Whamcloud - gitweb
fbe09e9b17bddb6f24938feba63e14599853041b
[fs/lustre-release.git] / lustre / ptlrpc / client.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  */
32
33 /** Implementation of client-side PortalRPC interfaces */
34
35 #define DEBUG_SUBSYSTEM S_RPC
36
37 #include <linux/delay.h>
38 #include <linux/random.h>
39
40 #include <obd_support.h>
41 #include <obd_class.h>
42 #include <lustre_lib.h>
43 #include <lustre_ha.h>
44 #include <lustre_import.h>
45 #include <lustre_req_layout.h>
46
47 #include "ptlrpc_internal.h"
48
49 static void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
50                                       struct page *page, int pageoffset,
51                                       int len)
52 {
53         __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
54 }
55
56 static void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
57                                         struct page *page, int pageoffset,
58                                         int len)
59 {
60         __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
61 }
62
63 static void ptlrpc_release_bulk_page_pin(struct ptlrpc_bulk_desc *desc)
64 {
65         int i;
66
67         for (i = 0; i < desc->bd_iov_count ; i++)
68                 put_page(BD_GET_KIOV(desc, i).kiov_page);
69 }
70
71 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_pin_ops = {
72         .add_kiov_frag  = ptlrpc_prep_bulk_page_pin,
73         .release_frags  = ptlrpc_release_bulk_page_pin,
74 };
75 EXPORT_SYMBOL(ptlrpc_bulk_kiov_pin_ops);
76
77 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_nopin_ops = {
78         .add_kiov_frag  = ptlrpc_prep_bulk_page_nopin,
79         .release_frags  = ptlrpc_release_bulk_noop,
80 };
81 EXPORT_SYMBOL(ptlrpc_bulk_kiov_nopin_ops);
82
83 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kvec_ops = {
84         .add_iov_frag = ptlrpc_prep_bulk_frag,
85 };
86 EXPORT_SYMBOL(ptlrpc_bulk_kvec_ops);
87
88 static int ptlrpc_send_new_req(struct ptlrpc_request *req);
89 static int ptlrpcd_check_work(struct ptlrpc_request *req);
90 static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async);
91
92 /**
93  * Initialize passed in client structure \a cl.
94  */
95 void ptlrpc_init_client(int req_portal, int rep_portal, const char *name,
96                         struct ptlrpc_client *cl)
97 {
98         cl->cli_request_portal = req_portal;
99         cl->cli_reply_portal   = rep_portal;
100         cl->cli_name           = name;
101 }
102 EXPORT_SYMBOL(ptlrpc_init_client);
103
104 /**
105  * Return PortalRPC connection for remore uud \a uuid
106  */
107 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid,
108                                                     lnet_nid_t nid4refnet)
109 {
110         struct ptlrpc_connection *c;
111         lnet_nid_t self;
112         struct lnet_process_id peer;
113         int err;
114
115         /*
116          * ptlrpc_uuid_to_peer() initializes its 2nd parameter
117          * before accessing its values.
118          */
119         /* coverity[uninit_use_in_call] */
120         peer.nid = nid4refnet;
121         err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
122         if (err != 0) {
123                 CNETERR("cannot find peer %s!\n", uuid->uuid);
124                 return NULL;
125         }
126
127         c = ptlrpc_connection_get(peer, self, uuid);
128         if (c) {
129                 memcpy(c->c_remote_uuid.uuid,
130                        uuid->uuid, sizeof(c->c_remote_uuid.uuid));
131         }
132
133         CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
134
135         return c;
136 }
137
138 /**
139  * Allocate and initialize new bulk descriptor on the sender.
140  * Returns pointer to the descriptor or NULL on error.
141  */
142 struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned int nfrags,
143                                          unsigned int max_brw,
144                                          enum ptlrpc_bulk_op_type type,
145                                          unsigned int portal,
146                                          const struct ptlrpc_bulk_frag_ops *ops)
147 {
148         struct ptlrpc_bulk_desc *desc;
149         int i;
150
151         /* ensure that only one of KIOV or IOVEC is set but not both */
152         LASSERT((ptlrpc_is_bulk_desc_kiov(type) &&
153                  ops->add_kiov_frag != NULL) ||
154                 (ptlrpc_is_bulk_desc_kvec(type) &&
155                  ops->add_iov_frag != NULL));
156
157         OBD_ALLOC_PTR(desc);
158         if (!desc)
159                 return NULL;
160         if (type & PTLRPC_BULK_BUF_KIOV) {
161                 OBD_ALLOC_LARGE(GET_KIOV(desc),
162                                 nfrags * sizeof(*GET_KIOV(desc)));
163                 if (!GET_KIOV(desc))
164                         goto out;
165         } else {
166                 OBD_ALLOC_LARGE(GET_KVEC(desc),
167                                 nfrags * sizeof(*GET_KVEC(desc)));
168                 if (!GET_KVEC(desc))
169                         goto out;
170         }
171
172         spin_lock_init(&desc->bd_lock);
173         init_waitqueue_head(&desc->bd_waitq);
174         desc->bd_max_iov = nfrags;
175         desc->bd_iov_count = 0;
176         desc->bd_portal = portal;
177         desc->bd_type = type;
178         desc->bd_md_count = 0;
179         desc->bd_frag_ops = ops;
180         LASSERT(max_brw > 0);
181         desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
182         /*
183          * PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
184          * node. Negotiated ocd_brw_size will always be <= this number.
185          */
186         for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
187                 LNetInvalidateMDHandle(&desc->bd_mds[i]);
188
189         return desc;
190 out:
191         OBD_FREE_PTR(desc);
192         return NULL;
193 }
194
195 /**
196  * Prepare bulk descriptor for specified outgoing request \a req that
197  * can fit \a nfrags * pages. \a type is bulk type. \a portal is where
198  * the bulk to be sent. Used on client-side.
199  * Returns pointer to newly allocatrd initialized bulk descriptor or NULL on
200  * error.
201  */
202 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
203                                               unsigned int nfrags,
204                                               unsigned int max_brw,
205                                               unsigned int type,
206                                               unsigned int portal,
207                                               const struct ptlrpc_bulk_frag_ops
208                                                 *ops)
209 {
210         struct obd_import *imp = req->rq_import;
211         struct ptlrpc_bulk_desc *desc;
212
213         ENTRY;
214         LASSERT(ptlrpc_is_bulk_op_passive(type));
215
216         desc = ptlrpc_new_bulk(nfrags, max_brw, type, portal, ops);
217         if (!desc)
218                 RETURN(NULL);
219
220         desc->bd_import = class_import_get(imp);
221         desc->bd_req = req;
222
223         desc->bd_cbid.cbid_fn  = client_bulk_callback;
224         desc->bd_cbid.cbid_arg = desc;
225
226         /* This makes req own desc, and free it when she frees herself */
227         req->rq_bulk = desc;
228
229         return desc;
230 }
231 EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
232
233 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
234                              struct page *page, int pageoffset, int len,
235                              int pin)
236 {
237         lnet_kiov_t *kiov;
238
239         LASSERT(desc->bd_iov_count < desc->bd_max_iov);
240         LASSERT(page != NULL);
241         LASSERT(pageoffset >= 0);
242         LASSERT(len > 0);
243         LASSERT(pageoffset + len <= PAGE_SIZE);
244         LASSERT(ptlrpc_is_bulk_desc_kiov(desc->bd_type));
245
246         kiov = &BD_GET_KIOV(desc, desc->bd_iov_count);
247
248         desc->bd_nob += len;
249
250         if (pin)
251                 get_page(page);
252
253         kiov->kiov_page = page;
254         kiov->kiov_offset = pageoffset;
255         kiov->kiov_len = len;
256
257         desc->bd_iov_count++;
258 }
259 EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
260
261 int ptlrpc_prep_bulk_frag(struct ptlrpc_bulk_desc *desc,
262                           void *frag, int len)
263 {
264         struct kvec *iovec;
265
266         ENTRY;
267
268         LASSERT(desc->bd_iov_count < desc->bd_max_iov);
269         LASSERT(frag != NULL);
270         LASSERT(len > 0);
271         LASSERT(ptlrpc_is_bulk_desc_kvec(desc->bd_type));
272
273         iovec = &BD_GET_KVEC(desc, desc->bd_iov_count);
274
275         desc->bd_nob += len;
276
277         iovec->iov_base = frag;
278         iovec->iov_len = len;
279
280         desc->bd_iov_count++;
281
282         RETURN(desc->bd_nob);
283 }
284 EXPORT_SYMBOL(ptlrpc_prep_bulk_frag);
285
286 void ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc)
287 {
288         ENTRY;
289
290         LASSERT(desc != NULL);
291         LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
292         LASSERT(desc->bd_md_count == 0);         /* network hands off */
293         LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
294         LASSERT(desc->bd_frag_ops != NULL);
295
296         if (ptlrpc_is_bulk_desc_kiov(desc->bd_type))
297                 sptlrpc_enc_pool_put_pages(desc);
298
299         if (desc->bd_export)
300                 class_export_put(desc->bd_export);
301         else
302                 class_import_put(desc->bd_import);
303
304         if (desc->bd_frag_ops->release_frags != NULL)
305                 desc->bd_frag_ops->release_frags(desc);
306
307         if (ptlrpc_is_bulk_desc_kiov(desc->bd_type))
308                 OBD_FREE_LARGE(GET_KIOV(desc),
309                                desc->bd_max_iov * sizeof(*GET_KIOV(desc)));
310         else
311                 OBD_FREE_LARGE(GET_KVEC(desc),
312                                desc->bd_max_iov * sizeof(*GET_KVEC(desc)));
313         OBD_FREE_PTR(desc);
314         EXIT;
315 }
316 EXPORT_SYMBOL(ptlrpc_free_bulk);
317
318 /**
319  * Set server timelimit for this req, i.e. how long are we willing to wait
320  * for reply before timing out this request.
321  */
322 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
323 {
324         __u32 serv_est;
325         int idx;
326         struct imp_at *at;
327
328         LASSERT(req->rq_import);
329
330         if (AT_OFF) {
331                 /* non-AT settings */
332                 /**
333                  * \a imp_server_timeout means this is reverse import and
334                  * we send (currently only) ASTs to the client and cannot afford
335                  * to wait too long for the reply, otherwise the other client
336                  * (because of which we are sending this request) would
337                  * timeout waiting for us
338                  */
339                 req->rq_timeout = req->rq_import->imp_server_timeout ?
340                                   obd_timeout / 2 : obd_timeout;
341         } else {
342                 at = &req->rq_import->imp_at;
343                 idx = import_at_get_index(req->rq_import,
344                                           req->rq_request_portal);
345                 serv_est = at_get(&at->iat_service_estimate[idx]);
346                 req->rq_timeout = at_est2timeout(serv_est);
347         }
348         /*
349          * We could get even fancier here, using history to predict increased
350          * loading...
351          */
352
353         /*
354          * Let the server know what this RPC timeout is by putting it in the
355          * reqmsg
356          */
357         lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
358 }
359 EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
360
361 /* Adjust max service estimate based on server value */
362 static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
363                                   unsigned int serv_est)
364 {
365         int idx;
366         unsigned int oldse;
367         struct imp_at *at;
368
369         LASSERT(req->rq_import);
370         at = &req->rq_import->imp_at;
371
372         idx = import_at_get_index(req->rq_import, req->rq_request_portal);
373         /*
374          * max service estimates are tracked on the server side,
375          * so just keep minimal history here
376          */
377         oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
378         if (oldse != 0)
379                 CDEBUG(D_ADAPTTO,
380                        "The RPC service estimate for %s ptl %d has changed from %d to %d\n",
381                        req->rq_import->imp_obd->obd_name,
382                        req->rq_request_portal,
383                        oldse, at_get(&at->iat_service_estimate[idx]));
384 }
385
386 /* Expected network latency per remote node (secs) */
387 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
388 {
389         return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
390 }
391
392 /* Adjust expected network latency */
393 void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
394                                unsigned int service_time)
395 {
396         unsigned int nl, oldnl;
397         struct imp_at *at;
398         time64_t now = ktime_get_real_seconds();
399
400         LASSERT(req->rq_import);
401
402         if (service_time > now - req->rq_sent + 3) {
403                 /*
404                  * b=16408, however, this can also happen if early reply
405                  * is lost and client RPC is expired and resent, early reply
406                  * or reply of original RPC can still be fit in reply buffer
407                  * of resent RPC, now client is measuring time from the
408                  * resent time, but server sent back service time of original
409                  * RPC.
410                  */
411                 CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ?
412                        D_ADAPTTO : D_WARNING,
413                        "Reported service time %u > total measured time %lld\n",
414                        service_time, now - req->rq_sent);
415                 return;
416         }
417
418         /* Network latency is total time less server processing time */
419         nl = max_t(int, now - req->rq_sent -
420                         service_time, 0) + 1; /* st rounding */
421         at = &req->rq_import->imp_at;
422
423         oldnl = at_measured(&at->iat_net_latency, nl);
424         if (oldnl != 0)
425                 CDEBUG(D_ADAPTTO,
426                        "The network latency for %s (nid %s) has changed from %d to %d\n",
427                        req->rq_import->imp_obd->obd_name,
428                        obd_uuid2str(&req->rq_import->imp_connection->c_remote_uuid),
429                        oldnl, at_get(&at->iat_net_latency));
430 }
431
432 static int unpack_reply(struct ptlrpc_request *req)
433 {
434         int rc;
435
436         if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
437                 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
438                 if (rc) {
439                         DEBUG_REQ(D_ERROR, req, "unpack_rep failed: rc = %d",
440                                   rc);
441                         return -EPROTO;
442                 }
443         }
444
445         rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
446         if (rc) {
447                 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: rc = %d",
448                           rc);
449                 return -EPROTO;
450         }
451         return 0;
452 }
453
454 /**
455  * Handle an early reply message, called with the rq_lock held.
456  * If anything goes wrong just ignore it - same as if it never happened
457  */
458 static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
459 __must_hold(&req->rq_lock)
460 {
461         struct ptlrpc_request *early_req;
462         time64_t olddl;
463         int rc;
464
465         ENTRY;
466         req->rq_early = 0;
467         spin_unlock(&req->rq_lock);
468
469         rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
470         if (rc) {
471                 spin_lock(&req->rq_lock);
472                 RETURN(rc);
473         }
474
475         rc = unpack_reply(early_req);
476         if (rc != 0) {
477                 sptlrpc_cli_finish_early_reply(early_req);
478                 spin_lock(&req->rq_lock);
479                 RETURN(rc);
480         }
481
482         /*
483          * Use new timeout value just to adjust the local value for this
484          * request, don't include it into at_history. It is unclear yet why
485          * service time increased and should it be counted or skipped, e.g.
486          * that can be recovery case or some error or server, the real reply
487          * will add all new data if it is worth to add.
488          */
489         req->rq_timeout = lustre_msg_get_timeout(early_req->rq_repmsg);
490         lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
491
492         /* Network latency can be adjusted, it is pure network delays */
493         ptlrpc_at_adj_net_latency(req,
494                                   lustre_msg_get_service_time(early_req->rq_repmsg));
495
496         sptlrpc_cli_finish_early_reply(early_req);
497
498         spin_lock(&req->rq_lock);
499         olddl = req->rq_deadline;
500         /*
501          * server assumes it now has rq_timeout from when the request
502          * arrived, so the client should give it at least that long.
503          * since we don't know the arrival time we'll use the original
504          * sent time
505          */
506         req->rq_deadline = req->rq_sent + req->rq_timeout +
507                            ptlrpc_at_get_net_latency(req);
508
509         /* The below message is checked in replay-single.sh test_65{a,b} */
510         /* The below message is checked in sanity-{gss,krb5} test_8 */
511         DEBUG_REQ(D_ADAPTTO, req,
512                   "Early reply #%d, new deadline in %llds (%llds)",
513                   req->rq_early_count,
514                   req->rq_deadline - ktime_get_real_seconds(),
515                   req->rq_deadline - olddl);
516
517         RETURN(rc);
518 }
519
520 static struct kmem_cache *request_cache;
521
522 int ptlrpc_request_cache_init(void)
523 {
524         request_cache = kmem_cache_create("ptlrpc_cache",
525                                           sizeof(struct ptlrpc_request),
526                                           0, SLAB_HWCACHE_ALIGN, NULL);
527         return request_cache ? 0 : -ENOMEM;
528 }
529
530 void ptlrpc_request_cache_fini(void)
531 {
532         kmem_cache_destroy(request_cache);
533 }
534
535 struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
536 {
537         struct ptlrpc_request *req;
538
539         OBD_SLAB_ALLOC_PTR_GFP(req, request_cache, flags);
540         return req;
541 }
542
543 void ptlrpc_request_cache_free(struct ptlrpc_request *req)
544 {
545         OBD_SLAB_FREE_PTR(req, request_cache);
546 }
547
548 /**
549  * Wind down request pool \a pool.
550  * Frees all requests from the pool too
551  */
552 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
553 {
554         struct list_head *l, *tmp;
555         struct ptlrpc_request *req;
556
557         LASSERT(pool != NULL);
558
559         spin_lock(&pool->prp_lock);
560         list_for_each_safe(l, tmp, &pool->prp_req_list) {
561                 req = list_entry(l, struct ptlrpc_request, rq_list);
562                 list_del(&req->rq_list);
563                 LASSERT(req->rq_reqbuf);
564                 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
565                 OBD_FREE_LARGE(req->rq_reqbuf, pool->prp_rq_size);
566                 ptlrpc_request_cache_free(req);
567         }
568         spin_unlock(&pool->prp_lock);
569         OBD_FREE(pool, sizeof(*pool));
570 }
571 EXPORT_SYMBOL(ptlrpc_free_rq_pool);
572
573 /**
574  * Allocates, initializes and adds \a num_rq requests to the pool \a pool
575  */
576 int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
577 {
578         int i;
579         int size = 1;
580
581         while (size < pool->prp_rq_size)
582                 size <<= 1;
583
584         LASSERTF(list_empty(&pool->prp_req_list) ||
585                  size == pool->prp_rq_size,
586                  "Trying to change pool size with nonempty pool from %d to %d bytes\n",
587                  pool->prp_rq_size, size);
588
589         pool->prp_rq_size = size;
590         for (i = 0; i < num_rq; i++) {
591                 struct ptlrpc_request *req;
592                 struct lustre_msg *msg;
593
594                 req = ptlrpc_request_cache_alloc(GFP_NOFS);
595                 if (!req)
596                         return i;
597                 OBD_ALLOC_LARGE(msg, size);
598                 if (!msg) {
599                         ptlrpc_request_cache_free(req);
600                         return i;
601                 }
602                 req->rq_reqbuf = msg;
603                 req->rq_reqbuf_len = size;
604                 req->rq_pool = pool;
605                 spin_lock(&pool->prp_lock);
606                 list_add_tail(&req->rq_list, &pool->prp_req_list);
607                 spin_unlock(&pool->prp_lock);
608         }
609         return num_rq;
610 }
611 EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
612
613 /**
614  * Create and initialize new request pool with given attributes:
615  * \a num_rq - initial number of requests to create for the pool
616  * \a msgsize - maximum message size possible for requests in thid pool
617  * \a populate_pool - function to be called when more requests need to be added
618  *                    to the pool
619  * Returns pointer to newly created pool or NULL on error.
620  */
621 struct ptlrpc_request_pool *
622 ptlrpc_init_rq_pool(int num_rq, int msgsize,
623                     int (*populate_pool)(struct ptlrpc_request_pool *, int))
624 {
625         struct ptlrpc_request_pool *pool;
626
627         OBD_ALLOC(pool, sizeof(struct ptlrpc_request_pool));
628         if (!pool)
629                 return NULL;
630
631         /*
632          * Request next power of two for the allocation, because internally
633          * kernel would do exactly this
634          */
635         spin_lock_init(&pool->prp_lock);
636         INIT_LIST_HEAD(&pool->prp_req_list);
637         pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
638         pool->prp_populate = populate_pool;
639
640         populate_pool(pool, num_rq);
641
642         return pool;
643 }
644 EXPORT_SYMBOL(ptlrpc_init_rq_pool);
645
646 /**
647  * Fetches one request from pool \a pool
648  */
649 static struct ptlrpc_request *
650 ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
651 {
652         struct ptlrpc_request *request;
653         struct lustre_msg *reqbuf;
654
655         if (!pool)
656                 return NULL;
657
658         spin_lock(&pool->prp_lock);
659
660         /*
661          * See if we have anything in a pool, and bail out if nothing,
662          * in writeout path, where this matters, this is safe to do, because
663          * nothing is lost in this case, and when some in-flight requests
664          * complete, this code will be called again.
665          */
666         if (unlikely(list_empty(&pool->prp_req_list))) {
667                 spin_unlock(&pool->prp_lock);
668                 return NULL;
669         }
670
671         request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
672                              rq_list);
673         list_del_init(&request->rq_list);
674         spin_unlock(&pool->prp_lock);
675
676         LASSERT(request->rq_reqbuf);
677         LASSERT(request->rq_pool);
678
679         reqbuf = request->rq_reqbuf;
680         memset(request, 0, sizeof(*request));
681         request->rq_reqbuf = reqbuf;
682         request->rq_reqbuf_len = pool->prp_rq_size;
683         request->rq_pool = pool;
684
685         return request;
686 }
687
688 /**
689  * Returns freed \a request to pool.
690  */
691 static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
692 {
693         struct ptlrpc_request_pool *pool = request->rq_pool;
694
695         spin_lock(&pool->prp_lock);
696         LASSERT(list_empty(&request->rq_list));
697         LASSERT(!request->rq_receiving_reply);
698         list_add_tail(&request->rq_list, &pool->prp_req_list);
699         spin_unlock(&pool->prp_lock);
700 }
701
702 void ptlrpc_add_unreplied(struct ptlrpc_request *req)
703 {
704         struct obd_import *imp = req->rq_import;
705         struct list_head *tmp;
706         struct ptlrpc_request *iter;
707
708         assert_spin_locked(&imp->imp_lock);
709         LASSERT(list_empty(&req->rq_unreplied_list));
710
711         /* unreplied list is sorted by xid in ascending order */
712         list_for_each_prev(tmp, &imp->imp_unreplied_list) {
713                 iter = list_entry(tmp, struct ptlrpc_request,
714                                   rq_unreplied_list);
715
716                 LASSERT(req->rq_xid != iter->rq_xid);
717                 if (req->rq_xid < iter->rq_xid)
718                         continue;
719                 list_add(&req->rq_unreplied_list, &iter->rq_unreplied_list);
720                 return;
721         }
722         list_add(&req->rq_unreplied_list, &imp->imp_unreplied_list);
723 }
724
725 void ptlrpc_assign_next_xid_nolock(struct ptlrpc_request *req)
726 {
727         req->rq_xid = ptlrpc_next_xid();
728         ptlrpc_add_unreplied(req);
729 }
730
731 static inline void ptlrpc_assign_next_xid(struct ptlrpc_request *req)
732 {
733         spin_lock(&req->rq_import->imp_lock);
734         ptlrpc_assign_next_xid_nolock(req);
735         spin_unlock(&req->rq_import->imp_lock);
736 }
737
738 static atomic64_t ptlrpc_last_xid;
739
740 void ptlrpc_reassign_next_xid(struct ptlrpc_request *req)
741 {
742         spin_lock(&req->rq_import->imp_lock);
743         list_del_init(&req->rq_unreplied_list);
744         ptlrpc_assign_next_xid_nolock(req);
745         spin_unlock(&req->rq_import->imp_lock);
746         DEBUG_REQ(D_RPCTRACE, req, "reassign xid");
747 }
748 EXPORT_SYMBOL(ptlrpc_reassign_next_xid);
749
750 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
751                              __u32 version, int opcode, char **bufs,
752                              struct ptlrpc_cli_ctx *ctx)
753 {
754         int count;
755         struct obd_import *imp;
756         __u32 *lengths;
757         int rc;
758
759         ENTRY;
760
761         count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
762         imp = request->rq_import;
763         lengths = request->rq_pill.rc_area[RCL_CLIENT];
764
765         if (ctx) {
766                 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
767         } else {
768                 rc = sptlrpc_req_get_ctx(request);
769                 if (rc)
770                         GOTO(out_free, rc);
771         }
772         sptlrpc_req_set_flavor(request, opcode);
773
774         rc = lustre_pack_request(request, imp->imp_msg_magic, count,
775                                  lengths, bufs);
776         if (rc)
777                 GOTO(out_ctx, rc);
778
779         lustre_msg_add_version(request->rq_reqmsg, version);
780         request->rq_send_state = LUSTRE_IMP_FULL;
781         request->rq_type = PTL_RPC_MSG_REQUEST;
782
783         request->rq_req_cbid.cbid_fn  = request_out_callback;
784         request->rq_req_cbid.cbid_arg = request;
785
786         request->rq_reply_cbid.cbid_fn  = reply_in_callback;
787         request->rq_reply_cbid.cbid_arg = request;
788
789         request->rq_reply_deadline = 0;
790         request->rq_bulk_deadline = 0;
791         request->rq_req_deadline = 0;
792         request->rq_phase = RQ_PHASE_NEW;
793         request->rq_next_phase = RQ_PHASE_UNDEFINED;
794
795         request->rq_request_portal = imp->imp_client->cli_request_portal;
796         request->rq_reply_portal = imp->imp_client->cli_reply_portal;
797
798         ptlrpc_at_set_req_timeout(request);
799
800         lustre_msg_set_opc(request->rq_reqmsg, opcode);
801
802         /* Let's setup deadline for req/reply/bulk unlink for opcode. */
803         if (cfs_fail_val == opcode) {
804                 time64_t *fail_t = NULL, *fail2_t = NULL;
805
806                 if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
807                         fail_t = &request->rq_bulk_deadline;
808                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
809                         fail_t = &request->rq_reply_deadline;
810                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK)) {
811                         fail_t = &request->rq_req_deadline;
812                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BOTH_UNLINK)) {
813                         fail_t = &request->rq_reply_deadline;
814                         fail2_t = &request->rq_bulk_deadline;
815                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_ROUND_XID)) {
816                         time64_t now = ktime_get_real_seconds();
817                         u64 xid = ((u64)now >> 4) << 24;
818
819                         atomic64_set(&ptlrpc_last_xid, xid);
820                 }
821
822                 if (fail_t) {
823                         *fail_t = ktime_get_real_seconds() + LONG_UNLINK;
824
825                         if (fail2_t)
826                                 *fail2_t = ktime_get_real_seconds() +
827                                            LONG_UNLINK;
828
829                         /*
830                          * The RPC is infected, let the test to change the
831                          * fail_loc
832                          */
833                         msleep(4 * MSEC_PER_SEC);
834                 }
835         }
836         ptlrpc_assign_next_xid(request);
837
838         RETURN(0);
839
840 out_ctx:
841         LASSERT(!request->rq_pool);
842         sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
843 out_free:
844         class_import_put(imp);
845
846         return rc;
847 }
848 EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
849
850 /**
851  * Pack request buffers for network transfer, performing necessary encryption
852  * steps if necessary.
853  */
854 int ptlrpc_request_pack(struct ptlrpc_request *request,
855                         __u32 version, int opcode)
856 {
857         return ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
858 }
859 EXPORT_SYMBOL(ptlrpc_request_pack);
860
861 /**
862  * Helper function to allocate new request on import \a imp
863  * and possibly using existing request from pool \a pool if provided.
864  * Returns allocated request structure with import field filled or
865  * NULL on error.
866  */
867 static inline
868 struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
869                                               struct ptlrpc_request_pool *pool)
870 {
871         struct ptlrpc_request *request = NULL;
872
873         request = ptlrpc_request_cache_alloc(GFP_NOFS);
874
875         if (!request && pool)
876                 request = ptlrpc_prep_req_from_pool(pool);
877
878         if (request) {
879                 ptlrpc_cli_req_init(request);
880
881                 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
882                 LASSERT(imp != LP_POISON);
883                 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p\n",
884                          imp->imp_client);
885                 LASSERT(imp->imp_client != LP_POISON);
886
887                 request->rq_import = class_import_get(imp);
888         } else {
889                 CERROR("request allocation out of memory\n");
890         }
891
892         return request;
893 }
894
895 /**
896  * Helper function for creating a request.
897  * Calls __ptlrpc_request_alloc to allocate new request sturcture and inits
898  * buffer structures according to capsule template \a format.
899  * Returns allocated request structure pointer or NULL on error.
900  */
901 static struct ptlrpc_request *
902 ptlrpc_request_alloc_internal(struct obd_import *imp,
903                               struct ptlrpc_request_pool *pool,
904                               const struct req_format *format)
905 {
906         struct ptlrpc_request *request;
907
908         request = __ptlrpc_request_alloc(imp, pool);
909         if (!request)
910                 return NULL;
911
912         /*
913          * initiate connection if needed when the import has been
914          * referenced by the new request to avoid races with disconnect
915          */
916         if (unlikely(imp->imp_state == LUSTRE_IMP_IDLE)) {
917                 int rc;
918
919                 CDEBUG_LIMIT(imp->imp_idle_debug,
920                              "%s: reconnect after %llds idle\n",
921                              imp->imp_obd->obd_name, ktime_get_real_seconds() -
922                                                      imp->imp_last_reply_time);
923                 spin_lock(&imp->imp_lock);
924                 if (imp->imp_state == LUSTRE_IMP_IDLE) {
925                         imp->imp_generation++;
926                         imp->imp_initiated_at = imp->imp_generation;
927                         imp->imp_state = LUSTRE_IMP_NEW;
928
929                         /* connect_import_locked releases imp_lock */
930                         rc = ptlrpc_connect_import_locked(imp);
931                         if (rc < 0) {
932                                 ptlrpc_request_free(request);
933                                 return NULL;
934                         }
935                         ptlrpc_pinger_add_import(imp);
936                 } else {
937                         spin_unlock(&imp->imp_lock);
938                 }
939         }
940
941         req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
942         req_capsule_set(&request->rq_pill, format);
943         return request;
944 }
945
946 /**
947  * Allocate new request structure for import \a imp and initialize its
948  * buffer structure according to capsule template \a format.
949  */
950 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
951                                             const struct req_format *format)
952 {
953         return ptlrpc_request_alloc_internal(imp, NULL, format);
954 }
955 EXPORT_SYMBOL(ptlrpc_request_alloc);
956
957 /**
958  * Allocate new request structure for import \a imp from pool \a pool and
959  * initialize its buffer structure according to capsule template \a format.
960  */
961 struct ptlrpc_request *
962 ptlrpc_request_alloc_pool(struct obd_import *imp,
963                           struct ptlrpc_request_pool *pool,
964                           const struct req_format *format)
965 {
966         return ptlrpc_request_alloc_internal(imp, pool, format);
967 }
968 EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
969
970 /**
971  * For requests not from pool, free memory of the request structure.
972  * For requests obtained from a pool earlier, return request back to pool.
973  */
974 void ptlrpc_request_free(struct ptlrpc_request *request)
975 {
976         if (request->rq_pool)
977                 __ptlrpc_free_req_to_pool(request);
978         else
979                 ptlrpc_request_cache_free(request);
980 }
981 EXPORT_SYMBOL(ptlrpc_request_free);
982
983 /**
984  * Allocate new request for operatione \a opcode and immediatelly pack it for
985  * network transfer.
986  * Only used for simple requests like OBD_PING where the only important
987  * part of the request is operation itself.
988  * Returns allocated request or NULL on error.
989  */
990 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
991                                                  const struct req_format *format,
992                                                  __u32 version, int opcode)
993 {
994         struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
995         int rc;
996
997         if (req) {
998                 rc = ptlrpc_request_pack(req, version, opcode);
999                 if (rc) {
1000                         ptlrpc_request_free(req);
1001                         req = NULL;
1002                 }
1003         }
1004         return req;
1005 }
1006 EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
1007
1008 /**
1009  * Allocate and initialize new request set structure on the current CPT.
1010  * Returns a pointer to the newly allocated set structure or NULL on error.
1011  */
1012 struct ptlrpc_request_set *ptlrpc_prep_set(void)
1013 {
1014         struct ptlrpc_request_set *set;
1015         int cpt;
1016
1017         ENTRY;
1018         cpt = cfs_cpt_current(cfs_cpt_table, 0);
1019         OBD_CPT_ALLOC(set, cfs_cpt_table, cpt, sizeof(*set));
1020         if (!set)
1021                 RETURN(NULL);
1022         atomic_set(&set->set_refcount, 1);
1023         INIT_LIST_HEAD(&set->set_requests);
1024         init_waitqueue_head(&set->set_waitq);
1025         atomic_set(&set->set_new_count, 0);
1026         atomic_set(&set->set_remaining, 0);
1027         spin_lock_init(&set->set_new_req_lock);
1028         INIT_LIST_HEAD(&set->set_new_requests);
1029         set->set_max_inflight = UINT_MAX;
1030         set->set_producer     = NULL;
1031         set->set_producer_arg = NULL;
1032         set->set_rc           = 0;
1033
1034         RETURN(set);
1035 }
1036 EXPORT_SYMBOL(ptlrpc_prep_set);
1037
1038 /**
1039  * Allocate and initialize new request set structure with flow control
1040  * extension. This extension allows to control the number of requests in-flight
1041  * for the whole set. A callback function to generate requests must be provided
1042  * and the request set will keep the number of requests sent over the wire to
1043  * @max_inflight.
1044  * Returns a pointer to the newly allocated set structure or NULL on error.
1045  */
1046 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
1047                                              void *arg)
1048
1049 {
1050         struct ptlrpc_request_set *set;
1051
1052         set = ptlrpc_prep_set();
1053         if (!set)
1054                 RETURN(NULL);
1055
1056         set->set_max_inflight  = max;
1057         set->set_producer      = func;
1058         set->set_producer_arg  = arg;
1059
1060         RETURN(set);
1061 }
1062
1063 /**
1064  * Wind down and free request set structure previously allocated with
1065  * ptlrpc_prep_set.
1066  * Ensures that all requests on the set have completed and removes
1067  * all requests from the request list in a set.
1068  * If any unsent request happen to be on the list, pretends that they got
1069  * an error in flight and calls their completion handler.
1070  */
1071 void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
1072 {
1073         struct list_head *tmp;
1074         struct list_head *next;
1075         int expected_phase;
1076         int n = 0;
1077
1078         ENTRY;
1079
1080         /* Requests on the set should either all be completed, or all be new */
1081         expected_phase = (atomic_read(&set->set_remaining) == 0) ?
1082                          RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
1083         list_for_each(tmp, &set->set_requests) {
1084                 struct ptlrpc_request *req =
1085                         list_entry(tmp, struct ptlrpc_request,
1086                                    rq_set_chain);
1087
1088                 LASSERT(req->rq_phase == expected_phase);
1089                 n++;
1090         }
1091
1092         LASSERTF(atomic_read(&set->set_remaining) == 0 ||
1093                  atomic_read(&set->set_remaining) == n, "%d / %d\n",
1094                  atomic_read(&set->set_remaining), n);
1095
1096         list_for_each_safe(tmp, next, &set->set_requests) {
1097                 struct ptlrpc_request *req =
1098                         list_entry(tmp, struct ptlrpc_request,
1099                                    rq_set_chain);
1100                 list_del_init(&req->rq_set_chain);
1101
1102                 LASSERT(req->rq_phase == expected_phase);
1103
1104                 if (req->rq_phase == RQ_PHASE_NEW) {
1105                         ptlrpc_req_interpret(NULL, req, -EBADR);
1106                         atomic_dec(&set->set_remaining);
1107                 }
1108
1109                 spin_lock(&req->rq_lock);
1110                 req->rq_set = NULL;
1111                 req->rq_invalid_rqset = 0;
1112                 spin_unlock(&req->rq_lock);
1113
1114                 ptlrpc_req_finished(req);
1115         }
1116
1117         LASSERT(atomic_read(&set->set_remaining) == 0);
1118
1119         ptlrpc_reqset_put(set);
1120         EXIT;
1121 }
1122 EXPORT_SYMBOL(ptlrpc_set_destroy);
1123
1124 /**
1125  * Add a new request to the general purpose request set.
1126  * Assumes request reference from the caller.
1127  */
1128 void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
1129                         struct ptlrpc_request *req)
1130 {
1131         LASSERT(req->rq_import->imp_state != LUSTRE_IMP_IDLE);
1132         LASSERT(list_empty(&req->rq_set_chain));
1133
1134         if (req->rq_allow_intr)
1135                 set->set_allow_intr = 1;
1136
1137         /* The set takes over the caller's request reference */
1138         list_add_tail(&req->rq_set_chain, &set->set_requests);
1139         req->rq_set = set;
1140         atomic_inc(&set->set_remaining);
1141         req->rq_queued_time = ktime_get_seconds();
1142
1143         if (req->rq_reqmsg)
1144                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
1145
1146         if (set->set_producer)
1147                 /*
1148                  * If the request set has a producer callback, the RPC must be
1149                  * sent straight away
1150                  */
1151                 ptlrpc_send_new_req(req);
1152 }
1153 EXPORT_SYMBOL(ptlrpc_set_add_req);
1154
1155 /**
1156  * Add a request to a request with dedicated server thread
1157  * and wake the thread to make any necessary processing.
1158  * Currently only used for ptlrpcd.
1159  */
1160 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
1161                             struct ptlrpc_request *req)
1162 {
1163         struct ptlrpc_request_set *set = pc->pc_set;
1164         int count, i;
1165
1166         LASSERT(req->rq_set == NULL);
1167         LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
1168
1169         spin_lock(&set->set_new_req_lock);
1170         /*
1171          * The set takes over the caller's request reference.
1172          */
1173         req->rq_set = set;
1174         req->rq_queued_time = ktime_get_seconds();
1175         list_add_tail(&req->rq_set_chain, &set->set_new_requests);
1176         count = atomic_inc_return(&set->set_new_count);
1177         spin_unlock(&set->set_new_req_lock);
1178
1179         /* Only need to call wakeup once for the first entry. */
1180         if (count == 1) {
1181                 wake_up(&set->set_waitq);
1182
1183                 /*
1184                  * XXX: It maybe unnecessary to wakeup all the partners. But to
1185                  *      guarantee the async RPC can be processed ASAP, we have
1186                  *      no other better choice. It maybe fixed in future.
1187                  */
1188                 for (i = 0; i < pc->pc_npartners; i++)
1189                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
1190         }
1191 }
1192
1193 /**
1194  * Based on the current state of the import, determine if the request
1195  * can be sent, is an error, or should be delayed.
1196  *
1197  * Returns true if this request should be delayed. If false, and
1198  * *status is set, then the request can not be sent and *status is the
1199  * error code.  If false and status is 0, then request can be sent.
1200  *
1201  * The imp->imp_lock must be held.
1202  */
1203 static int ptlrpc_import_delay_req(struct obd_import *imp,
1204                                    struct ptlrpc_request *req, int *status)
1205 {
1206         int delay = 0;
1207
1208         ENTRY;
1209         LASSERT(status);
1210         *status = 0;
1211
1212         if (req->rq_ctx_init || req->rq_ctx_fini) {
1213                 /* always allow ctx init/fini rpc go through */
1214         } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1215                 DEBUG_REQ(D_ERROR, req, "Uninitialized import");
1216                 *status = -EIO;
1217         } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1218                 unsigned int opc = lustre_msg_get_opc(req->rq_reqmsg);
1219
1220                 /*
1221                  * pings or MDS-equivalent STATFS may safely
1222                  * race with umount
1223                  */
1224                 DEBUG_REQ((opc == OBD_PING || opc == OST_STATFS) ?
1225                           D_HA : D_ERROR, req, "IMP_CLOSED");
1226                 *status = -EIO;
1227         } else if (ptlrpc_send_limit_expired(req)) {
1228                 /* probably doesn't need to be a D_ERROR afterinitial testing */
1229                 DEBUG_REQ(D_HA, req, "send limit expired");
1230                 *status = -ETIMEDOUT;
1231         } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1232                    imp->imp_state == LUSTRE_IMP_CONNECTING) {
1233                 ;/* allow CONNECT even if import is invalid */
1234                 if (atomic_read(&imp->imp_inval_count) != 0) {
1235                         DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1236                         *status = -EIO;
1237                 }
1238         } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1239                 if (!imp->imp_deactive)
1240                         DEBUG_REQ(D_NET, req, "IMP_INVALID");
1241                 *status = -ESHUTDOWN; /* b=12940 */
1242         } else if (req->rq_import_generation != imp->imp_generation) {
1243                 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1244                 *status = -EIO;
1245         } else if (req->rq_send_state != imp->imp_state) {
1246                 /* invalidate in progress - any requests should be drop */
1247                 if (atomic_read(&imp->imp_inval_count) != 0) {
1248                         DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1249                         *status = -EIO;
1250                 } else if (req->rq_no_delay &&
1251                            imp->imp_generation != imp->imp_initiated_at) {
1252                         /* ignore nodelay for requests initiating connections */
1253                         *status = -EWOULDBLOCK;
1254                 } else if (req->rq_allow_replay &&
1255                            (imp->imp_state == LUSTRE_IMP_REPLAY ||
1256                             imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1257                             imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1258                             imp->imp_state == LUSTRE_IMP_RECOVER)) {
1259                         DEBUG_REQ(D_HA, req, "allow during recovery");
1260                 } else {
1261                         delay = 1;
1262                 }
1263         }
1264
1265         RETURN(delay);
1266 }
1267
1268 /**
1269  * Decide if the error message should be printed to the console or not.
1270  * Makes its decision based on request type, status, and failure frequency.
1271  *
1272  * \param[in] req  request that failed and may need a console message
1273  *
1274  * \retval false if no message should be printed
1275  * \retval true  if console message should be printed
1276  */
1277 static bool ptlrpc_console_allow(struct ptlrpc_request *req, __u32 opc, int err)
1278 {
1279         LASSERT(req->rq_reqmsg != NULL);
1280
1281         /* Suppress particular reconnect errors which are to be expected. */
1282         if (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT) {
1283                 /* Suppress timed out reconnect requests */
1284                 if (lustre_handle_is_used(&req->rq_import->imp_remote_handle) ||
1285                     req->rq_timedout)
1286                         return false;
1287
1288                 /*
1289                  * Suppress most unavailable/again reconnect requests, but
1290                  * print occasionally so it is clear client is trying to
1291                  * connect to a server where no target is running.
1292                  */
1293                 if ((err == -ENODEV || err == -EAGAIN) &&
1294                     req->rq_import->imp_conn_cnt % 30 != 20)
1295                         return false;
1296         }
1297
1298         if (opc == LDLM_ENQUEUE && err == -EAGAIN)
1299                 /* -EAGAIN is normal when using POSIX flocks */
1300                 return false;
1301
1302         if (opc == OBD_PING && (err == -ENODEV || err == -ENOTCONN) &&
1303             (req->rq_xid & 0xf) != 10)
1304                 /* Suppress most ping requests, they may fail occasionally */
1305                 return false;
1306
1307         return true;
1308 }
1309
1310 /**
1311  * Check request processing status.
1312  * Returns the status.
1313  */
1314 static int ptlrpc_check_status(struct ptlrpc_request *req)
1315 {
1316         int rc;
1317
1318         ENTRY;
1319         rc = lustre_msg_get_status(req->rq_repmsg);
1320         if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1321                 struct obd_import *imp = req->rq_import;
1322                 lnet_nid_t nid = imp->imp_connection->c_peer.nid;
1323                 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1324
1325                 if (ptlrpc_console_allow(req, opc, rc))
1326                         LCONSOLE_ERROR_MSG(0x11,
1327                                            "%s: operation %s to node %s failed: rc = %d\n",
1328                                            imp->imp_obd->obd_name,
1329                                            ll_opcode2str(opc),
1330                                            libcfs_nid2str(nid), rc);
1331                 RETURN(rc < 0 ? rc : -EINVAL);
1332         }
1333
1334         if (rc)
1335                 DEBUG_REQ(D_INFO, req, "check status: rc = %d", rc);
1336
1337         RETURN(rc);
1338 }
1339
1340 /**
1341  * save pre-versions of objects into request for replay.
1342  * Versions are obtained from server reply.
1343  * used for VBR.
1344  */
1345 static void ptlrpc_save_versions(struct ptlrpc_request *req)
1346 {
1347         struct lustre_msg *repmsg = req->rq_repmsg;
1348         struct lustre_msg *reqmsg = req->rq_reqmsg;
1349         __u64 *versions = lustre_msg_get_versions(repmsg);
1350
1351         ENTRY;
1352         if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1353                 return;
1354
1355         LASSERT(versions);
1356         lustre_msg_set_versions(reqmsg, versions);
1357         CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
1358                versions[0], versions[1]);
1359
1360         EXIT;
1361 }
1362
1363 __u64 ptlrpc_known_replied_xid(struct obd_import *imp)
1364 {
1365         struct ptlrpc_request *req;
1366
1367         assert_spin_locked(&imp->imp_lock);
1368         if (list_empty(&imp->imp_unreplied_list))
1369                 return 0;
1370
1371         req = list_entry(imp->imp_unreplied_list.next, struct ptlrpc_request,
1372                          rq_unreplied_list);
1373         LASSERTF(req->rq_xid >= 1, "XID:%llu\n", req->rq_xid);
1374
1375         if (imp->imp_known_replied_xid < req->rq_xid - 1)
1376                 imp->imp_known_replied_xid = req->rq_xid - 1;
1377
1378         return req->rq_xid - 1;
1379 }
1380
1381 /**
1382  * Callback function called when client receives RPC reply for \a req.
1383  * Returns 0 on success or error code.
1384  * The return alue would be assigned to req->rq_status by the caller
1385  * as request processing status.
1386  * This function also decides if the request needs to be saved for later replay.
1387  */
1388 static int after_reply(struct ptlrpc_request *req)
1389 {
1390         struct obd_import *imp = req->rq_import;
1391         struct obd_device *obd = req->rq_import->imp_obd;
1392         ktime_t work_start;
1393         u64 committed;
1394         s64 timediff;
1395         int rc;
1396
1397         ENTRY;
1398         LASSERT(obd != NULL);
1399         /* repbuf must be unlinked */
1400         LASSERT(!req->rq_receiving_reply && req->rq_reply_unlinked);
1401
1402         if (req->rq_reply_truncated) {
1403                 if (ptlrpc_no_resend(req)) {
1404                         DEBUG_REQ(D_ERROR, req,
1405                                   "reply buffer overflow, expected=%d, actual size=%d",
1406                                   req->rq_nob_received, req->rq_repbuf_len);
1407                         RETURN(-EOVERFLOW);
1408                 }
1409
1410                 sptlrpc_cli_free_repbuf(req);
1411                 /*
1412                  * Pass the required reply buffer size (include
1413                  * space for early reply).
1414                  * NB: no need to roundup because alloc_repbuf
1415                  * will roundup it
1416                  */
1417                 req->rq_replen = req->rq_nob_received;
1418                 req->rq_nob_received = 0;
1419                 spin_lock(&req->rq_lock);
1420                 req->rq_resend       = 1;
1421                 spin_unlock(&req->rq_lock);
1422                 RETURN(0);
1423         }
1424
1425         work_start = ktime_get_real();
1426         timediff = ktime_us_delta(work_start, req->rq_sent_ns);
1427
1428         /*
1429          * NB Until this point, the whole of the incoming message,
1430          * including buflens, status etc is in the sender's byte order.
1431          */
1432         rc = sptlrpc_cli_unwrap_reply(req);
1433         if (rc) {
1434                 DEBUG_REQ(D_ERROR, req, "unwrap reply failed: rc = %d", rc);
1435                 RETURN(rc);
1436         }
1437
1438         /*
1439          * Security layer unwrap might ask resend this request.
1440          */
1441         if (req->rq_resend)
1442                 RETURN(0);
1443
1444         rc = unpack_reply(req);
1445         if (rc)
1446                 RETURN(rc);
1447
1448         /* retry indefinitely on EINPROGRESS */
1449         if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1450             ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
1451                 time64_t now = ktime_get_real_seconds();
1452
1453                 DEBUG_REQ((req->rq_nr_resend % 8 == 1 ? D_WARNING : 0) |
1454                           D_RPCTRACE, req, "resending request on EINPROGRESS");
1455                 spin_lock(&req->rq_lock);
1456                 req->rq_resend = 1;
1457                 spin_unlock(&req->rq_lock);
1458                 req->rq_nr_resend++;
1459
1460                 /* Readjust the timeout for current conditions */
1461                 ptlrpc_at_set_req_timeout(req);
1462                 /*
1463                  * delay resend to give a chance to the server to get ready.
1464                  * The delay is increased by 1s on every resend and is capped to
1465                  * the current request timeout (i.e. obd_timeout if AT is off,
1466                  * or AT service time x 125% + 5s, see at_est2timeout)
1467                  */
1468                 if (req->rq_nr_resend > req->rq_timeout)
1469                         req->rq_sent = now + req->rq_timeout;
1470                 else
1471                         req->rq_sent = now + req->rq_nr_resend;
1472
1473                 /* Resend for EINPROGRESS will use a new XID */
1474                 spin_lock(&imp->imp_lock);
1475                 list_del_init(&req->rq_unreplied_list);
1476                 spin_unlock(&imp->imp_lock);
1477
1478                 RETURN(0);
1479         }
1480
1481         if (obd->obd_svc_stats) {
1482                 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1483                                     timediff);
1484                 ptlrpc_lprocfs_rpc_sent(req, timediff);
1485         }
1486
1487         if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1488             lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1489                 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1490                           lustre_msg_get_type(req->rq_repmsg));
1491                 RETURN(-EPROTO);
1492         }
1493
1494         if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1495                 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1496         ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1497         ptlrpc_at_adj_net_latency(req,
1498                                   lustre_msg_get_service_time(req->rq_repmsg));
1499
1500         rc = ptlrpc_check_status(req);
1501
1502         if (rc) {
1503                 /*
1504                  * Either we've been evicted, or the server has failed for
1505                  * some reason. Try to reconnect, and if that fails, punt to
1506                  * the upcall.
1507                  */
1508                 if (ptlrpc_recoverable_error(rc)) {
1509                         if (req->rq_send_state != LUSTRE_IMP_FULL ||
1510                             imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
1511                                 RETURN(rc);
1512                         }
1513                         ptlrpc_request_handle_notconn(req);
1514                         RETURN(rc);
1515                 }
1516         } else {
1517                 /*
1518                  * Let's look if server sent slv. Do it only for RPC with
1519                  * rc == 0.
1520                  */
1521                 ldlm_cli_update_pool(req);
1522         }
1523
1524         /*
1525          * Store transno in reqmsg for replay.
1526          */
1527         if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1528                 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1529                 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1530         }
1531
1532         if (imp->imp_replayable) {
1533                 spin_lock(&imp->imp_lock);
1534                 /*
1535                  * No point in adding already-committed requests to the replay
1536                  * list, we will just remove them immediately. b=9829
1537                  */
1538                 if (req->rq_transno != 0 &&
1539                     (req->rq_transno >
1540                      lustre_msg_get_last_committed(req->rq_repmsg) ||
1541                      req->rq_replay)) {
1542                         /** version recovery */
1543                         ptlrpc_save_versions(req);
1544                         ptlrpc_retain_replayable_request(req, imp);
1545                 } else if (req->rq_commit_cb &&
1546                            list_empty(&req->rq_replay_list)) {
1547                         /*
1548                          * NB: don't call rq_commit_cb if it's already on
1549                          * rq_replay_list, ptlrpc_free_committed() will call
1550                          * it later, see LU-3618 for details
1551                          */
1552                         spin_unlock(&imp->imp_lock);
1553                         req->rq_commit_cb(req);
1554                         spin_lock(&imp->imp_lock);
1555                 }
1556
1557                 /*
1558                  * Replay-enabled imports return commit-status information.
1559                  */
1560                 committed = lustre_msg_get_last_committed(req->rq_repmsg);
1561                 if (likely(committed > imp->imp_peer_committed_transno))
1562                         imp->imp_peer_committed_transno = committed;
1563
1564                 ptlrpc_free_committed(imp);
1565
1566                 if (!list_empty(&imp->imp_replay_list)) {
1567                         struct ptlrpc_request *last;
1568
1569                         last = list_entry(imp->imp_replay_list.prev,
1570                                           struct ptlrpc_request,
1571                                           rq_replay_list);
1572                         /*
1573                          * Requests with rq_replay stay on the list even if no
1574                          * commit is expected.
1575                          */
1576                         if (last->rq_transno > imp->imp_peer_committed_transno)
1577                                 ptlrpc_pinger_commit_expected(imp);
1578                 }
1579
1580                 spin_unlock(&imp->imp_lock);
1581         }
1582
1583         RETURN(rc);
1584 }
1585
1586 /**
1587  * Helper function to send request \a req over the network for the first time
1588  * Also adjusts request phase.
1589  * Returns 0 on success or error code.
1590  */
1591 static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1592 {
1593         struct obd_import *imp = req->rq_import;
1594         __u64 min_xid = 0;
1595         int rc;
1596
1597         ENTRY;
1598         LASSERT(req->rq_phase == RQ_PHASE_NEW);
1599
1600         /* do not try to go further if there is not enough memory in enc_pool */
1601         if (req->rq_sent && req->rq_bulk)
1602                 if (req->rq_bulk->bd_iov_count > get_free_pages_in_pool() &&
1603                     pool_is_at_full_capacity())
1604                         RETURN(-ENOMEM);
1605
1606         if (req->rq_sent && (req->rq_sent > ktime_get_real_seconds()) &&
1607             (!req->rq_generation_set ||
1608              req->rq_import_generation == imp->imp_generation))
1609                 RETURN(0);
1610
1611         ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1612
1613         spin_lock(&imp->imp_lock);
1614
1615         LASSERT(req->rq_xid != 0);
1616         LASSERT(!list_empty(&req->rq_unreplied_list));
1617
1618         if (!req->rq_generation_set)
1619                 req->rq_import_generation = imp->imp_generation;
1620
1621         if (ptlrpc_import_delay_req(imp, req, &rc)) {
1622                 spin_lock(&req->rq_lock);
1623                 req->rq_waiting = 1;
1624                 spin_unlock(&req->rq_lock);
1625
1626                 DEBUG_REQ(D_HA, req, "req waiting for recovery: (%s != %s)",
1627                           ptlrpc_import_state_name(req->rq_send_state),
1628                           ptlrpc_import_state_name(imp->imp_state));
1629                 LASSERT(list_empty(&req->rq_list));
1630                 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1631                 atomic_inc(&req->rq_import->imp_inflight);
1632                 spin_unlock(&imp->imp_lock);
1633                 RETURN(0);
1634         }
1635
1636         if (rc != 0) {
1637                 spin_unlock(&imp->imp_lock);
1638                 req->rq_status = rc;
1639                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1640                 RETURN(rc);
1641         }
1642
1643         LASSERT(list_empty(&req->rq_list));
1644         list_add_tail(&req->rq_list, &imp->imp_sending_list);
1645         atomic_inc(&req->rq_import->imp_inflight);
1646
1647         /*
1648          * find the known replied XID from the unreplied list, CONNECT
1649          * and DISCONNECT requests are skipped to make the sanity check
1650          * on server side happy. see process_req_last_xid().
1651          *
1652          * For CONNECT: Because replay requests have lower XID, it'll
1653          * break the sanity check if CONNECT bump the exp_last_xid on
1654          * server.
1655          *
1656          * For DISCONNECT: Since client will abort inflight RPC before
1657          * sending DISCONNECT, DISCONNECT may carry an XID which higher
1658          * than the inflight RPC.
1659          */
1660         if (!ptlrpc_req_is_connect(req) && !ptlrpc_req_is_disconnect(req))
1661                 min_xid = ptlrpc_known_replied_xid(imp);
1662         spin_unlock(&imp->imp_lock);
1663
1664         lustre_msg_set_last_xid(req->rq_reqmsg, min_xid);
1665
1666         lustre_msg_set_status(req->rq_reqmsg, current_pid());
1667
1668         rc = sptlrpc_req_refresh_ctx(req, -1);
1669         if (rc) {
1670                 if (req->rq_err) {
1671                         req->rq_status = rc;
1672                         RETURN(1);
1673                 } else {
1674                         spin_lock(&req->rq_lock);
1675                         req->rq_wait_ctx = 1;
1676                         spin_unlock(&req->rq_lock);
1677                         RETURN(0);
1678                 }
1679         }
1680
1681         CDEBUG(D_RPCTRACE,
1682                "Sending RPC req@%p pname:cluuid:pid:xid:nid:opc:job %s:%s:%d:%llu:%s:%d:%s\n",
1683                req, current_comm(),
1684                imp->imp_obd->obd_uuid.uuid,
1685                lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1686                obd_import_nid2str(imp), lustre_msg_get_opc(req->rq_reqmsg),
1687                lustre_msg_get_jobid(req->rq_reqmsg) ?: "");
1688
1689         rc = ptl_send_rpc(req, 0);
1690         if (rc == -ENOMEM) {
1691                 spin_lock(&imp->imp_lock);
1692                 if (!list_empty(&req->rq_list)) {
1693                         list_del_init(&req->rq_list);
1694                         atomic_dec(&req->rq_import->imp_inflight);
1695                 }
1696                 spin_unlock(&imp->imp_lock);
1697                 ptlrpc_rqphase_move(req, RQ_PHASE_NEW);
1698                 RETURN(rc);
1699         }
1700         if (rc) {
1701                 DEBUG_REQ(D_HA, req, "send failed, expect timeout: rc = %d",
1702                           rc);
1703                 spin_lock(&req->rq_lock);
1704                 req->rq_net_err = 1;
1705                 spin_unlock(&req->rq_lock);
1706                 RETURN(rc);
1707         }
1708         RETURN(0);
1709 }
1710
1711 static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1712 {
1713         int remaining, rc;
1714
1715         ENTRY;
1716         LASSERT(set->set_producer != NULL);
1717
1718         remaining = atomic_read(&set->set_remaining);
1719
1720         /*
1721          * populate the ->set_requests list with requests until we
1722          * reach the maximum number of RPCs in flight for this set
1723          */
1724         while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1725                 rc = set->set_producer(set, set->set_producer_arg);
1726                 if (rc == -ENOENT) {
1727                         /* no more RPC to produce */
1728                         set->set_producer     = NULL;
1729                         set->set_producer_arg = NULL;
1730                         RETURN(0);
1731                 }
1732         }
1733
1734         RETURN((atomic_read(&set->set_remaining) - remaining));
1735 }
1736
1737 /**
1738  * this sends any unsent RPCs in \a set and returns 1 if all are sent
1739  * and no more replies are expected.
1740  * (it is possible to get less replies than requests sent e.g. due to timed out
1741  * requests or requests that we had trouble to send out)
1742  *
1743  * NOTE: This function contains a potential schedule point (cond_resched()).
1744  */
1745 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1746 {
1747         struct list_head *tmp, *next;
1748         struct list_head  comp_reqs;
1749         int force_timer_recalc = 0;
1750
1751         ENTRY;
1752         if (atomic_read(&set->set_remaining) == 0)
1753                 RETURN(1);
1754
1755         INIT_LIST_HEAD(&comp_reqs);
1756         list_for_each_safe(tmp, next, &set->set_requests) {
1757                 struct ptlrpc_request *req =
1758                         list_entry(tmp, struct ptlrpc_request,
1759                                    rq_set_chain);
1760                 struct obd_import *imp = req->rq_import;
1761                 int unregistered = 0;
1762                 int async = 1;
1763                 int rc = 0;
1764
1765                 if (req->rq_phase == RQ_PHASE_COMPLETE) {
1766                         list_move_tail(&req->rq_set_chain, &comp_reqs);
1767                         continue;
1768                 }
1769
1770                 /*
1771                  * This schedule point is mainly for the ptlrpcd caller of this
1772                  * function.  Most ptlrpc sets are not long-lived and unbounded
1773                  * in length, but at the least the set used by the ptlrpcd is.
1774                  * Since the processing time is unbounded, we need to insert an
1775                  * explicit schedule point to make the thread well-behaved.
1776                  */
1777                 cond_resched();
1778
1779                 /*
1780                  * If the caller requires to allow to be interpreted by force
1781                  * and it has really been interpreted, then move the request
1782                  * to RQ_PHASE_INTERPRET phase in spite of what the current
1783                  * phase is.
1784                  */
1785                 if (unlikely(req->rq_allow_intr && req->rq_intr)) {
1786                         req->rq_status = -EINTR;
1787                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1788
1789                         /*
1790                          * Since it is interpreted and we have to wait for
1791                          * the reply to be unlinked, then use sync mode.
1792                          */
1793                         async = 0;
1794
1795                         GOTO(interpret, req->rq_status);
1796                 }
1797
1798                 if (req->rq_phase == RQ_PHASE_NEW && ptlrpc_send_new_req(req))
1799                         force_timer_recalc = 1;
1800
1801                 /* delayed send - skip */
1802                 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1803                         continue;
1804
1805                 /* delayed resend - skip */
1806                 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
1807                     req->rq_sent > ktime_get_real_seconds())
1808                         continue;
1809
1810                 if (!(req->rq_phase == RQ_PHASE_RPC ||
1811                       req->rq_phase == RQ_PHASE_BULK ||
1812                       req->rq_phase == RQ_PHASE_INTERPRET ||
1813                       req->rq_phase == RQ_PHASE_UNREG_RPC ||
1814                       req->rq_phase == RQ_PHASE_UNREG_BULK)) {
1815                         DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1816                         LBUG();
1817                 }
1818
1819                 if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
1820                     req->rq_phase == RQ_PHASE_UNREG_BULK) {
1821                         LASSERT(req->rq_next_phase != req->rq_phase);
1822                         LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1823
1824                         if (req->rq_req_deadline &&
1825                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK))
1826                                 req->rq_req_deadline = 0;
1827                         if (req->rq_reply_deadline &&
1828                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK))
1829                                 req->rq_reply_deadline = 0;
1830                         if (req->rq_bulk_deadline &&
1831                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK))
1832                                 req->rq_bulk_deadline = 0;
1833
1834                         /*
1835                          * Skip processing until reply is unlinked. We
1836                          * can't return to pool before that and we can't
1837                          * call interpret before that. We need to make
1838                          * sure that all rdma transfers finished and will
1839                          * not corrupt any data.
1840                          */
1841                         if (req->rq_phase == RQ_PHASE_UNREG_RPC &&
1842                             ptlrpc_client_recv_or_unlink(req))
1843                                 continue;
1844                         if (req->rq_phase == RQ_PHASE_UNREG_BULK &&
1845                             ptlrpc_client_bulk_active(req))
1846                                 continue;
1847
1848                         /*
1849                          * Turn fail_loc off to prevent it from looping
1850                          * forever.
1851                          */
1852                         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1853                                 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1854                                                      OBD_FAIL_ONCE);
1855                         }
1856                         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1857                                 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1858                                                      OBD_FAIL_ONCE);
1859                         }
1860
1861                         /*
1862                          * Move to next phase if reply was successfully
1863                          * unlinked.
1864                          */
1865                         ptlrpc_rqphase_move(req, req->rq_next_phase);
1866                 }
1867
1868                 if (req->rq_phase == RQ_PHASE_INTERPRET)
1869                         GOTO(interpret, req->rq_status);
1870
1871                 /*
1872                  * Note that this also will start async reply unlink.
1873                  */
1874                 if (req->rq_net_err && !req->rq_timedout) {
1875                         ptlrpc_expire_one_request(req, 1);
1876
1877                         /*
1878                          * Check if we still need to wait for unlink.
1879                          */
1880                         if (ptlrpc_client_recv_or_unlink(req) ||
1881                             ptlrpc_client_bulk_active(req))
1882                                 continue;
1883                         /* If there is no need to resend, fail it now. */
1884                         if (req->rq_no_resend) {
1885                                 if (req->rq_status == 0)
1886                                         req->rq_status = -EIO;
1887                                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1888                                 GOTO(interpret, req->rq_status);
1889                         } else {
1890                                 continue;
1891                         }
1892                 }
1893
1894                 if (req->rq_err) {
1895                         spin_lock(&req->rq_lock);
1896                         req->rq_replied = 0;
1897                         spin_unlock(&req->rq_lock);
1898                         if (req->rq_status == 0)
1899                                 req->rq_status = -EIO;
1900                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1901                         GOTO(interpret, req->rq_status);
1902                 }
1903
1904                 /*
1905                  * ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1906                  * so it sets rq_intr regardless of individual rpc
1907                  * timeouts. The synchronous IO waiting path sets
1908                  * rq_intr irrespective of whether ptlrpcd
1909                  * has seen a timeout.  Our policy is to only interpret
1910                  * interrupted rpcs after they have timed out, so we
1911                  * need to enforce that here.
1912                  */
1913
1914                 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1915                                      req->rq_wait_ctx)) {
1916                         req->rq_status = -EINTR;
1917                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1918                         GOTO(interpret, req->rq_status);
1919                 }
1920
1921                 if (req->rq_phase == RQ_PHASE_RPC) {
1922                         if (req->rq_timedout || req->rq_resend ||
1923                             req->rq_waiting || req->rq_wait_ctx) {
1924                                 int status;
1925
1926                                 if (!ptlrpc_unregister_reply(req, 1)) {
1927                                         ptlrpc_unregister_bulk(req, 1);
1928                                         continue;
1929                                 }
1930
1931                                 spin_lock(&imp->imp_lock);
1932                                 if (ptlrpc_import_delay_req(imp, req,
1933                                                             &status)) {
1934                                         /*
1935                                          * put on delay list - only if we wait
1936                                          * recovery finished - before send
1937                                          */
1938                                         list_move_tail(&req->rq_list,
1939                                                        &imp->imp_delayed_list);
1940                                         spin_unlock(&imp->imp_lock);
1941                                         continue;
1942                                 }
1943
1944                                 if (status != 0)  {
1945                                         req->rq_status = status;
1946                                         ptlrpc_rqphase_move(req,
1947                                                             RQ_PHASE_INTERPRET);
1948                                         spin_unlock(&imp->imp_lock);
1949                                         GOTO(interpret, req->rq_status);
1950                                 }
1951                                 /* ignore on just initiated connections */
1952                                 if (ptlrpc_no_resend(req) &&
1953                                     !req->rq_wait_ctx &&
1954                                     imp->imp_generation !=
1955                                     imp->imp_initiated_at) {
1956                                         req->rq_status = -ENOTCONN;
1957                                         ptlrpc_rqphase_move(req,
1958                                                             RQ_PHASE_INTERPRET);
1959                                         spin_unlock(&imp->imp_lock);
1960                                         GOTO(interpret, req->rq_status);
1961                                 }
1962
1963                                 list_move_tail(&req->rq_list,
1964                                                &imp->imp_sending_list);
1965
1966                                 spin_unlock(&imp->imp_lock);
1967
1968                                 spin_lock(&req->rq_lock);
1969                                 req->rq_waiting = 0;
1970                                 spin_unlock(&req->rq_lock);
1971
1972                                 if (req->rq_timedout || req->rq_resend) {
1973                                         /*
1974                                          * This is re-sending anyways,
1975                                          * let's mark req as resend.
1976                                          */
1977                                         spin_lock(&req->rq_lock);
1978                                         req->rq_resend = 1;
1979                                         spin_unlock(&req->rq_lock);
1980                                 }
1981                                 /*
1982                                  * rq_wait_ctx is only touched by ptlrpcd,
1983                                  * so no lock is needed here.
1984                                  */
1985                                 status = sptlrpc_req_refresh_ctx(req, -1);
1986                                 if (status) {
1987                                         if (req->rq_err) {
1988                                                 req->rq_status = status;
1989                                                 spin_lock(&req->rq_lock);
1990                                                 req->rq_wait_ctx = 0;
1991                                                 spin_unlock(&req->rq_lock);
1992                                                 force_timer_recalc = 1;
1993                                         } else {
1994                                                 spin_lock(&req->rq_lock);
1995                                                 req->rq_wait_ctx = 1;
1996                                                 spin_unlock(&req->rq_lock);
1997                                         }
1998
1999                                         continue;
2000                                 } else {
2001                                         spin_lock(&req->rq_lock);
2002                                         req->rq_wait_ctx = 0;
2003                                         spin_unlock(&req->rq_lock);
2004                                 }
2005
2006                                 /*
2007                                  * In any case, the previous bulk should be
2008                                  * cleaned up to prepare for the new sending
2009                                  */
2010                                 if (req->rq_bulk &&
2011                                     !ptlrpc_unregister_bulk(req, 1))
2012                                         continue;
2013
2014                                 rc = ptl_send_rpc(req, 0);
2015                                 if (rc == -ENOMEM) {
2016                                         spin_lock(&imp->imp_lock);
2017                                         if (!list_empty(&req->rq_list))
2018                                                 list_del_init(&req->rq_list);
2019                                         spin_unlock(&imp->imp_lock);
2020                                         ptlrpc_rqphase_move(req, RQ_PHASE_NEW);
2021                                         continue;
2022                                 }
2023                                 if (rc) {
2024                                         DEBUG_REQ(D_HA, req,
2025                                                   "send failed: rc = %d", rc);
2026                                         force_timer_recalc = 1;
2027                                         spin_lock(&req->rq_lock);
2028                                         req->rq_net_err = 1;
2029                                         spin_unlock(&req->rq_lock);
2030                                         continue;
2031                                 }
2032                                 /* need to reset the timeout */
2033                                 force_timer_recalc = 1;
2034                         }
2035
2036                         spin_lock(&req->rq_lock);
2037
2038                         if (ptlrpc_client_early(req)) {
2039                                 ptlrpc_at_recv_early_reply(req);
2040                                 spin_unlock(&req->rq_lock);
2041                                 continue;
2042                         }
2043
2044                         /* Still waiting for a reply? */
2045                         if (ptlrpc_client_recv(req)) {
2046                                 spin_unlock(&req->rq_lock);
2047                                 continue;
2048                         }
2049
2050                         /* Did we actually receive a reply? */
2051                         if (!ptlrpc_client_replied(req)) {
2052                                 spin_unlock(&req->rq_lock);
2053                                 continue;
2054                         }
2055
2056                         spin_unlock(&req->rq_lock);
2057
2058                         /*
2059                          * unlink from net because we are going to
2060                          * swab in-place of reply buffer
2061                          */
2062                         unregistered = ptlrpc_unregister_reply(req, 1);
2063                         if (!unregistered)
2064                                 continue;
2065
2066                         req->rq_status = after_reply(req);
2067                         if (req->rq_resend)
2068                                 continue;
2069
2070                         /*
2071                          * If there is no bulk associated with this request,
2072                          * then we're done and should let the interpreter
2073                          * process the reply. Similarly if the RPC returned
2074                          * an error, and therefore the bulk will never arrive.
2075                          */
2076                         if (!req->rq_bulk || req->rq_status < 0) {
2077                                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
2078                                 GOTO(interpret, req->rq_status);
2079                         }
2080
2081                         ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
2082                 }
2083
2084                 LASSERT(req->rq_phase == RQ_PHASE_BULK);
2085                 if (ptlrpc_client_bulk_active(req))
2086                         continue;
2087
2088                 if (req->rq_bulk->bd_failure) {
2089                         /*
2090                          * The RPC reply arrived OK, but the bulk screwed
2091                          * up!  Dead weird since the server told us the RPC
2092                          * was good after getting the REPLY for her GET or
2093                          * the ACK for her PUT.
2094                          */
2095                         DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
2096                         req->rq_status = -EIO;
2097                 }
2098
2099                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
2100
2101 interpret:
2102                 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
2103
2104                 /*
2105                  * This moves to "unregistering" phase we need to wait for
2106                  * reply unlink.
2107                  */
2108                 if (!unregistered && !ptlrpc_unregister_reply(req, async)) {
2109                         /* start async bulk unlink too */
2110                         ptlrpc_unregister_bulk(req, 1);
2111                         continue;
2112                 }
2113
2114                 if (!ptlrpc_unregister_bulk(req, async))
2115                         continue;
2116
2117                 /*
2118                  * When calling interpret receiving already should be
2119                  * finished.
2120                  */
2121                 LASSERT(!req->rq_receiving_reply);
2122
2123                 ptlrpc_req_interpret(env, req, req->rq_status);
2124
2125                 if (ptlrpcd_check_work(req)) {
2126                         atomic_dec(&set->set_remaining);
2127                         continue;
2128                 }
2129                 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
2130
2131                 if (req->rq_reqmsg)
2132                         CDEBUG(D_RPCTRACE,
2133                                "Completed RPC req@%p pname:cluuid:pid:xid:nid:opc:job %s:%s:%d:%llu:%s:%d:%s\n",
2134                                req, current_comm(),
2135                                imp->imp_obd->obd_uuid.uuid,
2136                                lustre_msg_get_status(req->rq_reqmsg),
2137                                req->rq_xid,
2138                                obd_import_nid2str(imp),
2139                                lustre_msg_get_opc(req->rq_reqmsg),
2140                                lustre_msg_get_jobid(req->rq_reqmsg) ?: "");
2141
2142                 spin_lock(&imp->imp_lock);
2143                 /*
2144                  * Request already may be not on sending or delaying list. This
2145                  * may happen in the case of marking it erroneous for the case
2146                  * ptlrpc_import_delay_req(req, status) find it impossible to
2147                  * allow sending this rpc and returns *status != 0.
2148                  */
2149                 if (!list_empty(&req->rq_list)) {
2150                         list_del_init(&req->rq_list);
2151                         atomic_dec(&imp->imp_inflight);
2152                 }
2153                 list_del_init(&req->rq_unreplied_list);
2154                 spin_unlock(&imp->imp_lock);
2155
2156                 atomic_dec(&set->set_remaining);
2157                 wake_up_all(&imp->imp_recovery_waitq);
2158
2159                 if (set->set_producer) {
2160                         /* produce a new request if possible */
2161                         if (ptlrpc_set_producer(set) > 0)
2162                                 force_timer_recalc = 1;
2163
2164                         /*
2165                          * free the request that has just been completed
2166                          * in order not to pollute set->set_requests
2167                          */
2168                         list_del_init(&req->rq_set_chain);
2169                         spin_lock(&req->rq_lock);
2170                         req->rq_set = NULL;
2171                         req->rq_invalid_rqset = 0;
2172                         spin_unlock(&req->rq_lock);
2173
2174                         /* record rq_status to compute the final status later */
2175                         if (req->rq_status != 0)
2176                                 set->set_rc = req->rq_status;
2177                         ptlrpc_req_finished(req);
2178                 } else {
2179                         list_move_tail(&req->rq_set_chain, &comp_reqs);
2180                 }
2181         }
2182
2183         /*
2184          * move completed request at the head of list so it's easier for
2185          * caller to find them
2186          */
2187         list_splice(&comp_reqs, &set->set_requests);
2188
2189         /* If we hit an error, we want to recover promptly. */
2190         RETURN(atomic_read(&set->set_remaining) == 0 || force_timer_recalc);
2191 }
2192 EXPORT_SYMBOL(ptlrpc_check_set);
2193
2194 /**
2195  * Time out request \a req. is \a async_unlink is set, that means do not wait
2196  * until LNet actually confirms network buffer unlinking.
2197  * Return 1 if we should give up further retrying attempts or 0 otherwise.
2198  */
2199 int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
2200 {
2201         struct obd_import *imp = req->rq_import;
2202         unsigned int debug_mask = D_RPCTRACE;
2203         int rc = 0;
2204
2205         ENTRY;
2206         spin_lock(&req->rq_lock);
2207         req->rq_timedout = 1;
2208         spin_unlock(&req->rq_lock);
2209
2210         if (ptlrpc_console_allow(req, lustre_msg_get_opc(req->rq_reqmsg),
2211                                  lustre_msg_get_status(req->rq_reqmsg)))
2212                 debug_mask = D_WARNING;
2213         DEBUG_REQ(debug_mask, req, "Request sent has %s: [sent %lld/real %lld]",
2214                   req->rq_net_err ? "failed due to network error" :
2215                      ((req->rq_real_sent == 0 ||
2216                        req->rq_real_sent < req->rq_sent ||
2217                        req->rq_real_sent >= req->rq_deadline) ?
2218                       "timed out for sent delay" : "timed out for slow reply"),
2219                   (s64)req->rq_sent, (s64)req->rq_real_sent);
2220
2221         if (imp && obd_debug_peer_on_timeout)
2222                 LNetDebugPeer(imp->imp_connection->c_peer);
2223
2224         ptlrpc_unregister_reply(req, async_unlink);
2225         ptlrpc_unregister_bulk(req, async_unlink);
2226
2227         if (obd_dump_on_timeout)
2228                 libcfs_debug_dumplog();
2229
2230         if (!imp) {
2231                 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
2232                 RETURN(1);
2233         }
2234
2235         atomic_inc(&imp->imp_timeouts);
2236
2237         /* The DLM server doesn't want recovery run on its imports. */
2238         if (imp->imp_dlm_fake)
2239                 RETURN(1);
2240
2241         /*
2242          * If this request is for recovery or other primordial tasks,
2243          * then error it out here.
2244          */
2245         if (req->rq_ctx_init || req->rq_ctx_fini ||
2246             req->rq_send_state != LUSTRE_IMP_FULL ||
2247             imp->imp_obd->obd_no_recov) {
2248                 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
2249                           ptlrpc_import_state_name(req->rq_send_state),
2250                           ptlrpc_import_state_name(imp->imp_state));
2251                 spin_lock(&req->rq_lock);
2252                 req->rq_status = -ETIMEDOUT;
2253                 req->rq_err = 1;
2254                 spin_unlock(&req->rq_lock);
2255                 RETURN(1);
2256         }
2257
2258         /*
2259          * if a request can't be resent we can't wait for an answer after
2260          * the timeout
2261          */
2262         if (ptlrpc_no_resend(req)) {
2263                 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
2264                 rc = 1;
2265         }
2266
2267         ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
2268
2269         RETURN(rc);
2270 }
2271
2272 /**
2273  * Time out all uncompleted requests in request set pointed by \a data
2274  * Callback used when waiting on sets with l_wait_event.
2275  * Always returns 1.
2276  */
2277 int ptlrpc_expired_set(void *data)
2278 {
2279         struct ptlrpc_request_set *set = data;
2280         struct list_head *tmp;
2281         time64_t now = ktime_get_real_seconds();
2282
2283         ENTRY;
2284         LASSERT(set != NULL);
2285
2286         /*
2287          * A timeout expired. See which reqs it applies to...
2288          */
2289         list_for_each(tmp, &set->set_requests) {
2290                 struct ptlrpc_request *req =
2291                         list_entry(tmp, struct ptlrpc_request,
2292                                    rq_set_chain);
2293
2294                 /* don't expire request waiting for context */
2295                 if (req->rq_wait_ctx)
2296                         continue;
2297
2298                 /* Request in-flight? */
2299                 if (!((req->rq_phase == RQ_PHASE_RPC &&
2300                        !req->rq_waiting && !req->rq_resend) ||
2301                       (req->rq_phase == RQ_PHASE_BULK)))
2302                         continue;
2303
2304                 if (req->rq_timedout ||     /* already dealt with */
2305                     req->rq_deadline > now) /* not expired */
2306                         continue;
2307
2308                 /*
2309                  * Deal with this guy. Do it asynchronously to not block
2310                  * ptlrpcd thread.
2311                  */
2312                 ptlrpc_expire_one_request(req, 1);
2313         }
2314
2315         /*
2316          * When waiting for a whole set, we always break out of the
2317          * sleep so we can recalculate the timeout, or enable interrupts
2318          * if everyone's timed out.
2319          */
2320         RETURN(1);
2321 }
2322
2323 /**
2324  * Sets rq_intr flag in \a req under spinlock.
2325  */
2326 void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
2327 {
2328         spin_lock(&req->rq_lock);
2329         req->rq_intr = 1;
2330         spin_unlock(&req->rq_lock);
2331 }
2332 EXPORT_SYMBOL(ptlrpc_mark_interrupted);
2333
2334 /**
2335  * Interrupts (sets interrupted flag) all uncompleted requests in
2336  * a set \a data. Callback for l_wait_event for interruptible waits.
2337  */
2338 static void ptlrpc_interrupted_set(void *data)
2339 {
2340         struct ptlrpc_request_set *set = data;
2341         struct list_head *tmp;
2342
2343         LASSERT(set != NULL);
2344         CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2345
2346         list_for_each(tmp, &set->set_requests) {
2347                 struct ptlrpc_request *req =
2348                         list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2349
2350                 if (req->rq_intr)
2351                         continue;
2352
2353                 if (req->rq_phase != RQ_PHASE_RPC &&
2354                     req->rq_phase != RQ_PHASE_UNREG_RPC &&
2355                     !req->rq_allow_intr)
2356                         continue;
2357
2358                 ptlrpc_mark_interrupted(req);
2359         }
2360 }
2361
2362 /**
2363  * Get the smallest timeout in the set; this does NOT set a timeout.
2364  */
2365 time64_t ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2366 {
2367         struct list_head *tmp;
2368         time64_t now = ktime_get_real_seconds();
2369         int timeout = 0;
2370         struct ptlrpc_request *req;
2371         time64_t deadline;
2372
2373         ENTRY;
2374         list_for_each(tmp, &set->set_requests) {
2375                 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2376
2377                 /* Request in-flight? */
2378                 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2379                       (req->rq_phase == RQ_PHASE_BULK) ||
2380                       (req->rq_phase == RQ_PHASE_NEW)))
2381                         continue;
2382
2383                 /* Already timed out. */
2384                 if (req->rq_timedout)
2385                         continue;
2386
2387                 /* Waiting for ctx. */
2388                 if (req->rq_wait_ctx)
2389                         continue;
2390
2391                 if (req->rq_phase == RQ_PHASE_NEW)
2392                         deadline = req->rq_sent;
2393                 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2394                         deadline = req->rq_sent;
2395                 else
2396                         deadline = req->rq_sent + req->rq_timeout;
2397
2398                 if (deadline <= now)    /* actually expired already */
2399                         timeout = 1;    /* ASAP */
2400                 else if (timeout == 0 || timeout > deadline - now)
2401                         timeout = deadline - now;
2402         }
2403         RETURN(timeout);
2404 }
2405
2406 /**
2407  * Send all unset request from the set and then wait untill all
2408  * requests in the set complete (either get a reply, timeout, get an
2409  * error or otherwise be interrupted).
2410  * Returns 0 on success or error code otherwise.
2411  */
2412 int ptlrpc_set_wait(const struct lu_env *env, struct ptlrpc_request_set *set)
2413 {
2414         struct list_head *tmp;
2415         struct ptlrpc_request *req;
2416         struct l_wait_info lwi;
2417         time64_t timeout;
2418         int rc;
2419
2420         ENTRY;
2421         if (set->set_producer)
2422                 (void)ptlrpc_set_producer(set);
2423         else
2424                 list_for_each(tmp, &set->set_requests) {
2425                         req = list_entry(tmp, struct ptlrpc_request,
2426                                          rq_set_chain);
2427                         if (req->rq_phase == RQ_PHASE_NEW)
2428                                 (void)ptlrpc_send_new_req(req);
2429                 }
2430
2431         if (list_empty(&set->set_requests))
2432                 RETURN(0);
2433
2434         do {
2435                 timeout = ptlrpc_set_next_timeout(set);
2436
2437                 /*
2438                  * wait until all complete, interrupted, or an in-flight
2439                  * req times out
2440                  */
2441                 CDEBUG(D_RPCTRACE, "set %p going to sleep for %lld seconds\n",
2442                        set, timeout);
2443
2444                 if ((timeout == 0 && !signal_pending(current)) ||
2445                     set->set_allow_intr)
2446                         /*
2447                          * No requests are in-flight (ether timed out
2448                          * or delayed), so we can allow interrupts.
2449                          * We still want to block for a limited time,
2450                          * so we allow interrupts during the timeout.
2451                          */
2452                         lwi = LWI_TIMEOUT_INTR_ALL(
2453                                         cfs_time_seconds(timeout ? timeout : 1),
2454                                         ptlrpc_expired_set,
2455                                         ptlrpc_interrupted_set, set);
2456                 else
2457                         /*
2458                          * At least one request is in flight, so no
2459                          * interrupts are allowed. Wait until all
2460                          * complete, or an in-flight req times out.
2461                          */
2462                         lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
2463                                           ptlrpc_expired_set, set);
2464
2465                 rc = l_wait_event(set->set_waitq,
2466                                   ptlrpc_check_set(NULL, set), &lwi);
2467
2468                 /*
2469                  * LU-769 - if we ignored the signal because it was already
2470                  * pending when we started, we need to handle it now or we risk
2471                  * it being ignored forever
2472                  */
2473                 if (rc == -ETIMEDOUT &&
2474                     (!lwi.lwi_allow_intr || set->set_allow_intr) &&
2475                     signal_pending(current)) {
2476                         sigset_t blocked_sigs =
2477                                            cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2478
2479                         /*
2480                          * In fact we only interrupt for the "fatal" signals
2481                          * like SIGINT or SIGKILL. We still ignore less
2482                          * important signals since ptlrpc set is not easily
2483                          * reentrant from userspace again
2484                          */
2485                         if (signal_pending(current))
2486                                 ptlrpc_interrupted_set(set);
2487                         cfs_restore_sigs(blocked_sigs);
2488                 }
2489
2490                 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2491
2492                 /*
2493                  * -EINTR => all requests have been flagged rq_intr so next
2494                  * check completes.
2495                  * -ETIMEDOUT => someone timed out.  When all reqs have
2496                  * timed out, signals are enabled allowing completion with
2497                  * EINTR.
2498                  * I don't really care if we go once more round the loop in
2499                  * the error cases -eeb.
2500                  */
2501                 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2502                         list_for_each(tmp, &set->set_requests) {
2503                                 req = list_entry(tmp, struct ptlrpc_request,
2504                                                  rq_set_chain);
2505                                 spin_lock(&req->rq_lock);
2506                                 req->rq_invalid_rqset = 1;
2507                                 spin_unlock(&req->rq_lock);
2508                         }
2509                 }
2510         } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2511
2512         LASSERT(atomic_read(&set->set_remaining) == 0);
2513
2514         rc = set->set_rc; /* rq_status of already freed requests if any */
2515         list_for_each(tmp, &set->set_requests) {
2516                 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2517
2518                 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2519                 if (req->rq_status != 0)
2520                         rc = req->rq_status;
2521         }
2522
2523         RETURN(rc);
2524 }
2525 EXPORT_SYMBOL(ptlrpc_set_wait);
2526
2527 /**
2528  * Helper fuction for request freeing.
2529  * Called when request count reached zero and request needs to be freed.
2530  * Removes request from all sorts of sending/replay lists it might be on,
2531  * frees network buffers if any are present.
2532  * If \a locked is set, that means caller is already holding import imp_lock
2533  * and so we no longer need to reobtain it (for certain lists manipulations)
2534  */
2535 static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2536 {
2537         ENTRY;
2538
2539         if (!request)
2540                 RETURN_EXIT;
2541
2542         LASSERT(!request->rq_srv_req);
2543         LASSERT(request->rq_export == NULL);
2544         LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
2545         LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2546         LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2547         LASSERTF(!request->rq_replay, "req %p\n", request);
2548
2549         req_capsule_fini(&request->rq_pill);
2550
2551         /*
2552          * We must take it off the imp_replay_list first.  Otherwise, we'll set
2553          * request->rq_reqmsg to NULL while osc_close is dereferencing it.
2554          */
2555         if (request->rq_import) {
2556                 if (!locked)
2557                         spin_lock(&request->rq_import->imp_lock);
2558                 list_del_init(&request->rq_replay_list);
2559                 list_del_init(&request->rq_unreplied_list);
2560                 if (!locked)
2561                         spin_unlock(&request->rq_import->imp_lock);
2562         }
2563         LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2564
2565         if (atomic_read(&request->rq_refcount) != 0) {
2566                 DEBUG_REQ(D_ERROR, request,
2567                           "freeing request with nonzero refcount");
2568                 LBUG();
2569         }
2570
2571         if (request->rq_repbuf)
2572                 sptlrpc_cli_free_repbuf(request);
2573
2574         if (request->rq_import) {
2575                 class_import_put(request->rq_import);
2576                 request->rq_import = NULL;
2577         }
2578         if (request->rq_bulk)
2579                 ptlrpc_free_bulk(request->rq_bulk);
2580
2581         if (request->rq_reqbuf || request->rq_clrbuf)
2582                 sptlrpc_cli_free_reqbuf(request);
2583
2584         if (request->rq_cli_ctx)
2585                 sptlrpc_req_put_ctx(request, !locked);
2586
2587         if (request->rq_pool)
2588                 __ptlrpc_free_req_to_pool(request);
2589         else
2590                 ptlrpc_request_cache_free(request);
2591         EXIT;
2592 }
2593
2594 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked);
2595 /**
2596  * Drop one request reference. Must be called with import imp_lock held.
2597  * When reference count drops to zero, request is freed.
2598  */
2599 void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request)
2600 {
2601         assert_spin_locked(&request->rq_import->imp_lock);
2602         (void)__ptlrpc_req_finished(request, 1);
2603 }
2604
2605 /**
2606  * Helper function
2607  * Drops one reference count for request \a request.
2608  * \a locked set indicates that caller holds import imp_lock.
2609  * Frees the request whe reference count reaches zero.
2610  *
2611  * \retval 1    the request is freed
2612  * \retval 0    some others still hold references on the request
2613  */
2614 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2615 {
2616         int count;
2617
2618         ENTRY;
2619         if (!request)
2620                 RETURN(1);
2621
2622         LASSERT(request != LP_POISON);
2623         LASSERT(request->rq_reqmsg != LP_POISON);
2624
2625         DEBUG_REQ(D_INFO, request, "refcount now %u",
2626                   atomic_read(&request->rq_refcount) - 1);
2627
2628         spin_lock(&request->rq_lock);
2629         count = atomic_dec_return(&request->rq_refcount);
2630         LASSERTF(count >= 0, "Invalid ref count %d\n", count);
2631
2632         /*
2633          * For open RPC, the client does not know the EA size (LOV, ACL, and
2634          * so on) before replied, then the client has to reserve very large
2635          * reply buffer. Such buffer will not be released until the RPC freed.
2636          * Since The open RPC is replayable, we need to keep it in the replay
2637          * list until close. If there are a lot of files opened concurrently,
2638          * then the client may be OOM.
2639          *
2640          * If fact, it is unnecessary to keep reply buffer for open replay,
2641          * related EAs have already been saved via mdc_save_lovea() before
2642          * coming here. So it is safe to free the reply buffer some earlier
2643          * before releasing the RPC to avoid client OOM. LU-9514
2644          */
2645         if (count == 1 && request->rq_early_free_repbuf && request->rq_repbuf) {
2646                 spin_lock(&request->rq_early_free_lock);
2647                 sptlrpc_cli_free_repbuf(request);
2648                 request->rq_repbuf = NULL;
2649                 request->rq_repbuf_len = 0;
2650                 request->rq_repdata = NULL;
2651                 request->rq_reqdata_len = 0;
2652                 spin_unlock(&request->rq_early_free_lock);
2653         }
2654         spin_unlock(&request->rq_lock);
2655
2656         if (!count)
2657                 __ptlrpc_free_req(request, locked);
2658
2659         RETURN(!count);
2660 }
2661
2662 /**
2663  * Drops one reference count for a request.
2664  */
2665 void ptlrpc_req_finished(struct ptlrpc_request *request)
2666 {
2667         __ptlrpc_req_finished(request, 0);
2668 }
2669 EXPORT_SYMBOL(ptlrpc_req_finished);
2670
2671 /**
2672  * Returns xid of a \a request
2673  */
2674 __u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2675 {
2676         return request->rq_xid;
2677 }
2678 EXPORT_SYMBOL(ptlrpc_req_xid);
2679
2680 /**
2681  * Disengage the client's reply buffer from the network
2682  * NB does _NOT_ unregister any client-side bulk.
2683  * IDEMPOTENT, but _not_ safe against concurrent callers.
2684  * The request owner (i.e. the thread doing the I/O) must call...
2685  * Returns 0 on success or 1 if unregistering cannot be made.
2686  */
2687 static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2688 {
2689         int rc;
2690         struct l_wait_info lwi;
2691
2692         /*
2693          * Might sleep.
2694          */
2695         LASSERT(!in_interrupt());
2696
2697         /* Let's setup deadline for reply unlink. */
2698         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2699             async && request->rq_reply_deadline == 0 && cfs_fail_val == 0)
2700                 request->rq_reply_deadline = ktime_get_real_seconds() +
2701                                              LONG_UNLINK;
2702
2703         /*
2704          * Nothing left to do.
2705          */
2706         if (!ptlrpc_client_recv_or_unlink(request))
2707                 RETURN(1);
2708
2709         LNetMDUnlink(request->rq_reply_md_h);
2710
2711         /*
2712          * Let's check it once again.
2713          */
2714         if (!ptlrpc_client_recv_or_unlink(request))
2715                 RETURN(1);
2716
2717         /* Move to "Unregistering" phase as reply was not unlinked yet. */
2718         ptlrpc_rqphase_move(request, RQ_PHASE_UNREG_RPC);
2719
2720         /*
2721          * Do not wait for unlink to finish.
2722          */
2723         if (async)
2724                 RETURN(0);
2725
2726         /*
2727          * We have to l_wait_event() whatever the result, to give liblustre
2728          * a chance to run reply_in_callback(), and to make sure we've
2729          * unlinked before returning a req to the pool.
2730          */
2731         for (;;) {
2732                 /* The wq argument is ignored by user-space wait_event macros */
2733                 wait_queue_head_t *wq = (request->rq_set) ?
2734                                         &request->rq_set->set_waitq :
2735                                         &request->rq_reply_waitq;
2736                 /*
2737                  * Network access will complete in finite time but the HUGE
2738                  * timeout lets us CWARN for visibility of sluggish NALs
2739                  */
2740                 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2741                                            cfs_time_seconds(1), NULL, NULL);
2742                 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2743                                   &lwi);
2744                 if (rc == 0) {
2745                         ptlrpc_rqphase_move(request, request->rq_next_phase);
2746                         RETURN(1);
2747                 }
2748
2749                 LASSERT(rc == -ETIMEDOUT);
2750                 DEBUG_REQ(D_WARNING, request,
2751                           "Unexpectedly long timeout receiving_reply=%d req_ulinked=%d reply_unlinked=%d",
2752                           request->rq_receiving_reply,
2753                           request->rq_req_unlinked,
2754                           request->rq_reply_unlinked);
2755         }
2756         RETURN(0);
2757 }
2758
2759 static void ptlrpc_free_request(struct ptlrpc_request *req)
2760 {
2761         spin_lock(&req->rq_lock);
2762         req->rq_replay = 0;
2763         spin_unlock(&req->rq_lock);
2764
2765         if (req->rq_commit_cb)
2766                 req->rq_commit_cb(req);
2767         list_del_init(&req->rq_replay_list);
2768
2769         __ptlrpc_req_finished(req, 1);
2770 }
2771
2772 /**
2773  * the request is committed and dropped from the replay list of its import
2774  */
2775 void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2776 {
2777         struct obd_import *imp = req->rq_import;
2778
2779         spin_lock(&imp->imp_lock);
2780         if (list_empty(&req->rq_replay_list)) {
2781                 spin_unlock(&imp->imp_lock);
2782                 return;
2783         }
2784
2785         if (force || req->rq_transno <= imp->imp_peer_committed_transno) {
2786                 if (imp->imp_replay_cursor == &req->rq_replay_list)
2787                         imp->imp_replay_cursor = req->rq_replay_list.next;
2788                 ptlrpc_free_request(req);
2789         }
2790
2791         spin_unlock(&imp->imp_lock);
2792 }
2793 EXPORT_SYMBOL(ptlrpc_request_committed);
2794
2795 /**
2796  * Iterates through replay_list on import and prunes
2797  * all requests have transno smaller than last_committed for the
2798  * import and don't have rq_replay set.
2799  * Since requests are sorted in transno order, stops when meetign first
2800  * transno bigger than last_committed.
2801  * caller must hold imp->imp_lock
2802  */
2803 void ptlrpc_free_committed(struct obd_import *imp)
2804 {
2805         struct ptlrpc_request *req, *saved;
2806         struct ptlrpc_request *last_req = NULL; /* temporary fire escape */
2807         bool skip_committed_list = true;
2808
2809         ENTRY;
2810         LASSERT(imp != NULL);
2811         assert_spin_locked(&imp->imp_lock);
2812
2813         if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2814             imp->imp_generation == imp->imp_last_generation_checked) {
2815                 CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
2816                        imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
2817                 RETURN_EXIT;
2818         }
2819         CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
2820                imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2821                imp->imp_generation);
2822
2823         if (imp->imp_generation != imp->imp_last_generation_checked ||
2824             imp->imp_last_transno_checked == 0)
2825                 skip_committed_list = false;
2826
2827         imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2828         imp->imp_last_generation_checked = imp->imp_generation;
2829
2830         list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2831                                  rq_replay_list) {
2832                 /* XXX ok to remove when 1357 resolved - rread 05/29/03  */
2833                 LASSERT(req != last_req);
2834                 last_req = req;
2835
2836                 if (req->rq_transno == 0) {
2837                         DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2838                         LBUG();
2839                 }
2840                 if (req->rq_import_generation < imp->imp_generation) {
2841                         DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
2842                         GOTO(free_req, 0);
2843                 }
2844
2845                 /* not yet committed */
2846                 if (req->rq_transno > imp->imp_peer_committed_transno) {
2847                         DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2848                         break;
2849                 }
2850
2851                 if (req->rq_replay) {
2852                         DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2853                         list_move_tail(&req->rq_replay_list,
2854                                        &imp->imp_committed_list);
2855                         continue;
2856                 }
2857
2858                 DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
2859                           imp->imp_peer_committed_transno);
2860 free_req:
2861                 ptlrpc_free_request(req);
2862         }
2863
2864         if (skip_committed_list)
2865                 GOTO(out, 0);
2866
2867         list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2868                                  rq_replay_list) {
2869                 LASSERT(req->rq_transno != 0);
2870                 if (req->rq_import_generation < imp->imp_generation ||
2871                     !req->rq_replay) {
2872                         DEBUG_REQ(D_RPCTRACE, req, "free %s open request",
2873                                   req->rq_import_generation <
2874                                   imp->imp_generation ? "stale" : "closed");
2875
2876                         if (imp->imp_replay_cursor == &req->rq_replay_list)
2877                                 imp->imp_replay_cursor =
2878                                         req->rq_replay_list.next;
2879
2880                         ptlrpc_free_request(req);
2881                 }
2882         }
2883 out:
2884         EXIT;
2885 }
2886
2887 void ptlrpc_cleanup_client(struct obd_import *imp)
2888 {
2889         ENTRY;
2890         EXIT;
2891 }
2892
2893 /**
2894  * Schedule previously sent request for resend.
2895  * For bulk requests we assign new xid (to avoid problems with
2896  * lost replies and therefore several transfers landing into same buffer
2897  * from different sending attempts).
2898  */
2899 void ptlrpc_resend_req(struct ptlrpc_request *req)
2900 {
2901         DEBUG_REQ(D_HA, req, "going to resend");
2902         spin_lock(&req->rq_lock);
2903
2904         /*
2905          * Request got reply but linked to the import list still.
2906          * Let ptlrpc_check_set() process it.
2907          */
2908         if (ptlrpc_client_replied(req)) {
2909                 spin_unlock(&req->rq_lock);
2910                 DEBUG_REQ(D_HA, req, "it has reply, so skip it");
2911                 return;
2912         }
2913
2914         req->rq_status = -EAGAIN;
2915
2916         req->rq_resend = 1;
2917         req->rq_net_err = 0;
2918         req->rq_timedout = 0;
2919
2920         ptlrpc_client_wake_req(req);
2921         spin_unlock(&req->rq_lock);
2922 }
2923
2924 /* XXX: this function and rq_status are currently unused */
2925 void ptlrpc_restart_req(struct ptlrpc_request *req)
2926 {
2927         DEBUG_REQ(D_HA, req, "restarting (possibly-)completed request");
2928         req->rq_status = -ERESTARTSYS;
2929
2930         spin_lock(&req->rq_lock);
2931         req->rq_restart = 1;
2932         req->rq_timedout = 0;
2933         ptlrpc_client_wake_req(req);
2934         spin_unlock(&req->rq_lock);
2935 }
2936
2937 /**
2938  * Grab additional reference on a request \a req
2939  */
2940 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2941 {
2942         ENTRY;
2943         atomic_inc(&req->rq_refcount);
2944         RETURN(req);
2945 }
2946 EXPORT_SYMBOL(ptlrpc_request_addref);
2947
2948 /**
2949  * Add a request to import replay_list.
2950  * Must be called under imp_lock
2951  */
2952 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2953                                       struct obd_import *imp)
2954 {
2955         struct list_head *tmp;
2956
2957         assert_spin_locked(&imp->imp_lock);
2958
2959         if (req->rq_transno == 0) {
2960                 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2961                 LBUG();
2962         }
2963
2964         /*
2965          * clear this for new requests that were resent as well
2966          * as resent replayed requests.
2967          */
2968         lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2969
2970         /* don't re-add requests that have been replayed */
2971         if (!list_empty(&req->rq_replay_list))
2972                 return;
2973
2974         lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2975
2976         spin_lock(&req->rq_lock);
2977         req->rq_resend = 0;
2978         spin_unlock(&req->rq_lock);
2979
2980         LASSERT(imp->imp_replayable);
2981         /* Balanced in ptlrpc_free_committed, usually. */
2982         ptlrpc_request_addref(req);
2983         list_for_each_prev(tmp, &imp->imp_replay_list) {
2984                 struct ptlrpc_request *iter = list_entry(tmp,
2985                                                          struct ptlrpc_request,
2986                                                          rq_replay_list);
2987
2988                 /*
2989                  * We may have duplicate transnos if we create and then
2990                  * open a file, or for closes retained if to match creating
2991                  * opens, so use req->rq_xid as a secondary key.
2992                  * (See bugs 684, 685, and 428.)
2993                  * XXX no longer needed, but all opens need transnos!
2994                  */
2995                 if (iter->rq_transno > req->rq_transno)
2996                         continue;
2997
2998                 if (iter->rq_transno == req->rq_transno) {
2999                         LASSERT(iter->rq_xid != req->rq_xid);
3000                         if (iter->rq_xid > req->rq_xid)
3001                                 continue;
3002                 }
3003
3004                 list_add(&req->rq_replay_list, &iter->rq_replay_list);
3005                 return;
3006         }
3007
3008         list_add(&req->rq_replay_list, &imp->imp_replay_list);
3009 }
3010
3011 /**
3012  * Send request and wait until it completes.
3013  * Returns request processing status.
3014  */
3015 int ptlrpc_queue_wait(struct ptlrpc_request *req)
3016 {
3017         struct ptlrpc_request_set *set;
3018         int rc;
3019
3020         ENTRY;
3021         LASSERT(req->rq_set == NULL);
3022         LASSERT(!req->rq_receiving_reply);
3023
3024         set = ptlrpc_prep_set();
3025         if (!set) {
3026                 CERROR("cannot allocate ptlrpc set: rc = %d\n", -ENOMEM);
3027                 RETURN(-ENOMEM);
3028         }
3029
3030         /* for distributed debugging */
3031         lustre_msg_set_status(req->rq_reqmsg, current_pid());
3032
3033         /* add a ref for the set (see comment in ptlrpc_set_add_req) */
3034         ptlrpc_request_addref(req);
3035         ptlrpc_set_add_req(set, req);
3036         rc = ptlrpc_set_wait(NULL, set);
3037         ptlrpc_set_destroy(set);
3038
3039         RETURN(rc);
3040 }
3041 EXPORT_SYMBOL(ptlrpc_queue_wait);
3042
3043 /**
3044  * Callback used for replayed requests reply processing.
3045  * In case of successful reply calls registered request replay callback.
3046  * In case of error restart replay process.
3047  */
3048 static int ptlrpc_replay_interpret(const struct lu_env *env,
3049                                    struct ptlrpc_request *req,
3050                                    void *args, int rc)
3051 {
3052         struct ptlrpc_replay_async_args *aa = args;
3053         struct obd_import *imp = req->rq_import;
3054
3055         ENTRY;
3056         atomic_dec(&imp->imp_replay_inflight);
3057
3058         /*
3059          * Note: if it is bulk replay (MDS-MDS replay), then even if
3060          * server got the request, but bulk transfer timeout, let's
3061          * replay the bulk req again
3062          */
3063         if (!ptlrpc_client_replied(req) ||
3064             (req->rq_bulk &&
3065              lustre_msg_get_status(req->rq_repmsg) == -ETIMEDOUT)) {
3066                 DEBUG_REQ(D_ERROR, req, "request replay timed out");
3067                 GOTO(out, rc = -ETIMEDOUT);
3068         }
3069
3070         if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
3071             (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
3072             lustre_msg_get_status(req->rq_repmsg) == -ENODEV))
3073                 GOTO(out, rc = lustre_msg_get_status(req->rq_repmsg));
3074
3075         /** VBR: check version failure */
3076         if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
3077                 /** replay was failed due to version mismatch */
3078                 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay");
3079                 spin_lock(&imp->imp_lock);
3080                 imp->imp_vbr_failed = 1;
3081                 spin_unlock(&imp->imp_lock);
3082                 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
3083         } else {
3084                 /** The transno had better not change over replay. */
3085                 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
3086                          lustre_msg_get_transno(req->rq_repmsg) ||
3087                          lustre_msg_get_transno(req->rq_repmsg) == 0,
3088                          "%#llx/%#llx\n",
3089                          lustre_msg_get_transno(req->rq_reqmsg),
3090                          lustre_msg_get_transno(req->rq_repmsg));
3091         }
3092
3093         spin_lock(&imp->imp_lock);
3094         imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
3095         spin_unlock(&imp->imp_lock);
3096         LASSERT(imp->imp_last_replay_transno);
3097
3098         /* transaction number shouldn't be bigger than the latest replayed */
3099         if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
3100                 DEBUG_REQ(D_ERROR, req,
3101                           "Reported transno=%llu is bigger than replayed=%llu",
3102                           req->rq_transno,
3103                           lustre_msg_get_transno(req->rq_reqmsg));
3104                 GOTO(out, rc = -EINVAL);
3105         }
3106
3107         DEBUG_REQ(D_HA, req, "got reply");
3108
3109         /* let the callback do fixups, possibly including in the request */
3110         if (req->rq_replay_cb)
3111                 req->rq_replay_cb(req);
3112
3113         if (ptlrpc_client_replied(req) &&
3114             lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
3115                 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
3116                           lustre_msg_get_status(req->rq_repmsg),
3117                           aa->praa_old_status);
3118
3119                 /*
3120                  * Note: If the replay fails for MDT-MDT recovery, let's
3121                  * abort all of the following requests in the replay
3122                  * and sending list, because MDT-MDT update requests
3123                  * are dependent on each other, see LU-7039
3124                  */
3125                 if (imp->imp_connect_flags_orig & OBD_CONNECT_MDS_MDS) {
3126                         struct ptlrpc_request *free_req;
3127                         struct ptlrpc_request *tmp;
3128
3129                         spin_lock(&imp->imp_lock);
3130                         list_for_each_entry_safe(free_req, tmp,
3131                                                  &imp->imp_replay_list,
3132                                                  rq_replay_list) {
3133                                 ptlrpc_free_request(free_req);
3134                         }
3135
3136                         list_for_each_entry_safe(free_req, tmp,
3137                                                  &imp->imp_committed_list,
3138                                                  rq_replay_list) {
3139                                 ptlrpc_free_request(free_req);
3140                         }
3141
3142                         list_for_each_entry_safe(free_req, tmp,
3143                                                  &imp->imp_delayed_list,
3144                                                  rq_list) {
3145                                 spin_lock(&free_req->rq_lock);
3146                                 free_req->rq_err = 1;
3147                                 free_req->rq_status = -EIO;
3148                                 ptlrpc_client_wake_req(free_req);
3149                                 spin_unlock(&free_req->rq_lock);
3150                         }
3151
3152                         list_for_each_entry_safe(free_req, tmp,
3153                                                  &imp->imp_sending_list,
3154                                                  rq_list) {
3155                                 spin_lock(&free_req->rq_lock);
3156                                 free_req->rq_err = 1;
3157                                 free_req->rq_status = -EIO;
3158                                 ptlrpc_client_wake_req(free_req);
3159                                 spin_unlock(&free_req->rq_lock);
3160                         }
3161                         spin_unlock(&imp->imp_lock);
3162                 }
3163         } else {
3164                 /* Put it back for re-replay. */
3165                 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
3166         }
3167
3168         /*
3169          * Errors while replay can set transno to 0, but
3170          * imp_last_replay_transno shouldn't be set to 0 anyway
3171          */
3172         if (req->rq_transno == 0)
3173                 CERROR("Transno is 0 during replay!\n");
3174
3175         /* continue with recovery */
3176         rc = ptlrpc_import_recovery_state_machine(imp);
3177  out:
3178         req->rq_send_state = aa->praa_old_state;
3179
3180         if (rc != 0)
3181                 /* this replay failed, so restart recovery */
3182                 ptlrpc_connect_import(imp);
3183
3184         RETURN(rc);
3185 }
3186
3187 /**
3188  * Prepares and queues request for replay.
3189  * Adds it to ptlrpcd queue for actual sending.
3190  * Returns 0 on success.
3191  */
3192 int ptlrpc_replay_req(struct ptlrpc_request *req)
3193 {
3194         struct ptlrpc_replay_async_args *aa;
3195
3196         ENTRY;
3197
3198         LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
3199
3200         aa = ptlrpc_req_async_args(aa, req);
3201         memset(aa, 0, sizeof(*aa));
3202
3203         /* Prepare request to be resent with ptlrpcd */
3204         aa->praa_old_state = req->rq_send_state;
3205         req->rq_send_state = LUSTRE_IMP_REPLAY;
3206         req->rq_phase = RQ_PHASE_NEW;
3207         req->rq_next_phase = RQ_PHASE_UNDEFINED;
3208         if (req->rq_repmsg)
3209                 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
3210         req->rq_status = 0;
3211         req->rq_interpret_reply = ptlrpc_replay_interpret;
3212         /* Readjust the timeout for current conditions */
3213         ptlrpc_at_set_req_timeout(req);
3214
3215         /* Tell server net_latency to calculate how long to wait for reply. */
3216         lustre_msg_set_service_time(req->rq_reqmsg,
3217                                     ptlrpc_at_get_net_latency(req));
3218         DEBUG_REQ(D_HA, req, "REPLAY");
3219
3220         atomic_inc(&req->rq_import->imp_replay_inflight);
3221         spin_lock(&req->rq_lock);
3222         req->rq_early_free_repbuf = 0;
3223         spin_unlock(&req->rq_lock);
3224         ptlrpc_request_addref(req); /* ptlrpcd needs a ref */
3225
3226         ptlrpcd_add_req(req);
3227         RETURN(0);
3228 }
3229
3230 /**
3231  * Aborts all in-flight request on import \a imp sending and delayed lists
3232  */
3233 void ptlrpc_abort_inflight(struct obd_import *imp)
3234 {
3235         struct list_head *tmp, *n;
3236         ENTRY;
3237
3238         /*
3239          * Make sure that no new requests get processed for this import.
3240          * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
3241          * this flag and then putting requests on sending_list or delayed_list.
3242          */
3243         assert_spin_locked(&imp->imp_lock);
3244
3245         /*
3246          * XXX locking?  Maybe we should remove each request with the list
3247          * locked?  Also, how do we know if the requests on the list are
3248          * being freed at this time?
3249          */
3250         list_for_each_safe(tmp, n, &imp->imp_sending_list) {
3251                 struct ptlrpc_request *req = list_entry(tmp,
3252                                                         struct ptlrpc_request,
3253                                                         rq_list);
3254
3255                 DEBUG_REQ(D_RPCTRACE, req, "inflight");
3256
3257                 spin_lock(&req->rq_lock);
3258                 if (req->rq_import_generation < imp->imp_generation) {
3259                         req->rq_err = 1;
3260                         req->rq_status = -EIO;
3261                         ptlrpc_client_wake_req(req);
3262                 }
3263                 spin_unlock(&req->rq_lock);
3264         }
3265
3266         list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
3267                 struct ptlrpc_request *req =
3268                         list_entry(tmp, struct ptlrpc_request, rq_list);
3269
3270                 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
3271
3272                 spin_lock(&req->rq_lock);
3273                 if (req->rq_import_generation < imp->imp_generation) {
3274                         req->rq_err = 1;
3275                         req->rq_status = -EIO;
3276                         ptlrpc_client_wake_req(req);
3277                 }
3278                 spin_unlock(&req->rq_lock);
3279         }
3280
3281         /*
3282          * Last chance to free reqs left on the replay list, but we
3283          * will still leak reqs that haven't committed.
3284          */
3285         if (imp->imp_replayable)
3286                 ptlrpc_free_committed(imp);
3287
3288         EXIT;
3289 }
3290
3291 /**
3292  * Abort all uncompleted requests in request set \a set
3293  */
3294 void ptlrpc_abort_set(struct ptlrpc_request_set *set)
3295 {
3296         struct list_head *tmp, *pos;
3297
3298         LASSERT(set != NULL);
3299
3300         list_for_each_safe(pos, tmp, &set->set_requests) {
3301                 struct ptlrpc_request *req =
3302                         list_entry(pos, struct ptlrpc_request,
3303                                    rq_set_chain);
3304
3305                 spin_lock(&req->rq_lock);
3306                 if (req->rq_phase != RQ_PHASE_RPC) {
3307                         spin_unlock(&req->rq_lock);
3308                         continue;
3309                 }
3310
3311                 req->rq_err = 1;
3312                 req->rq_status = -EINTR;
3313                 ptlrpc_client_wake_req(req);
3314                 spin_unlock(&req->rq_lock);
3315         }
3316 }
3317
3318 /**
3319  * Initialize the XID for the node.  This is common among all requests on
3320  * this node, and only requires the property that it is monotonically
3321  * increasing.  It does not need to be sequential.  Since this is also used
3322  * as the RDMA match bits, it is important that a single client NOT have
3323  * the same match bits for two different in-flight requests, hence we do
3324  * NOT want to have an XID per target or similar.
3325  *
3326  * To avoid an unlikely collision between match bits after a client reboot
3327  * (which would deliver old data into the wrong RDMA buffer) initialize
3328  * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
3329  * If the time is clearly incorrect, we instead use a 62-bit random number.
3330  * In the worst case the random number will overflow 1M RPCs per second in
3331  * 9133 years, or permutations thereof.
3332  */
3333 #define YEAR_2004 (1ULL << 30)
3334 void ptlrpc_init_xid(void)
3335 {
3336         time64_t now = ktime_get_real_seconds();
3337         u64 xid;
3338
3339         if (now < YEAR_2004) {
3340                 get_random_bytes(&xid, sizeof(xid));
3341                 xid >>= 2;
3342                 xid |= (1ULL << 61);
3343         } else {
3344                 xid = (u64)now << 20;
3345         }
3346
3347         /* Need to always be aligned to a power-of-two for mutli-bulk BRW */
3348         CLASSERT((PTLRPC_BULK_OPS_COUNT & (PTLRPC_BULK_OPS_COUNT - 1)) == 0);
3349         xid &= PTLRPC_BULK_OPS_MASK;
3350         atomic64_set(&ptlrpc_last_xid, xid);
3351 }
3352
3353 /**
3354  * Increase xid and returns resulting new value to the caller.
3355  *
3356  * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
3357  * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
3358  * itself uses the last bulk xid needed, so the server can determine the
3359  * the number of bulk transfers from the RPC XID and a bitmask.  The starting
3360  * xid must align to a power-of-two value.
3361  *
3362  * This is assumed to be true due to the initial ptlrpc_last_xid
3363  * value also being initialized to a power-of-two value. LU-1431
3364  */
3365 __u64 ptlrpc_next_xid(void)
3366 {
3367         return atomic64_add_return(PTLRPC_BULK_OPS_COUNT, &ptlrpc_last_xid);
3368 }
3369
3370 /**
3371  * If request has a new allocated XID (new request or EINPROGRESS resend),
3372  * use this XID as matchbits of bulk, otherwise allocate a new matchbits for
3373  * request to ensure previous bulk fails and avoid problems with lost replies
3374  * and therefore several transfers landing into the same buffer from different
3375  * sending attempts.
3376  */
3377 void ptlrpc_set_bulk_mbits(struct ptlrpc_request *req)
3378 {
3379         struct ptlrpc_bulk_desc *bd = req->rq_bulk;
3380
3381         LASSERT(bd != NULL);
3382
3383         /*
3384          * Generate new matchbits for all resend requests, including
3385          * resend replay.
3386          */
3387         if (req->rq_resend) {
3388                 __u64 old_mbits = req->rq_mbits;
3389
3390                 /*
3391                  * First time resend on -EINPROGRESS will generate new xid,
3392                  * so we can actually use the rq_xid as rq_mbits in such case,
3393                  * however, it's bit hard to distinguish such resend with a
3394                  * 'resend for the -EINPROGRESS resend'. To make it simple,
3395                  * we opt to generate mbits for all resend cases.
3396                  */
3397                 if (OCD_HAS_FLAG(&bd->bd_import->imp_connect_data,
3398                                  BULK_MBITS)) {
3399                         req->rq_mbits = ptlrpc_next_xid();
3400                 } else {
3401                         /*
3402                          * Old version transfers rq_xid to peer as
3403                          * matchbits.
3404                          */
3405                         spin_lock(&req->rq_import->imp_lock);
3406                         list_del_init(&req->rq_unreplied_list);
3407                         ptlrpc_assign_next_xid_nolock(req);
3408                         spin_unlock(&req->rq_import->imp_lock);
3409                         req->rq_mbits = req->rq_xid;
3410                 }
3411                 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
3412                        old_mbits, req->rq_mbits);
3413         } else if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
3414                 /* Request being sent first time, use xid as matchbits. */
3415                 if (OCD_HAS_FLAG(&bd->bd_import->imp_connect_data, BULK_MBITS)
3416                     || req->rq_mbits == 0) {
3417                         req->rq_mbits = req->rq_xid;
3418                 } else {
3419                         int total_md = (bd->bd_iov_count + LNET_MAX_IOV - 1) /
3420                                         LNET_MAX_IOV;
3421                         req->rq_mbits -= total_md - 1;
3422                 }
3423         } else {
3424                 /*
3425                  * Replay request, xid and matchbits have already been
3426                  * correctly assigned.
3427                  */
3428                 return;
3429         }
3430
3431         /*
3432          * For multi-bulk RPCs, rq_mbits is the last mbits needed for bulks so
3433          * that server can infer the number of bulks that were prepared,
3434          * see LU-1431
3435          */
3436         req->rq_mbits += ((bd->bd_iov_count + LNET_MAX_IOV - 1) /
3437                           LNET_MAX_IOV) - 1;
3438
3439         /*
3440          * Set rq_xid as rq_mbits to indicate the final bulk for the old
3441          * server which does not support OBD_CONNECT_BULK_MBITS. LU-6808.
3442          *
3443          * It's ok to directly set the rq_xid here, since this xid bump
3444          * won't affect the request position in unreplied list.
3445          */
3446         if (!OCD_HAS_FLAG(&bd->bd_import->imp_connect_data, BULK_MBITS))
3447                 req->rq_xid = req->rq_mbits;
3448 }
3449
3450 /**
3451  * Get a glimpse at what next xid value might have been.
3452  * Returns possible next xid.
3453  */
3454 __u64 ptlrpc_sample_next_xid(void)
3455 {
3456         return atomic64_read(&ptlrpc_last_xid) + PTLRPC_BULK_OPS_COUNT;
3457 }
3458 EXPORT_SYMBOL(ptlrpc_sample_next_xid);
3459
3460 /**
3461  * Functions for operating ptlrpc workers.
3462  *
3463  * A ptlrpc work is a function which will be running inside ptlrpc context.
3464  * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
3465  *
3466  * 1. after a work is created, it can be used many times, that is:
3467  *         handler = ptlrpcd_alloc_work();
3468  *         ptlrpcd_queue_work();
3469  *
3470  *    queue it again when necessary:
3471  *         ptlrpcd_queue_work();
3472  *         ptlrpcd_destroy_work();
3473  * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
3474  *    it will only be queued once in any time. Also as its name implies, it may
3475  *    have delay before it really runs by ptlrpcd thread.
3476  */
3477 struct ptlrpc_work_async_args {
3478         int (*cb)(const struct lu_env *, void *);
3479         void *cbdata;
3480 };
3481
3482 static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
3483 {
3484         /* re-initialize the req */
3485         req->rq_timeout         = obd_timeout;
3486         req->rq_sent            = ktime_get_real_seconds();
3487         req->rq_deadline        = req->rq_sent + req->rq_timeout;
3488         req->rq_phase           = RQ_PHASE_INTERPRET;
3489         req->rq_next_phase      = RQ_PHASE_COMPLETE;
3490         req->rq_xid             = ptlrpc_next_xid();
3491         req->rq_import_generation = req->rq_import->imp_generation;
3492
3493         ptlrpcd_add_req(req);
3494 }
3495
3496 static int work_interpreter(const struct lu_env *env,
3497                             struct ptlrpc_request *req, void *args, int rc)
3498 {
3499         struct ptlrpc_work_async_args *arg = args;
3500
3501         LASSERT(ptlrpcd_check_work(req));
3502         LASSERT(arg->cb != NULL);
3503
3504         rc = arg->cb(env, arg->cbdata);
3505
3506         list_del_init(&req->rq_set_chain);
3507         req->rq_set = NULL;
3508
3509         if (atomic_dec_return(&req->rq_refcount) > 1) {
3510                 atomic_set(&req->rq_refcount, 2);
3511                 ptlrpcd_add_work_req(req);
3512         }
3513         return rc;
3514 }
3515
3516 static int worker_format;
3517
3518 static int ptlrpcd_check_work(struct ptlrpc_request *req)
3519 {
3520         return req->rq_pill.rc_fmt == (void *)&worker_format;
3521 }
3522
3523 /**
3524  * Create a work for ptlrpc.
3525  */
3526 void *ptlrpcd_alloc_work(struct obd_import *imp,
3527                          int (*cb)(const struct lu_env *, void *), void *cbdata)
3528 {
3529         struct ptlrpc_request *req = NULL;
3530         struct ptlrpc_work_async_args *args;
3531
3532         ENTRY;
3533         might_sleep();
3534
3535         if (!cb)
3536                 RETURN(ERR_PTR(-EINVAL));
3537
3538         /* copy some code from deprecated fakereq. */
3539         req = ptlrpc_request_cache_alloc(GFP_NOFS);
3540         if (!req) {
3541                 CERROR("ptlrpc: run out of memory!\n");
3542                 RETURN(ERR_PTR(-ENOMEM));
3543         }
3544
3545         ptlrpc_cli_req_init(req);
3546
3547         req->rq_send_state = LUSTRE_IMP_FULL;
3548         req->rq_type = PTL_RPC_MSG_REQUEST;
3549         req->rq_import = class_import_get(imp);
3550         req->rq_interpret_reply = work_interpreter;
3551         /* don't want reply */
3552         req->rq_no_delay = req->rq_no_resend = 1;
3553         req->rq_pill.rc_fmt = (void *)&worker_format;
3554
3555         args = ptlrpc_req_async_args(args, req);
3556         args->cb     = cb;
3557         args->cbdata = cbdata;
3558
3559         RETURN(req);
3560 }
3561 EXPORT_SYMBOL(ptlrpcd_alloc_work);
3562
3563 void ptlrpcd_destroy_work(void *handler)
3564 {
3565         struct ptlrpc_request *req = handler;
3566
3567         if (req)
3568                 ptlrpc_req_finished(req);
3569 }
3570 EXPORT_SYMBOL(ptlrpcd_destroy_work);
3571
3572 int ptlrpcd_queue_work(void *handler)
3573 {
3574         struct ptlrpc_request *req = handler;
3575
3576         /*
3577          * Check if the req is already being queued.
3578          *
3579          * Here comes a trick: it lacks a way of checking if a req is being
3580          * processed reliably in ptlrpc. Here I have to use refcount of req
3581          * for this purpose. This is okay because the caller should use this
3582          * req as opaque data. - Jinshan
3583          */
3584         LASSERT(atomic_read(&req->rq_refcount) > 0);
3585         if (atomic_inc_return(&req->rq_refcount) == 2)
3586                 ptlrpcd_add_work_req(req);
3587         return 0;
3588 }
3589 EXPORT_SYMBOL(ptlrpcd_queue_work);