Whamcloud - gitweb
9b531f2aee84d12e90af3646bacad26a1a8b3e82
[fs/lustre-release.git] / lustre / ptlrpc / gss / sec_gss.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * Modifications for Lustre
5  *
6  * Copyright  2008 Sun Microsystems, Inc. All rights reserved
7  *
8  * Author: Eric Mei <ericm@clusterfs.com>
9  */
10
11 /*
12  * linux/net/sunrpc/auth_gss.c
13  *
14  * RPCSEC_GSS client authentication.
15  *
16  *  Copyright (c) 2000 The Regents of the University of Michigan.
17  *  All rights reserved.
18  *
19  *  Dug Song       <dugsong@monkey.org>
20  *  Andy Adamson   <andros@umich.edu>
21  *
22  *  Redistribution and use in source and binary forms, with or without
23  *  modification, are permitted provided that the following conditions
24  *  are met:
25  *
26  *  1. Redistributions of source code must retain the above copyright
27  *     notice, this list of conditions and the following disclaimer.
28  *  2. Redistributions in binary form must reproduce the above copyright
29  *     notice, this list of conditions and the following disclaimer in the
30  *     documentation and/or other materials provided with the distribution.
31  *  3. Neither the name of the University nor the names of its
32  *     contributors may be used to endorse or promote products derived
33  *     from this software without specific prior written permission.
34  *
35  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
36  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
37  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
38  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
40  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
41  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
42  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
43  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
44  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
45  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
46  *
47  */
48
49 #ifndef EXPORT_SYMTAB
50 # define EXPORT_SYMTAB
51 #endif
52 #define DEBUG_SUBSYSTEM S_SEC
53 #ifdef __KERNEL__
54 #include <linux/init.h>
55 #include <linux/module.h>
56 #include <linux/slab.h>
57 #include <linux/dcache.h>
58 #include <linux/fs.h>
59 #include <linux/random.h>
60 #include <linux/mutex.h>
61 #include <asm/atomic.h>
62 #else
63 #include <liblustre.h>
64 #endif
65
66 #include <obd.h>
67 #include <obd_class.h>
68 #include <obd_support.h>
69 #include <obd_cksum.h>
70 #include <lustre/lustre_idl.h>
71 #include <lustre_net.h>
72 #include <lustre_import.h>
73 #include <lustre_sec.h>
74
75 #include "gss_err.h"
76 #include "gss_internal.h"
77 #include "gss_api.h"
78
79 #include <linux/crypto.h>
80
81 /*
82  * early reply have fixed size, respectively in privacy and integrity mode.
83  * so we calculate them only once.
84  */
85 static int gss_at_reply_off_integ;
86 static int gss_at_reply_off_priv;
87
88
89 static inline int msg_last_segidx(struct lustre_msg *msg)
90 {
91         LASSERT(msg->lm_bufcount > 0);
92         return msg->lm_bufcount - 1;
93 }
94 static inline int msg_last_seglen(struct lustre_msg *msg)
95 {
96         return msg->lm_buflens[msg_last_segidx(msg)];
97 }
98
99 /********************************************
100  * wire data swabber                        *
101  ********************************************/
102
103 static
104 void gss_header_swabber(struct gss_header *ghdr)
105 {
106         __swab32s(&ghdr->gh_flags);
107         __swab32s(&ghdr->gh_proc);
108         __swab32s(&ghdr->gh_seq);
109         __swab32s(&ghdr->gh_svc);
110         __swab32s(&ghdr->gh_pad1);
111         __swab32s(&ghdr->gh_handle.len);
112 }
113
114 struct gss_header *gss_swab_header(struct lustre_msg *msg, int segment)
115 {
116         struct gss_header *ghdr;
117
118         ghdr = lustre_swab_buf(msg, segment, sizeof(*ghdr),
119                                gss_header_swabber);
120
121         if (ghdr &&
122             sizeof(*ghdr) + ghdr->gh_handle.len > msg->lm_buflens[segment]) {
123                 CERROR("gss header require length %u, now %u received\n",
124                        (unsigned int) sizeof(*ghdr) + ghdr->gh_handle.len,
125                        msg->lm_buflens[segment]);
126                 return NULL;
127         }
128
129         return ghdr;
130 }
131
132 static
133 void gss_netobj_swabber(netobj_t *obj)
134 {
135         __swab32s(&obj->len);
136 }
137
138 netobj_t *gss_swab_netobj(struct lustre_msg *msg, int segment)
139 {
140         netobj_t  *obj;
141
142         obj = lustre_swab_buf(msg, segment, sizeof(*obj), gss_netobj_swabber);
143         if (obj && sizeof(*obj) + obj->len > msg->lm_buflens[segment]) {
144                 CERROR("netobj require length %u but only %u received\n",
145                        (unsigned int) sizeof(*obj) + obj->len,
146                        msg->lm_buflens[segment]);
147                 return NULL;
148         }
149
150         return obj;
151 }
152
153 /*
154  * payload should be obtained from mechanism. but currently since we
155  * only support kerberos, we could simply use fixed value.
156  * krb5 "meta" data:
157  *  - krb5 header:      16
158  *  - krb5 checksum:    20
159  *
160  * for privacy mode, payload also include the cipher text which has the same
161  * size as plain text, plus possible confounder, padding both at maximum cipher
162  * block size.
163  */
164 #define GSS_KRB5_INTEG_MAX_PAYLOAD      (40)
165
166 static inline
167 int gss_mech_payload(struct gss_ctx *mechctx, int msgsize, int privacy)
168 {
169         if (privacy)
170                 return GSS_KRB5_INTEG_MAX_PAYLOAD + 16 + 16 + 16 + msgsize;
171         else
172                 return GSS_KRB5_INTEG_MAX_PAYLOAD;
173 }
174
175 /*
176  * return signature size, otherwise < 0 to indicate error
177  */
178 static int gss_sign_msg(struct lustre_msg *msg,
179                         struct gss_ctx *mechctx,
180                         enum lustre_sec_part sp,
181                         __u32 flags, __u32 proc, __u32 seq, __u32 svc,
182                         rawobj_t *handle)
183 {
184         struct gss_header      *ghdr;
185         rawobj_t                text[4], mic;
186         int                     textcnt, max_textcnt, mic_idx;
187         __u32                   major;
188
189         LASSERT(msg->lm_bufcount >= 2);
190
191         /* gss hdr */
192         LASSERT(msg->lm_buflens[0] >=
193                 sizeof(*ghdr) + (handle ? handle->len : 0));
194         ghdr = lustre_msg_buf(msg, 0, 0);
195
196         ghdr->gh_version = PTLRPC_GSS_VERSION;
197         ghdr->gh_sp = (__u8) sp;
198         ghdr->gh_flags = flags;
199         ghdr->gh_proc = proc;
200         ghdr->gh_seq = seq;
201         ghdr->gh_svc = svc;
202         if (!handle) {
203                 /* fill in a fake one */
204                 ghdr->gh_handle.len = 0;
205         } else {
206                 ghdr->gh_handle.len = handle->len;
207                 memcpy(ghdr->gh_handle.data, handle->data, handle->len);
208         }
209
210         /* no actual signature for null mode */
211         if (svc == SPTLRPC_SVC_NULL)
212                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
213
214         /* MIC */
215         mic_idx = msg_last_segidx(msg);
216         max_textcnt = (svc == SPTLRPC_SVC_AUTH) ? 1 : mic_idx;
217
218         for (textcnt = 0; textcnt < max_textcnt; textcnt++) {
219                 text[textcnt].len = msg->lm_buflens[textcnt];
220                 text[textcnt].data = lustre_msg_buf(msg, textcnt, 0);
221         }
222
223         mic.len = msg->lm_buflens[mic_idx];
224         mic.data = lustre_msg_buf(msg, mic_idx, 0);
225
226         major = lgss_get_mic(mechctx, textcnt, text, 0, NULL, &mic);
227         if (major != GSS_S_COMPLETE) {
228                 CERROR("fail to generate MIC: %08x\n", major);
229                 return -EPERM;
230         }
231         LASSERT(mic.len <= msg->lm_buflens[mic_idx]);
232
233         return lustre_shrink_msg(msg, mic_idx, mic.len, 0);
234 }
235
236 /*
237  * return gss error
238  */
239 static
240 __u32 gss_verify_msg(struct lustre_msg *msg,
241                      struct gss_ctx *mechctx,
242                      __u32 svc)
243 {
244         rawobj_t        text[4], mic;
245         int             textcnt, max_textcnt;
246         int             mic_idx;
247         __u32           major;
248
249         LASSERT(msg->lm_bufcount >= 2);
250
251         if (svc == SPTLRPC_SVC_NULL)
252                 return GSS_S_COMPLETE;
253
254         mic_idx = msg_last_segidx(msg);
255         max_textcnt = (svc == SPTLRPC_SVC_AUTH) ? 1 : mic_idx;
256
257         for (textcnt = 0; textcnt < max_textcnt; textcnt++) {
258                 text[textcnt].len = msg->lm_buflens[textcnt];
259                 text[textcnt].data = lustre_msg_buf(msg, textcnt, 0);
260         }
261
262         mic.len = msg->lm_buflens[mic_idx];
263         mic.data = lustre_msg_buf(msg, mic_idx, 0);
264
265         major = lgss_verify_mic(mechctx, textcnt, text, 0, NULL, &mic);
266         if (major != GSS_S_COMPLETE)
267                 CERROR("mic verify error: %08x\n", major);
268
269         return major;
270 }
271
272 /*
273  * return gss error code
274  */
275 static
276 __u32 gss_unseal_msg(struct gss_ctx *mechctx,
277                    struct lustre_msg *msgbuf,
278                    int *msg_len, int msgbuf_len)
279 {
280         rawobj_t                 clear_obj, hdrobj, token;
281         __u8                    *clear_buf;
282         int                      clear_buflen;
283         __u32                    major;
284         ENTRY;
285
286         if (msgbuf->lm_bufcount != 2) {
287                 CERROR("invalid bufcount %d\n", msgbuf->lm_bufcount);
288                 RETURN(GSS_S_FAILURE);
289         }
290
291         /* allocate a temporary clear text buffer, same sized as token,
292          * we assume the final clear text size <= token size */
293         clear_buflen = lustre_msg_buflen(msgbuf, 1);
294         OBD_ALLOC(clear_buf, clear_buflen);
295         if (!clear_buf)
296                 RETURN(GSS_S_FAILURE);
297
298         /* buffer objects */
299         hdrobj.len = lustre_msg_buflen(msgbuf, 0);
300         hdrobj.data = lustre_msg_buf(msgbuf, 0, 0);
301         token.len = lustre_msg_buflen(msgbuf, 1);
302         token.data = lustre_msg_buf(msgbuf, 1, 0);
303         clear_obj.len = clear_buflen;
304         clear_obj.data = clear_buf;
305
306         major = lgss_unwrap(mechctx, &hdrobj, &token, &clear_obj);
307         if (major != GSS_S_COMPLETE) {
308                 CERROR("unwrap message error: %08x\n", major);
309                 GOTO(out_free, major = GSS_S_FAILURE);
310         }
311         LASSERT(clear_obj.len <= clear_buflen);
312         LASSERT(clear_obj.len <= msgbuf_len);
313
314         /* now the decrypted message */
315         memcpy(msgbuf, clear_obj.data, clear_obj.len);
316         *msg_len = clear_obj.len;
317
318         major = GSS_S_COMPLETE;
319 out_free:
320         OBD_FREE(clear_buf, clear_buflen);
321         RETURN(major);
322 }
323
324 /********************************************
325  * gss client context manipulation helpers  *
326  ********************************************/
327
328 int cli_ctx_expire(struct ptlrpc_cli_ctx *ctx)
329 {
330         LASSERT(atomic_read(&ctx->cc_refcount));
331
332         if (!test_and_set_bit(PTLRPC_CTX_DEAD_BIT, &ctx->cc_flags)) {
333                 if (!ctx->cc_early_expire)
334                         clear_bit(PTLRPC_CTX_UPTODATE_BIT, &ctx->cc_flags);
335
336                 CWARN("ctx %p(%u->%s) get expired: %lu(%+lds)\n",
337                       ctx, ctx->cc_vcred.vc_uid, sec2target_str(ctx->cc_sec),
338                       ctx->cc_expire,
339                       ctx->cc_expire == 0 ? 0 :
340                       cfs_time_sub(ctx->cc_expire, cfs_time_current_sec()));
341
342                 return 1;
343         }
344
345         return 0;
346 }
347
348 /*
349  * return 1 if the context is dead.
350  */
351 int cli_ctx_check_death(struct ptlrpc_cli_ctx *ctx)
352 {
353         if (unlikely(cli_ctx_is_dead(ctx)))
354                 return 1;
355
356         /* expire is 0 means never expire. a newly created gss context
357          * which during upcall may has 0 expiration */
358         if (ctx->cc_expire == 0)
359                 return 0;
360
361         /* check real expiration */
362         if (cfs_time_after(ctx->cc_expire, cfs_time_current_sec()))
363                 return 0;
364
365         cli_ctx_expire(ctx);
366         return 1;
367 }
368
369 void gss_cli_ctx_uptodate(struct gss_cli_ctx *gctx)
370 {
371         struct ptlrpc_cli_ctx  *ctx = &gctx->gc_base;
372         unsigned long           ctx_expiry;
373
374         if (lgss_inquire_context(gctx->gc_mechctx, &ctx_expiry)) {
375                 CERROR("ctx %p(%u): unable to inquire, expire it now\n",
376                        gctx, ctx->cc_vcred.vc_uid);
377                 ctx_expiry = 1; /* make it expired now */
378         }
379
380         ctx->cc_expire = gss_round_ctx_expiry(ctx_expiry,
381                                               ctx->cc_sec->ps_flvr.sf_flags);
382
383         /* At this point this ctx might have been marked as dead by
384          * someone else, in which case nobody will make further use
385          * of it. we don't care, and mark it UPTODATE will help
386          * destroying server side context when it be destroied. */
387         set_bit(PTLRPC_CTX_UPTODATE_BIT, &ctx->cc_flags);
388
389         if (sec_is_reverse(ctx->cc_sec)) {
390                 CWARN("server installed reverse ctx %p idx "LPX64", "
391                       "expiry %lu(%+lds)\n", ctx,
392                       gss_handle_to_u64(&gctx->gc_handle),
393                       ctx->cc_expire, ctx->cc_expire - cfs_time_current_sec());
394         } else {
395                 CWARN("client refreshed ctx %p idx "LPX64" (%u->%s), "
396                       "expiry %lu(%+lds)\n", ctx,
397                       gss_handle_to_u64(&gctx->gc_handle),
398                       ctx->cc_vcred.vc_uid, sec2target_str(ctx->cc_sec),
399                       ctx->cc_expire, ctx->cc_expire - cfs_time_current_sec());
400
401                 /* install reverse svc ctx for root context */
402                 if (ctx->cc_vcred.vc_uid == 0)
403                         gss_sec_install_rctx(ctx->cc_sec->ps_import,
404                                              ctx->cc_sec, ctx);
405         }
406 }
407
408 static void gss_cli_ctx_finalize(struct gss_cli_ctx *gctx)
409 {
410         LASSERT(gctx->gc_base.cc_sec);
411
412         if (gctx->gc_mechctx) {
413                 lgss_delete_sec_context(&gctx->gc_mechctx);
414                 gctx->gc_mechctx = NULL;
415         }
416
417         if (!rawobj_empty(&gctx->gc_svc_handle)) {
418                 /* forward ctx: mark buddy reverse svcctx soon-expire. */
419                 if (!sec_is_reverse(gctx->gc_base.cc_sec) &&
420                     !rawobj_empty(&gctx->gc_svc_handle))
421                         gss_svc_upcall_expire_rvs_ctx(&gctx->gc_svc_handle);
422
423                 rawobj_free(&gctx->gc_svc_handle);
424         }
425
426         rawobj_free(&gctx->gc_handle);
427 }
428
429 /*
430  * Based on sequence number algorithm as specified in RFC 2203.
431  *
432  * modified for our own problem: arriving request has valid sequence number,
433  * but unwrapping request might cost a long time, after that its sequence
434  * are not valid anymore (fall behind the window). It rarely happen, mostly
435  * under extreme load.
436  *
437  * note we should not check sequence before verify the integrity of incoming
438  * request, because just one attacking request with high sequence number might
439  * cause all following request be dropped.
440  *
441  * so here we use a multi-phase approach: prepare 2 sequence windows,
442  * "main window" for normal sequence and "back window" for fall behind sequence.
443  * and 3-phase checking mechanism:
444  *  0 - before integrity verification, perform a initial sequence checking in
445  *      main window, which only try and don't actually set any bits. if the
446  *      sequence is high above the window or fit in the window and the bit
447  *      is 0, then accept and proceed to integrity verification. otherwise
448  *      reject this sequence.
449  *  1 - after integrity verification, check in main window again. if this
450  *      sequence is high above the window or fit in the window and the bit
451  *      is 0, then set the bit and accept; if it fit in the window but bit
452  *      already set, then reject; if it fall behind the window, then proceed
453  *      to phase 2.
454  *  2 - check in back window. if it is high above the window or fit in the
455  *      window and the bit is 0, then set the bit and accept. otherwise reject.
456  *
457  * return value:
458  *   1: looks like a replay
459  *   0: is ok
460  *  -1: is a replay
461  *
462  * note phase 0 is necessary, because otherwise replay attacking request of
463  * sequence which between the 2 windows can't be detected.
464  *
465  * this mechanism can't totally solve the problem, but could help much less
466  * number of valid requests be dropped.
467  */
468 static
469 int gss_do_check_seq(unsigned long *window, __u32 win_size, __u32 *max_seq,
470                      __u32 seq_num, int phase)
471 {
472         LASSERT(phase >= 0 && phase <= 2);
473
474         if (seq_num > *max_seq) {
475                 /*
476                  * 1. high above the window
477                  */
478                 if (phase == 0)
479                         return 0;
480
481                 if (seq_num >= *max_seq + win_size) {
482                         memset(window, 0, win_size / 8);
483                         *max_seq = seq_num;
484                 } else {
485                         while(*max_seq < seq_num) {
486                                 (*max_seq)++;
487                                 __clear_bit((*max_seq) % win_size, window);
488                         }
489                 }
490                 __set_bit(seq_num % win_size, window);
491         } else if (seq_num + win_size <= *max_seq) {
492                 /*
493                  * 2. low behind the window
494                  */
495                 if (phase == 0 || phase == 2)
496                         goto replay;
497
498                 CWARN("seq %u is %u behind (size %d), check backup window\n",
499                       seq_num, *max_seq - win_size - seq_num, win_size);
500                 return 1;
501         } else {
502                 /*
503                  * 3. fit into the window
504                  */
505                 switch (phase) {
506                 case 0:
507                         if (test_bit(seq_num % win_size, window))
508                                 goto replay;
509                         break;
510                 case 1:
511                 case 2:
512                      if (__test_and_set_bit(seq_num % win_size, window))
513                                 goto replay;
514                         break;
515                 }
516         }
517
518         return 0;
519
520 replay:
521         CERROR("seq %u (%s %s window) is a replay: max %u, winsize %d\n",
522                seq_num,
523                seq_num + win_size > *max_seq ? "in" : "behind",
524                phase == 2 ? "backup " : "main",
525                *max_seq, win_size);
526         return -1;
527 }
528
529 /*
530  * Based on sequence number algorithm as specified in RFC 2203.
531  *
532  * if @set == 0: initial check, don't set any bit in window
533  * if @sec == 1: final check, set bit in window
534  */
535 int gss_check_seq_num(struct gss_svc_seq_data *ssd, __u32 seq_num, int set)
536 {
537         int rc = 0;
538
539         spin_lock(&ssd->ssd_lock);
540
541         if (set == 0) {
542                 /*
543                  * phase 0 testing
544                  */
545                 rc = gss_do_check_seq(ssd->ssd_win_main, GSS_SEQ_WIN_MAIN,
546                                       &ssd->ssd_max_main, seq_num, 0);
547                 if (unlikely(rc))
548                         gss_stat_oos_record_svc(0, 1);
549         } else {
550                 /*
551                  * phase 1 checking main window
552                  */
553                 rc = gss_do_check_seq(ssd->ssd_win_main, GSS_SEQ_WIN_MAIN,
554                                       &ssd->ssd_max_main, seq_num, 1);
555                 switch (rc) {
556                 case -1:
557                         gss_stat_oos_record_svc(1, 1);
558                         /* fall through */
559                 case 0:
560                         goto exit;
561                 }
562                 /*
563                  * phase 2 checking back window
564                  */
565                 rc = gss_do_check_seq(ssd->ssd_win_back, GSS_SEQ_WIN_BACK,
566                                       &ssd->ssd_max_back, seq_num, 2);
567                 if (rc)
568                         gss_stat_oos_record_svc(2, 1);
569                 else
570                         gss_stat_oos_record_svc(2, 0);
571         }
572 exit:
573         spin_unlock(&ssd->ssd_lock);
574         return rc;
575 }
576
577 /***************************************
578  * cred APIs                           *
579  ***************************************/
580
581 static inline int gss_cli_payload(struct ptlrpc_cli_ctx *ctx,
582                                   int msgsize, int privacy)
583 {
584         return gss_mech_payload(NULL, msgsize, privacy);
585 }
586
587 static int gss_cli_bulk_payload(struct ptlrpc_cli_ctx *ctx,
588                                 struct sptlrpc_flavor *flvr,
589                                 int reply, int read)
590 {
591         int     payload = sizeof(struct ptlrpc_bulk_sec_desc);
592
593         LASSERT(SPTLRPC_FLVR_BULK_TYPE(flvr->sf_rpc) == SPTLRPC_BULK_DEFAULT);
594
595         if ((!reply && !read) || (reply && read)) {
596                 switch (SPTLRPC_FLVR_BULK_SVC(flvr->sf_rpc)) {
597                 case SPTLRPC_BULK_SVC_NULL:
598                         break;
599                 case SPTLRPC_BULK_SVC_INTG:
600                         payload += gss_cli_payload(ctx, 0, 0);
601                         break;
602                 case SPTLRPC_BULK_SVC_PRIV:
603                         payload += gss_cli_payload(ctx, 0, 1);
604                         break;
605                 case SPTLRPC_BULK_SVC_AUTH:
606                 default:
607                         LBUG();
608                 }
609         }
610
611         return payload;
612 }
613
614 int gss_cli_ctx_match(struct ptlrpc_cli_ctx *ctx, struct vfs_cred *vcred)
615 {
616         return (ctx->cc_vcred.vc_uid == vcred->vc_uid);
617 }
618
619 void gss_cli_ctx_flags2str(unsigned long flags, char *buf, int bufsize)
620 {
621         buf[0] = '\0';
622
623         if (flags & PTLRPC_CTX_NEW)
624                 strncat(buf, "new,", bufsize);
625         if (flags & PTLRPC_CTX_UPTODATE)
626                 strncat(buf, "uptodate,", bufsize);
627         if (flags & PTLRPC_CTX_DEAD)
628                 strncat(buf, "dead,", bufsize);
629         if (flags & PTLRPC_CTX_ERROR)
630                 strncat(buf, "error,", bufsize);
631         if (flags & PTLRPC_CTX_CACHED)
632                 strncat(buf, "cached,", bufsize);
633         if (flags & PTLRPC_CTX_ETERNAL)
634                 strncat(buf, "eternal,", bufsize);
635         if (buf[0] == '\0')
636                 strncat(buf, "-,", bufsize);
637
638         buf[strlen(buf) - 1] = '\0';
639 }
640
641 int gss_cli_ctx_sign(struct ptlrpc_cli_ctx *ctx,
642                      struct ptlrpc_request *req)
643 {
644         struct gss_cli_ctx      *gctx = ctx2gctx(ctx);
645         __u32                    flags = 0, seq, svc;
646         int                      rc;
647         ENTRY;
648
649         LASSERT(req->rq_reqbuf);
650         LASSERT(req->rq_reqbuf->lm_bufcount >= 2);
651         LASSERT(req->rq_cli_ctx == ctx);
652
653         /* nothing to do for context negotiation RPCs */
654         if (req->rq_ctx_init)
655                 RETURN(0);
656
657         svc = SPTLRPC_FLVR_SVC(req->rq_flvr.sf_rpc);
658         if (req->rq_pack_bulk)
659                 flags |= LUSTRE_GSS_PACK_BULK;
660         if (req->rq_pack_udesc)
661                 flags |= LUSTRE_GSS_PACK_USER;
662
663 redo:
664         seq = atomic_inc_return(&gctx->gc_seq);
665
666         rc = gss_sign_msg(req->rq_reqbuf, gctx->gc_mechctx,
667                           ctx->cc_sec->ps_part,
668                           flags, gctx->gc_proc, seq, svc,
669                           &gctx->gc_handle);
670         if (rc < 0)
671                 RETURN(rc);
672
673         /* gss_sign_msg() msg might take long time to finish, in which period
674          * more rpcs could be wrapped up and sent out. if we found too many
675          * of them we should repack this rpc, because sent it too late might
676          * lead to the sequence number fall behind the window on server and
677          * be dropped. also applies to gss_cli_ctx_seal().
678          *
679          * Note: null mode dosen't check sequence number. */
680         if (svc != SPTLRPC_SVC_NULL &&
681             atomic_read(&gctx->gc_seq) - seq > GSS_SEQ_REPACK_THRESHOLD) {
682                 int behind = atomic_read(&gctx->gc_seq) - seq;
683
684                 gss_stat_oos_record_cli(behind);
685                 CWARN("req %p: %u behind, retry signing\n", req, behind);
686                 goto redo;
687         }
688
689         req->rq_reqdata_len = rc;
690         RETURN(0);
691 }
692
693 static
694 int gss_cli_ctx_handle_err_notify(struct ptlrpc_cli_ctx *ctx,
695                                   struct ptlrpc_request *req,
696                                   struct gss_header *ghdr)
697 {
698         struct gss_err_header *errhdr;
699         int rc;
700
701         LASSERT(ghdr->gh_proc == PTLRPC_GSS_PROC_ERR);
702
703         errhdr = (struct gss_err_header *) ghdr;
704
705         CWARN("req x"LPU64"/t"LPU64", ctx %p idx "LPX64"(%u->%s): "
706               "%sserver respond (%08x/%08x)\n",
707               req->rq_xid, req->rq_transno, ctx,
708               gss_handle_to_u64(&ctx2gctx(ctx)->gc_handle),
709               ctx->cc_vcred.vc_uid, sec2target_str(ctx->cc_sec),
710               sec_is_reverse(ctx->cc_sec) ? "reverse" : "",
711               errhdr->gh_major, errhdr->gh_minor);
712
713         /* context fini rpc, let it failed */
714         if (req->rq_ctx_fini) {
715                 CWARN("context fini rpc failed\n");
716                 return -EINVAL;
717         }
718
719         /* reverse sec, just return error, don't expire this ctx because it's
720          * crucial to callback rpcs. note if the callback rpc failed because
721          * of bit flip during network transfer, the client will be evicted
722          * directly. so more gracefully we probably want let it retry for
723          * number of times. */
724         if (sec_is_reverse(ctx->cc_sec))
725                 return -EINVAL;
726
727         if (errhdr->gh_major != GSS_S_NO_CONTEXT &&
728             errhdr->gh_major != GSS_S_BAD_SIG)
729                 return -EACCES;
730
731         /* server return NO_CONTEXT might be caused by context expire
732          * or server reboot/failover. we try to refresh a new ctx which
733          * be transparent to upper layer.
734          *
735          * In some cases, our gss handle is possible to be incidentally
736          * identical to another handle since the handle itself is not
737          * fully random. In krb5 case, the GSS_S_BAD_SIG will be
738          * returned, maybe other gss error for other mechanism.
739          *
740          * if we add new mechanism, make sure the correct error are
741          * returned in this case. */
742         CWARN("%s: server might lost the context, retrying\n",
743               errhdr->gh_major == GSS_S_NO_CONTEXT ?  "NO_CONTEXT" : "BAD_SIG");
744
745         sptlrpc_cli_ctx_expire(ctx);
746
747         /* we need replace the ctx right here, otherwise during
748          * resent we'll hit the logic in sptlrpc_req_refresh_ctx()
749          * which keep the ctx with RESEND flag, thus we'll never
750          * get rid of this ctx. */
751         rc = sptlrpc_req_replace_dead_ctx(req);
752         if (rc == 0)
753                 req->rq_resend = 1;
754
755         return rc;
756 }
757
758 int gss_cli_ctx_verify(struct ptlrpc_cli_ctx *ctx,
759                        struct ptlrpc_request *req)
760 {
761         struct gss_cli_ctx     *gctx;
762         struct gss_header      *ghdr, *reqhdr;
763         struct lustre_msg      *msg = req->rq_repdata;
764         __u32                   major;
765         int                     pack_bulk, rc = 0;
766         ENTRY;
767
768         LASSERT(req->rq_cli_ctx == ctx);
769         LASSERT(msg);
770
771         gctx = container_of(ctx, struct gss_cli_ctx, gc_base);
772
773         /* special case for context negotiation, rq_repmsg/rq_replen actually
774          * are not used currently. but early reply always be treated normally */
775         if (req->rq_ctx_init && !req->rq_early) {
776                 req->rq_repmsg = lustre_msg_buf(msg, 1, 0);
777                 req->rq_replen = msg->lm_buflens[1];
778                 RETURN(0);
779         }
780
781         if (msg->lm_bufcount < 2 || msg->lm_bufcount > 4) {
782                 CERROR("unexpected bufcount %u\n", msg->lm_bufcount);
783                 RETURN(-EPROTO);
784         }
785
786         ghdr = gss_swab_header(msg, 0);
787         if (ghdr == NULL) {
788                 CERROR("can't decode gss header\n");
789                 RETURN(-EPROTO);
790         }
791
792         /* sanity checks */
793         reqhdr = lustre_msg_buf(msg, 0, sizeof(*reqhdr));
794         LASSERT(reqhdr);
795
796         if (ghdr->gh_version != reqhdr->gh_version) {
797                 CERROR("gss version %u mismatch, expect %u\n",
798                        ghdr->gh_version, reqhdr->gh_version);
799                 RETURN(-EPROTO);
800         }
801
802         switch (ghdr->gh_proc) {
803         case PTLRPC_GSS_PROC_DATA:
804                 pack_bulk = ghdr->gh_flags & LUSTRE_GSS_PACK_BULK;
805
806                 if (!req->rq_early && !equi(req->rq_pack_bulk == 1, pack_bulk)){
807                         CERROR("%s bulk flag in reply\n",
808                                req->rq_pack_bulk ? "missing" : "unexpected");
809                         RETURN(-EPROTO);
810                 }
811
812                 if (ghdr->gh_seq != reqhdr->gh_seq) {
813                         CERROR("seqnum %u mismatch, expect %u\n",
814                                ghdr->gh_seq, reqhdr->gh_seq);
815                         RETURN(-EPROTO);
816                 }
817
818                 if (ghdr->gh_svc != reqhdr->gh_svc) {
819                         CERROR("svc %u mismatch, expect %u\n",
820                                ghdr->gh_svc, reqhdr->gh_svc);
821                         RETURN(-EPROTO);
822                 }
823
824                 if (lustre_msg_swabbed(msg))
825                         gss_header_swabber(ghdr);
826
827                 major = gss_verify_msg(msg, gctx->gc_mechctx, reqhdr->gh_svc);
828                 if (major != GSS_S_COMPLETE) {
829                         CERROR("failed to verify reply: %x\n", major);
830                         RETURN(-EPERM);
831                 }
832
833                 if (req->rq_early && reqhdr->gh_svc == SPTLRPC_SVC_NULL) {
834                         __u32 cksum;
835
836                         cksum = crc32_le(!(__u32) 0,
837                                          lustre_msg_buf(msg, 1, 0),
838                                          lustre_msg_buflen(msg, 1));
839                         if (cksum != msg->lm_cksum) {
840                                 CWARN("early reply checksum mismatch: "
841                                       "%08x != %08x\n", cksum, msg->lm_cksum);
842                                 RETURN(-EPROTO);
843                         }
844                 }
845
846                 if (pack_bulk) {
847                         /* bulk checksum is right after the lustre msg */
848                         if (msg->lm_bufcount < 3) {
849                                 CERROR("Invalid reply bufcount %u\n",
850                                        msg->lm_bufcount);
851                                 RETURN(-EPROTO);
852                         }
853
854                         rc = bulk_sec_desc_unpack(msg, 2);
855                         if (rc) {
856                                 CERROR("unpack bulk desc: %d\n", rc);
857                                 RETURN(rc);
858                         }
859                 }
860
861                 req->rq_repmsg = lustre_msg_buf(msg, 1, 0);
862                 req->rq_replen = msg->lm_buflens[1];
863                 break;
864         case PTLRPC_GSS_PROC_ERR:
865                 if (req->rq_early) {
866                         CERROR("server return error with early reply\n");
867                         rc = -EPROTO;
868                 } else {
869                         rc = gss_cli_ctx_handle_err_notify(ctx, req, ghdr);
870                 }
871                 break;
872         default:
873                 CERROR("unknown gss proc %d\n", ghdr->gh_proc);
874                 rc = -EPROTO;
875         }
876
877         RETURN(rc);
878 }
879
880 int gss_cli_ctx_seal(struct ptlrpc_cli_ctx *ctx,
881                      struct ptlrpc_request *req)
882 {
883         struct gss_cli_ctx      *gctx;
884         rawobj_t                 hdrobj, msgobj, token;
885         struct gss_header       *ghdr;
886         __u32                    buflens[2], major;
887         int                      wiresize, rc;
888         ENTRY;
889
890         LASSERT(req->rq_clrbuf);
891         LASSERT(req->rq_cli_ctx == ctx);
892         LASSERT(req->rq_reqlen);
893
894         gctx = container_of(ctx, struct gss_cli_ctx, gc_base);
895
896         /* final clear data length */
897         req->rq_clrdata_len = lustre_msg_size_v2(req->rq_clrbuf->lm_bufcount,
898                                                  req->rq_clrbuf->lm_buflens);
899
900         /* calculate wire data length */
901         buflens[0] = PTLRPC_GSS_HEADER_SIZE;
902         buflens[1] = gss_cli_payload(&gctx->gc_base, req->rq_clrdata_len, 1);
903         wiresize = lustre_msg_size_v2(2, buflens);
904
905         /* allocate wire buffer */
906         if (req->rq_pool) {
907                 /* pre-allocated */
908                 LASSERT(req->rq_reqbuf);
909                 LASSERT(req->rq_reqbuf != req->rq_clrbuf);
910                 LASSERT(req->rq_reqbuf_len >= wiresize);
911         } else {
912                 OBD_ALLOC(req->rq_reqbuf, wiresize);
913                 if (!req->rq_reqbuf)
914                         RETURN(-ENOMEM);
915                 req->rq_reqbuf_len = wiresize;
916         }
917
918         lustre_init_msg_v2(req->rq_reqbuf, 2, buflens, NULL);
919         req->rq_reqbuf->lm_secflvr = req->rq_flvr.sf_rpc;
920
921         /* gss header */
922         ghdr = lustre_msg_buf(req->rq_reqbuf, 0, 0);
923         ghdr->gh_version = PTLRPC_GSS_VERSION;
924         ghdr->gh_sp = (__u8) ctx->cc_sec->ps_part;
925         ghdr->gh_flags = 0;
926         ghdr->gh_proc = gctx->gc_proc;
927         ghdr->gh_svc = SPTLRPC_SVC_PRIV;
928         ghdr->gh_handle.len = gctx->gc_handle.len;
929         memcpy(ghdr->gh_handle.data, gctx->gc_handle.data, gctx->gc_handle.len);
930         if (req->rq_pack_bulk)
931                 ghdr->gh_flags |= LUSTRE_GSS_PACK_BULK;
932         if (req->rq_pack_udesc)
933                 ghdr->gh_flags |= LUSTRE_GSS_PACK_USER;
934
935 redo:
936         ghdr->gh_seq = atomic_inc_return(&gctx->gc_seq);
937
938         /* buffer objects */
939         hdrobj.len = PTLRPC_GSS_HEADER_SIZE;
940         hdrobj.data = (__u8 *) ghdr;
941         msgobj.len = req->rq_clrdata_len;
942         msgobj.data = (__u8 *) req->rq_clrbuf;
943         token.len = lustre_msg_buflen(req->rq_reqbuf, 1);
944         token.data = lustre_msg_buf(req->rq_reqbuf, 1, 0);
945
946         major = lgss_wrap(gctx->gc_mechctx, &hdrobj, &msgobj,
947                           req->rq_clrbuf_len, &token);
948         if (major != GSS_S_COMPLETE) {
949                 CERROR("priv: wrap message error: %08x\n", major);
950                 GOTO(err_free, rc = -EPERM);
951         }
952         LASSERT(token.len <= buflens[1]);
953
954         /* see explain in gss_cli_ctx_sign() */
955         if (unlikely(atomic_read(&gctx->gc_seq) - ghdr->gh_seq >
956                      GSS_SEQ_REPACK_THRESHOLD)) {
957                 int behind = atomic_read(&gctx->gc_seq) - ghdr->gh_seq;
958
959                 gss_stat_oos_record_cli(behind);
960                 CWARN("req %p: %u behind, retry sealing\n", req, behind);
961
962                 ghdr->gh_seq = atomic_inc_return(&gctx->gc_seq);
963                 goto redo;
964         }
965
966         /* now set the final wire data length */
967         req->rq_reqdata_len = lustre_shrink_msg(req->rq_reqbuf, 1, token.len,0);
968         RETURN(0);
969
970 err_free:
971         if (!req->rq_pool) {
972                 OBD_FREE(req->rq_reqbuf, req->rq_reqbuf_len);
973                 req->rq_reqbuf = NULL;
974                 req->rq_reqbuf_len = 0;
975         }
976         RETURN(rc);
977 }
978
979 int gss_cli_ctx_unseal(struct ptlrpc_cli_ctx *ctx,
980                        struct ptlrpc_request *req)
981 {
982         struct gss_cli_ctx      *gctx;
983         struct gss_header       *ghdr;
984         struct lustre_msg       *msg = req->rq_repdata;
985         int                      msglen, pack_bulk, rc;
986         __u32                    major;
987         ENTRY;
988
989         LASSERT(req->rq_cli_ctx == ctx);
990         LASSERT(req->rq_ctx_init == 0);
991         LASSERT(msg);
992
993         gctx = container_of(ctx, struct gss_cli_ctx, gc_base);
994
995         ghdr = gss_swab_header(msg, 0);
996         if (ghdr == NULL) {
997                 CERROR("can't decode gss header\n");
998                 RETURN(-EPROTO);
999         }
1000
1001         /* sanity checks */
1002         if (ghdr->gh_version != PTLRPC_GSS_VERSION) {
1003                 CERROR("gss version %u mismatch, expect %u\n",
1004                        ghdr->gh_version, PTLRPC_GSS_VERSION);
1005                 RETURN(-EPROTO);
1006         }
1007
1008         switch (ghdr->gh_proc) {
1009         case PTLRPC_GSS_PROC_DATA:
1010                 pack_bulk = ghdr->gh_flags & LUSTRE_GSS_PACK_BULK;
1011
1012                 if (!req->rq_early && !equi(req->rq_pack_bulk == 1, pack_bulk)){
1013                         CERROR("%s bulk flag in reply\n",
1014                                req->rq_pack_bulk ? "missing" : "unexpected");
1015                         RETURN(-EPROTO);
1016                 }
1017
1018                 if (lustre_msg_swabbed(msg))
1019                         gss_header_swabber(ghdr);
1020
1021                 /* use rq_repdata_len as buffer size, which assume unseal
1022                  * doesn't need extra memory space. for precise control, we'd
1023                  * better calculate out actual buffer size as
1024                  * (repbuf_len - offset - repdata_len) */
1025                 major = gss_unseal_msg(gctx->gc_mechctx, msg,
1026                                        &msglen, req->rq_repdata_len);
1027                 if (major != GSS_S_COMPLETE) {
1028                         CERROR("failed to unwrap reply: %x\n", major);
1029                         rc = -EPERM;
1030                         break;
1031                 }
1032
1033                 if (lustre_unpack_msg(msg, msglen)) {
1034                         CERROR("Failed to unpack after decryption\n");
1035                         RETURN(-EPROTO);
1036                 }
1037
1038                 if (msg->lm_bufcount < 1) {
1039                         CERROR("Invalid reply buffer: empty\n");
1040                         RETURN(-EPROTO);
1041                 }
1042
1043                 if (pack_bulk) {
1044                         if (msg->lm_bufcount < 2) {
1045                                 CERROR("bufcount %u: missing bulk sec desc\n",
1046                                        msg->lm_bufcount);
1047                                 RETURN(-EPROTO);
1048                         }
1049
1050                         /* bulk checksum is the last segment */
1051                         if (bulk_sec_desc_unpack(msg, msg->lm_bufcount - 1))
1052                                 RETURN(-EPROTO);
1053                 }
1054
1055                 req->rq_repmsg = lustre_msg_buf(msg, 0, 0);
1056                 req->rq_replen = msg->lm_buflens[0];
1057
1058                 rc = 0;
1059                 break;
1060         case PTLRPC_GSS_PROC_ERR:
1061                 if (req->rq_early) {
1062                         CERROR("server return error with early reply\n");
1063                         rc = -EPROTO;
1064                 } else {
1065                         rc = gss_cli_ctx_handle_err_notify(ctx, req, ghdr);
1066                 }
1067                 break;
1068         default:
1069                 CERROR("unexpected proc %d\n", ghdr->gh_proc);
1070                 rc = -EPERM;
1071         }
1072
1073         RETURN(rc);
1074 }
1075
1076 /*********************************************
1077  * reverse context installation              *
1078  *********************************************/
1079
1080 static inline
1081 int gss_install_rvs_svc_ctx(struct obd_import *imp,
1082                             struct gss_sec *gsec,
1083                             struct gss_cli_ctx *gctx)
1084 {
1085         return gss_svc_upcall_install_rvs_ctx(imp, gsec, gctx);
1086 }
1087
1088 /*********************************************
1089  * GSS security APIs                         *
1090  *********************************************/
1091 int gss_sec_create_common(struct gss_sec *gsec,
1092                           struct ptlrpc_sec_policy *policy,
1093                           struct obd_import *imp,
1094                           struct ptlrpc_svc_ctx *svcctx,
1095                           struct sptlrpc_flavor *sf)
1096 {
1097         struct ptlrpc_sec   *sec;
1098
1099         LASSERT(imp);
1100         LASSERT(SPTLRPC_FLVR_POLICY(sf->sf_rpc) == SPTLRPC_POLICY_GSS);
1101
1102         gsec->gs_mech = lgss_subflavor_to_mech(
1103                                 SPTLRPC_FLVR_BASE_SUB(sf->sf_rpc));
1104         if (!gsec->gs_mech) {
1105                 CERROR("gss backend 0x%x not found\n",
1106                        SPTLRPC_FLVR_BASE_SUB(sf->sf_rpc));
1107                 return -EOPNOTSUPP;
1108         }
1109
1110         spin_lock_init(&gsec->gs_lock);
1111         gsec->gs_rvs_hdl = 0ULL;
1112
1113         /* initialize upper ptlrpc_sec */
1114         sec = &gsec->gs_base;
1115         sec->ps_policy = policy;
1116         atomic_set(&sec->ps_refcount, 0);
1117         atomic_set(&sec->ps_nctx, 0);
1118         sec->ps_id = sptlrpc_get_next_secid();
1119         sec->ps_flvr = *sf;
1120         sec->ps_import = class_import_get(imp);
1121         spin_lock_init(&sec->ps_lock);
1122         CFS_INIT_LIST_HEAD(&sec->ps_gc_list);
1123
1124         if (!svcctx) {
1125                 sec->ps_gc_interval = GSS_GC_INTERVAL;
1126         } else {
1127                 LASSERT(sec_is_reverse(sec));
1128
1129                 /* never do gc on reverse sec */
1130                 sec->ps_gc_interval = 0;
1131         }
1132
1133         if (SPTLRPC_FLVR_BULK_SVC(sec->ps_flvr.sf_rpc) == SPTLRPC_BULK_SVC_PRIV)
1134                 sptlrpc_enc_pool_add_user();
1135
1136         CDEBUG(D_SEC, "create %s%s@%p\n", (svcctx ? "reverse " : ""),
1137                policy->sp_name, gsec);
1138         return 0;
1139 }
1140
1141 void gss_sec_destroy_common(struct gss_sec *gsec)
1142 {
1143         struct ptlrpc_sec      *sec = &gsec->gs_base;
1144         ENTRY;
1145
1146         LASSERT(sec->ps_import);
1147         LASSERT(atomic_read(&sec->ps_refcount) == 0);
1148         LASSERT(atomic_read(&sec->ps_nctx) == 0);
1149
1150         if (gsec->gs_mech) {
1151                 lgss_mech_put(gsec->gs_mech);
1152                 gsec->gs_mech = NULL;
1153         }
1154
1155         class_import_put(sec->ps_import);
1156
1157         if (SPTLRPC_FLVR_BULK_SVC(sec->ps_flvr.sf_rpc) == SPTLRPC_BULK_SVC_PRIV)
1158                 sptlrpc_enc_pool_del_user();
1159
1160         EXIT;
1161 }
1162
1163 void gss_sec_kill(struct ptlrpc_sec *sec)
1164 {
1165         sec->ps_dying = 1;
1166 }
1167
1168 int gss_cli_ctx_init_common(struct ptlrpc_sec *sec,
1169                             struct ptlrpc_cli_ctx *ctx,
1170                             struct ptlrpc_ctx_ops *ctxops,
1171                             struct vfs_cred *vcred)
1172 {
1173         struct gss_cli_ctx    *gctx = ctx2gctx(ctx);
1174
1175         gctx->gc_win = 0;
1176         atomic_set(&gctx->gc_seq, 0);
1177
1178         CFS_INIT_HLIST_NODE(&ctx->cc_cache);
1179         atomic_set(&ctx->cc_refcount, 0);
1180         ctx->cc_sec = sec;
1181         ctx->cc_ops = ctxops;
1182         ctx->cc_expire = 0;
1183         ctx->cc_flags = PTLRPC_CTX_NEW;
1184         ctx->cc_vcred = *vcred;
1185         spin_lock_init(&ctx->cc_lock);
1186         CFS_INIT_LIST_HEAD(&ctx->cc_req_list);
1187         CFS_INIT_LIST_HEAD(&ctx->cc_gc_chain);
1188
1189         /* take a ref on belonging sec, balanced in ctx destroying */
1190         atomic_inc(&sec->ps_refcount);
1191         /* statistic only */
1192         atomic_inc(&sec->ps_nctx);
1193
1194         CDEBUG(D_SEC, "%s@%p: create ctx %p(%u->%s)\n",
1195                sec->ps_policy->sp_name, ctx->cc_sec,
1196                ctx, ctx->cc_vcred.vc_uid, sec2target_str(ctx->cc_sec));
1197         return 0;
1198 }
1199
1200 /*
1201  * return value:
1202  *   1: the context has been taken care of by someone else
1203  *   0: proceed to really destroy the context locally
1204  */
1205 int gss_cli_ctx_fini_common(struct ptlrpc_sec *sec,
1206                             struct ptlrpc_cli_ctx *ctx)
1207 {
1208         struct gss_cli_ctx *gctx = ctx2gctx(ctx);
1209
1210         LASSERT(atomic_read(&sec->ps_nctx) > 0);
1211         LASSERT(atomic_read(&ctx->cc_refcount) == 0);
1212         LASSERT(ctx->cc_sec == sec);
1213
1214         if (gctx->gc_mechctx) {
1215                 /* the final context fini rpc will use this ctx too, and it's
1216                  * asynchronous which finished by request_out_callback(). so
1217                  * we add refcount, whoever drop finally drop the refcount to
1218                  * 0 should responsible for the rest of destroy. */
1219                 atomic_inc(&ctx->cc_refcount);
1220
1221                 gss_do_ctx_fini_rpc(gctx);
1222                 gss_cli_ctx_finalize(gctx);
1223
1224                 if (!atomic_dec_and_test(&ctx->cc_refcount))
1225                         return 1;
1226         }
1227
1228         if (sec_is_reverse(sec))
1229                 CWARN("reverse sec %p: destroy ctx %p\n",
1230                       ctx->cc_sec, ctx);
1231         else
1232                 CWARN("%s@%p: destroy ctx %p(%u->%s)\n",
1233                       sec->ps_policy->sp_name, ctx->cc_sec,
1234                       ctx, ctx->cc_vcred.vc_uid, sec2target_str(ctx->cc_sec));
1235
1236         return 0;
1237 }
1238
1239 static
1240 int gss_alloc_reqbuf_intg(struct ptlrpc_sec *sec,
1241                           struct ptlrpc_request *req,
1242                           int svc, int msgsize)
1243 {
1244         int                       bufsize, txtsize;
1245         int                       bufcnt = 2;
1246         __u32                     buflens[5];
1247         ENTRY;
1248
1249         /*
1250          * on-wire data layout:
1251          * - gss header
1252          * - lustre message
1253          * - user descriptor (optional)
1254          * - bulk sec descriptor (optional)
1255          * - signature (optional)
1256          *   - svc == NULL: NULL
1257          *   - svc == AUTH: signature of gss header
1258          *   - svc == INTG: signature of all above
1259          *
1260          * if this is context negotiation, reserver fixed space
1261          * at the last (signature) segment regardless of svc mode.
1262          */
1263
1264         buflens[0] = PTLRPC_GSS_HEADER_SIZE;
1265         txtsize = buflens[0];
1266
1267         buflens[1] = msgsize;
1268         if (svc == SPTLRPC_SVC_INTG)
1269                 txtsize += buflens[1];
1270
1271         if (req->rq_pack_udesc) {
1272                 buflens[bufcnt] = sptlrpc_current_user_desc_size();
1273                 if (svc == SPTLRPC_SVC_INTG)
1274                         txtsize += buflens[bufcnt];
1275                 bufcnt++;
1276         }
1277
1278         if (req->rq_pack_bulk) {
1279                 buflens[bufcnt] = gss_cli_bulk_payload(req->rq_cli_ctx,
1280                                                        &req->rq_flvr,
1281                                                        0, req->rq_bulk_read);
1282                 if (svc == SPTLRPC_SVC_INTG)
1283                         txtsize += buflens[bufcnt];
1284                 bufcnt++;
1285         }
1286
1287         if (req->rq_ctx_init)
1288                 buflens[bufcnt++] = GSS_CTX_INIT_MAX_LEN;
1289         else if (svc != SPTLRPC_SVC_NULL)
1290                 buflens[bufcnt++] = gss_cli_payload(req->rq_cli_ctx, txtsize,0);
1291
1292         bufsize = lustre_msg_size_v2(bufcnt, buflens);
1293
1294         if (!req->rq_reqbuf) {
1295                 bufsize = size_roundup_power2(bufsize);
1296
1297                 OBD_ALLOC(req->rq_reqbuf, bufsize);
1298                 if (!req->rq_reqbuf)
1299                         RETURN(-ENOMEM);
1300
1301                 req->rq_reqbuf_len = bufsize;
1302         } else {
1303                 LASSERT(req->rq_pool);
1304                 LASSERT(req->rq_reqbuf_len >= bufsize);
1305                 memset(req->rq_reqbuf, 0, bufsize);
1306         }
1307
1308         lustre_init_msg_v2(req->rq_reqbuf, bufcnt, buflens, NULL);
1309         req->rq_reqbuf->lm_secflvr = req->rq_flvr.sf_rpc;
1310
1311         req->rq_reqmsg = lustre_msg_buf(req->rq_reqbuf, 1, msgsize);
1312         LASSERT(req->rq_reqmsg);
1313
1314         /* pack user desc here, later we might leave current user's process */
1315         if (req->rq_pack_udesc)
1316                 sptlrpc_pack_user_desc(req->rq_reqbuf, 2);
1317
1318         RETURN(0);
1319 }
1320
1321 static
1322 int gss_alloc_reqbuf_priv(struct ptlrpc_sec *sec,
1323                           struct ptlrpc_request *req,
1324                           int msgsize)
1325 {
1326         __u32                     ibuflens[3], wbuflens[2];
1327         int                       ibufcnt;
1328         int                       clearsize, wiresize;
1329         ENTRY;
1330
1331         LASSERT(req->rq_clrbuf == NULL);
1332         LASSERT(req->rq_clrbuf_len == 0);
1333
1334         /* Inner (clear) buffers
1335          *  - lustre message
1336          *  - user descriptor (optional)
1337          *  - bulk checksum (optional)
1338          */
1339         ibufcnt = 1;
1340         ibuflens[0] = msgsize;
1341
1342         if (req->rq_pack_udesc)
1343                 ibuflens[ibufcnt++] = sptlrpc_current_user_desc_size();
1344         if (req->rq_pack_bulk)
1345                 ibuflens[ibufcnt++] = gss_cli_bulk_payload(req->rq_cli_ctx,
1346                                                            &req->rq_flvr, 0,
1347                                                            req->rq_bulk_read);
1348
1349         clearsize = lustre_msg_size_v2(ibufcnt, ibuflens);
1350         /* to allow append padding during encryption */
1351         clearsize += GSS_MAX_CIPHER_BLOCK;
1352
1353         /* Wrapper (wire) buffers
1354          *  - gss header
1355          *  - cipher text
1356          */
1357         wbuflens[0] = PTLRPC_GSS_HEADER_SIZE;
1358         wbuflens[1] = gss_cli_payload(req->rq_cli_ctx, clearsize, 1);
1359         wiresize = lustre_msg_size_v2(2, wbuflens);
1360
1361         if (req->rq_pool) {
1362                 /* rq_reqbuf is preallocated */
1363                 LASSERT(req->rq_reqbuf);
1364                 LASSERT(req->rq_reqbuf_len >= wiresize);
1365
1366                 memset(req->rq_reqbuf, 0, req->rq_reqbuf_len);
1367
1368                 /* if the pre-allocated buffer is big enough, we just pack
1369                  * both clear buf & request buf in it, to avoid more alloc. */
1370                 if (clearsize + wiresize <= req->rq_reqbuf_len) {
1371                         req->rq_clrbuf =
1372                                 (void *) (((char *) req->rq_reqbuf) + wiresize);
1373                 } else {
1374                         CWARN("pre-allocated buf size %d is not enough for "
1375                               "both clear (%d) and cipher (%d) text, proceed "
1376                               "with extra allocation\n", req->rq_reqbuf_len,
1377                               clearsize, wiresize);
1378                 }
1379         }
1380
1381         if (!req->rq_clrbuf) {
1382                 clearsize = size_roundup_power2(clearsize);
1383
1384                 OBD_ALLOC(req->rq_clrbuf, clearsize);
1385                 if (!req->rq_clrbuf)
1386                         RETURN(-ENOMEM);
1387         }
1388         req->rq_clrbuf_len = clearsize;
1389
1390         lustre_init_msg_v2(req->rq_clrbuf, ibufcnt, ibuflens, NULL);
1391         req->rq_reqmsg = lustre_msg_buf(req->rq_clrbuf, 0, msgsize);
1392
1393         if (req->rq_pack_udesc)
1394                 sptlrpc_pack_user_desc(req->rq_clrbuf, 1);
1395
1396         RETURN(0);
1397 }
1398
1399 /*
1400  * NOTE: any change of request buffer allocation should also consider
1401  * changing enlarge_reqbuf() series functions.
1402  */
1403 int gss_alloc_reqbuf(struct ptlrpc_sec *sec,
1404                      struct ptlrpc_request *req,
1405                      int msgsize)
1406 {
1407         int     svc = SPTLRPC_FLVR_SVC(req->rq_flvr.sf_rpc);
1408
1409         LASSERT(!req->rq_pack_bulk ||
1410                 (req->rq_bulk_read || req->rq_bulk_write));
1411
1412         switch (svc) {
1413         case SPTLRPC_SVC_NULL:
1414         case SPTLRPC_SVC_AUTH:
1415         case SPTLRPC_SVC_INTG:
1416                 return gss_alloc_reqbuf_intg(sec, req, svc, msgsize);
1417         case SPTLRPC_SVC_PRIV:
1418                 return gss_alloc_reqbuf_priv(sec, req, msgsize);
1419         default:
1420                 LASSERTF(0, "bad rpc flavor %x\n", req->rq_flvr.sf_rpc);
1421                 return 0;
1422         }
1423 }
1424
1425 void gss_free_reqbuf(struct ptlrpc_sec *sec,
1426                      struct ptlrpc_request *req)
1427 {
1428         int     privacy;
1429         ENTRY;
1430
1431         LASSERT(!req->rq_pool || req->rq_reqbuf);
1432         privacy = SPTLRPC_FLVR_SVC(req->rq_flvr.sf_rpc) == SPTLRPC_SVC_PRIV;
1433
1434         if (!req->rq_clrbuf)
1435                 goto release_reqbuf;
1436
1437         /* release clear buffer */
1438         LASSERT(privacy);
1439         LASSERT(req->rq_clrbuf_len);
1440
1441         if (req->rq_pool &&
1442             req->rq_clrbuf >= req->rq_reqbuf &&
1443             (char *) req->rq_clrbuf <
1444             (char *) req->rq_reqbuf + req->rq_reqbuf_len)
1445                 goto release_reqbuf;
1446
1447         OBD_FREE(req->rq_clrbuf, req->rq_clrbuf_len);
1448         req->rq_clrbuf = NULL;
1449         req->rq_clrbuf_len = 0;
1450
1451 release_reqbuf:
1452         if (!req->rq_pool && req->rq_reqbuf) {
1453                 LASSERT(req->rq_reqbuf_len);
1454
1455                 OBD_FREE(req->rq_reqbuf, req->rq_reqbuf_len);
1456                 req->rq_reqbuf = NULL;
1457                 req->rq_reqbuf_len = 0;
1458         }
1459
1460         req->rq_reqmsg = NULL;
1461
1462         EXIT;
1463 }
1464
1465 static int do_alloc_repbuf(struct ptlrpc_request *req, int bufsize)
1466 {
1467         bufsize = size_roundup_power2(bufsize);
1468
1469         OBD_ALLOC(req->rq_repbuf, bufsize);
1470         if (!req->rq_repbuf)
1471                 return -ENOMEM;
1472
1473         req->rq_repbuf_len = bufsize;
1474         return 0;
1475 }
1476
1477 static
1478 int gss_alloc_repbuf_intg(struct ptlrpc_sec *sec,
1479                           struct ptlrpc_request *req,
1480                           int svc, int msgsize)
1481 {
1482         int             txtsize;
1483         __u32           buflens[4];
1484         int             bufcnt = 2;
1485         int             alloc_size;
1486
1487         /*
1488          * on-wire data layout:
1489          * - gss header
1490          * - lustre message
1491          * - bulk sec descriptor (optional)
1492          * - signature (optional)
1493          *   - svc == NULL: NULL
1494          *   - svc == AUTH: signature of gss header
1495          *   - svc == INTG: signature of all above
1496          *
1497          * if this is context negotiation, reserver fixed space
1498          * at the last (signature) segment regardless of svc mode.
1499          */
1500
1501         buflens[0] = PTLRPC_GSS_HEADER_SIZE;
1502         txtsize = buflens[0];
1503
1504         buflens[1] = msgsize;
1505         if (svc == SPTLRPC_SVC_INTG)
1506                 txtsize += buflens[1];
1507
1508         if (req->rq_pack_bulk) {
1509                 buflens[bufcnt] = gss_cli_bulk_payload(req->rq_cli_ctx,
1510                                                        &req->rq_flvr,
1511                                                        1, req->rq_bulk_read);
1512                 if (svc == SPTLRPC_SVC_INTG)
1513                         txtsize += buflens[bufcnt];
1514                 bufcnt++;
1515         }
1516
1517         if (req->rq_ctx_init)
1518                 buflens[bufcnt++] = GSS_CTX_INIT_MAX_LEN;
1519         else if (svc != SPTLRPC_SVC_NULL)
1520                 buflens[bufcnt++] = gss_cli_payload(req->rq_cli_ctx, txtsize,0);
1521
1522         alloc_size = lustre_msg_size_v2(bufcnt, buflens);
1523
1524         /* add space for early reply */
1525         alloc_size += gss_at_reply_off_integ;
1526
1527         return do_alloc_repbuf(req, alloc_size);
1528 }
1529
1530 static
1531 int gss_alloc_repbuf_priv(struct ptlrpc_sec *sec,
1532                           struct ptlrpc_request *req,
1533                           int msgsize)
1534 {
1535         int             txtsize;
1536         __u32           buflens[2];
1537         int             bufcnt;
1538         int             alloc_size;
1539
1540         /* inner buffers */
1541         bufcnt = 1;
1542         buflens[0] = msgsize;
1543
1544         if (req->rq_pack_bulk)
1545                 buflens[bufcnt++] = gss_cli_bulk_payload(req->rq_cli_ctx,
1546                                                          &req->rq_flvr,
1547                                                          1, req->rq_bulk_read);
1548         txtsize = lustre_msg_size_v2(bufcnt, buflens);
1549         txtsize += GSS_MAX_CIPHER_BLOCK;
1550
1551         /* wrapper buffers */
1552         bufcnt = 2;
1553         buflens[0] = PTLRPC_GSS_HEADER_SIZE;
1554         buflens[1] = gss_cli_payload(req->rq_cli_ctx, txtsize, 1);
1555
1556         alloc_size = lustre_msg_size_v2(bufcnt, buflens);
1557         /* add space for early reply */
1558         alloc_size += gss_at_reply_off_priv;
1559
1560         return do_alloc_repbuf(req, alloc_size);
1561 }
1562
1563 int gss_alloc_repbuf(struct ptlrpc_sec *sec,
1564                      struct ptlrpc_request *req,
1565                      int msgsize)
1566 {
1567         int     svc = SPTLRPC_FLVR_SVC(req->rq_flvr.sf_rpc);
1568         ENTRY;
1569
1570         LASSERT(!req->rq_pack_bulk ||
1571                 (req->rq_bulk_read || req->rq_bulk_write));
1572
1573         switch (svc) {
1574         case SPTLRPC_SVC_NULL:
1575         case SPTLRPC_SVC_AUTH:
1576         case SPTLRPC_SVC_INTG:
1577                 return gss_alloc_repbuf_intg(sec, req, svc, msgsize);
1578         case SPTLRPC_SVC_PRIV:
1579                 return gss_alloc_repbuf_priv(sec, req, msgsize);
1580         default:
1581                 LASSERTF(0, "bad rpc flavor %x\n", req->rq_flvr.sf_rpc);
1582                 return 0;
1583         }
1584 }
1585
1586 void gss_free_repbuf(struct ptlrpc_sec *sec,
1587                      struct ptlrpc_request *req)
1588 {
1589         OBD_FREE(req->rq_repbuf, req->rq_repbuf_len);
1590         req->rq_repbuf = NULL;
1591         req->rq_repbuf_len = 0;
1592
1593         req->rq_repmsg = NULL;
1594 }
1595
1596 static int get_enlarged_msgsize(struct lustre_msg *msg,
1597                                 int segment, int newsize)
1598 {
1599         int save, newmsg_size;
1600
1601         LASSERT(newsize >= msg->lm_buflens[segment]);
1602
1603         save = msg->lm_buflens[segment];
1604         msg->lm_buflens[segment] = newsize;
1605         newmsg_size = lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
1606         msg->lm_buflens[segment] = save;
1607
1608         return newmsg_size;
1609 }
1610
1611 static int get_enlarged_msgsize2(struct lustre_msg *msg,
1612                                  int segment1, int newsize1,
1613                                  int segment2, int newsize2)
1614 {
1615         int save1, save2, newmsg_size;
1616
1617         LASSERT(newsize1 >= msg->lm_buflens[segment1]);
1618         LASSERT(newsize2 >= msg->lm_buflens[segment2]);
1619
1620         save1 = msg->lm_buflens[segment1];
1621         save2 = msg->lm_buflens[segment2];
1622         msg->lm_buflens[segment1] = newsize1;
1623         msg->lm_buflens[segment2] = newsize2;
1624         newmsg_size = lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
1625         msg->lm_buflens[segment1] = save1;
1626         msg->lm_buflens[segment2] = save2;
1627
1628         return newmsg_size;
1629 }
1630
1631 static
1632 int gss_enlarge_reqbuf_intg(struct ptlrpc_sec *sec,
1633                             struct ptlrpc_request *req,
1634                             int svc,
1635                             int segment, int newsize)
1636 {
1637         struct lustre_msg      *newbuf;
1638         int                     txtsize, sigsize = 0, i;
1639         int                     newmsg_size, newbuf_size;
1640
1641         /*
1642          * gss header is at seg 0;
1643          * embedded msg is at seg 1;
1644          * signature (if any) is at the last seg
1645          */
1646         LASSERT(req->rq_reqbuf);
1647         LASSERT(req->rq_reqbuf_len > req->rq_reqlen);
1648         LASSERT(req->rq_reqbuf->lm_bufcount >= 2);
1649         LASSERT(lustre_msg_buf(req->rq_reqbuf, 1, 0) == req->rq_reqmsg);
1650
1651         /* 1. compute new embedded msg size */
1652         newmsg_size = get_enlarged_msgsize(req->rq_reqmsg, segment, newsize);
1653         LASSERT(newmsg_size >= req->rq_reqbuf->lm_buflens[1]);
1654
1655         /* 2. compute new wrapper msg size */
1656         if (svc == SPTLRPC_SVC_NULL) {
1657                 /* no signature, get size directly */
1658                 newbuf_size = get_enlarged_msgsize(req->rq_reqbuf,
1659                                                    1, newmsg_size);
1660         } else {
1661                 txtsize = req->rq_reqbuf->lm_buflens[0];
1662
1663                 if (svc == SPTLRPC_SVC_INTG) {
1664                         for (i = 1; i < req->rq_reqbuf->lm_bufcount; i++)
1665                                 txtsize += req->rq_reqbuf->lm_buflens[i];
1666                         txtsize += newmsg_size - req->rq_reqbuf->lm_buflens[1];
1667                 }
1668
1669                 sigsize = gss_cli_payload(req->rq_cli_ctx, txtsize, 0);
1670                 LASSERT(sigsize >= msg_last_seglen(req->rq_reqbuf));
1671
1672                 newbuf_size = get_enlarged_msgsize2(
1673                                         req->rq_reqbuf,
1674                                         1, newmsg_size,
1675                                         msg_last_segidx(req->rq_reqbuf),
1676                                         sigsize);
1677         }
1678
1679         /* request from pool should always have enough buffer */
1680         LASSERT(!req->rq_pool || req->rq_reqbuf_len >= newbuf_size);
1681
1682         if (req->rq_reqbuf_len < newbuf_size) {
1683                 newbuf_size = size_roundup_power2(newbuf_size);
1684
1685                 OBD_ALLOC(newbuf, newbuf_size);
1686                 if (newbuf == NULL)
1687                         RETURN(-ENOMEM);
1688
1689                 memcpy(newbuf, req->rq_reqbuf, req->rq_reqbuf_len);
1690
1691                 OBD_FREE(req->rq_reqbuf, req->rq_reqbuf_len);
1692                 req->rq_reqbuf = newbuf;
1693                 req->rq_reqbuf_len = newbuf_size;
1694                 req->rq_reqmsg = lustre_msg_buf(req->rq_reqbuf, 1, 0);
1695         }
1696
1697         /* do enlargement, from wrapper to embedded, from end to begin */
1698         if (svc != SPTLRPC_SVC_NULL)
1699                 _sptlrpc_enlarge_msg_inplace(req->rq_reqbuf,
1700                                              msg_last_segidx(req->rq_reqbuf),
1701                                              sigsize);
1702
1703         _sptlrpc_enlarge_msg_inplace(req->rq_reqbuf, 1, newmsg_size);
1704         _sptlrpc_enlarge_msg_inplace(req->rq_reqmsg, segment, newsize);
1705
1706         req->rq_reqlen = newmsg_size;
1707         RETURN(0);
1708 }
1709
1710 static
1711 int gss_enlarge_reqbuf_priv(struct ptlrpc_sec *sec,
1712                             struct ptlrpc_request *req,
1713                             int segment, int newsize)
1714 {
1715         struct lustre_msg      *newclrbuf;
1716         int                     newmsg_size, newclrbuf_size, newcipbuf_size;
1717         __u32                   buflens[3];
1718
1719         /*
1720          * embedded msg is at seg 0 of clear buffer;
1721          * cipher text is at seg 2 of cipher buffer;
1722          */
1723         LASSERT(req->rq_pool ||
1724                 (req->rq_reqbuf == NULL && req->rq_reqbuf_len == 0));
1725         LASSERT(req->rq_reqbuf == NULL ||
1726                 (req->rq_pool && req->rq_reqbuf->lm_bufcount == 3));
1727         LASSERT(req->rq_clrbuf);
1728         LASSERT(req->rq_clrbuf_len > req->rq_reqlen);
1729         LASSERT(lustre_msg_buf(req->rq_clrbuf, 0, 0) == req->rq_reqmsg);
1730
1731         /* compute new embedded msg size */
1732         newmsg_size = get_enlarged_msgsize(req->rq_reqmsg, segment, newsize);
1733
1734         /* compute new clear buffer size */
1735         newclrbuf_size = get_enlarged_msgsize(req->rq_clrbuf, 0, newmsg_size);
1736         newclrbuf_size += GSS_MAX_CIPHER_BLOCK;
1737
1738         /* compute new cipher buffer size */
1739         buflens[0] = PTLRPC_GSS_HEADER_SIZE;
1740         buflens[1] = gss_cli_payload(req->rq_cli_ctx, buflens[0], 0);
1741         buflens[2] = gss_cli_payload(req->rq_cli_ctx, newclrbuf_size, 1);
1742         newcipbuf_size = lustre_msg_size_v2(3, buflens);
1743
1744         /* handle the case that we put both clear buf and cipher buf into
1745          * pre-allocated single buffer. */
1746         if (unlikely(req->rq_pool) &&
1747             req->rq_clrbuf >= req->rq_reqbuf &&
1748             (char *) req->rq_clrbuf <
1749             (char *) req->rq_reqbuf + req->rq_reqbuf_len) {
1750                 /* it couldn't be better we still fit into the
1751                  * pre-allocated buffer. */
1752                 if (newclrbuf_size + newcipbuf_size <= req->rq_reqbuf_len) {
1753                         void *src, *dst;
1754
1755                         /* move clear text backward. */
1756                         src = req->rq_clrbuf;
1757                         dst = (char *) req->rq_reqbuf + newcipbuf_size;
1758
1759                         memmove(dst, src, req->rq_clrbuf_len);
1760
1761                         req->rq_clrbuf = (struct lustre_msg *) dst;
1762                         req->rq_clrbuf_len = newclrbuf_size;
1763                         req->rq_reqmsg = lustre_msg_buf(req->rq_clrbuf, 0, 0);
1764                 } else {
1765                         /* sadly we have to split out the clear buffer */
1766                         LASSERT(req->rq_reqbuf_len >= newcipbuf_size);
1767                         LASSERT(req->rq_clrbuf_len < newclrbuf_size);
1768                 }
1769         }
1770
1771         if (req->rq_clrbuf_len < newclrbuf_size) {
1772                 newclrbuf_size = size_roundup_power2(newclrbuf_size);
1773
1774                 OBD_ALLOC(newclrbuf, newclrbuf_size);
1775                 if (newclrbuf == NULL)
1776                         RETURN(-ENOMEM);
1777
1778                 memcpy(newclrbuf, req->rq_clrbuf, req->rq_clrbuf_len);
1779
1780                 if (req->rq_reqbuf == NULL ||
1781                     req->rq_clrbuf < req->rq_reqbuf ||
1782                     (char *) req->rq_clrbuf >=
1783                     (char *) req->rq_reqbuf + req->rq_reqbuf_len) {
1784                         OBD_FREE(req->rq_clrbuf, req->rq_clrbuf_len);
1785                 }
1786
1787                 req->rq_clrbuf = newclrbuf;
1788                 req->rq_clrbuf_len = newclrbuf_size;
1789                 req->rq_reqmsg = lustre_msg_buf(req->rq_clrbuf, 0, 0);
1790         }
1791
1792         _sptlrpc_enlarge_msg_inplace(req->rq_clrbuf, 0, newmsg_size);
1793         _sptlrpc_enlarge_msg_inplace(req->rq_reqmsg, segment, newsize);
1794         req->rq_reqlen = newmsg_size;
1795
1796         RETURN(0);
1797 }
1798
1799 int gss_enlarge_reqbuf(struct ptlrpc_sec *sec,
1800                        struct ptlrpc_request *req,
1801                        int segment, int newsize)
1802 {
1803         int     svc = SPTLRPC_FLVR_SVC(req->rq_flvr.sf_rpc);
1804
1805         LASSERT(!req->rq_ctx_init && !req->rq_ctx_fini);
1806
1807         switch (svc) {
1808         case SPTLRPC_SVC_NULL:
1809         case SPTLRPC_SVC_AUTH:
1810         case SPTLRPC_SVC_INTG:
1811                 return gss_enlarge_reqbuf_intg(sec, req, svc, segment, newsize);
1812         case SPTLRPC_SVC_PRIV:
1813                 return gss_enlarge_reqbuf_priv(sec, req, segment, newsize);
1814         default:
1815                 LASSERTF(0, "bad rpc flavor %x\n", req->rq_flvr.sf_rpc);
1816                 return 0;
1817         }
1818 }
1819
1820 int gss_sec_install_rctx(struct obd_import *imp,
1821                          struct ptlrpc_sec *sec,
1822                          struct ptlrpc_cli_ctx *ctx)
1823 {
1824         struct gss_sec     *gsec;
1825         struct gss_cli_ctx *gctx;
1826         int                 rc;
1827
1828         gsec = container_of(sec, struct gss_sec, gs_base);
1829         gctx = container_of(ctx, struct gss_cli_ctx, gc_base);
1830
1831         rc = gss_install_rvs_svc_ctx(imp, gsec, gctx);
1832         return rc;
1833 }
1834
1835 /********************************************
1836  * server side API                          *
1837  ********************************************/
1838
1839 static inline
1840 int gss_svc_reqctx_is_special(struct gss_svc_reqctx *grctx)
1841 {
1842         LASSERT(grctx);
1843         return (grctx->src_init || grctx->src_init_continue ||
1844                 grctx->src_err_notify);
1845 }
1846
1847 static
1848 void gss_svc_reqctx_free(struct gss_svc_reqctx *grctx)
1849 {
1850         if (grctx->src_ctx)
1851                 gss_svc_upcall_put_ctx(grctx->src_ctx);
1852
1853         sptlrpc_policy_put(grctx->src_base.sc_policy);
1854         OBD_FREE_PTR(grctx);
1855 }
1856
1857 static inline
1858 void gss_svc_reqctx_addref(struct gss_svc_reqctx *grctx)
1859 {
1860         LASSERT(atomic_read(&grctx->src_base.sc_refcount) > 0);
1861         atomic_inc(&grctx->src_base.sc_refcount);
1862 }
1863
1864 static inline
1865 void gss_svc_reqctx_decref(struct gss_svc_reqctx *grctx)
1866 {
1867         LASSERT(atomic_read(&grctx->src_base.sc_refcount) > 0);
1868
1869         if (atomic_dec_and_test(&grctx->src_base.sc_refcount))
1870                 gss_svc_reqctx_free(grctx);
1871 }
1872
1873 static
1874 int gss_svc_sign(struct ptlrpc_request *req,
1875                  struct ptlrpc_reply_state *rs,
1876                  struct gss_svc_reqctx *grctx,
1877                  __u32 svc)
1878 {
1879         __u32   flags = 0;
1880         int     rc;
1881         ENTRY;
1882
1883         LASSERT(rs->rs_msg == lustre_msg_buf(rs->rs_repbuf, 1, 0));
1884
1885         /* embedded lustre_msg might have been shrinked */
1886         if (req->rq_replen != rs->rs_repbuf->lm_buflens[1])
1887                 lustre_shrink_msg(rs->rs_repbuf, 1, req->rq_replen, 1);
1888
1889         if (req->rq_pack_bulk)
1890                 flags |= LUSTRE_GSS_PACK_BULK;
1891
1892         rc = gss_sign_msg(rs->rs_repbuf, grctx->src_ctx->gsc_mechctx,
1893                           LUSTRE_SP_ANY, flags, PTLRPC_GSS_PROC_DATA,
1894                           grctx->src_wirectx.gw_seq, svc, NULL);
1895         if (rc < 0)
1896                 RETURN(rc);
1897
1898         rs->rs_repdata_len = rc;
1899
1900         if (likely(req->rq_packed_final)) {
1901                 if (lustre_msghdr_get_flags(req->rq_reqmsg) & MSGHDR_AT_SUPPORT)
1902                         req->rq_reply_off = gss_at_reply_off_integ;
1903                 else
1904                         req->rq_reply_off = 0;
1905         } else {
1906                 if (svc == SPTLRPC_SVC_NULL)
1907                         rs->rs_repbuf->lm_cksum = crc32_le(!(__u32) 0,
1908                                         lustre_msg_buf(rs->rs_repbuf, 1, 0),
1909                                         lustre_msg_buflen(rs->rs_repbuf, 1));
1910                 req->rq_reply_off = 0;
1911         }
1912
1913         RETURN(0);
1914 }
1915
1916 int gss_pack_err_notify(struct ptlrpc_request *req, __u32 major, __u32 minor)
1917 {
1918         struct gss_svc_reqctx     *grctx = gss_svc_ctx2reqctx(req->rq_svc_ctx);
1919         struct ptlrpc_reply_state *rs;
1920         struct gss_err_header     *ghdr;
1921         int                        replen = sizeof(struct ptlrpc_body);
1922         int                        rc;
1923         ENTRY;
1924
1925         //if (OBD_FAIL_CHECK_ORSET(OBD_FAIL_SVCGSS_ERR_NOTIFY, OBD_FAIL_ONCE))
1926         //      RETURN(-EINVAL);
1927
1928         grctx->src_err_notify = 1;
1929         grctx->src_reserve_len = 0;
1930
1931         rc = lustre_pack_reply_v2(req, 1, &replen, NULL, 0);
1932         if (rc) {
1933                 CERROR("could not pack reply, err %d\n", rc);
1934                 RETURN(rc);
1935         }
1936
1937         /* gss hdr */
1938         rs = req->rq_reply_state;
1939         LASSERT(rs->rs_repbuf->lm_buflens[1] >= sizeof(*ghdr));
1940         ghdr = lustre_msg_buf(rs->rs_repbuf, 0, 0);
1941         ghdr->gh_version = PTLRPC_GSS_VERSION;
1942         ghdr->gh_flags = 0;
1943         ghdr->gh_proc = PTLRPC_GSS_PROC_ERR;
1944         ghdr->gh_major = major;
1945         ghdr->gh_minor = minor;
1946         ghdr->gh_handle.len = 0; /* fake context handle */
1947
1948         rs->rs_repdata_len = lustre_msg_size_v2(rs->rs_repbuf->lm_bufcount,
1949                                                 rs->rs_repbuf->lm_buflens);
1950
1951         CDEBUG(D_SEC, "prepare gss error notify(0x%x/0x%x) to %s\n",
1952                major, minor, libcfs_nid2str(req->rq_peer.nid));
1953         RETURN(0);
1954 }
1955
1956 static
1957 int gss_svc_handle_init(struct ptlrpc_request *req,
1958                         struct gss_wire_ctx *gw)
1959 {
1960         struct gss_svc_reqctx     *grctx = gss_svc_ctx2reqctx(req->rq_svc_ctx);
1961         struct lustre_msg         *reqbuf = req->rq_reqbuf;
1962         struct obd_uuid           *uuid;
1963         struct obd_device         *target;
1964         rawobj_t                   uuid_obj, rvs_hdl, in_token;
1965         __u32                      lustre_svc;
1966         __u32                     *secdata, seclen;
1967         int                        rc;
1968         ENTRY;
1969
1970         CDEBUG(D_SEC, "processing gss init(%d) request from %s\n", gw->gw_proc,
1971                libcfs_nid2str(req->rq_peer.nid));
1972
1973         req->rq_ctx_init = 1;
1974
1975         if (gw->gw_flags & LUSTRE_GSS_PACK_BULK) {
1976                 CERROR("unexpected bulk flag\n");
1977                 RETURN(SECSVC_DROP);
1978         }
1979
1980         if (gw->gw_proc == PTLRPC_GSS_PROC_INIT && gw->gw_handle.len != 0) {
1981                 CERROR("proc %u: invalid handle length %u\n",
1982                        gw->gw_proc, gw->gw_handle.len);
1983                 RETURN(SECSVC_DROP);
1984         }
1985
1986         if (reqbuf->lm_bufcount < 3 || reqbuf->lm_bufcount > 4){
1987                 CERROR("Invalid bufcount %d\n", reqbuf->lm_bufcount);
1988                 RETURN(SECSVC_DROP);
1989         }
1990
1991         /* ctx initiate payload is in last segment */
1992         secdata = lustre_msg_buf(reqbuf, reqbuf->lm_bufcount - 1, 0);
1993         seclen = reqbuf->lm_buflens[reqbuf->lm_bufcount - 1];
1994
1995         if (seclen < 4 + 4) {
1996                 CERROR("sec size %d too small\n", seclen);
1997                 RETURN(SECSVC_DROP);
1998         }
1999
2000         /* lustre svc type */
2001         lustre_svc = le32_to_cpu(*secdata++);
2002         seclen -= 4;
2003
2004         /* extract target uuid, note this code is somewhat fragile
2005          * because touched internal structure of obd_uuid */
2006         if (rawobj_extract(&uuid_obj, &secdata, &seclen)) {
2007                 CERROR("failed to extract target uuid\n");
2008                 RETURN(SECSVC_DROP);
2009         }
2010         uuid_obj.data[uuid_obj.len - 1] = '\0';
2011
2012         uuid = (struct obd_uuid *) uuid_obj.data;
2013         target = class_uuid2obd(uuid);
2014         if (!target || target->obd_stopping || !target->obd_set_up) {
2015                 CERROR("target '%s' is not available for context init (%s)\n",
2016                        uuid->uuid, target == NULL ? "no target" :
2017                        (target->obd_stopping ? "stopping" : "not set up"));
2018                 RETURN(SECSVC_DROP);
2019         }
2020
2021         /* extract reverse handle */
2022         if (rawobj_extract(&rvs_hdl, &secdata, &seclen)) {
2023                 CERROR("failed extract reverse handle\n");
2024                 RETURN(SECSVC_DROP);
2025         }
2026
2027         /* extract token */
2028         if (rawobj_extract(&in_token, &secdata, &seclen)) {
2029                 CERROR("can't extract token\n");
2030                 RETURN(SECSVC_DROP);
2031         }
2032
2033         rc = gss_svc_upcall_handle_init(req, grctx, gw, target, lustre_svc,
2034                                         &rvs_hdl, &in_token);
2035         if (rc != SECSVC_OK)
2036                 RETURN(rc);
2037
2038         if (grctx->src_ctx->gsc_usr_mds || grctx->src_ctx->gsc_usr_root)
2039                 CWARN("create svc ctx %p: user from %s authenticated as %s\n",
2040                       grctx->src_ctx, libcfs_nid2str(req->rq_peer.nid),
2041                       grctx->src_ctx->gsc_usr_mds ? "mds" : "root");
2042         else
2043                 CWARN("create svc ctx %p: accept user %u from %s\n",
2044                       grctx->src_ctx, grctx->src_ctx->gsc_uid,
2045                       libcfs_nid2str(req->rq_peer.nid));
2046
2047         if (gw->gw_flags & LUSTRE_GSS_PACK_USER) {
2048                 if (reqbuf->lm_bufcount < 4) {
2049                         CERROR("missing user descriptor\n");
2050                         RETURN(SECSVC_DROP);
2051                 }
2052                 if (sptlrpc_unpack_user_desc(reqbuf, 2)) {
2053                         CERROR("Mal-formed user descriptor\n");
2054                         RETURN(SECSVC_DROP);
2055                 }
2056
2057                 req->rq_pack_udesc = 1;
2058                 req->rq_user_desc = lustre_msg_buf(reqbuf, 2, 0);
2059         }
2060
2061         req->rq_reqmsg = lustre_msg_buf(reqbuf, 1, 0);
2062         req->rq_reqlen = lustre_msg_buflen(reqbuf, 1);
2063
2064         RETURN(rc);
2065 }
2066
2067 /*
2068  * last segment must be the gss signature.
2069  */
2070 static
2071 int gss_svc_verify_request(struct ptlrpc_request *req,
2072                            struct gss_svc_reqctx *grctx,
2073                            struct gss_wire_ctx *gw,
2074                            __u32 *major)
2075 {
2076         struct gss_svc_ctx *gctx = grctx->src_ctx;
2077         struct lustre_msg  *msg = req->rq_reqbuf;
2078         int                 offset = 2;
2079         ENTRY;
2080
2081         *major = GSS_S_COMPLETE;
2082
2083         if (msg->lm_bufcount < 2) {
2084                 CERROR("Too few segments (%u) in request\n", msg->lm_bufcount);
2085                 RETURN(-EINVAL);
2086         }
2087
2088         if (gw->gw_svc == SPTLRPC_SVC_NULL)
2089                 goto verified;
2090
2091         if (gss_check_seq_num(&gctx->gsc_seqdata, gw->gw_seq, 0)) {
2092                 CERROR("phase 0: discard replayed req: seq %u\n", gw->gw_seq);
2093                 *major = GSS_S_DUPLICATE_TOKEN;
2094                 RETURN(-EACCES);
2095         }
2096
2097         *major = gss_verify_msg(msg, gctx->gsc_mechctx, gw->gw_svc);
2098         if (*major != GSS_S_COMPLETE) {
2099                 CERROR("failed to verify request: %x\n", *major);
2100                 RETURN(-EACCES);
2101         }
2102
2103         if (gctx->gsc_reverse == 0 &&
2104             gss_check_seq_num(&gctx->gsc_seqdata, gw->gw_seq, 1)) {
2105                 CERROR("phase 1+: discard replayed req: seq %u\n", gw->gw_seq);
2106                 *major = GSS_S_DUPLICATE_TOKEN;
2107                 RETURN(-EACCES);
2108         }
2109
2110 verified:
2111         /* user descriptor */
2112         if (gw->gw_flags & LUSTRE_GSS_PACK_USER) {
2113                 if (msg->lm_bufcount < (offset + 1)) {
2114                         CERROR("no user desc included\n");
2115                         RETURN(-EINVAL);
2116                 }
2117
2118                 if (sptlrpc_unpack_user_desc(msg, offset)) {
2119                         CERROR("Mal-formed user descriptor\n");
2120                         RETURN(-EINVAL);
2121                 }
2122
2123                 req->rq_pack_udesc = 1;
2124                 req->rq_user_desc = lustre_msg_buf(msg, offset, 0);
2125                 offset++;
2126         }
2127
2128         /* check bulk_sec_desc data */
2129         if (gw->gw_flags & LUSTRE_GSS_PACK_BULK) {
2130                 if (msg->lm_bufcount < (offset + 1)) {
2131                         CERROR("missing bulk sec descriptor\n");
2132                         RETURN(-EINVAL);
2133                 }
2134
2135                 if (bulk_sec_desc_unpack(msg, offset))
2136                         RETURN(-EINVAL);
2137
2138                 req->rq_pack_bulk = 1;
2139                 grctx->src_reqbsd = lustre_msg_buf(msg, offset, 0);
2140                 grctx->src_reqbsd_size = lustre_msg_buflen(msg, offset);
2141         }
2142
2143         req->rq_reqmsg = lustre_msg_buf(msg, 1, 0);
2144         req->rq_reqlen = msg->lm_buflens[1];
2145         RETURN(0);
2146 }
2147
2148 static
2149 int gss_svc_unseal_request(struct ptlrpc_request *req,
2150                            struct gss_svc_reqctx *grctx,
2151                            struct gss_wire_ctx *gw,
2152                            __u32 *major)
2153 {
2154         struct gss_svc_ctx *gctx = grctx->src_ctx;
2155         struct lustre_msg  *msg = req->rq_reqbuf;
2156         int                 msglen, offset = 1;
2157         ENTRY;
2158
2159         if (gss_check_seq_num(&gctx->gsc_seqdata, gw->gw_seq, 0)) {
2160                 CERROR("phase 0: discard replayed req: seq %u\n", gw->gw_seq);
2161                 *major = GSS_S_DUPLICATE_TOKEN;
2162                 RETURN(-EACCES);
2163         }
2164
2165         *major = gss_unseal_msg(gctx->gsc_mechctx, msg,
2166                                &msglen, req->rq_reqdata_len);
2167         if (*major != GSS_S_COMPLETE) {
2168                 CERROR("failed to unwrap request: %x\n", *major);
2169                 RETURN(-EACCES);
2170         }
2171
2172         if (gss_check_seq_num(&gctx->gsc_seqdata, gw->gw_seq, 1)) {
2173                 CERROR("phase 1+: discard replayed req: seq %u\n", gw->gw_seq);
2174                 *major = GSS_S_DUPLICATE_TOKEN;
2175                 RETURN(-EACCES);
2176         }
2177
2178         if (lustre_unpack_msg(msg, msglen)) {
2179                 CERROR("Failed to unpack after decryption\n");
2180                 RETURN(-EINVAL);
2181         }
2182         req->rq_reqdata_len = msglen;
2183
2184         if (msg->lm_bufcount < 1) {
2185                 CERROR("Invalid buffer: is empty\n");
2186                 RETURN(-EINVAL);
2187         }
2188
2189         if (gw->gw_flags & LUSTRE_GSS_PACK_USER) {
2190                 if (msg->lm_bufcount < offset + 1) {
2191                         CERROR("no user descriptor included\n");
2192                         RETURN(-EINVAL);
2193                 }
2194
2195                 if (sptlrpc_unpack_user_desc(msg, offset)) {
2196                         CERROR("Mal-formed user descriptor\n");
2197                         RETURN(-EINVAL);
2198                 }
2199
2200                 req->rq_pack_udesc = 1;
2201                 req->rq_user_desc = lustre_msg_buf(msg, offset, 0);
2202                 offset++;
2203         }
2204
2205         if (gw->gw_flags & LUSTRE_GSS_PACK_BULK) {
2206                 if (msg->lm_bufcount < offset + 1) {
2207                         CERROR("no bulk checksum included\n");
2208                         RETURN(-EINVAL);
2209                 }
2210
2211                 if (bulk_sec_desc_unpack(msg, offset))
2212                         RETURN(-EINVAL);
2213
2214                 req->rq_pack_bulk = 1;
2215                 grctx->src_reqbsd = lustre_msg_buf(msg, offset, 0);
2216                 grctx->src_reqbsd_size = lustre_msg_buflen(msg, offset);
2217         }
2218
2219         req->rq_reqmsg = lustre_msg_buf(req->rq_reqbuf, 0, 0);
2220         req->rq_reqlen = req->rq_reqbuf->lm_buflens[0];
2221         RETURN(0);
2222 }
2223
2224 static
2225 int gss_svc_handle_data(struct ptlrpc_request *req,
2226                         struct gss_wire_ctx *gw)
2227 {
2228         struct gss_svc_reqctx *grctx = gss_svc_ctx2reqctx(req->rq_svc_ctx);
2229         __u32                  major = 0;
2230         int                    rc = 0;
2231         ENTRY;
2232
2233         grctx->src_ctx = gss_svc_upcall_get_ctx(req, gw);
2234         if (!grctx->src_ctx) {
2235                 major = GSS_S_NO_CONTEXT;
2236                 goto error;
2237         }
2238
2239         switch (gw->gw_svc) {
2240         case SPTLRPC_SVC_NULL:
2241         case SPTLRPC_SVC_AUTH:
2242         case SPTLRPC_SVC_INTG:
2243                 rc = gss_svc_verify_request(req, grctx, gw, &major);
2244                 break;
2245         case SPTLRPC_SVC_PRIV:
2246                 rc = gss_svc_unseal_request(req, grctx, gw, &major);
2247                 break;
2248         default:
2249                 CERROR("unsupported gss service %d\n", gw->gw_svc);
2250                 rc = -EINVAL;
2251         }
2252
2253         if (rc == 0)
2254                 RETURN(SECSVC_OK);
2255
2256         CERROR("svc %u failed: major 0x%08x: req xid "LPU64" ctx %p idx "
2257                LPX64"(%u->%s)\n", gw->gw_svc, major, req->rq_xid,
2258                grctx->src_ctx, gss_handle_to_u64(&gw->gw_handle),
2259                grctx->src_ctx->gsc_uid, libcfs_nid2str(req->rq_peer.nid));
2260 error:
2261         /* we only notify client in case of NO_CONTEXT/BAD_SIG, which
2262          * might happen after server reboot, to allow recovery. */
2263         if ((major == GSS_S_NO_CONTEXT || major == GSS_S_BAD_SIG) &&
2264             gss_pack_err_notify(req, major, 0) == 0)
2265                 RETURN(SECSVC_COMPLETE);
2266
2267         RETURN(SECSVC_DROP);
2268 }
2269
2270 static
2271 int gss_svc_handle_destroy(struct ptlrpc_request *req,
2272                            struct gss_wire_ctx *gw)
2273 {
2274         struct gss_svc_reqctx  *grctx = gss_svc_ctx2reqctx(req->rq_svc_ctx);
2275         __u32                   major;
2276         ENTRY;
2277
2278         req->rq_ctx_fini = 1;
2279         req->rq_no_reply = 1;
2280
2281         grctx->src_ctx = gss_svc_upcall_get_ctx(req, gw);
2282         if (!grctx->src_ctx) {
2283                 CDEBUG(D_SEC, "invalid gss context handle for destroy.\n");
2284                 RETURN(SECSVC_DROP);
2285         }
2286
2287         if (gw->gw_svc != SPTLRPC_SVC_INTG) {
2288                 CERROR("svc %u is not supported in destroy.\n", gw->gw_svc);
2289                 RETURN(SECSVC_DROP);
2290         }
2291
2292         if (gss_svc_verify_request(req, grctx, gw, &major))
2293                 RETURN(SECSVC_DROP);
2294
2295         CWARN("destroy svc ctx %p idx "LPX64" (%u->%s)\n",
2296               grctx->src_ctx, gss_handle_to_u64(&gw->gw_handle),
2297               grctx->src_ctx->gsc_uid, libcfs_nid2str(req->rq_peer.nid));
2298
2299         gss_svc_upcall_destroy_ctx(grctx->src_ctx);
2300
2301         if (gw->gw_flags & LUSTRE_GSS_PACK_USER) {
2302                 if (req->rq_reqbuf->lm_bufcount < 4) {
2303                         CERROR("missing user descriptor, ignore it\n");
2304                         RETURN(SECSVC_OK);
2305                 }
2306                 if (sptlrpc_unpack_user_desc(req->rq_reqbuf, 2)) {
2307                         CERROR("Mal-formed user descriptor, ignore it\n");
2308                         RETURN(SECSVC_OK);
2309                 }
2310
2311                 req->rq_pack_udesc = 1;
2312                 req->rq_user_desc = lustre_msg_buf(req->rq_reqbuf, 2, 0);
2313         }
2314
2315         RETURN(SECSVC_OK);
2316 }
2317
2318 int gss_svc_accept(struct ptlrpc_sec_policy *policy, struct ptlrpc_request *req)
2319 {
2320         struct gss_header      *ghdr;
2321         struct gss_svc_reqctx  *grctx;
2322         struct gss_wire_ctx    *gw;
2323         int                     rc;
2324         ENTRY;
2325
2326         LASSERT(req->rq_reqbuf);
2327         LASSERT(req->rq_svc_ctx == NULL);
2328
2329         if (req->rq_reqbuf->lm_bufcount < 2) {
2330                 CERROR("buf count only %d\n", req->rq_reqbuf->lm_bufcount);
2331                 RETURN(SECSVC_DROP);
2332         }
2333
2334         ghdr = gss_swab_header(req->rq_reqbuf, 0);
2335         if (ghdr == NULL) {
2336                 CERROR("can't decode gss header\n");
2337                 RETURN(SECSVC_DROP);
2338         }
2339
2340         /* sanity checks */
2341         if (ghdr->gh_version != PTLRPC_GSS_VERSION) {
2342                 CERROR("gss version %u, expect %u\n", ghdr->gh_version,
2343                        PTLRPC_GSS_VERSION);
2344                 RETURN(SECSVC_DROP);
2345         }
2346
2347         req->rq_sp_from = ghdr->gh_sp;
2348
2349         /* alloc grctx data */
2350         OBD_ALLOC_PTR(grctx);
2351         if (!grctx)
2352                 RETURN(SECSVC_DROP);
2353
2354         grctx->src_base.sc_policy = sptlrpc_policy_get(policy);
2355         atomic_set(&grctx->src_base.sc_refcount, 1);
2356         req->rq_svc_ctx = &grctx->src_base;
2357         gw = &grctx->src_wirectx;
2358
2359         /* save wire context */
2360         gw->gw_flags = ghdr->gh_flags;
2361         gw->gw_proc = ghdr->gh_proc;
2362         gw->gw_seq = ghdr->gh_seq;
2363         gw->gw_svc = ghdr->gh_svc;
2364         rawobj_from_netobj(&gw->gw_handle, &ghdr->gh_handle);
2365
2366         /* keep original wire header which subject to checksum verification */
2367         if (lustre_msg_swabbed(req->rq_reqbuf))
2368                 gss_header_swabber(ghdr);
2369
2370         switch(ghdr->gh_proc) {
2371         case PTLRPC_GSS_PROC_INIT:
2372         case PTLRPC_GSS_PROC_CONTINUE_INIT:
2373                 rc = gss_svc_handle_init(req, gw);
2374                 break;
2375         case PTLRPC_GSS_PROC_DATA:
2376                 rc = gss_svc_handle_data(req, gw);
2377                 break;
2378         case PTLRPC_GSS_PROC_DESTROY:
2379                 rc = gss_svc_handle_destroy(req, gw);
2380                 break;
2381         default:
2382                 CERROR("unknown proc %u\n", gw->gw_proc);
2383                 rc = SECSVC_DROP;
2384                 break;
2385         }
2386
2387         switch (rc) {
2388         case SECSVC_OK:
2389                 LASSERT (grctx->src_ctx);
2390
2391                 req->rq_auth_gss = 1;
2392                 req->rq_auth_remote = grctx->src_ctx->gsc_remote;
2393                 req->rq_auth_usr_mdt = grctx->src_ctx->gsc_usr_mds;
2394                 req->rq_auth_usr_root = grctx->src_ctx->gsc_usr_root;
2395                 req->rq_auth_uid = grctx->src_ctx->gsc_uid;
2396                 req->rq_auth_mapped_uid = grctx->src_ctx->gsc_mapped_uid;
2397                 break;
2398         case SECSVC_COMPLETE:
2399                 break;
2400         case SECSVC_DROP:
2401                 gss_svc_reqctx_free(grctx);
2402                 req->rq_svc_ctx = NULL;
2403                 break;
2404         }
2405
2406         RETURN(rc);
2407 }
2408
2409 void gss_svc_invalidate_ctx(struct ptlrpc_svc_ctx *svc_ctx)
2410 {
2411         struct gss_svc_reqctx  *grctx;
2412         ENTRY;
2413
2414         if (svc_ctx == NULL) {
2415                 EXIT;
2416                 return;
2417         }
2418
2419         grctx = gss_svc_ctx2reqctx(svc_ctx);
2420
2421         CWARN("gss svc invalidate ctx %p(%u)\n",
2422               grctx->src_ctx, grctx->src_ctx->gsc_uid);
2423         gss_svc_upcall_destroy_ctx(grctx->src_ctx);
2424
2425         EXIT;
2426 }
2427
2428 static inline
2429 int gss_svc_payload(struct gss_svc_reqctx *grctx, int early,
2430                     int msgsize, int privacy)
2431 {
2432         /* we should treat early reply normally, but which is actually sharing
2433          * the same ctx with original request, so in this case we should
2434          * ignore the special ctx's special flags */
2435         if (early == 0 && gss_svc_reqctx_is_special(grctx))
2436                 return grctx->src_reserve_len;
2437
2438         return gss_mech_payload(NULL, msgsize, privacy);
2439 }
2440
2441 static int gss_svc_bulk_payload(struct gss_svc_ctx *gctx,
2442                                 struct sptlrpc_flavor *flvr,
2443                                 int read)
2444 {
2445         int     payload = sizeof(struct ptlrpc_bulk_sec_desc);
2446
2447         if (read) {
2448                 switch (SPTLRPC_FLVR_BULK_SVC(flvr->sf_rpc)) {
2449                 case SPTLRPC_BULK_SVC_NULL:
2450                         break;
2451                 case SPTLRPC_BULK_SVC_INTG:
2452                         payload += gss_mech_payload(NULL, 0, 0);
2453                         break;
2454                 case SPTLRPC_BULK_SVC_PRIV:
2455                         payload += gss_mech_payload(NULL, 0, 1);
2456                         break;
2457                 case SPTLRPC_BULK_SVC_AUTH:
2458                 default:
2459                         LBUG();
2460                 }
2461         }
2462
2463         return payload;
2464 }
2465
2466 int gss_svc_alloc_rs(struct ptlrpc_request *req, int msglen)
2467 {
2468         struct gss_svc_reqctx       *grctx;
2469         struct ptlrpc_reply_state   *rs;
2470         int                          early, privacy, svc, bsd_off = 0;
2471         __u32                        ibuflens[2], buflens[4];
2472         int                          ibufcnt = 0, bufcnt;
2473         int                          txtsize, wmsg_size, rs_size;
2474         ENTRY;
2475
2476         LASSERT(msglen % 8 == 0);
2477
2478         if (req->rq_pack_bulk && !req->rq_bulk_read && !req->rq_bulk_write) {
2479                 CERROR("client request bulk sec on non-bulk rpc\n");
2480                 RETURN(-EPROTO);
2481         }
2482
2483         svc = SPTLRPC_FLVR_SVC(req->rq_flvr.sf_rpc);
2484         early = (req->rq_packed_final == 0);
2485
2486         grctx = gss_svc_ctx2reqctx(req->rq_svc_ctx);
2487         if (!early && gss_svc_reqctx_is_special(grctx))
2488                 privacy = 0;
2489         else
2490                 privacy = (svc == SPTLRPC_SVC_PRIV);
2491
2492         if (privacy) {
2493                 /* inner clear buffers */
2494                 ibufcnt = 1;
2495                 ibuflens[0] = msglen;
2496
2497                 if (req->rq_pack_bulk) {
2498                         LASSERT(grctx->src_reqbsd);
2499
2500                         bsd_off = ibufcnt;
2501                         ibuflens[ibufcnt++] = gss_svc_bulk_payload(
2502                                                         grctx->src_ctx,
2503                                                         &req->rq_flvr,
2504                                                         req->rq_bulk_read);
2505                 }
2506
2507                 txtsize = lustre_msg_size_v2(ibufcnt, ibuflens);
2508                 txtsize += GSS_MAX_CIPHER_BLOCK;
2509
2510                 /* wrapper buffer */
2511                 bufcnt = 2;
2512                 buflens[0] = PTLRPC_GSS_HEADER_SIZE;
2513                 buflens[1] = gss_svc_payload(grctx, early, txtsize, 1);
2514         } else {
2515                 bufcnt = 2;
2516                 buflens[0] = PTLRPC_GSS_HEADER_SIZE;
2517                 buflens[1] = msglen;
2518
2519                 txtsize = buflens[0];
2520                 if (svc == SPTLRPC_SVC_INTG)
2521                         txtsize += buflens[1];
2522
2523                 if (req->rq_pack_bulk) {
2524                         LASSERT(grctx->src_reqbsd);
2525
2526                         bsd_off = bufcnt;
2527                         buflens[bufcnt] = gss_svc_bulk_payload(
2528                                                         grctx->src_ctx,
2529                                                         &req->rq_flvr,
2530                                                         req->rq_bulk_read);
2531                         if (svc == SPTLRPC_SVC_INTG)
2532                                 txtsize += buflens[bufcnt];
2533                         bufcnt++;
2534                 }
2535
2536                 if ((!early && gss_svc_reqctx_is_special(grctx)) ||
2537                     svc != SPTLRPC_SVC_NULL)
2538                         buflens[bufcnt++] = gss_svc_payload(grctx, early,
2539                                                             txtsize, 0);
2540         }
2541
2542         wmsg_size = lustre_msg_size_v2(bufcnt, buflens);
2543
2544         rs_size = sizeof(*rs) + wmsg_size;
2545         rs = req->rq_reply_state;
2546
2547         if (rs) {
2548                 /* pre-allocated */
2549                 LASSERT(rs->rs_size >= rs_size);
2550         } else {
2551                 OBD_ALLOC(rs, rs_size);
2552                 if (rs == NULL)
2553                         RETURN(-ENOMEM);
2554
2555                 rs->rs_size = rs_size;
2556         }
2557
2558         rs->rs_repbuf = (struct lustre_msg *) (rs + 1);
2559         rs->rs_repbuf_len = wmsg_size;
2560
2561         /* initialize the buffer */
2562         if (privacy) {
2563                 lustre_init_msg_v2(rs->rs_repbuf, ibufcnt, ibuflens, NULL);
2564                 rs->rs_msg = lustre_msg_buf(rs->rs_repbuf, 0, msglen);
2565         } else {
2566                 lustre_init_msg_v2(rs->rs_repbuf, bufcnt, buflens, NULL);
2567                 rs->rs_repbuf->lm_secflvr = req->rq_flvr.sf_rpc;
2568
2569                 rs->rs_msg = lustre_msg_buf(rs->rs_repbuf, 1, 0);
2570         }
2571
2572         if (bsd_off) {
2573                 grctx->src_repbsd = lustre_msg_buf(rs->rs_repbuf, bsd_off, 0);
2574                 grctx->src_repbsd_size = lustre_msg_buflen(rs->rs_repbuf,
2575                                                            bsd_off);
2576         }
2577
2578         gss_svc_reqctx_addref(grctx);
2579         rs->rs_svc_ctx = req->rq_svc_ctx;
2580
2581         LASSERT(rs->rs_msg);
2582         req->rq_reply_state = rs;
2583         RETURN(0);
2584 }
2585
2586 static int gss_svc_seal(struct ptlrpc_request *req,
2587                         struct ptlrpc_reply_state *rs,
2588                         struct gss_svc_reqctx *grctx)
2589 {
2590         struct gss_svc_ctx      *gctx = grctx->src_ctx;
2591         rawobj_t                 hdrobj, msgobj, token;
2592         struct gss_header       *ghdr;
2593         __u8                    *token_buf;
2594         int                      token_buflen; 
2595         __u32                    buflens[2], major;
2596         int                      msglen, rc;
2597         ENTRY;
2598
2599         /* get clear data length. note embedded lustre_msg might
2600          * have been shrinked */
2601         if (req->rq_replen != lustre_msg_buflen(rs->rs_repbuf, 0))
2602                 msglen = lustre_shrink_msg(rs->rs_repbuf, 0, req->rq_replen, 1);
2603         else 
2604                 msglen = lustre_msg_size_v2(rs->rs_repbuf->lm_bufcount,
2605                                             rs->rs_repbuf->lm_buflens);
2606
2607         /* temporarily use tail of buffer to hold gss header data */
2608         LASSERT(msglen + PTLRPC_GSS_HEADER_SIZE <= rs->rs_repbuf_len);
2609         ghdr = (struct gss_header *) ((char *) rs->rs_repbuf +
2610                                 rs->rs_repbuf_len - PTLRPC_GSS_HEADER_SIZE);
2611         ghdr->gh_version = PTLRPC_GSS_VERSION;
2612         ghdr->gh_sp = LUSTRE_SP_ANY;
2613         ghdr->gh_flags = 0;
2614         ghdr->gh_proc = PTLRPC_GSS_PROC_DATA;
2615         ghdr->gh_seq = grctx->src_wirectx.gw_seq;
2616         ghdr->gh_svc = SPTLRPC_SVC_PRIV;
2617         ghdr->gh_handle.len = 0;
2618         if (req->rq_pack_bulk)
2619                 ghdr->gh_flags |= LUSTRE_GSS_PACK_BULK;
2620
2621         /* allocate temporary cipher buffer */
2622         token_buflen = gss_mech_payload(gctx->gsc_mechctx, msglen, 1);
2623         OBD_ALLOC(token_buf, token_buflen);
2624         if (token_buf == NULL)
2625                 RETURN(-ENOMEM);
2626
2627         hdrobj.len = PTLRPC_GSS_HEADER_SIZE;
2628         hdrobj.data = (__u8 *) ghdr;
2629         msgobj.len = msglen;
2630         msgobj.data = (__u8 *) rs->rs_repbuf;
2631         token.len = token_buflen;
2632         token.data = token_buf;
2633
2634         major = lgss_wrap(gctx->gsc_mechctx, &hdrobj, &msgobj,
2635                           rs->rs_repbuf_len - PTLRPC_GSS_HEADER_SIZE, &token);
2636         if (major != GSS_S_COMPLETE) {
2637                 CERROR("wrap message error: %08x\n", major);
2638                 GOTO(out_free, rc = -EPERM);
2639         }
2640         LASSERT(token.len <= token_buflen);
2641
2642         /* we are about to override data at rs->rs_repbuf, nullify pointers
2643          * to which to catch further illegal usage. */
2644         if (req->rq_pack_bulk) {
2645                 grctx->src_repbsd = NULL;
2646                 grctx->src_repbsd_size = 0;
2647         }
2648
2649         /* now fill the actual wire data
2650          * - gss header
2651          * - gss token
2652          */
2653         buflens[0] = PTLRPC_GSS_HEADER_SIZE;
2654         buflens[1] = token.len;
2655
2656         rs->rs_repdata_len = lustre_msg_size_v2(2, buflens);
2657         LASSERT(rs->rs_repdata_len <= rs->rs_repbuf_len);
2658
2659         lustre_init_msg_v2(rs->rs_repbuf, 2, buflens, NULL);
2660         rs->rs_repbuf->lm_secflvr = req->rq_flvr.sf_rpc;
2661
2662         memcpy(lustre_msg_buf(rs->rs_repbuf, 0, 0), ghdr,
2663                PTLRPC_GSS_HEADER_SIZE);
2664         memcpy(lustre_msg_buf(rs->rs_repbuf, 1, 0), token.data, token.len);
2665
2666         /* reply offset */
2667         if (req->rq_packed_final &&
2668             (lustre_msghdr_get_flags(req->rq_reqmsg) & MSGHDR_AT_SUPPORT))
2669                 req->rq_reply_off = gss_at_reply_off_priv;
2670         else
2671                 req->rq_reply_off = 0;
2672
2673         /* to catch upper layer's further access */
2674         rs->rs_msg = NULL;
2675         req->rq_repmsg = NULL;
2676         req->rq_replen = 0;
2677
2678         rc = 0;
2679 out_free:
2680         OBD_FREE(token_buf, token_buflen);
2681         RETURN(rc);
2682 }
2683
2684 int gss_svc_authorize(struct ptlrpc_request *req)
2685 {
2686         struct ptlrpc_reply_state *rs = req->rq_reply_state;
2687         struct gss_svc_reqctx     *grctx = gss_svc_ctx2reqctx(req->rq_svc_ctx);
2688         struct gss_wire_ctx       *gw = &grctx->src_wirectx;
2689         int                        early, rc;
2690         ENTRY;
2691
2692         early = (req->rq_packed_final == 0);
2693
2694         if (!early && gss_svc_reqctx_is_special(grctx)) {
2695                 LASSERT(rs->rs_repdata_len != 0);
2696
2697                 req->rq_reply_off = gss_at_reply_off_integ;
2698                 RETURN(0);
2699         }
2700
2701         /* early reply could happen in many cases */
2702         if (!early &&
2703             gw->gw_proc != PTLRPC_GSS_PROC_DATA &&
2704             gw->gw_proc != PTLRPC_GSS_PROC_DESTROY) {
2705                 CERROR("proc %d not support\n", gw->gw_proc);
2706                 RETURN(-EINVAL);
2707         }
2708
2709         LASSERT(grctx->src_ctx);
2710
2711         switch (gw->gw_svc) {
2712         case SPTLRPC_SVC_NULL:
2713         case SPTLRPC_SVC_AUTH:
2714         case SPTLRPC_SVC_INTG:
2715                 rc = gss_svc_sign(req, rs, grctx, gw->gw_svc);
2716                 break;
2717         case SPTLRPC_SVC_PRIV:
2718                 rc = gss_svc_seal(req, rs, grctx);
2719                 break;
2720         default:
2721                 CERROR("Unknown service %d\n", gw->gw_svc);
2722                 GOTO(out, rc = -EINVAL);
2723         }
2724         rc = 0;
2725
2726 out:
2727         RETURN(rc);
2728 }
2729
2730 void gss_svc_free_rs(struct ptlrpc_reply_state *rs)
2731 {
2732         struct gss_svc_reqctx *grctx;
2733
2734         LASSERT(rs->rs_svc_ctx);
2735         grctx = container_of(rs->rs_svc_ctx, struct gss_svc_reqctx, src_base);
2736
2737         gss_svc_reqctx_decref(grctx);
2738         rs->rs_svc_ctx = NULL;
2739
2740         if (!rs->rs_prealloc)
2741                 OBD_FREE(rs, rs->rs_size);
2742 }
2743
2744 void gss_svc_free_ctx(struct ptlrpc_svc_ctx *ctx)
2745 {
2746         LASSERT(atomic_read(&ctx->sc_refcount) == 0);
2747         gss_svc_reqctx_free(gss_svc_ctx2reqctx(ctx));
2748 }
2749
2750 int gss_copy_rvc_cli_ctx(struct ptlrpc_cli_ctx *cli_ctx,
2751                          struct ptlrpc_svc_ctx *svc_ctx)
2752 {
2753         struct gss_cli_ctx     *cli_gctx = ctx2gctx(cli_ctx);
2754         struct gss_svc_ctx     *svc_gctx = gss_svc_ctx2gssctx(svc_ctx);
2755         struct gss_ctx         *mechctx = NULL;
2756
2757         LASSERT(cli_gctx);
2758         LASSERT(svc_gctx && svc_gctx->gsc_mechctx);
2759
2760         cli_gctx->gc_proc = PTLRPC_GSS_PROC_DATA;
2761         cli_gctx->gc_win = GSS_SEQ_WIN;
2762
2763         /* The problem is the reverse ctx might get lost in some recovery
2764          * situations, and the same svc_ctx will be used to re-create it.
2765          * if there's callback be sentout before that, new reverse ctx start
2766          * with sequence 0 will lead to future callback rpc be treated as
2767          * replay.
2768          *
2769          * each reverse root ctx will record its latest sequence number on its
2770          * buddy svcctx before be destroied, so here we continue use it.
2771          */
2772         atomic_set(&cli_gctx->gc_seq, svc_gctx->gsc_rvs_seq);
2773
2774         if (gss_svc_upcall_dup_handle(&cli_gctx->gc_svc_handle, svc_gctx)) {
2775                 CERROR("failed to dup svc handle\n");
2776                 goto err_out;
2777         }
2778
2779         if (lgss_copy_reverse_context(svc_gctx->gsc_mechctx, &mechctx) !=
2780             GSS_S_COMPLETE) {
2781                 CERROR("failed to copy mech context\n");
2782                 goto err_svc_handle;
2783         }
2784
2785         if (rawobj_dup(&cli_gctx->gc_handle, &svc_gctx->gsc_rvs_hdl)) {
2786                 CERROR("failed to dup reverse handle\n");
2787                 goto err_ctx;
2788         }
2789
2790         cli_gctx->gc_mechctx = mechctx;
2791         gss_cli_ctx_uptodate(cli_gctx);
2792
2793         return 0;
2794
2795 err_ctx:
2796         lgss_delete_sec_context(&mechctx);
2797 err_svc_handle:
2798         rawobj_free(&cli_gctx->gc_svc_handle);
2799 err_out:
2800         return -ENOMEM;
2801 }
2802
2803 static void gss_init_at_reply_offset(void)
2804 {
2805         __u32 buflens[3];
2806         int clearsize;
2807
2808         buflens[0] = PTLRPC_GSS_HEADER_SIZE;
2809         buflens[1] = lustre_msg_early_size();
2810         buflens[2] = gss_cli_payload(NULL, buflens[1], 0);
2811         gss_at_reply_off_integ = lustre_msg_size_v2(3, buflens);
2812
2813         buflens[0] = lustre_msg_early_size();
2814         clearsize = lustre_msg_size_v2(1, buflens);
2815         buflens[0] = PTLRPC_GSS_HEADER_SIZE;
2816         buflens[1] = gss_cli_payload(NULL, clearsize, 0);
2817         buflens[2] = gss_cli_payload(NULL, clearsize, 1);
2818         gss_at_reply_off_priv = lustre_msg_size_v2(3, buflens);
2819 }
2820
2821 int __init sptlrpc_gss_init(void)
2822 {
2823         int rc;
2824
2825         rc = gss_init_lproc();
2826         if (rc)
2827                 return rc;
2828
2829         rc = gss_init_cli_upcall();
2830         if (rc)
2831                 goto out_lproc;
2832
2833         rc = gss_init_svc_upcall();
2834         if (rc)
2835                 goto out_cli_upcall;
2836
2837         rc = init_kerberos_module();
2838         if (rc)
2839                 goto out_svc_upcall;
2840
2841         /* register policy after all other stuff be intialized, because it
2842          * might be in used immediately after the registration. */
2843
2844         rc = gss_init_keyring();
2845         if (rc)
2846                 goto out_kerberos;
2847
2848 #ifdef HAVE_GSS_PIPEFS
2849         rc = gss_init_pipefs();
2850         if (rc)
2851                 goto out_keyring;
2852 #endif
2853
2854         gss_init_at_reply_offset();
2855
2856         return 0;
2857
2858 #ifdef HAVE_GSS_PIPEFS
2859 out_keyring:
2860         gss_exit_keyring();
2861 #endif
2862
2863 out_kerberos:
2864         cleanup_kerberos_module();
2865 out_svc_upcall:
2866         gss_exit_svc_upcall();
2867 out_cli_upcall:
2868         gss_exit_cli_upcall();
2869 out_lproc:
2870         gss_exit_lproc();
2871         return rc;
2872 }
2873
2874 static void __exit sptlrpc_gss_exit(void)
2875 {
2876         gss_exit_keyring();
2877 #ifdef HAVE_GSS_PIPEFS
2878         gss_exit_pipefs();
2879 #endif
2880         cleanup_kerberos_module();
2881         gss_exit_svc_upcall();
2882         gss_exit_cli_upcall();
2883         gss_exit_lproc();
2884 }
2885
2886 MODULE_AUTHOR("Sun Microsystems, Inc. <http://www.lustre.org/>");
2887 MODULE_DESCRIPTION("GSS security policy for Lustre");
2888 MODULE_LICENSE("GPL");
2889
2890 module_init(sptlrpc_gss_init);
2891 module_exit(sptlrpc_gss_exit);