connection->c_peer.nid;
2555
2556         va_start(args, fmt);
2557         libcfs_debug_vmsg2(msgdata, fmt, args,
2558                            " req@%p x%llu/t%lld(%lld) o%d->%s@%s:%d/%d lens %d/%d e %d to %lld dl %lld ref %d fl " REQ_FLAGS_FMT "/%x/%x rc %d/%d\n",
2559                            req, req->rq_xid, req->rq_transno,
2560                            req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2561                            req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2562                            req->rq_import ?
2563                                 req->rq_import->imp_obd->obd_name :
2564                                 req->rq_export ?
2565                                         req->rq_export->exp_client_uuid.uuid :
2566                                         "<?>",
2567                            libcfs_nid2str(nid),
2568                            req->rq_request_portal, req->rq_reply_portal,
2569                            req->rq_reqlen, req->rq_replen,
2570                            req->rq_early_count, (s64)req->rq_timedout,
2571                            (s64)req->rq_deadline,
2572                            atomic_read(&req->rq_refcount),
2573                            DEBUG_REQ_FLAGS(req),
2574                            req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2575                            rep_flags, req->rq_status, rep_status);
2576         va_end(args);
2577 }
2578 EXPORT_SYMBOL(_debug_req);
2579
2580 void lustre_swab_lustre_capa(struct lustre_capa *c)
2581 {
2582         lustre_swab_lu_fid(&c->lc_fid);
2583         __swab64s (&c->lc_opc);
2584         __swab64s (&c->lc_uid);
2585         __swab64s (&c->lc_gid);
2586         __swab32s (&c->lc_flags);
2587         __swab32s (&c->lc_keyid);
2588         __swab32s (&c->lc_timeout);
2589         __swab32s (&c->lc_expiry);
2590 }
2591
2592 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2593 {
2594         __swab64s (&k->lk_seq);
2595         __swab32s (&k->lk_keyid);
2596         CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2597 }
2598
2599 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2600 {
2601         __swab32s(&state->hus_states);
2602         __swab32s(&state->hus_archive_id);
2603 }
2604
2605 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2606 {
2607         __swab32s(&hss->hss_valid);
2608         __swab64s(&hss->hss_setmask);
2609         __swab64s(&hss->hss_clearmask);
2610         __swab32s(&hss->hss_archive_id);
2611 }
2612
2613 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2614 {
2615         __swab64s(&extent->offset);
2616         __swab64s(&extent->length);
2617 }
2618
2619 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2620 {
2621         __swab32s(&action->hca_state);
2622         __swab32s(&action->hca_action);
2623         lustre_swab_hsm_extent(&action->hca_location);
2624 }
2625
2626 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2627 {
2628         lustre_swab_lu_fid(&hui->hui_fid);
2629         lustre_swab_hsm_extent(&hui->hui_extent);
2630 }
2631
2632 void lustre_swab_layout_intent(struct layout_intent *li)
2633 {
2634         __swab32s(&li->li_opc);
2635         __swab32s(&li->li_flags);
2636         __swab64s(&li->li_start);
2637         __swab64s(&li->li_end);
2638 }
2639
2640 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2641 {
2642         lustre_swab_lu_fid(&hpk->hpk_fid);
2643         __swab64s(&hpk->hpk_cookie);
2644         __swab64s(&hpk->hpk_extent.offset);
2645         __swab64s(&hpk->hpk_extent.length);
2646         __swab16s(&hpk->hpk_flags);
2647         __swab16s(&hpk->hpk_errval);
2648 }
2649
2650 void lustre_swab_hsm_request(struct hsm_request *hr)
2651 {
2652         __swab32s(&hr->hr_action);
2653         __swab32s(&hr->hr_archive_id);
2654         __swab64s(&hr->hr_flags);
2655         __swab32s(&hr->hr_itemcount);
2656         __swab32s(&hr->hr_data_len);
2657 }
2658
2659 void lustre_swab_object_update(struct object_update *ou)
2660 {
2661         struct object_update_param *param;
2662         size_t  i;
2663
2664         __swab16s(&ou->ou_type);
2665         __swab16s(&ou->ou_params_count);
2666         __swab32s(&ou->ou_result_size);
2667         __swab32s(&ou->ou_flags);
2668         __swab32s(&ou->ou_padding1);
2669         __swab64s(&ou->ou_batchid);
2670         lustre_swab_lu_fid(&ou->ou_fid);
2671         param = &ou->ou_params[0];
2672         for (i = 0; i < ou->ou_params_count; i++) {
2673                 __swab16s(&param->oup_len);
2674                 __swab16s(&param->oup_padding);
2675                 __swab32s(&param->oup_padding2);
2676                 param = (struct object_update_param *)((char *)param +
2677                          object_update_param_size(param));
2678         }
2679 }
2680
2681 void lustre_swab_object_update_request(struct object_update_request *our)
2682 {
2683         size_t i;
2684         __swab32s(&our->ourq_magic);
2685         __swab16s(&our->ourq_count);
2686         __swab16s(&our->ourq_padding);
2687         for (i = 0; i < our->ourq_count; i++) {
2688                 struct object_update *ou;
2689
2690                 ou = object_update_request_get(our, i, NULL);
2691                 if (ou == NULL)
2692                         return;
2693                 lustre_swab_object_update(ou);
2694         }
2695 }
2696
2697 void lustre_swab_object_update_result(struct object_update_result *our)
2698 {
2699         __swab32s(&our->our_rc);
2700         __swab16s(&our->our_datalen);
2701         __swab16s(&our->our_padding);
2702 }
2703
2704 void lustre_swab_object_update_reply(struct object_update_reply *our)
2705 {
2706         size_t i;
2707
2708         __swab32s(&our->ourp_magic);
2709         __swab16s(&our->ourp_count);
2710         __swab16s(&our->ourp_padding);
2711         for (i = 0; i < our->ourp_count; i++) {
2712                 struct object_update_result *ourp;
2713
2714                 __swab16s(&our->ourp_lens[i]);
2715                 ourp = object_update_result_get(our, i, NULL);
2716                 if (ourp == NULL)
2717                         return;
2718                 lustre_swab_object_update_result(ourp);
2719         }
2720 }
2721
2722 void lustre_swab_out_update_header(struct out_update_header *ouh)
2723 {
2724         __swab32s(&ouh->ouh_magic);
2725         __swab32s(&ouh->ouh_count);
2726         __swab32s(&ouh->ouh_inline_length);
2727         __swab32s(&ouh->ouh_reply_size);
2728 }
2729 EXPORT_SYMBOL(lustre_swab_out_update_header);
2730
2731 void lustre_swab_out_update_buffer(struct out_update_buffer *oub)
2732 {
2733         __swab32s(&oub->oub_size);
2734         __swab32s(&oub->oub_padding);
2735 }
2736 EXPORT_SYMBOL(lustre_swab_out_update_buffer);
2737
2738 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2739 {
2740         __swab64s(&msl->msl_flags);
2741 }
2742
2743 void lustre_swab_close_data(struct close_data *cd)
2744 {
2745         lustre_swab_lu_fid(&cd->cd_fid);
2746         __swab64s(&cd->cd_data_version);
2747 }
2748
2749 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2750 {
2751         __swab32s(&lr->lr_event);
2752         __swab32s(&lr->lr_index);
2753         __swab32s(&lr->lr_flags);
2754         __swab32s(&lr->lr_valid);
2755         __swab32s(&lr->lr_speed);
2756         __swab16s(&lr->lr_version);
2757         __swab16s(&lr->lr_active);
2758         __swab16s(&lr->lr_param);
2759         __swab16s(&lr->lr_async_windows);
2760         __swab32s(&lr->lr_flags);
2761         lustre_swab_lu_fid(&lr->lr_fid);
2762         lustre_swab_lu_fid(&lr->lr_fid2);
2763         __swab32s(&lr->lr_comp_id);
2764         CLASSERT(offsetof(typeof(*lr), lr_padding_0) != 0);
2765         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2766         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2767         CLASSERT(offsetof(typeof(*lr), lr_padding_3) != 0);
2768 }
2769
2770 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2771 {
2772         __swab32s(&lr->lr_status);
2773         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2774         __swab64s(&lr->lr_repaired);
2775 }
2776
2777 static void lustre_swab_orphan_rec(struct lu_orphan_rec *rec)
2778 {
2779         lustre_swab_lu_fid(&rec->lor_fid);
2780         __swab32s(&rec->lor_uid);
2781         __swab32s(&rec->lor_gid);
2782 }
2783
2784 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2785 {
2786         lustre_swab_lu_fid(&ent->loe_key);
2787         lustre_swab_orphan_rec(&ent->loe_rec);
2788 }
2789 EXPORT_SYMBOL(lustre_swab_orphan_ent);
2790
2791 void lustre_swab_orphan_ent_v2(struct lu_orphan_ent_v2 *ent)
2792 {
2793         lustre_swab_lu_fid(&ent->loe_key);
2794         lustre_swab_orphan_rec(&ent->loe_rec.lor_rec);
2795         lustre_swab_ost_layout(&ent->loe_rec.lor_layout);
2796         CLASSERT(offsetof(typeof(ent->loe_rec), lor_padding) != 0);
2797 }
2798 EXPORT_SYMBOL(lustre_swab_orphan_ent_v2);
2799
2800 void lustre_swab_ladvise(struct lu_ladvise *ladvise)
2801 {
2802         __swab16s(&ladvise->lla_advice);
2803         __swab16s(&ladvise->lla_value1);
2804         __swab32s(&ladvise->lla_value2);
2805         __swab64s(&ladvise->lla_start);
2806         __swab64s(&ladvise->lla_end);
2807         __swab32s(&ladvise->lla_value3);
2808         __swab32s(&ladvise->lla_value4);
2809 }
2810 EXPORT_SYMBOL(lustre_swab_ladvise);
2811
2812 void lustre_swab_ladvise_hdr(struct ladvise_hdr *ladvise_hdr)
2813 {
2814         __swab32s(&ladvise_hdr->lah_magic);
2815         __swab32s(&ladvise_hdr->lah_count);
2816         __swab64s(&ladvise_hdr->lah_flags);
2817         __swab32s(&ladvise_hdr->lah_value1);
2818         __swab32s(&ladvise_hdr->lah_value2);
2819         __swab64s(&ladvise_hdr->lah_value3);
2820 }
2821 EXPORT_SYMBOL(lustre_swab_ladvise_hdr);