Whamcloud - gitweb
579a17521d200635c02836723ace44f9dae2d742
[fs/lustre-release.git] / lustre / ptlrpc / lproc_ptlrpc.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  */
32 #define DEBUG_SUBSYSTEM S_CLASS
33
34
35 #include <obd_support.h>
36 #include <obd.h>
37 #include <lprocfs_status.h>
38 #include <lustre_net.h>
39 #include <obd_class.h>
40 #include "ptlrpc_internal.h"
41
42
43 static struct ll_rpc_opcode {
44         __u32       opcode;
45         const char *opname;
46 } ll_rpc_opcode_table[LUSTRE_MAX_OPCODES] = {
47         { OST_REPLY,        "ost_reply" },
48         { OST_GETATTR,      "ost_getattr" },
49         { OST_SETATTR,      "ost_setattr" },
50         { OST_READ,         "ost_read" },
51         { OST_WRITE,        "ost_write" },
52         { OST_CREATE ,      "ost_create" },
53         { OST_DESTROY,      "ost_destroy" },
54         { OST_GET_INFO,     "ost_get_info" },
55         { OST_CONNECT,      "ost_connect" },
56         { OST_DISCONNECT,   "ost_disconnect" },
57         { OST_PUNCH,        "ost_punch" },
58         { OST_OPEN,         "ost_open" },
59         { OST_CLOSE,        "ost_close" },
60         { OST_STATFS,       "ost_statfs" },
61         { 14,                NULL },    /* formerly OST_SAN_READ */
62         { 15,                NULL },    /* formerly OST_SAN_WRITE */
63         { OST_SYNC,         "ost_sync" },
64         { OST_SET_INFO,     "ost_set_info" },
65         { OST_QUOTACHECK,   "ost_quotacheck" },
66         { OST_QUOTACTL,     "ost_quotactl" },
67         { OST_QUOTA_ADJUST_QUNIT, "ost_quota_adjust_qunit" },
68         { OST_LADVISE,      "ost_ladvise" },
69         { OST_FALLOCATE,    "ost_fallocate"},
70         { MDS_GETATTR,      "mds_getattr" },
71         { MDS_GETATTR_NAME, "mds_getattr_lock" },
72         { MDS_CLOSE,        "mds_close" },
73         { MDS_REINT,        "mds_reint" },
74         { MDS_READPAGE,     "mds_readpage" },
75         { MDS_CONNECT,      "mds_connect" },
76         { MDS_DISCONNECT,   "mds_disconnect" },
77         { MDS_GET_ROOT,     "mds_get_root" },
78         { MDS_STATFS,       "mds_statfs" },
79         { MDS_PIN,          "mds_pin" },
80         { MDS_UNPIN,        "mds_unpin" },
81         { MDS_SYNC,         "mds_sync" },
82         { MDS_DONE_WRITING, "mds_done_writing" },
83         { MDS_SET_INFO,     "mds_set_info" },
84         { MDS_QUOTACHECK,   "mds_quotacheck" },
85         { MDS_QUOTACTL,     "mds_quotactl" },
86         { MDS_GETXATTR,     "mds_getxattr" },
87         { MDS_SETXATTR,     "mds_setxattr" },
88         { MDS_WRITEPAGE,    "mds_writepage" },
89         { MDS_IS_SUBDIR,    "mds_is_subdir" },
90         { MDS_GET_INFO,     "mds_get_info" },
91         { MDS_HSM_STATE_GET, "mds_hsm_state_get" },
92         { MDS_HSM_STATE_SET, "mds_hsm_state_set" },
93         { MDS_HSM_ACTION,   "mds_hsm_action" },
94         { MDS_HSM_PROGRESS, "mds_hsm_progress" },
95         { MDS_HSM_REQUEST,  "mds_hsm_request" },
96         { MDS_HSM_CT_REGISTER, "mds_hsm_ct_register" },
97         { MDS_HSM_CT_UNREGISTER, "mds_hsm_ct_unregister" },
98         { MDS_SWAP_LAYOUTS,     "mds_swap_layouts" },
99         { MDS_RMFID,        "mds_rmfid" },
100         { LDLM_ENQUEUE,     "ldlm_enqueue" },
101         { LDLM_CONVERT,     "ldlm_convert" },
102         { LDLM_CANCEL,      "ldlm_cancel" },
103         { LDLM_BL_CALLBACK, "ldlm_bl_callback" },
104         { LDLM_CP_CALLBACK, "ldlm_cp_callback" },
105         { LDLM_GL_CALLBACK, "ldlm_gl_callback" },
106         { LDLM_SET_INFO,    "ldlm_set_info" },
107         { MGS_CONNECT,      "mgs_connect" },
108         { MGS_DISCONNECT,   "mgs_disconnect" },
109         { MGS_EXCEPTION,    "mgs_exception" },
110         { MGS_TARGET_REG,   "mgs_target_reg" },
111         { MGS_TARGET_DEL,   "mgs_target_del" },
112         { MGS_SET_INFO,     "mgs_set_info" },
113         { MGS_CONFIG_READ,  "mgs_config_read" },
114         { OBD_PING,                      "obd_ping" },
115         { 401, /* was OBD_LOG_CANCEL */ "llog_cancel" },
116         { 402, /* was OBD_QC_CALLBACK */ "obd_quota_callback" },
117         { OBD_IDX_READ, "dt_index_read" },
118         { LLOG_ORIGIN_HANDLE_CREATE, "llog_origin_handle_open" },
119         { LLOG_ORIGIN_HANDLE_NEXT_BLOCK, "llog_origin_handle_next_block" },
120         { LLOG_ORIGIN_HANDLE_READ_HEADER, "llog_origin_handle_read_header" },
121         { 504, /*LLOG_ORIGIN_HANDLE_WRITE_REC*/"llog_origin_handle_write_rec" },
122         { 505, /* was LLOG_ORIGIN_HANDLE_CLOSE */ "llog_origin_handle_close" },
123         { 506, /* was LLOG_ORIGIN_CONNECT */ "llog_origin_connect" },
124         { 507, /* was LLOG_CATINFO */ "llog_catinfo" },
125         { LLOG_ORIGIN_HANDLE_PREV_BLOCK, "llog_origin_handle_prev_block" },
126         { LLOG_ORIGIN_HANDLE_DESTROY,    "llog_origin_handle_destroy" },
127         { QUOTA_DQACQ,      "quota_acquire" },
128         { QUOTA_DQREL,      "quota_release" },
129         { SEQ_QUERY,        "seq_query" },
130         { SEC_CTX_INIT,     "sec_ctx_init" },
131         { SEC_CTX_INIT_CONT, "sec_ctx_init_cont" },
132         { SEC_CTX_FINI,     "sec_ctx_fini" },
133         { FLD_QUERY,        "fld_query" },
134         { FLD_READ,         "fld_read" },
135         { OUT_UPDATE,       "out_update" },
136         { LFSCK_NOTIFY,     "lfsck_notify" },
137         { LFSCK_QUERY,      "lfsck_query" },
138 };
139
140 static struct ll_eopcode {
141         __u32       opcode;
142         const char *opname;
143 } ll_eopcode_table[EXTRA_LAST_OPC] = {
144         { LDLM_GLIMPSE_ENQUEUE, "ldlm_glimpse_enqueue" },
145         { LDLM_PLAIN_ENQUEUE,   "ldlm_plain_enqueue" },
146         { LDLM_EXTENT_ENQUEUE,  "ldlm_extent_enqueue" },
147         { LDLM_FLOCK_ENQUEUE,   "ldlm_flock_enqueue" },
148         { LDLM_IBITS_ENQUEUE,   "ldlm_ibits_enqueue" },
149         { MDS_REINT_SETATTR,    "mds_reint_setattr" },
150         { MDS_REINT_CREATE,     "mds_reint_create" },
151         { MDS_REINT_LINK,       "mds_reint_link" },
152         { MDS_REINT_UNLINK,     "mds_reint_unlink" },
153         { MDS_REINT_RENAME,     "mds_reint_rename" },
154         { MDS_REINT_OPEN,       "mds_reint_open" },
155         { MDS_REINT_SETXATTR,   "mds_reint_setxattr" },
156         { MDS_REINT_RESYNC,     "mds_reint_resync" },
157         { BRW_READ_BYTES,       "read_bytes" },
158         { BRW_WRITE_BYTES,      "write_bytes" },
159 };
160
161 const char *ll_opcode2str(__u32 opcode)
162 {
163         /* When one of the assertions below fail, chances are that:
164          *     1) A new opcode was added in include/lustre/lustre_idl.h,
165          *        but is missing from the table above.
166          * or  2) The opcode space was renumbered or rearranged,
167          *        and the opcode_offset() function in
168          *        ptlrpc_internal.h needs to be modified.
169          */
170         __u32 offset = opcode_offset(opcode);
171         LASSERTF(offset < LUSTRE_MAX_OPCODES,
172                  "offset %u >= LUSTRE_MAX_OPCODES %u\n",
173                  offset, LUSTRE_MAX_OPCODES);
174         LASSERTF(ll_rpc_opcode_table[offset].opcode == opcode,
175                  "ll_rpc_opcode_table[%u].opcode %u != opcode %u\n",
176                  offset, ll_rpc_opcode_table[offset].opcode, opcode);
177         return ll_rpc_opcode_table[offset].opname;
178 }
179
180 const int ll_str2opcode(const char *ops)
181 {
182         int i;
183
184         for (i = 0; i < LUSTRE_MAX_OPCODES; i++) {
185                 if (ll_rpc_opcode_table[i].opname != NULL &&
186                     strcmp(ll_rpc_opcode_table[i].opname, ops) == 0)
187                         return ll_rpc_opcode_table[i].opcode;
188         }
189
190         return -EINVAL;
191 }
192
193 static const char *ll_eopcode2str(__u32 opcode)
194 {
195         LASSERT(ll_eopcode_table[opcode].opcode == opcode);
196         return ll_eopcode_table[opcode].opname;
197 }
198
199 static void
200 ptlrpc_ldebugfs_register(struct dentry *root, char *dir, char *name,
201                          struct dentry **debugfs_root_ret,
202                          struct lprocfs_stats **stats_ret)
203 {
204         struct dentry *svc_debugfs_entry;
205         struct lprocfs_stats *svc_stats;
206         int i;
207         unsigned int svc_counter_config = LPROCFS_CNTR_AVGMINMAX |
208                                           LPROCFS_CNTR_STDDEV;
209
210         LASSERT(!*debugfs_root_ret);
211         LASSERT(!*stats_ret);
212
213         svc_stats = lprocfs_alloc_stats(EXTRA_MAX_OPCODES + LUSTRE_MAX_OPCODES,
214                                         0);
215         if (!svc_stats)
216                 return;
217
218         if (dir)
219                 svc_debugfs_entry = debugfs_create_dir(dir, root);
220         else
221                 svc_debugfs_entry = root;
222
223         lprocfs_counter_init(svc_stats, PTLRPC_REQWAIT_CNTR,
224                              svc_counter_config, "req_waittime", "usec");
225         lprocfs_counter_init(svc_stats, PTLRPC_REQQDEPTH_CNTR,
226                              svc_counter_config, "req_qdepth", "reqs");
227         lprocfs_counter_init(svc_stats, PTLRPC_REQACTIVE_CNTR,
228                              svc_counter_config, "req_active", "reqs");
229         lprocfs_counter_init(svc_stats, PTLRPC_TIMEOUT,
230                              svc_counter_config, "req_timeout", "sec");
231         lprocfs_counter_init(svc_stats, PTLRPC_REQBUF_AVAIL_CNTR,
232                              svc_counter_config, "reqbuf_avail", "bufs");
233         for (i = 0; i < EXTRA_LAST_OPC; i++) {
234                 char *units;
235
236                 switch (i) {
237                 case BRW_WRITE_BYTES:
238                 case BRW_READ_BYTES:
239                         units = "bytes";
240                         break;
241                 default:
242                         units = "reqs";
243                         break;
244                 }
245                 lprocfs_counter_init(svc_stats, PTLRPC_LAST_CNTR + i,
246                                      svc_counter_config,
247                                      ll_eopcode2str(i), units);
248         }
249         for (i = 0; i < LUSTRE_MAX_OPCODES; i++) {
250                 __u32 opcode = ll_rpc_opcode_table[i].opcode;
251                 lprocfs_counter_init(svc_stats,
252                                      EXTRA_MAX_OPCODES + i, svc_counter_config,
253                                      ll_opcode2str(opcode), "usec");
254         }
255
256         debugfs_create_file(name, 0644, svc_debugfs_entry, svc_stats,
257                             &lprocfs_stats_seq_fops);
258
259         if (dir)
260                 *debugfs_root_ret = svc_debugfs_entry;
261         *stats_ret = svc_stats;
262 }
263
264 static int
265 ptlrpc_lprocfs_req_history_len_seq_show(struct seq_file *m, void *v)
266 {
267         struct ptlrpc_service *svc = m->private;
268         struct ptlrpc_service_part *svcpt;
269         int     total = 0;
270         int     i;
271
272         ptlrpc_service_for_each_part(svcpt, i, svc)
273                 total += svcpt->scp_hist_nrqbds;
274
275         seq_printf(m, "%d\n", total);
276         return 0;
277 }
278
279
280 LDEBUGFS_SEQ_FOPS_RO(ptlrpc_lprocfs_req_history_len);
281
282 static int
283 ptlrpc_lprocfs_req_history_max_seq_show(struct seq_file *m, void *n)
284 {
285         struct ptlrpc_service *svc = m->private;
286         struct ptlrpc_service_part *svcpt;
287         int     total = 0;
288         int     i;
289
290         ptlrpc_service_for_each_part(svcpt, i, svc)
291                 total += svc->srv_hist_nrqbds_cpt_max;
292
293         seq_printf(m, "%d\n", total);
294         return 0;
295 }
296
297 static ssize_t
298 ptlrpc_lprocfs_req_history_max_seq_write(struct file *file,
299                                          const char __user *buffer,
300                                          size_t count, loff_t *off)
301 {
302         struct seq_file *m = file->private_data;
303         struct ptlrpc_service *svc = m->private;
304         unsigned long long val;
305         unsigned long long limit;
306         int bufpages;
307         int rc;
308
309         rc = kstrtoull_from_user(buffer, count, 0, &val);
310         if (rc < 0)
311                 return rc;
312
313         if (val < 0 || val > INT_MAX)
314                 return -ERANGE;
315
316         /* This sanity check is more of an insanity check; we can still
317          * hose a kernel by allowing the request history to grow too
318          * far. The roundup to the next power of two is an empirical way
319          * to take care that request buffer is allocated in Slab and thus
320          * will be upgraded */
321         bufpages = (roundup_pow_of_two(svc->srv_buf_size) + PAGE_SIZE - 1) >>
322                                                         PAGE_SHIFT;
323         limit = cfs_totalram_pages() / (2 * bufpages);
324         /* do not allow history to consume more than half max number of rqbds */
325         if ((svc->srv_nrqbds_max == 0 && val > limit) ||
326             (svc->srv_nrqbds_max != 0 && val > svc->srv_nrqbds_max / 2))
327                 return -ERANGE;
328
329         spin_lock(&svc->srv_lock);
330
331         if (val == 0)
332                 svc->srv_hist_nrqbds_cpt_max = 0;
333         else
334                 svc->srv_hist_nrqbds_cpt_max =
335                         max(1, ((int)val / svc->srv_ncpts));
336
337         spin_unlock(&svc->srv_lock);
338
339         return count;
340 }
341
342 LDEBUGFS_SEQ_FOPS(ptlrpc_lprocfs_req_history_max);
343
344 static int
345 ptlrpc_lprocfs_req_buffers_max_seq_show(struct seq_file *m, void *n)
346 {
347         struct ptlrpc_service *svc = m->private;
348
349         seq_printf(m, "%d\n", svc->srv_nrqbds_max);
350         return 0;
351 }
352
353 static ssize_t
354 ptlrpc_lprocfs_req_buffers_max_seq_write(struct file *file,
355                                          const char __user *buffer,
356                                          size_t count, loff_t *off)
357 {
358         struct seq_file *m = file->private_data;
359         struct ptlrpc_service *svc = m->private;
360         int val;
361         int rc;
362
363         rc = kstrtoint_from_user(buffer, count, 0, &val);
364         if (rc < 0)
365                 return rc;
366
367         if (val < svc->srv_nbuf_per_group && val != 0)
368                 return -ERANGE;
369
370         spin_lock(&svc->srv_lock);
371
372         svc->srv_nrqbds_max = (uint)val;
373
374         spin_unlock(&svc->srv_lock);
375
376         return count;
377 }
378
379 LDEBUGFS_SEQ_FOPS(ptlrpc_lprocfs_req_buffers_max);
380
381 static ssize_t threads_min_show(struct kobject *kobj, struct attribute *attr,
382                                 char *buf)
383 {
384         struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
385                                                   srv_kobj);
386
387         return sprintf(buf, "%d\n", svc->srv_nthrs_cpt_init * svc->srv_ncpts);
388 }
389
390 static ssize_t threads_min_store(struct kobject *kobj, struct attribute *attr,
391                                  const char *buffer, size_t count)
392 {
393         struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
394                                                   srv_kobj);
395         unsigned long val;
396         int rc;
397
398         rc = kstrtoul(buffer, 10, &val);
399         if (rc < 0)
400                 return rc;
401
402         if (val / svc->srv_ncpts < PTLRPC_NTHRS_INIT)
403                 return -ERANGE;
404
405         spin_lock(&svc->srv_lock);
406         if (val > svc->srv_nthrs_cpt_limit * svc->srv_ncpts) {
407                 spin_unlock(&svc->srv_lock);
408                 return -ERANGE;
409         }
410
411         svc->srv_nthrs_cpt_init = (int)val / svc->srv_ncpts;
412
413         spin_unlock(&svc->srv_lock);
414
415         return count;
416 }
417 LUSTRE_RW_ATTR(threads_min);
418
419 static ssize_t threads_started_show(struct kobject *kobj,
420                                     struct attribute *attr,
421                                     char *buf)
422 {
423         struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
424                                                   srv_kobj);
425         struct ptlrpc_service_part *svcpt;
426         int total = 0;
427         int i;
428
429         ptlrpc_service_for_each_part(svcpt, i, svc)
430                 total += svcpt->scp_nthrs_running;
431
432         return sprintf(buf, "%d\n", total);
433 }
434 LUSTRE_RO_ATTR(threads_started);
435
436 static ssize_t threads_max_show(struct kobject *kobj, struct attribute *attr,
437                                 char *buf)
438 {
439         struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
440                                                   srv_kobj);
441
442         return sprintf(buf, "%d\n", svc->srv_nthrs_cpt_limit * svc->srv_ncpts);
443 }
444
445 static ssize_t threads_max_store(struct kobject *kobj, struct attribute *attr,
446                                  const char *buffer, size_t count)
447 {
448         struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
449                                                   srv_kobj);
450         unsigned long val;
451         int rc;
452
453         rc = kstrtoul(buffer, 10, &val);
454         if (rc < 0)
455                 return rc;
456
457         if (val / svc->srv_ncpts < PTLRPC_NTHRS_INIT)
458                 return -ERANGE;
459
460         spin_lock(&svc->srv_lock);
461         if (val < svc->srv_nthrs_cpt_init * svc->srv_ncpts) {
462                 spin_unlock(&svc->srv_lock);
463                 return -ERANGE;
464         }
465
466         svc->srv_nthrs_cpt_limit = (int)val / svc->srv_ncpts;
467
468         spin_unlock(&svc->srv_lock);
469
470         return count;
471 }
472 LUSTRE_RW_ATTR(threads_max);
473
474 /**
475  * Translates \e ptlrpc_nrs_pol_state values to human-readable strings.
476  *
477  * \param[in] state The policy state
478  */
479 static const char *nrs_state2str(enum ptlrpc_nrs_pol_state state)
480 {
481         switch (state) {
482         default:
483                 LBUG();
484         case NRS_POL_STATE_INVALID:
485                 return "invalid";
486         case NRS_POL_STATE_STOPPED:
487                 return "stopped";
488         case NRS_POL_STATE_STOPPING:
489                 return "stopping";
490         case NRS_POL_STATE_STARTING:
491                 return "starting";
492         case NRS_POL_STATE_STARTED:
493                 return "started";
494         }
495 }
496
497 /**
498  * Obtains status information for \a policy.
499  *
500  * Information is copied in \a info.
501  *
502  * \param[in] policy The policy
503  * \param[out] info  Holds returned status information
504  */
505 void nrs_policy_get_info_locked(struct ptlrpc_nrs_policy *policy,
506                                 struct ptlrpc_nrs_pol_info *info)
507 {
508         LASSERT(policy != NULL);
509         LASSERT(info != NULL);
510         assert_spin_locked(&policy->pol_nrs->nrs_lock);
511
512         BUILD_BUG_ON(sizeof(info->pi_arg) != sizeof(policy->pol_arg));
513         memcpy(info->pi_name, policy->pol_desc->pd_name, NRS_POL_NAME_MAX);
514         memcpy(info->pi_arg, policy->pol_arg, sizeof(policy->pol_arg));
515
516         info->pi_fallback    = !!(policy->pol_flags & PTLRPC_NRS_FL_FALLBACK);
517         info->pi_state       = policy->pol_state;
518         /**
519          * XXX: These are accessed without holding
520          * ptlrpc_service_part::scp_req_lock.
521          */
522         info->pi_req_queued  = policy->pol_req_queued;
523         info->pi_req_started = policy->pol_req_started;
524 }
525
526 /**
527  * Reads and prints policy status information for all policies of a PTLRPC
528  * service.
529  */
530 static int ptlrpc_lprocfs_nrs_seq_show(struct seq_file *m, void *n)
531 {
532         struct ptlrpc_service          *svc = m->private;
533         struct ptlrpc_service_part     *svcpt;
534         struct ptlrpc_nrs              *nrs;
535         struct ptlrpc_nrs_policy       *policy;
536         struct ptlrpc_nrs_pol_info     *infos;
537         struct ptlrpc_nrs_pol_info      tmp;
538         unsigned                        num_pols;
539         unsigned                        pol_idx = 0;
540         bool                            hp = false;
541         int                             i;
542         int                             rc = 0;
543         ENTRY;
544
545         /**
546          * Serialize NRS core lprocfs operations with policy registration/
547          * unregistration.
548          */
549         mutex_lock(&nrs_core.nrs_mutex);
550
551         /**
552          * Use the first service partition's regular NRS head in order to obtain
553          * the number of policies registered with NRS heads of this service. All
554          * service partitions will have the same number of policies.
555          */
556         nrs = nrs_svcpt2nrs(svc->srv_parts[0], false);
557
558         spin_lock(&nrs->nrs_lock);
559         num_pols = svc->srv_parts[0]->scp_nrs_reg.nrs_num_pols;
560         spin_unlock(&nrs->nrs_lock);
561
562         OBD_ALLOC(infos, num_pols * sizeof(*infos));
563         if (infos == NULL)
564                 GOTO(out, rc = -ENOMEM);
565 again:
566
567         ptlrpc_service_for_each_part(svcpt, i, svc) {
568                 nrs = nrs_svcpt2nrs(svcpt, hp);
569                 spin_lock(&nrs->nrs_lock);
570
571                 pol_idx = 0;
572
573                 list_for_each_entry(policy, &nrs->nrs_policy_list,
574                                     pol_list) {
575                         LASSERT(pol_idx < num_pols);
576
577                         nrs_policy_get_info_locked(policy, &tmp);
578                         /**
579                          * Copy values when handling the first service
580                          * partition.
581                          */
582                         if (i == 0) {
583                                 memcpy(infos[pol_idx].pi_name, tmp.pi_name,
584                                        NRS_POL_NAME_MAX);
585                                 memcpy(infos[pol_idx].pi_arg, tmp.pi_arg,
586                                        sizeof(tmp.pi_arg));
587                                 memcpy(&infos[pol_idx].pi_state, &tmp.pi_state,
588                                        sizeof(tmp.pi_state));
589                                 infos[pol_idx].pi_fallback = tmp.pi_fallback;
590                                 /**
591                                  * For the rest of the service partitions
592                                  * sanity-check the values we get.
593                                  */
594                         } else {
595                                 LASSERT(strncmp(infos[pol_idx].pi_name,
596                                                 tmp.pi_name,
597                                                 NRS_POL_NAME_MAX) == 0);
598                                 LASSERT(strncmp(infos[pol_idx].pi_arg,
599                                                 tmp.pi_arg,
600                                                 sizeof(tmp.pi_arg)) == 0);
601                                 /**
602                                  * Not asserting ptlrpc_nrs_pol_info::pi_state,
603                                  * because it may be different between
604                                  * instances of the same policy in different
605                                  * service partitions.
606                                  */
607                                 LASSERT(infos[pol_idx].pi_fallback ==
608                                         tmp.pi_fallback);
609                         }
610
611                         infos[pol_idx].pi_req_queued += tmp.pi_req_queued;
612                         infos[pol_idx].pi_req_started += tmp.pi_req_started;
613
614                         pol_idx++;
615                 }
616                 spin_unlock(&nrs->nrs_lock);
617         }
618
619         /**
620          * Policy status information output is in YAML format.
621          * For example:
622          *
623          *      regular_requests:
624          *        - name: fifo
625          *          state: started
626          *          fallback: yes
627          *          queued: 0
628          *          active: 0
629          *
630          *        - name: crrn
631          *          state: started
632          *          fallback: no
633          *          queued: 2015
634          *          active: 384
635          *
636          *      high_priority_requests:
637          *        - name: fifo
638          *          state: started
639          *          fallback: yes
640          *          queued: 0
641          *          active: 2
642          *
643          *        - name: crrn
644          *          state: stopped
645          *          fallback: no
646          *          queued: 0
647          *          active: 0
648          */
649         seq_printf(m, "%s\n", !hp ? "\nregular_requests:" :
650                    "high_priority_requests:");
651
652         for (pol_idx = 0; pol_idx < num_pols; pol_idx++) {
653                 if (strlen(infos[pol_idx].pi_arg) > 0)
654                         seq_printf(m, "  - name: %s %s\n",
655                                    infos[pol_idx].pi_name,
656                                    infos[pol_idx].pi_arg);
657                 else
658                         seq_printf(m, "  - name: %s\n",
659                                    infos[pol_idx].pi_name);
660
661
662                 seq_printf(m, "    state: %s\n"
663                            "    fallback: %s\n"
664                            "    queued: %-20d\n"
665                            "    active: %-20d\n\n",
666                            nrs_state2str(infos[pol_idx].pi_state),
667                            infos[pol_idx].pi_fallback ? "yes" : "no",
668                            (int)infos[pol_idx].pi_req_queued,
669                            (int)infos[pol_idx].pi_req_started);
670         }
671
672         if (!hp && nrs_svc_has_hp(svc)) {
673                 memset(infos, 0, num_pols * sizeof(*infos));
674
675                 /**
676                  * Redo the processing for the service's HP NRS heads' policies.
677                  */
678                 hp = true;
679                 goto again;
680         }
681
682 out:
683         if (infos)
684                 OBD_FREE(infos, num_pols * sizeof(*infos));
685
686         mutex_unlock(&nrs_core.nrs_mutex);
687
688         RETURN(rc);
689 }
690
691
692 #define LPROCFS_NRS_WR_MAX_ARG (1024)
693 /**
694  * The longest valid command string is the maxium policy name size, plus the
695  * length of the " reg" substring, plus the lenght of argument
696  */
697 #define LPROCFS_NRS_WR_MAX_CMD  (NRS_POL_NAME_MAX + sizeof(" reg") - 1 \
698                                  + LPROCFS_NRS_WR_MAX_ARG)
699
700 /**
701  * Starts and stops a given policy on a PTLRPC service.
702  *
703  * Commands consist of the policy name, followed by an optional [reg|hp] token;
704  * if the optional token is omitted, the operation is performed on both the
705  * regular and high-priority (if the service has one) NRS head.
706  */
707 static ssize_t
708 ptlrpc_lprocfs_nrs_seq_write(struct file *file, const char __user *buffer,
709                              size_t count, loff_t *off)
710 {
711         struct seq_file                *m = file->private_data;
712         struct ptlrpc_service          *svc = m->private;
713         enum ptlrpc_nrs_queue_type      queue = PTLRPC_NRS_QUEUE_BOTH;
714         char                           *cmd;
715         char                           *cmd_copy = NULL;
716         char                           *policy_name;
717         char                           *queue_name;
718         int                             rc = 0;
719         ENTRY;
720
721         if (count >= LPROCFS_NRS_WR_MAX_CMD)
722                 GOTO(out, rc = -EINVAL);
723
724         OBD_ALLOC(cmd, LPROCFS_NRS_WR_MAX_CMD);
725         if (cmd == NULL)
726                 GOTO(out, rc = -ENOMEM);
727         /**
728          * strsep() modifies its argument, so keep a copy
729          */
730         cmd_copy = cmd;
731
732         if (copy_from_user(cmd, buffer, count))
733                 GOTO(out, rc = -EFAULT);
734
735         cmd[count] = '\0';
736
737         policy_name = strsep(&cmd, " ");
738
739         if (strlen(policy_name) > NRS_POL_NAME_MAX - 1)
740                 GOTO(out, rc = -EINVAL);
741
742         /**
743          * No [reg|hp] token has been specified
744          */
745         if (cmd == NULL)
746                 goto default_queue;
747
748         queue_name = strsep(&cmd, " ");
749         /**
750          * The second token is either an optional [reg|hp] string,
751          * or arguments
752          */
753         if (strcmp(queue_name, "reg") == 0)
754                 queue = PTLRPC_NRS_QUEUE_REG;
755         else if (strcmp(queue_name, "hp") == 0)
756                 queue = PTLRPC_NRS_QUEUE_HP;
757         else {
758                 if (cmd != NULL)
759                         *(cmd - 1) = ' ';
760                 cmd = queue_name;
761         }
762
763 default_queue:
764
765         if (queue == PTLRPC_NRS_QUEUE_HP && !nrs_svc_has_hp(svc))
766                 GOTO(out, rc = -ENODEV);
767         else if (queue == PTLRPC_NRS_QUEUE_BOTH && !nrs_svc_has_hp(svc))
768                 queue = PTLRPC_NRS_QUEUE_REG;
769
770         /**
771          * Serialize NRS core lprocfs operations with policy registration/
772          * unregistration.
773          */
774         mutex_lock(&nrs_core.nrs_mutex);
775
776         rc = ptlrpc_nrs_policy_control(svc, queue, policy_name,
777                                        PTLRPC_NRS_CTL_START,
778                                        false, cmd);
779
780         mutex_unlock(&nrs_core.nrs_mutex);
781 out:
782         if (cmd_copy)
783                 OBD_FREE(cmd_copy, LPROCFS_NRS_WR_MAX_CMD);
784
785         RETURN(rc < 0 ? rc : count);
786 }
787
788 LDEBUGFS_SEQ_FOPS(ptlrpc_lprocfs_nrs);
789
790 /** @} nrs */
791
792 struct ptlrpc_srh_iterator {
793         int                     srhi_idx;
794         __u64                   srhi_seq;
795         struct ptlrpc_request   *srhi_req;
796 };
797
798 static int
799 ptlrpc_lprocfs_svc_req_history_seek(struct ptlrpc_service_part *svcpt,
800                                     struct ptlrpc_srh_iterator *srhi,
801                                     __u64 seq)
802 {
803         struct list_head        *e;
804         struct ptlrpc_request   *req;
805
806         if (srhi->srhi_req != NULL &&
807             srhi->srhi_seq > svcpt->scp_hist_seq_culled &&
808             srhi->srhi_seq <= seq) {
809                 /* If srhi_req was set previously, hasn't been culled and
810                  * we're searching for a seq on or after it (i.e. more
811                  * recent), search from it onwards.
812                  * Since the service history is LRU (i.e. culled reqs will
813                  * be near the head), we shouldn't have to do long
814                  * re-scans */
815                 LASSERTF(srhi->srhi_seq == srhi->srhi_req->rq_history_seq,
816                          "%s:%d: seek seq %llu, request seq %llu\n",
817                          svcpt->scp_service->srv_name, svcpt->scp_cpt,
818                          srhi->srhi_seq, srhi->srhi_req->rq_history_seq);
819                 LASSERTF(!list_empty(&svcpt->scp_hist_reqs),
820                          "%s:%d: seek offset %llu, request seq %llu, "
821                          "last culled %llu\n",
822                          svcpt->scp_service->srv_name, svcpt->scp_cpt,
823                          seq, srhi->srhi_seq, svcpt->scp_hist_seq_culled);
824                 e = &srhi->srhi_req->rq_history_list;
825         } else {
826                 /* search from start */
827                 e = svcpt->scp_hist_reqs.next;
828         }
829
830         while (e != &svcpt->scp_hist_reqs) {
831                 req = list_entry(e, struct ptlrpc_request, rq_history_list);
832
833                 if (req->rq_history_seq >= seq) {
834                         srhi->srhi_seq = req->rq_history_seq;
835                         srhi->srhi_req = req;
836                         return 0;
837                 }
838                 e = e->next;
839         }
840
841         return -ENOENT;
842 }
843
844 /*
845  * ptlrpc history sequence is used as "position" of seq_file, in some case,
846  * seq_read() will increase "position" to indicate reading the next
847  * element, however, low bits of history sequence are reserved for CPT id
848  * (check the details from comments before ptlrpc_req_add_history), which
849  * means seq_read() might change CPT id of history sequence and never
850  * finish reading of requests on a CPT. To make it work, we have to shift
851  * CPT id to high bits and timestamp to low bits, so seq_read() will only
852  * increase timestamp which can correctly indicate the next position.
853  */
854
855 /* convert seq_file pos to cpt */
856 #define PTLRPC_REQ_POS2CPT(svc, pos)                    \
857         ((svc)->srv_cpt_bits == 0 ? 0 :                 \
858          (__u64)(pos) >> (64 - (svc)->srv_cpt_bits))
859
860 /* make up seq_file pos from cpt */
861 #define PTLRPC_REQ_CPT2POS(svc, cpt)                    \
862         ((svc)->srv_cpt_bits == 0 ? 0 :                 \
863          (cpt) << (64 - (svc)->srv_cpt_bits))
864
865 /* convert sequence to position */
866 #define PTLRPC_REQ_SEQ2POS(svc, seq)                    \
867         ((svc)->srv_cpt_bits == 0 ? (seq) :             \
868          ((seq) >> (svc)->srv_cpt_bits) |               \
869          ((seq) << (64 - (svc)->srv_cpt_bits)))
870
871 /* convert position to sequence */
872 #define PTLRPC_REQ_POS2SEQ(svc, pos)                    \
873         ((svc)->srv_cpt_bits == 0 ? (pos) :             \
874          ((__u64)(pos) << (svc)->srv_cpt_bits) |        \
875          ((__u64)(pos) >> (64 - (svc)->srv_cpt_bits)))
876
877 static void *
878 ptlrpc_lprocfs_svc_req_history_start(struct seq_file *s, loff_t *pos)
879 {
880         struct ptlrpc_service           *svc = s->private;
881         struct ptlrpc_service_part      *svcpt;
882         struct ptlrpc_srh_iterator      *srhi;
883         unsigned int                    cpt;
884         int                             rc;
885         int                             i;
886
887         if (sizeof(loff_t) != sizeof(__u64)) { /* can't support */
888                 CWARN("Failed to read request history because size of loff_t "
889                       "%d can't match size of u64\n", (int)sizeof(loff_t));
890                 return NULL;
891         }
892
893         OBD_ALLOC(srhi, sizeof(*srhi));
894         if (srhi == NULL)
895                 return NULL;
896
897         srhi->srhi_seq = 0;
898         srhi->srhi_req = NULL;
899
900         cpt = PTLRPC_REQ_POS2CPT(svc, *pos);
901
902         ptlrpc_service_for_each_part(svcpt, i, svc) {
903                 if (i < cpt) /* skip */
904                         continue;
905                 if (i > cpt) /* make up the lowest position for this CPT */
906                         *pos = PTLRPC_REQ_CPT2POS(svc, i);
907
908                 mutex_lock(&svcpt->scp_mutex);
909                 spin_lock(&svcpt->scp_lock);
910                 rc = ptlrpc_lprocfs_svc_req_history_seek(svcpt, srhi,
911                                 PTLRPC_REQ_POS2SEQ(svc, *pos));
912                 spin_unlock(&svcpt->scp_lock);
913                 mutex_unlock(&svcpt->scp_mutex);
914                 if (rc == 0) {
915                         *pos = PTLRPC_REQ_SEQ2POS(svc, srhi->srhi_seq);
916                         srhi->srhi_idx = i;
917                         return srhi;
918                 }
919         }
920
921         OBD_FREE(srhi, sizeof(*srhi));
922         return NULL;
923 }
924
925 static void
926 ptlrpc_lprocfs_svc_req_history_stop(struct seq_file *s, void *iter)
927 {
928         struct ptlrpc_srh_iterator *srhi = iter;
929
930         if (srhi != NULL)
931                 OBD_FREE(srhi, sizeof(*srhi));
932 }
933
934 static void *
935 ptlrpc_lprocfs_svc_req_history_next(struct seq_file *s,
936                                     void *iter, loff_t *pos)
937 {
938         struct ptlrpc_service           *svc = s->private;
939         struct ptlrpc_srh_iterator      *srhi = iter;
940         struct ptlrpc_service_part      *svcpt;
941         __u64                           seq;
942         int                             rc;
943         int                             i;
944
945         for (i = srhi->srhi_idx; i < svc->srv_ncpts; i++) {
946                 svcpt = svc->srv_parts[i];
947
948                 if (i > srhi->srhi_idx) { /* reset iterator for a new CPT */
949                         srhi->srhi_req = NULL;
950                         seq = srhi->srhi_seq = 0;
951                 } else { /* the next sequence */
952                         seq = srhi->srhi_seq + (1 << svc->srv_cpt_bits);
953                 }
954
955                 mutex_lock(&svcpt->scp_mutex);
956                 spin_lock(&svcpt->scp_lock);
957                 rc = ptlrpc_lprocfs_svc_req_history_seek(svcpt, srhi, seq);
958                 spin_unlock(&svcpt->scp_lock);
959                 mutex_unlock(&svcpt->scp_mutex);
960                 if (rc == 0) {
961                         *pos = PTLRPC_REQ_SEQ2POS(svc, srhi->srhi_seq);
962                         srhi->srhi_idx = i;
963                         return srhi;
964                 }
965         }
966
967         OBD_FREE(srhi, sizeof(*srhi));
968         return NULL;
969 }
970
971 /* common ost/mdt so_req_printer */
972 void target_print_req(void *seq_file, struct ptlrpc_request *req)
973 {
974         /* Called holding srv_lock with irqs disabled.
975          * Print specific req contents and a newline.
976          * CAVEAT EMPTOR: check request message length before printing!!!
977          * You might have received any old crap so you must be just as
978          * careful here as the service's request parser!!! */
979         struct seq_file *sf = seq_file;
980
981         switch (req->rq_phase) {
982         case RQ_PHASE_NEW:
983                 /* still awaiting a service thread's attention, or rejected
984                  * because the generic request message didn't unpack */
985                 seq_printf(sf, "<not swabbed>\n");
986                 break;
987         case RQ_PHASE_INTERPRET:
988                 /* being handled, so basic msg swabbed, and opc is valid
989                  * but racing with mds_handle() */
990         case RQ_PHASE_COMPLETE:
991                 /* been handled by mds_handle() reply state possibly still
992                  * volatile */
993                 seq_printf(sf, "opc %d\n", lustre_msg_get_opc(req->rq_reqmsg));
994                 break;
995         default:
996                 DEBUG_REQ(D_ERROR, req, "bad phase %d", req->rq_phase);
997         }
998 }
999 EXPORT_SYMBOL(target_print_req);
1000
1001 static int ptlrpc_lprocfs_svc_req_history_show(struct seq_file *s, void *iter)
1002 {
1003         struct ptlrpc_service           *svc = s->private;
1004         struct ptlrpc_srh_iterator      *srhi = iter;
1005         struct ptlrpc_service_part      *svcpt;
1006         struct ptlrpc_request           *req;
1007         int                             rc;
1008
1009         LASSERT(srhi->srhi_idx < svc->srv_ncpts);
1010
1011         svcpt = svc->srv_parts[srhi->srhi_idx];
1012
1013         mutex_lock(&svcpt->scp_mutex);
1014         spin_lock(&svcpt->scp_lock);
1015
1016         rc = ptlrpc_lprocfs_svc_req_history_seek(svcpt, srhi, srhi->srhi_seq);
1017
1018         if (rc == 0) {
1019                 struct timespec64 arrival, sent, arrivaldiff;
1020                 char nidstr[LNET_NIDSTR_SIZE];
1021
1022                 req = srhi->srhi_req;
1023
1024                 arrival.tv_sec = req->rq_arrival_time.tv_sec;
1025                 arrival.tv_nsec = req->rq_arrival_time.tv_nsec;
1026                 sent.tv_sec = req->rq_sent;
1027                 sent.tv_nsec = 0;
1028                 arrivaldiff = timespec64_sub(sent, arrival);
1029
1030                 /* Print common req fields.
1031                  * CAVEAT EMPTOR: we're racing with the service handler
1032                  * here.  The request could contain any old crap, so you
1033                  * must be just as careful as the service's request
1034                  * parser. Currently I only print stuff here I know is OK
1035                  * to look at coz it was set up in request_in_callback()!!!
1036                  */
1037                 seq_printf(s,
1038                            "%lld:%s:%s:x%llu:%d:%s:%lld.%06lld:%lld.%06llds(%+lld.0s) ",
1039                            req->rq_history_seq,
1040                            req->rq_export && req->rq_export->exp_obd ?
1041                                 req->rq_export->exp_obd->obd_name :
1042                                 libcfs_nid2str_r(req->rq_self, nidstr,
1043                                                  sizeof(nidstr)),
1044                            libcfs_id2str(req->rq_peer), req->rq_xid,
1045                            req->rq_reqlen, ptlrpc_rqphase2str(req),
1046                            (s64)req->rq_arrival_time.tv_sec,
1047                            (s64)(req->rq_arrival_time.tv_nsec / NSEC_PER_USEC),
1048                            (s64)arrivaldiff.tv_sec,
1049                            (s64)(arrivaldiff.tv_nsec / NSEC_PER_USEC),
1050                            (s64)(req->rq_sent - req->rq_deadline));
1051                 if (svc->srv_ops.so_req_printer == NULL)
1052                         seq_printf(s, "\n");
1053                 else
1054                         svc->srv_ops.so_req_printer(s, srhi->srhi_req);
1055         }
1056
1057         spin_unlock(&svcpt->scp_lock);
1058         mutex_unlock(&svcpt->scp_mutex);
1059
1060         return rc;
1061 }
1062
1063 static int
1064 ptlrpc_lprocfs_svc_req_history_open(struct inode *inode, struct file *file)
1065 {
1066         static struct seq_operations sops = {
1067                 .start = ptlrpc_lprocfs_svc_req_history_start,
1068                 .stop  = ptlrpc_lprocfs_svc_req_history_stop,
1069                 .next  = ptlrpc_lprocfs_svc_req_history_next,
1070                 .show  = ptlrpc_lprocfs_svc_req_history_show,
1071         };
1072         struct seq_file *seqf;
1073         int             rc;
1074
1075         rc = seq_open(file, &sops);
1076         if (rc)
1077                 return rc;
1078
1079         seqf = file->private_data;
1080         seqf->private = inode->i_private;
1081         return 0;
1082 }
1083
1084 /* See also lprocfs_rd_timeouts */
1085 static int ptlrpc_lprocfs_timeouts_seq_show(struct seq_file *m, void *n)
1086 {
1087         struct ptlrpc_service *svc = m->private;
1088         struct ptlrpc_service_part *svcpt;
1089         time64_t worst_timestamp;
1090         timeout_t cur_timeout;
1091         timeout_t worst_timeout;
1092         int i;
1093
1094         if (AT_OFF) {
1095                 seq_printf(m, "adaptive timeouts off, using obd_timeout %u\n",
1096                            obd_timeout);
1097                 return 0;
1098         }
1099
1100         ptlrpc_service_for_each_part(svcpt, i, svc) {
1101                 cur_timeout = at_get(&svcpt->scp_at_estimate);
1102                 worst_timeout = svcpt->scp_at_estimate.at_worst_timeout_ever;
1103                 worst_timestamp = svcpt->scp_at_estimate.at_worst_timestamp;
1104
1105                 seq_printf(m, "%10s : cur %3u  worst %3u (at %lld, %llds ago) ",
1106                            "service", cur_timeout, worst_timeout,
1107                            worst_timestamp,
1108                            ktime_get_real_seconds() - worst_timestamp);
1109
1110                 lprocfs_at_hist_helper(m, &svcpt->scp_at_estimate);
1111         }
1112
1113         return 0;
1114 }
1115
1116 LDEBUGFS_SEQ_FOPS_RO(ptlrpc_lprocfs_timeouts);
1117
1118 static ssize_t high_priority_ratio_show(struct kobject *kobj,
1119                                         struct attribute *attr,
1120                                         char *buf)
1121 {
1122         struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
1123                                                   srv_kobj);
1124
1125         return sprintf(buf, "%d\n", svc->srv_hpreq_ratio);
1126 }
1127
1128 static ssize_t high_priority_ratio_store(struct kobject *kobj,
1129                                          struct attribute *attr,
1130                                          const char *buffer,
1131                                          size_t count)
1132 {
1133         struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
1134                                                   srv_kobj);
1135         int rc;
1136         unsigned long val;
1137
1138         rc = kstrtoul(buffer, 10, &val);
1139         if (rc < 0)
1140                 return rc;
1141
1142         spin_lock(&svc->srv_lock);
1143         svc->srv_hpreq_ratio = val;
1144         spin_unlock(&svc->srv_lock);
1145
1146         return count;
1147 }
1148 LUSTRE_RW_ATTR(high_priority_ratio);
1149
1150 static struct attribute *ptlrpc_svc_attrs[] = {
1151         &lustre_attr_threads_min.attr,
1152         &lustre_attr_threads_started.attr,
1153         &lustre_attr_threads_max.attr,
1154         &lustre_attr_high_priority_ratio.attr,
1155         NULL,
1156 };
1157
1158 static void ptlrpc_sysfs_svc_release(struct kobject *kobj)
1159 {
1160         struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
1161                                                   srv_kobj);
1162
1163         complete(&svc->srv_kobj_unregister);
1164 }
1165
1166 static struct kobj_type ptlrpc_svc_ktype = {
1167         .default_attrs  = ptlrpc_svc_attrs,
1168         .sysfs_ops      = &lustre_sysfs_ops,
1169         .release        = ptlrpc_sysfs_svc_release,
1170 };
1171
1172 void ptlrpc_sysfs_unregister_service(struct ptlrpc_service *svc)
1173 {
1174         /* Let's see if we had a chance at initialization first */
1175         if (svc->srv_kobj.kset) {
1176                 kobject_put(&svc->srv_kobj);
1177                 wait_for_completion(&svc->srv_kobj_unregister);
1178         }
1179 }
1180
1181 int ptlrpc_sysfs_register_service(struct kset *parent,
1182                                   struct ptlrpc_service *svc)
1183 {
1184         svc->srv_kobj.kset = parent;
1185         init_completion(&svc->srv_kobj_unregister);
1186         return kobject_init_and_add(&svc->srv_kobj, &ptlrpc_svc_ktype,
1187                                     &parent->kobj, "%s", svc->srv_name);
1188 }
1189
1190 void ptlrpc_ldebugfs_register_service(struct dentry *entry,
1191                                       struct ptlrpc_service *svc)
1192 {
1193         struct lprocfs_vars lproc_vars[] = {
1194                 { .name = "req_buffer_history_len",
1195                   .fops = &ptlrpc_lprocfs_req_history_len_fops,
1196                   .data = svc },
1197                 { .name = "req_buffer_history_max",
1198                   .fops = &ptlrpc_lprocfs_req_history_max_fops,
1199                   .data = svc },
1200                 { .name = "timeouts",
1201                   .fops = &ptlrpc_lprocfs_timeouts_fops,
1202                   .data = svc },
1203                 { .name = "nrs_policies",
1204                   .fops = &ptlrpc_lprocfs_nrs_fops,
1205                   .data = svc },
1206                 { .name = "req_buffers_max",
1207                   .fops = &ptlrpc_lprocfs_req_buffers_max_fops,
1208                   .data = svc },
1209                 { NULL }
1210         };
1211         static struct file_operations req_history_fops = {
1212                 .owner       = THIS_MODULE,
1213                 .open        = ptlrpc_lprocfs_svc_req_history_open,
1214                 .read        = seq_read,
1215                 .llseek      = seq_lseek,
1216                 .release     = lprocfs_seq_release,
1217         };
1218
1219         ptlrpc_ldebugfs_register(entry, svc->srv_name, "stats",
1220                                  &svc->srv_debugfs_entry, &svc->srv_stats);
1221         if (!svc->srv_debugfs_entry)
1222                 return;
1223
1224         ldebugfs_add_vars(svc->srv_debugfs_entry, lproc_vars, NULL);
1225
1226         debugfs_create_file("req_history", 0400, svc->srv_debugfs_entry, svc,
1227                             &req_history_fops);
1228 }
1229
1230 void ptlrpc_lprocfs_register_obd(struct obd_device *obd)
1231 {
1232         ptlrpc_ldebugfs_register(obd->obd_debugfs_entry, NULL, "stats",
1233                                  &obd->obd_svc_debugfs_entry,
1234                                  &obd->obd_svc_stats);
1235 }
1236 EXPORT_SYMBOL(ptlrpc_lprocfs_register_obd);
1237
1238 void ptlrpc_lprocfs_rpc_sent(struct ptlrpc_request *req, long amount)
1239 {
1240         struct lprocfs_stats *svc_stats;
1241         __u32 op = lustre_msg_get_opc(req->rq_reqmsg);
1242         int opc = opcode_offset(op);
1243
1244         svc_stats = req->rq_import->imp_obd->obd_svc_stats;
1245         if (svc_stats == NULL || opc <= 0)
1246                 return;
1247         LASSERT(opc < LUSTRE_MAX_OPCODES);
1248         if (!(op == LDLM_ENQUEUE || op == MDS_REINT))
1249                 lprocfs_counter_add(svc_stats, opc + EXTRA_MAX_OPCODES, amount);
1250 }
1251
1252 void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes)
1253 {
1254         struct lprocfs_stats *svc_stats;
1255         int idx;
1256
1257         if (!req->rq_import)
1258                 return;
1259         svc_stats = req->rq_import->imp_obd->obd_svc_stats;
1260         if (!svc_stats)
1261                 return;
1262         idx = lustre_msg_get_opc(req->rq_reqmsg);
1263         switch (idx) {
1264         case OST_READ:
1265                 idx = BRW_READ_BYTES + PTLRPC_LAST_CNTR;
1266                 break;
1267         case OST_WRITE:
1268                 idx = BRW_WRITE_BYTES + PTLRPC_LAST_CNTR;
1269                 break;
1270         default:
1271                 LASSERTF(0, "unsupported opcode %u\n", idx);
1272                 break;
1273         }
1274
1275         lprocfs_counter_add(svc_stats, idx, bytes);
1276 }
1277
1278 EXPORT_SYMBOL(ptlrpc_lprocfs_brw);
1279
1280 void ptlrpc_lprocfs_unregister_service(struct ptlrpc_service *svc)
1281 {
1282         debugfs_remove_recursive(svc->srv_debugfs_entry);
1283
1284         if (svc->srv_stats)
1285                 lprocfs_free_stats(&svc->srv_stats);
1286 }
1287
1288 void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd)
1289 {
1290         /* cleanup first to allow concurrent access to device's
1291          * stats via debugfs to complete safely
1292          */
1293         lprocfs_obd_cleanup(obd);
1294
1295         debugfs_remove_recursive(obd->obd_svc_debugfs_entry);
1296
1297         if (obd->obd_svc_stats)
1298                 lprocfs_free_stats(&obd->obd_svc_stats);
1299 }
1300 EXPORT_SYMBOL(ptlrpc_lprocfs_unregister_obd);
1301
1302 ssize_t ping_show(struct kobject *kobj, struct attribute *attr,
1303                   char *buffer)
1304 {
1305         struct obd_device *obd = container_of(kobj, struct obd_device,
1306                                               obd_kset.kobj);
1307         struct obd_import *imp;
1308         struct ptlrpc_request *req;
1309         int rc;
1310
1311         ENTRY;
1312         with_imp_locked(obd, imp, rc)
1313                 req = ptlrpc_prep_ping(imp);
1314
1315         if (rc)
1316                 RETURN(rc);
1317         if (!req)
1318                 RETURN(-ENOMEM);
1319
1320         req->rq_send_state = LUSTRE_IMP_FULL;
1321
1322         rc = ptlrpc_queue_wait(req);
1323         ptlrpc_req_finished(req);
1324
1325         RETURN(rc);
1326 }
1327 EXPORT_SYMBOL(ping_show);
1328
1329 /* kept for older verison of tools. */
1330 ssize_t ping_store(struct kobject *kobj, struct attribute *attr,
1331                    const char *buffer, size_t count)
1332 {
1333         return ping_show(kobj, attr, (char *)buffer);
1334 }
1335 EXPORT_SYMBOL(ping_store);
1336
1337 /* Write the connection UUID to this file to attempt to connect to that node.
1338  * The connection UUID is a node's primary NID. For example,
1339  * "echo connection=192.168.0.1@tcp0::instance > .../import".
1340  */
1341 ssize_t
1342 lprocfs_import_seq_write(struct file *file, const char __user *buffer,
1343                          size_t count, loff_t *off)
1344 {
1345         struct seq_file   *m    = file->private_data;
1346         struct obd_device *obd  = m->private;
1347         struct obd_import *imp;
1348         char *kbuf = NULL;
1349         char *uuid;
1350         char *ptr;
1351         int do_reconn = 1;
1352         const char prefix[] = "connection=";
1353         const int prefix_len = sizeof(prefix) - 1;
1354         int rc = 0;
1355
1356         if (count > PAGE_SIZE - 1 || count <= prefix_len)
1357                 return -EINVAL;
1358
1359         OBD_ALLOC(kbuf, count + 1);
1360         if (kbuf == NULL)
1361                 return -ENOMEM;
1362
1363         if (copy_from_user(kbuf, buffer, count))
1364                 GOTO(out, rc = -EFAULT);
1365
1366         kbuf[count] = 0;
1367
1368         /* only support connection=uuid::instance now */
1369         if (strncmp(prefix, kbuf, prefix_len) != 0)
1370                 GOTO(out, rc = -EINVAL);
1371
1372         with_imp_locked(obd, imp, rc) {
1373                 uuid = kbuf + prefix_len;
1374                 ptr = strstr(uuid, "::");
1375                 if (ptr) {
1376                         u32 inst;
1377                         int rc;
1378
1379                         *ptr = 0;
1380                         do_reconn = 0;
1381                         ptr += 2; /* Skip :: */
1382                         rc = kstrtouint(ptr, 10, &inst);
1383                         if (rc) {
1384                                 CERROR("config: wrong instance # %s\n", ptr);
1385                         } else if (inst != imp->imp_connect_data.ocd_instance) {
1386                                 CDEBUG(D_INFO,
1387                                        "IR: %s is connecting to an obsoleted target(%u/%u), reconnecting...\n",
1388                                        imp->imp_obd->obd_name,
1389                                        imp->imp_connect_data.ocd_instance,
1390                                        inst);
1391                                 do_reconn = 1;
1392                         } else {
1393                                 CDEBUG(D_INFO,
1394                                        "IR: %s has already been connecting to "
1395                                        "new target(%u)\n",
1396                                        imp->imp_obd->obd_name, inst);
1397                         }
1398                 }
1399
1400                 if (do_reconn)
1401                         ptlrpc_recover_import(imp, uuid, 1);
1402         }
1403
1404 out:
1405         OBD_FREE(kbuf, count + 1);
1406         return rc ?: count;
1407 }
1408 EXPORT_SYMBOL(lprocfs_import_seq_write);
1409
1410 int lprocfs_pinger_recov_seq_show(struct seq_file *m, void *n)
1411 {
1412         struct obd_device *obd = m->private;
1413         struct obd_import *imp;
1414         int rc;
1415
1416         with_imp_locked(obd, imp, rc)
1417                 seq_printf(m, "%d\n", !imp->imp_no_pinger_recover);
1418
1419         return rc;
1420 }
1421 EXPORT_SYMBOL(lprocfs_pinger_recov_seq_show);
1422
1423 ssize_t
1424 lprocfs_pinger_recov_seq_write(struct file *file, const char __user *buffer,
1425                                size_t count, loff_t *off)
1426 {
1427         struct seq_file *m = file->private_data;
1428         struct obd_device *obd = m->private;
1429         struct obd_import *imp;
1430         bool val;
1431         int rc;
1432
1433         rc = kstrtobool_from_user(buffer, count, &val);
1434         if (rc < 0)
1435                 return rc;
1436
1437         with_imp_locked(obd, imp, rc) {
1438                 spin_lock(&imp->imp_lock);
1439                 imp->imp_no_pinger_recover = !val;
1440                 spin_unlock(&imp->imp_lock);
1441         }
1442
1443         return rc ?: count;
1444 }
1445 EXPORT_SYMBOL(lprocfs_pinger_recov_seq_write);