Whamcloud - gitweb
95fd6ece30a1ef62a6fcd04812ea5b1571eaeac7
[fs/lustre-release.git] / lustre / ptlrpc / client.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  */
32
33 /** Implementation of client-side PortalRPC interfaces */
34
35 #define DEBUG_SUBSYSTEM S_RPC
36
37 #include <linux/delay.h>
38 #include <obd_support.h>
39 #include <obd_class.h>
40 #include <lustre_lib.h>
41 #include <lustre_ha.h>
42 #include <lustre_import.h>
43 #include <lustre_req_layout.h>
44
45 #include "ptlrpc_internal.h"
46
47 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_pin_ops = {
48         .add_kiov_frag  = ptlrpc_prep_bulk_page_pin,
49         .release_frags  = ptlrpc_release_bulk_page_pin,
50 };
51 EXPORT_SYMBOL(ptlrpc_bulk_kiov_pin_ops);
52
53 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_nopin_ops = {
54         .add_kiov_frag  = ptlrpc_prep_bulk_page_nopin,
55         .release_frags  = ptlrpc_release_bulk_noop,
56 };
57 EXPORT_SYMBOL(ptlrpc_bulk_kiov_nopin_ops);
58
59 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kvec_ops = {
60         .add_iov_frag = ptlrpc_prep_bulk_frag,
61 };
62 EXPORT_SYMBOL(ptlrpc_bulk_kvec_ops);
63
64 static int ptlrpc_send_new_req(struct ptlrpc_request *req);
65 static int ptlrpcd_check_work(struct ptlrpc_request *req);
66 static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async);
67
68 /**
69  * Initialize passed in client structure \a cl.
70  */
71 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
72                         struct ptlrpc_client *cl)
73 {
74         cl->cli_request_portal = req_portal;
75         cl->cli_reply_portal   = rep_portal;
76         cl->cli_name           = name;
77 }
78 EXPORT_SYMBOL(ptlrpc_init_client);
79
80 /**
81  * Return PortalRPC connection for remore uud \a uuid
82  */
83 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid,
84                                                     lnet_nid_t nid4refnet)
85 {
86         struct ptlrpc_connection *c;
87         lnet_nid_t                self;
88         struct lnet_process_id peer;
89         int                       err;
90
91         /* ptlrpc_uuid_to_peer() initializes its 2nd parameter
92          * before accessing its values. */
93         /* coverity[uninit_use_in_call] */
94         peer.nid = nid4refnet;
95         err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
96         if (err != 0) {
97                 CNETERR("cannot find peer %s!\n", uuid->uuid);
98                 return NULL;
99         }
100
101         c = ptlrpc_connection_get(peer, self, uuid);
102         if (c) {
103                 memcpy(c->c_remote_uuid.uuid,
104                        uuid->uuid, sizeof(c->c_remote_uuid.uuid));
105         }
106
107         CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
108
109         return c;
110 }
111
112 /**
113  * Allocate and initialize new bulk descriptor on the sender.
114  * Returns pointer to the descriptor or NULL on error.
115  */
116 struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned nfrags, unsigned max_brw,
117                                          enum ptlrpc_bulk_op_type type,
118                                          unsigned portal,
119                                          const struct ptlrpc_bulk_frag_ops *ops)
120 {
121         struct ptlrpc_bulk_desc *desc;
122         int i;
123
124         /* ensure that only one of KIOV or IOVEC is set but not both */
125         LASSERT((ptlrpc_is_bulk_desc_kiov(type) &&
126                  ops->add_kiov_frag != NULL) ||
127                 (ptlrpc_is_bulk_desc_kvec(type) &&
128                  ops->add_iov_frag != NULL));
129
130         OBD_ALLOC_PTR(desc);
131         if (desc == NULL)
132                 return NULL;
133         if (type & PTLRPC_BULK_BUF_KIOV) {
134                 OBD_ALLOC_LARGE(GET_KIOV(desc),
135                                 nfrags * sizeof(*GET_KIOV(desc)));
136                 if (GET_KIOV(desc) == NULL)
137                         goto out;
138         } else {
139                 OBD_ALLOC_LARGE(GET_KVEC(desc),
140                                 nfrags * sizeof(*GET_KVEC(desc)));
141                 if (GET_KVEC(desc) == NULL)
142                         goto out;
143         }
144
145         spin_lock_init(&desc->bd_lock);
146         init_waitqueue_head(&desc->bd_waitq);
147         desc->bd_max_iov = nfrags;
148         desc->bd_iov_count = 0;
149         desc->bd_portal = portal;
150         desc->bd_type = type;
151         desc->bd_md_count = 0;
152         desc->bd_frag_ops = (struct ptlrpc_bulk_frag_ops *) ops;
153         LASSERT(max_brw > 0);
154         desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
155         /* PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
156          * node. Negotiated ocd_brw_size will always be <= this number. */
157         for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
158                 LNetInvalidateMDHandle(&desc->bd_mds[i]);
159
160         return desc;
161 out:
162         OBD_FREE_PTR(desc);
163         return NULL;
164 }
165
166 /**
167  * Prepare bulk descriptor for specified outgoing request \a req that
168  * can fit \a nfrags * pages. \a type is bulk type. \a portal is where
169  * the bulk to be sent. Used on client-side.
170  * Returns pointer to newly allocatrd initialized bulk descriptor or NULL on
171  * error.
172  */
173 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
174                                               unsigned nfrags, unsigned max_brw,
175                                               unsigned int type,
176                                               unsigned portal,
177                                               const struct ptlrpc_bulk_frag_ops
178                                                 *ops)
179 {
180         struct obd_import *imp = req->rq_import;
181         struct ptlrpc_bulk_desc *desc;
182
183         ENTRY;
184         LASSERT(ptlrpc_is_bulk_op_passive(type));
185
186         desc = ptlrpc_new_bulk(nfrags, max_brw, type, portal, ops);
187         if (desc == NULL)
188                 RETURN(NULL);
189
190         desc->bd_import_generation = req->rq_import_generation;
191         desc->bd_import = class_import_get(imp);
192         desc->bd_req = req;
193
194         desc->bd_cbid.cbid_fn  = client_bulk_callback;
195         desc->bd_cbid.cbid_arg = desc;
196
197         /* This makes req own desc, and free it when she frees herself */
198         req->rq_bulk = desc;
199
200         return desc;
201 }
202 EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
203
204 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
205                              struct page *page, int pageoffset, int len,
206                              int pin)
207 {
208         lnet_kiov_t *kiov;
209
210         LASSERT(desc->bd_iov_count < desc->bd_max_iov);
211         LASSERT(page != NULL);
212         LASSERT(pageoffset >= 0);
213         LASSERT(len > 0);
214         LASSERT(pageoffset + len <= PAGE_SIZE);
215         LASSERT(ptlrpc_is_bulk_desc_kiov(desc->bd_type));
216
217         kiov = &BD_GET_KIOV(desc, desc->bd_iov_count);
218
219         desc->bd_nob += len;
220
221         if (pin)
222                 get_page(page);
223
224         kiov->kiov_page = page;
225         kiov->kiov_offset = pageoffset;
226         kiov->kiov_len = len;
227
228         desc->bd_iov_count++;
229 }
230 EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
231
232 int ptlrpc_prep_bulk_frag(struct ptlrpc_bulk_desc *desc,
233                           void *frag, int len)
234 {
235         struct kvec *iovec;
236         ENTRY;
237
238         LASSERT(desc->bd_iov_count < desc->bd_max_iov);
239         LASSERT(frag != NULL);
240         LASSERT(len > 0);
241         LASSERT(ptlrpc_is_bulk_desc_kvec(desc->bd_type));
242
243         iovec = &BD_GET_KVEC(desc, desc->bd_iov_count);
244
245         desc->bd_nob += len;
246
247         iovec->iov_base = frag;
248         iovec->iov_len = len;
249
250         desc->bd_iov_count++;
251
252         RETURN(desc->bd_nob);
253 }
254 EXPORT_SYMBOL(ptlrpc_prep_bulk_frag);
255
256 void ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc)
257 {
258         ENTRY;
259
260         LASSERT(desc != NULL);
261         LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
262         LASSERT(desc->bd_md_count == 0);         /* network hands off */
263         LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
264         LASSERT(desc->bd_frag_ops != NULL);
265
266         if (ptlrpc_is_bulk_desc_kiov(desc->bd_type))
267                 sptlrpc_enc_pool_put_pages(desc);
268
269         if (desc->bd_export)
270                 class_export_put(desc->bd_export);
271         else
272                 class_import_put(desc->bd_import);
273
274         if (desc->bd_frag_ops->release_frags != NULL)
275                 desc->bd_frag_ops->release_frags(desc);
276
277         if (ptlrpc_is_bulk_desc_kiov(desc->bd_type))
278                 OBD_FREE_LARGE(GET_KIOV(desc),
279                         desc->bd_max_iov * sizeof(*GET_KIOV(desc)));
280         else
281                 OBD_FREE_LARGE(GET_KVEC(desc),
282                         desc->bd_max_iov * sizeof(*GET_KVEC(desc)));
283         OBD_FREE_PTR(desc);
284         EXIT;
285 }
286 EXPORT_SYMBOL(ptlrpc_free_bulk);
287
288 /**
289  * Set server timelimit for this req, i.e. how long are we willing to wait
290  * for reply before timing out this request.
291  */
292 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
293 {
294         __u32 serv_est;
295         int idx;
296         struct imp_at *at;
297
298         LASSERT(req->rq_import);
299
300         if (AT_OFF) {
301                 /* non-AT settings */
302                 /**
303                  * \a imp_server_timeout means this is reverse import and
304                  * we send (currently only) ASTs to the client and cannot afford
305                  * to wait too long for the reply, otherwise the other client
306                  * (because of which we are sending this request) would
307                  * timeout waiting for us
308                  */
309                 req->rq_timeout = req->rq_import->imp_server_timeout ?
310                                   obd_timeout / 2 : obd_timeout;
311         } else {
312                 at = &req->rq_import->imp_at;
313                 idx = import_at_get_index(req->rq_import,
314                                           req->rq_request_portal);
315                 serv_est = at_get(&at->iat_service_estimate[idx]);
316                 req->rq_timeout = at_est2timeout(serv_est);
317         }
318         /* We could get even fancier here, using history to predict increased
319            loading... */
320
321         /* Let the server know what this RPC timeout is by putting it in the
322            reqmsg*/
323         lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
324 }
325 EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
326
327 /* Adjust max service estimate based on server value */
328 static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
329                                   unsigned int serv_est)
330 {
331         int idx;
332         unsigned int oldse;
333         struct imp_at *at;
334
335         LASSERT(req->rq_import);
336         at = &req->rq_import->imp_at;
337
338         idx = import_at_get_index(req->rq_import, req->rq_request_portal);
339         /* max service estimates are tracked on the server side,
340            so just keep minimal history here */
341         oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
342         if (oldse != 0)
343                 CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d "
344                        "has changed from %d to %d\n",
345                        req->rq_import->imp_obd->obd_name,req->rq_request_portal,
346                        oldse, at_get(&at->iat_service_estimate[idx]));
347 }
348
349 /* Expected network latency per remote node (secs) */
350 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
351 {
352         return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
353 }
354
355 /* Adjust expected network latency */
356 void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
357                                unsigned int service_time)
358 {
359         unsigned int nl, oldnl;
360         struct imp_at *at;
361         time64_t now = ktime_get_real_seconds();
362
363         LASSERT(req->rq_import);
364
365         if (service_time > now - req->rq_sent + 3) {
366                 /* bz16408, however, this can also happen if early reply
367                  * is lost and client RPC is expired and resent, early reply
368                  * or reply of original RPC can still be fit in reply buffer
369                  * of resent RPC, now client is measuring time from the
370                  * resent time, but server sent back service time of original
371                  * RPC.
372                  */
373                 CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ?
374                        D_ADAPTTO : D_WARNING,
375                        "Reported service time %u > total measured time %lld\n",
376                        service_time, now - req->rq_sent);
377                 return;
378         }
379
380         /* Network latency is total time less server processing time */
381         nl = max_t(int, now - req->rq_sent -
382                         service_time, 0) + 1; /* st rounding */
383         at = &req->rq_import->imp_at;
384
385         oldnl = at_measured(&at->iat_net_latency, nl);
386         if (oldnl != 0)
387                 CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) "
388                        "has changed from %d to %d\n",
389                        req->rq_import->imp_obd->obd_name,
390                        obd_uuid2str(
391                                &req->rq_import->imp_connection->c_remote_uuid),
392                        oldnl, at_get(&at->iat_net_latency));
393 }
394
395 static int unpack_reply(struct ptlrpc_request *req)
396 {
397         int rc;
398
399         if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
400                 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
401                 if (rc) {
402                         DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
403                         return(-EPROTO);
404                 }
405         }
406
407         rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
408         if (rc) {
409                 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
410                 return(-EPROTO);
411         }
412         return 0;
413 }
414
415 /**
416  * Handle an early reply message, called with the rq_lock held.
417  * If anything goes wrong just ignore it - same as if it never happened
418  */
419 static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
420 __must_hold(&req->rq_lock)
421 {
422         struct ptlrpc_request *early_req;
423         time64_t olddl;
424         int rc;
425
426         ENTRY;
427         req->rq_early = 0;
428         spin_unlock(&req->rq_lock);
429
430         rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
431         if (rc) {
432                 spin_lock(&req->rq_lock);
433                 RETURN(rc);
434         }
435
436         rc = unpack_reply(early_req);
437         if (rc != 0) {
438                 sptlrpc_cli_finish_early_reply(early_req);
439                 spin_lock(&req->rq_lock);
440                 RETURN(rc);
441         }
442
443         /* Use new timeout value just to adjust the local value for this
444          * request, don't include it into at_history. It is unclear yet why
445          * service time increased and should it be counted or skipped, e.g.
446          * that can be recovery case or some error or server, the real reply
447          * will add all new data if it is worth to add. */
448         req->rq_timeout = lustre_msg_get_timeout(early_req->rq_repmsg);
449         lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
450
451         /* Network latency can be adjusted, it is pure network delays */
452         ptlrpc_at_adj_net_latency(req,
453                         lustre_msg_get_service_time(early_req->rq_repmsg));
454
455         sptlrpc_cli_finish_early_reply(early_req);
456
457         spin_lock(&req->rq_lock);
458         olddl = req->rq_deadline;
459         /* server assumes it now has rq_timeout from when the request
460          * arrived, so the client should give it at least that long.
461          * since we don't know the arrival time we'll use the original
462          * sent time */
463         req->rq_deadline = req->rq_sent + req->rq_timeout +
464                            ptlrpc_at_get_net_latency(req);
465
466         DEBUG_REQ(D_ADAPTTO, req,
467                   "Early reply #%d, new deadline in %llds (%llds)",
468                   req->rq_early_count,
469                   req->rq_deadline - ktime_get_real_seconds(),
470                   req->rq_deadline - olddl);
471
472         RETURN(rc);
473 }
474
475 static struct kmem_cache *request_cache;
476
477 int ptlrpc_request_cache_init(void)
478 {
479         request_cache = kmem_cache_create("ptlrpc_cache",
480                                           sizeof(struct ptlrpc_request),
481                                           0, SLAB_HWCACHE_ALIGN, NULL);
482         return request_cache == NULL ? -ENOMEM : 0;
483 }
484
485 void ptlrpc_request_cache_fini(void)
486 {
487         kmem_cache_destroy(request_cache);
488 }
489
490 struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
491 {
492         struct ptlrpc_request *req;
493
494         OBD_SLAB_ALLOC_PTR_GFP(req, request_cache, flags);
495         return req;
496 }
497
498 void ptlrpc_request_cache_free(struct ptlrpc_request *req)
499 {
500         OBD_SLAB_FREE_PTR(req, request_cache);
501 }
502
503 /**
504  * Wind down request pool \a pool.
505  * Frees all requests from the pool too
506  */
507 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
508 {
509         struct list_head *l, *tmp;
510         struct ptlrpc_request *req;
511
512         LASSERT(pool != NULL);
513
514         spin_lock(&pool->prp_lock);
515         list_for_each_safe(l, tmp, &pool->prp_req_list) {
516                 req = list_entry(l, struct ptlrpc_request, rq_list);
517                 list_del(&req->rq_list);
518                 LASSERT(req->rq_reqbuf);
519                 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
520                 OBD_FREE_LARGE(req->rq_reqbuf, pool->prp_rq_size);
521                 ptlrpc_request_cache_free(req);
522         }
523         spin_unlock(&pool->prp_lock);
524         OBD_FREE(pool, sizeof(*pool));
525 }
526 EXPORT_SYMBOL(ptlrpc_free_rq_pool);
527
528 /**
529  * Allocates, initializes and adds \a num_rq requests to the pool \a pool
530  */
531 int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
532 {
533         int i;
534         int size = 1;
535
536         while (size < pool->prp_rq_size)
537                 size <<= 1;
538
539         LASSERTF(list_empty(&pool->prp_req_list) ||
540                  size == pool->prp_rq_size,
541                  "Trying to change pool size with nonempty pool "
542                  "from %d to %d bytes\n", pool->prp_rq_size, size);
543
544         spin_lock(&pool->prp_lock);
545         pool->prp_rq_size = size;
546         for (i = 0; i < num_rq; i++) {
547                 struct ptlrpc_request *req;
548                 struct lustre_msg *msg;
549
550                 spin_unlock(&pool->prp_lock);
551                 req = ptlrpc_request_cache_alloc(GFP_NOFS);
552                 if (!req)
553                         return i;
554                 OBD_ALLOC_LARGE(msg, size);
555                 if (!msg) {
556                         ptlrpc_request_cache_free(req);
557                         return i;
558                 }
559                 req->rq_reqbuf = msg;
560                 req->rq_reqbuf_len = size;
561                 req->rq_pool = pool;
562                 spin_lock(&pool->prp_lock);
563                 list_add_tail(&req->rq_list, &pool->prp_req_list);
564         }
565         spin_unlock(&pool->prp_lock);
566         return num_rq;
567 }
568 EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
569
570 /**
571  * Create and initialize new request pool with given attributes:
572  * \a num_rq - initial number of requests to create for the pool
573  * \a msgsize - maximum message size possible for requests in thid pool
574  * \a populate_pool - function to be called when more requests need to be added
575  *                    to the pool
576  * Returns pointer to newly created pool or NULL on error.
577  */
578 struct ptlrpc_request_pool *
579 ptlrpc_init_rq_pool(int num_rq, int msgsize,
580                     int (*populate_pool)(struct ptlrpc_request_pool *, int))
581 {
582         struct ptlrpc_request_pool *pool;
583
584         OBD_ALLOC(pool, sizeof(struct ptlrpc_request_pool));
585         if (!pool)
586                 return NULL;
587
588         /* Request next power of two for the allocation, because internally
589            kernel would do exactly this */
590
591         spin_lock_init(&pool->prp_lock);
592         INIT_LIST_HEAD(&pool->prp_req_list);
593         pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
594         pool->prp_populate = populate_pool;
595
596         populate_pool(pool, num_rq);
597
598         return pool;
599 }
600 EXPORT_SYMBOL(ptlrpc_init_rq_pool);
601
602 /**
603  * Fetches one request from pool \a pool
604  */
605 static struct ptlrpc_request *
606 ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
607 {
608         struct ptlrpc_request *request;
609         struct lustre_msg *reqbuf;
610
611         if (!pool)
612                 return NULL;
613
614         spin_lock(&pool->prp_lock);
615
616         /* See if we have anything in a pool, and bail out if nothing,
617          * in writeout path, where this matters, this is safe to do, because
618          * nothing is lost in this case, and when some in-flight requests
619          * complete, this code will be called again. */
620         if (unlikely(list_empty(&pool->prp_req_list))) {
621                 spin_unlock(&pool->prp_lock);
622                 return NULL;
623         }
624
625         request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
626                              rq_list);
627         list_del_init(&request->rq_list);
628         spin_unlock(&pool->prp_lock);
629
630         LASSERT(request->rq_reqbuf);
631         LASSERT(request->rq_pool);
632
633         reqbuf = request->rq_reqbuf;
634         memset(request, 0, sizeof(*request));
635         request->rq_reqbuf = reqbuf;
636         request->rq_reqbuf_len = pool->prp_rq_size;
637         request->rq_pool = pool;
638
639         return request;
640 }
641
642 /**
643  * Returns freed \a request to pool.
644  */
645 static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
646 {
647         struct ptlrpc_request_pool *pool = request->rq_pool;
648
649         spin_lock(&pool->prp_lock);
650         LASSERT(list_empty(&request->rq_list));
651         LASSERT(!request->rq_receiving_reply);
652         list_add_tail(&request->rq_list, &pool->prp_req_list);
653         spin_unlock(&pool->prp_lock);
654 }
655
656 void ptlrpc_add_unreplied(struct ptlrpc_request *req)
657 {
658         struct obd_import       *imp = req->rq_import;
659         struct list_head        *tmp;
660         struct ptlrpc_request   *iter;
661
662         assert_spin_locked(&imp->imp_lock);
663         LASSERT(list_empty(&req->rq_unreplied_list));
664
665         /* unreplied list is sorted by xid in ascending order */
666         list_for_each_prev(tmp, &imp->imp_unreplied_list) {
667                 iter = list_entry(tmp, struct ptlrpc_request,
668                                   rq_unreplied_list);
669
670                 LASSERT(req->rq_xid != iter->rq_xid);
671                 if (req->rq_xid < iter->rq_xid)
672                         continue;
673                 list_add(&req->rq_unreplied_list, &iter->rq_unreplied_list);
674                 return;
675         }
676         list_add(&req->rq_unreplied_list, &imp->imp_unreplied_list);
677 }
678
679 void ptlrpc_assign_next_xid_nolock(struct ptlrpc_request *req)
680 {
681         req->rq_xid = ptlrpc_next_xid();
682         ptlrpc_add_unreplied(req);
683 }
684
685 static inline void ptlrpc_assign_next_xid(struct ptlrpc_request *req)
686 {
687         spin_lock(&req->rq_import->imp_lock);
688         ptlrpc_assign_next_xid_nolock(req);
689         spin_unlock(&req->rq_import->imp_lock);
690 }
691
692 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
693                              __u32 version, int opcode, char **bufs,
694                              struct ptlrpc_cli_ctx *ctx)
695 {
696         int count;
697         struct obd_import *imp;
698         __u32 *lengths;
699         int rc;
700
701         ENTRY;
702
703         count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
704         imp = request->rq_import;
705         lengths = request->rq_pill.rc_area[RCL_CLIENT];
706
707         if (ctx != NULL) {
708                 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
709         } else {
710                 rc = sptlrpc_req_get_ctx(request);
711                 if (rc)
712                         GOTO(out_free, rc);
713         }
714         sptlrpc_req_set_flavor(request, opcode);
715
716         rc = lustre_pack_request(request, imp->imp_msg_magic, count,
717                                  lengths, bufs);
718         if (rc)
719                 GOTO(out_ctx, rc);
720
721         lustre_msg_add_version(request->rq_reqmsg, version);
722         request->rq_send_state = LUSTRE_IMP_FULL;
723         request->rq_type = PTL_RPC_MSG_REQUEST;
724
725         request->rq_req_cbid.cbid_fn  = request_out_callback;
726         request->rq_req_cbid.cbid_arg = request;
727
728         request->rq_reply_cbid.cbid_fn  = reply_in_callback;
729         request->rq_reply_cbid.cbid_arg = request;
730
731         request->rq_reply_deadline = 0;
732         request->rq_bulk_deadline = 0;
733         request->rq_req_deadline = 0;
734         request->rq_phase = RQ_PHASE_NEW;
735         request->rq_next_phase = RQ_PHASE_UNDEFINED;
736
737         request->rq_request_portal = imp->imp_client->cli_request_portal;
738         request->rq_reply_portal = imp->imp_client->cli_reply_portal;
739
740         ptlrpc_at_set_req_timeout(request);
741
742         lustre_msg_set_opc(request->rq_reqmsg, opcode);
743         ptlrpc_assign_next_xid(request);
744
745         /* Let's setup deadline for req/reply/bulk unlink for opcode. */
746         if (cfs_fail_val == opcode) {
747                 time64_t *fail_t = NULL, *fail2_t = NULL;
748
749                 if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK))
750                         fail_t = &request->rq_bulk_deadline;
751                 else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK))
752                         fail_t = &request->rq_reply_deadline;
753                 else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK))
754                         fail_t = &request->rq_req_deadline;
755                 else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BOTH_UNLINK)) {
756                         fail_t = &request->rq_reply_deadline;
757                         fail2_t = &request->rq_bulk_deadline;
758                 }
759
760                 if (fail_t) {
761                         *fail_t = ktime_get_real_seconds() + LONG_UNLINK;
762
763                         if (fail2_t)
764                                 *fail2_t = ktime_get_real_seconds() +
765                                            LONG_UNLINK;
766
767                         /*
768                          * The RPC is infected, let the test to change the
769                          * fail_loc
770                          */
771                         msleep(4 * MSEC_PER_SEC);
772                 }
773         }
774
775         RETURN(0);
776
777 out_ctx:
778         LASSERT(!request->rq_pool);
779         sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
780 out_free:
781         class_import_put(imp);
782
783         return rc;
784
785 }
786 EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
787
788 /**
789  * Pack request buffers for network transfer, performing necessary encryption
790  * steps if necessary.
791  */
792 int ptlrpc_request_pack(struct ptlrpc_request *request,
793                         __u32 version, int opcode)
794 {
795         int rc;
796         rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
797         if (rc)
798                 return rc;
799
800         /* For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
801          * ptlrpc_body sent from server equal to local ptlrpc_body size, so we
802          * have to send old ptlrpc_body to keep interoprability with these
803          * clients.
804          *
805          * Only three kinds of server->client RPCs so far:
806          *  - LDLM_BL_CALLBACK
807          *  - LDLM_CP_CALLBACK
808          *  - LDLM_GL_CALLBACK
809          *
810          * XXX This should be removed whenever we drop the interoprability with
811          *     the these old clients.
812          */
813         if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
814             opcode == LDLM_GL_CALLBACK)
815                 req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
816                                    sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
817
818         return rc;
819 }
820 EXPORT_SYMBOL(ptlrpc_request_pack);
821
822 /**
823  * Helper function to allocate new request on import \a imp
824  * and possibly using existing request from pool \a pool if provided.
825  * Returns allocated request structure with import field filled or
826  * NULL on error.
827  */
828 static inline
829 struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
830                                               struct ptlrpc_request_pool *pool)
831 {
832         struct ptlrpc_request *request = NULL;
833
834         request = ptlrpc_request_cache_alloc(GFP_NOFS);
835
836         if (!request && pool)
837                 request = ptlrpc_prep_req_from_pool(pool);
838
839         if (request) {
840                 ptlrpc_cli_req_init(request);
841
842                 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
843                 LASSERT(imp != LP_POISON);
844                 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p\n",
845                         imp->imp_client);
846                 LASSERT(imp->imp_client != LP_POISON);
847
848                 request->rq_import = class_import_get(imp);
849         } else {
850                 CERROR("request allocation out of memory\n");
851         }
852
853         return request;
854 }
855
856 /**
857  * Helper function for creating a request.
858  * Calls __ptlrpc_request_alloc to allocate new request sturcture and inits
859  * buffer structures according to capsule template \a format.
860  * Returns allocated request structure pointer or NULL on error.
861  */
862 static struct ptlrpc_request *
863 ptlrpc_request_alloc_internal(struct obd_import *imp,
864                               struct ptlrpc_request_pool * pool,
865                               const struct req_format *format)
866 {
867         struct ptlrpc_request *request;
868
869         request = __ptlrpc_request_alloc(imp, pool);
870         if (request == NULL)
871                 return NULL;
872
873         req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
874         req_capsule_set(&request->rq_pill, format);
875         return request;
876 }
877
878 /**
879  * Allocate new request structure for import \a imp and initialize its
880  * buffer structure according to capsule template \a format.
881  */
882 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
883                                             const struct req_format *format)
884 {
885         return ptlrpc_request_alloc_internal(imp, NULL, format);
886 }
887 EXPORT_SYMBOL(ptlrpc_request_alloc);
888
889 /**
890  * Allocate new request structure for import \a imp from pool \a pool and
891  * initialize its buffer structure according to capsule template \a format.
892  */
893 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
894                                             struct ptlrpc_request_pool * pool,
895                                             const struct req_format *format)
896 {
897         return ptlrpc_request_alloc_internal(imp, pool, format);
898 }
899 EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
900
901 /**
902  * For requests not from pool, free memory of the request structure.
903  * For requests obtained from a pool earlier, return request back to pool.
904  */
905 void ptlrpc_request_free(struct ptlrpc_request *request)
906 {
907         if (request->rq_pool)
908                 __ptlrpc_free_req_to_pool(request);
909         else
910                 ptlrpc_request_cache_free(request);
911 }
912 EXPORT_SYMBOL(ptlrpc_request_free);
913
914 /**
915  * Allocate new request for operatione \a opcode and immediatelly pack it for
916  * network transfer.
917  * Only used for simple requests like OBD_PING where the only important
918  * part of the request is operation itself.
919  * Returns allocated request or NULL on error.
920  */
921 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
922                                                 const struct req_format *format,
923                                                 __u32 version, int opcode)
924 {
925         struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
926         int                    rc;
927
928         if (req) {
929                 rc = ptlrpc_request_pack(req, version, opcode);
930                 if (rc) {
931                         ptlrpc_request_free(req);
932                         req = NULL;
933                 }
934         }
935         return req;
936 }
937 EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
938
939 /**
940  * Allocate and initialize new request set structure on the current CPT.
941  * Returns a pointer to the newly allocated set structure or NULL on error.
942  */
943 struct ptlrpc_request_set *ptlrpc_prep_set(void)
944 {
945         struct ptlrpc_request_set       *set;
946         int                             cpt;
947
948         ENTRY;
949         cpt = cfs_cpt_current(cfs_cpt_table, 0);
950         OBD_CPT_ALLOC(set, cfs_cpt_table, cpt, sizeof *set);
951         if (!set)
952                 RETURN(NULL);
953         atomic_set(&set->set_refcount, 1);
954         INIT_LIST_HEAD(&set->set_requests);
955         init_waitqueue_head(&set->set_waitq);
956         atomic_set(&set->set_new_count, 0);
957         atomic_set(&set->set_remaining, 0);
958         spin_lock_init(&set->set_new_req_lock);
959         INIT_LIST_HEAD(&set->set_new_requests);
960         set->set_max_inflight = UINT_MAX;
961         set->set_producer     = NULL;
962         set->set_producer_arg = NULL;
963         set->set_rc           = 0;
964
965         RETURN(set);
966 }
967 EXPORT_SYMBOL(ptlrpc_prep_set);
968
969 /**
970  * Allocate and initialize new request set structure with flow control
971  * extension. This extension allows to control the number of requests in-flight
972  * for the whole set. A callback function to generate requests must be provided
973  * and the request set will keep the number of requests sent over the wire to
974  * @max_inflight.
975  * Returns a pointer to the newly allocated set structure or NULL on error.
976  */
977 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
978                                              void *arg)
979
980 {
981         struct ptlrpc_request_set *set;
982
983         set = ptlrpc_prep_set();
984         if (!set)
985                 RETURN(NULL);
986
987         set->set_max_inflight  = max;
988         set->set_producer      = func;
989         set->set_producer_arg  = arg;
990
991         RETURN(set);
992 }
993
994 /**
995  * Wind down and free request set structure previously allocated with
996  * ptlrpc_prep_set.
997  * Ensures that all requests on the set have completed and removes
998  * all requests from the request list in a set.
999  * If any unsent request happen to be on the list, pretends that they got
1000  * an error in flight and calls their completion handler.
1001  */
1002 void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
1003 {
1004         struct list_head        *tmp;
1005         struct list_head        *next;
1006         int                      expected_phase;
1007         int                      n = 0;
1008         ENTRY;
1009
1010         /* Requests on the set should either all be completed, or all be new */
1011         expected_phase = (atomic_read(&set->set_remaining) == 0) ?
1012                          RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
1013         list_for_each(tmp, &set->set_requests) {
1014                 struct ptlrpc_request *req =
1015                         list_entry(tmp, struct ptlrpc_request,
1016                                    rq_set_chain);
1017
1018                 LASSERT(req->rq_phase == expected_phase);
1019                 n++;
1020         }
1021
1022         LASSERTF(atomic_read(&set->set_remaining) == 0 ||
1023                  atomic_read(&set->set_remaining) == n, "%d / %d\n",
1024                  atomic_read(&set->set_remaining), n);
1025
1026         list_for_each_safe(tmp, next, &set->set_requests) {
1027                 struct ptlrpc_request *req =
1028                         list_entry(tmp, struct ptlrpc_request,
1029                                    rq_set_chain);
1030                 list_del_init(&req->rq_set_chain);
1031
1032                 LASSERT(req->rq_phase == expected_phase);
1033
1034                 if (req->rq_phase == RQ_PHASE_NEW) {
1035                         ptlrpc_req_interpret(NULL, req, -EBADR);
1036                         atomic_dec(&set->set_remaining);
1037                 }
1038
1039                 spin_lock(&req->rq_lock);
1040                 req->rq_set = NULL;
1041                 req->rq_invalid_rqset = 0;
1042                 spin_unlock(&req->rq_lock);
1043
1044                 ptlrpc_req_finished (req);
1045         }
1046
1047         LASSERT(atomic_read(&set->set_remaining) == 0);
1048
1049         ptlrpc_reqset_put(set);
1050         EXIT;
1051 }
1052 EXPORT_SYMBOL(ptlrpc_set_destroy);
1053
1054 /**
1055  * Add a new request to the general purpose request set.
1056  * Assumes request reference from the caller.
1057  */
1058 void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
1059                         struct ptlrpc_request *req)
1060 {
1061         LASSERT(list_empty(&req->rq_set_chain));
1062
1063         if (req->rq_allow_intr)
1064                 set->set_allow_intr = 1;
1065
1066         /* The set takes over the caller's request reference */
1067         list_add_tail(&req->rq_set_chain, &set->set_requests);
1068         req->rq_set = set;
1069         atomic_inc(&set->set_remaining);
1070         req->rq_queued_time = ktime_get_seconds();
1071
1072         if (req->rq_reqmsg != NULL)
1073                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
1074
1075         if (set->set_producer != NULL)
1076                 /* If the request set has a producer callback, the RPC must be
1077                  * sent straight away */
1078                 ptlrpc_send_new_req(req);
1079 }
1080 EXPORT_SYMBOL(ptlrpc_set_add_req);
1081
1082 /**
1083  * Add a request to a request with dedicated server thread
1084  * and wake the thread to make any necessary processing.
1085  * Currently only used for ptlrpcd.
1086  */
1087 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
1088                            struct ptlrpc_request *req)
1089 {
1090         struct ptlrpc_request_set *set = pc->pc_set;
1091         int count, i;
1092
1093         LASSERT(req->rq_set == NULL);
1094         LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
1095
1096         spin_lock(&set->set_new_req_lock);
1097         /*
1098          * The set takes over the caller's request reference.
1099          */
1100         req->rq_set = set;
1101         req->rq_queued_time = ktime_get_seconds();
1102         list_add_tail(&req->rq_set_chain, &set->set_new_requests);
1103         count = atomic_inc_return(&set->set_new_count);
1104         spin_unlock(&set->set_new_req_lock);
1105
1106         /* Only need to call wakeup once for the first entry. */
1107         if (count == 1) {
1108                 wake_up(&set->set_waitq);
1109
1110                 /* XXX: It maybe unnecessary to wakeup all the partners. But to
1111                  *      guarantee the async RPC can be processed ASAP, we have
1112                  *      no other better choice. It maybe fixed in future. */
1113                 for (i = 0; i < pc->pc_npartners; i++)
1114                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
1115         }
1116 }
1117
1118 /**
1119  * Based on the current state of the import, determine if the request
1120  * can be sent, is an error, or should be delayed.
1121  *
1122  * Returns true if this request should be delayed. If false, and
1123  * *status is set, then the request can not be sent and *status is the
1124  * error code.  If false and status is 0, then request can be sent.
1125  *
1126  * The imp->imp_lock must be held.
1127  */
1128 static int ptlrpc_import_delay_req(struct obd_import *imp,
1129                                    struct ptlrpc_request *req, int *status)
1130 {
1131         int delay = 0;
1132         ENTRY;
1133
1134         LASSERT (status != NULL);
1135         *status = 0;
1136
1137         if (req->rq_ctx_init || req->rq_ctx_fini) {
1138                 /* always allow ctx init/fini rpc go through */
1139         } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1140                 DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
1141                 *status = -EIO;
1142         } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1143                 unsigned int opc = lustre_msg_get_opc(req->rq_reqmsg);
1144
1145                 /* pings or MDS-equivalent STATFS may safely race with umount */
1146                 DEBUG_REQ((opc == OBD_PING || opc == OST_STATFS) ?
1147                           D_HA : D_ERROR, req, "IMP_CLOSED ");
1148                 *status = -EIO;
1149         } else if (ptlrpc_send_limit_expired(req)) {
1150                 /* probably doesn't need to be a D_ERROR after initial testing*/
1151                 DEBUG_REQ(D_HA, req, "send limit expired ");
1152                 *status = -ETIMEDOUT;
1153         } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1154                    imp->imp_state == LUSTRE_IMP_CONNECTING) {
1155                 /* allow CONNECT even if import is invalid */ ;
1156                 if (atomic_read(&imp->imp_inval_count) != 0) {
1157                         DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1158                         *status = -EIO;
1159                 }
1160         } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1161                 if (!imp->imp_deactive)
1162                         DEBUG_REQ(D_NET, req, "IMP_INVALID");
1163                 *status = -ESHUTDOWN; /* bz 12940 */
1164         } else if (req->rq_import_generation != imp->imp_generation) {
1165                 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1166                 *status = -EIO;
1167         } else if (req->rq_send_state != imp->imp_state) {
1168                 /* invalidate in progress - any requests should be drop */
1169                 if (atomic_read(&imp->imp_inval_count) != 0) {
1170                         DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1171                         *status = -EIO;
1172                 } else if (req->rq_no_delay) {
1173                         *status = -EWOULDBLOCK;
1174                 } else if (req->rq_allow_replay &&
1175                           (imp->imp_state == LUSTRE_IMP_REPLAY ||
1176                            imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1177                            imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1178                            imp->imp_state == LUSTRE_IMP_RECOVER)) {
1179                         DEBUG_REQ(D_HA, req, "allow during recovery.\n");
1180                 } else {
1181                         delay = 1;
1182                 }
1183         }
1184
1185         RETURN(delay);
1186 }
1187
1188 /**
1189  * Decide if the error message should be printed to the console or not.
1190  * Makes its decision based on request type, status, and failure frequency.
1191  *
1192  * \param[in] req  request that failed and may need a console message
1193  *
1194  * \retval false if no message should be printed
1195  * \retval true  if console message should be printed
1196  */
1197 static bool ptlrpc_console_allow(struct ptlrpc_request *req, __u32 opc, int err)
1198 {
1199         LASSERT(req->rq_reqmsg != NULL);
1200
1201         /* Suppress particular reconnect errors which are to be expected. */
1202         if (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT) {
1203
1204                 /* Suppress timed out reconnect requests */
1205                 if (lustre_handle_is_used(&req->rq_import->imp_remote_handle) ||
1206                     req->rq_timedout)
1207                         return false;
1208
1209                 /* Suppress most unavailable/again reconnect requests, but
1210                  * print occasionally so it is clear client is trying to
1211                  * connect to a server where no target is running. */
1212                 if ((err == -ENODEV || err == -EAGAIN) &&
1213                     req->rq_import->imp_conn_cnt % 30 != 20)
1214                         return false;
1215         }
1216
1217         if (opc == LDLM_ENQUEUE && err == -EAGAIN)
1218                 /* -EAGAIN is normal when using POSIX flocks */
1219                 return false;
1220
1221         if (opc == OBD_PING && (err == -ENODEV || err == -ENOTCONN) &&
1222             (req->rq_xid & 0xf) != 10)
1223                 /* Suppress most ping requests, they may fail occasionally */
1224                 return false;
1225
1226         return true;
1227 }
1228
1229 /**
1230  * Check request processing status.
1231  * Returns the status.
1232  */
1233 static int ptlrpc_check_status(struct ptlrpc_request *req)
1234 {
1235         int err;
1236         ENTRY;
1237
1238         err = lustre_msg_get_status(req->rq_repmsg);
1239         if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1240                 struct obd_import *imp = req->rq_import;
1241                 lnet_nid_t nid = imp->imp_connection->c_peer.nid;
1242                 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1243
1244                 if (ptlrpc_console_allow(req, opc, err))
1245                         LCONSOLE_ERROR_MSG(0x11, "%s: operation %s to node %s "
1246                                            "failed: rc = %d\n",
1247                                            imp->imp_obd->obd_name,
1248                                            ll_opcode2str(opc),
1249                                            libcfs_nid2str(nid), err);
1250                 RETURN(err < 0 ? err : -EINVAL);
1251         }
1252
1253         if (err < 0) {
1254                 DEBUG_REQ(D_INFO, req, "status is %d", err);
1255         } else if (err > 0) {
1256                 /* XXX: translate this error from net to host */
1257                 DEBUG_REQ(D_INFO, req, "status is %d", err);
1258         }
1259
1260         RETURN(err);
1261 }
1262
1263 /**
1264  * save pre-versions of objects into request for replay.
1265  * Versions are obtained from server reply.
1266  * used for VBR.
1267  */
1268 static void ptlrpc_save_versions(struct ptlrpc_request *req)
1269 {
1270         struct lustre_msg *repmsg = req->rq_repmsg;
1271         struct lustre_msg *reqmsg = req->rq_reqmsg;
1272         __u64 *versions = lustre_msg_get_versions(repmsg);
1273         ENTRY;
1274
1275         if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1276                 return;
1277
1278         LASSERT(versions);
1279         lustre_msg_set_versions(reqmsg, versions);
1280         CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
1281                versions[0], versions[1]);
1282
1283         EXIT;
1284 }
1285
1286 __u64 ptlrpc_known_replied_xid(struct obd_import *imp)
1287 {
1288         struct ptlrpc_request *req;
1289
1290         assert_spin_locked(&imp->imp_lock);
1291         if (list_empty(&imp->imp_unreplied_list))
1292                 return 0;
1293
1294         req = list_entry(imp->imp_unreplied_list.next, struct ptlrpc_request,
1295                          rq_unreplied_list);
1296         LASSERTF(req->rq_xid >= 1, "XID:%llu\n", req->rq_xid);
1297
1298         if (imp->imp_known_replied_xid < req->rq_xid - 1)
1299                 imp->imp_known_replied_xid = req->rq_xid - 1;
1300
1301         return req->rq_xid - 1;
1302 }
1303
1304 /**
1305  * Callback function called when client receives RPC reply for \a req.
1306  * Returns 0 on success or error code.
1307  * The return alue would be assigned to req->rq_status by the caller
1308  * as request processing status.
1309  * This function also decides if the request needs to be saved for later replay.
1310  */
1311 static int after_reply(struct ptlrpc_request *req)
1312 {
1313         struct obd_import *imp = req->rq_import;
1314         struct obd_device *obd = req->rq_import->imp_obd;
1315         ktime_t work_start;
1316         u64 committed;
1317         s64 timediff;
1318         int rc;
1319
1320         ENTRY;
1321         LASSERT(obd != NULL);
1322         /* repbuf must be unlinked */
1323         LASSERT(!req->rq_receiving_reply && req->rq_reply_unlinked);
1324
1325         if (req->rq_reply_truncated) {
1326                 if (ptlrpc_no_resend(req)) {
1327                         DEBUG_REQ(D_ERROR, req, "reply buffer overflow,"
1328                                   " expected: %d, actual size: %d",
1329                                   req->rq_nob_received, req->rq_repbuf_len);
1330                         RETURN(-EOVERFLOW);
1331                 }
1332
1333                 sptlrpc_cli_free_repbuf(req);
1334                 /* Pass the required reply buffer size (include
1335                  * space for early reply).
1336                  * NB: no need to roundup because alloc_repbuf
1337                  * will roundup it */
1338                 req->rq_replen       = req->rq_nob_received;
1339                 req->rq_nob_received = 0;
1340                 spin_lock(&req->rq_lock);
1341                 req->rq_resend       = 1;
1342                 spin_unlock(&req->rq_lock);
1343                 RETURN(0);
1344         }
1345
1346         work_start = ktime_get_real();
1347         timediff = ktime_us_delta(work_start, req->rq_sent_ns);
1348
1349         /*
1350          * NB Until this point, the whole of the incoming message,
1351          * including buflens, status etc is in the sender's byte order.
1352          */
1353         rc = sptlrpc_cli_unwrap_reply(req);
1354         if (rc) {
1355                 DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
1356                 RETURN(rc);
1357         }
1358
1359         /*
1360          * Security layer unwrap might ask resend this request.
1361          */
1362         if (req->rq_resend)
1363                 RETURN(0);
1364
1365         rc = unpack_reply(req);
1366         if (rc)
1367                 RETURN(rc);
1368
1369         /* retry indefinitely on EINPROGRESS */
1370         if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1371             ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
1372                 time64_t now = ktime_get_real_seconds();
1373
1374                 DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
1375                 spin_lock(&req->rq_lock);
1376                 req->rq_resend = 1;
1377                 spin_unlock(&req->rq_lock);
1378                 req->rq_nr_resend++;
1379
1380                 /* Readjust the timeout for current conditions */
1381                 ptlrpc_at_set_req_timeout(req);
1382                 /* delay resend to give a chance to the server to get ready.
1383                  * The delay is increased by 1s on every resend and is capped to
1384                  * the current request timeout (i.e. obd_timeout if AT is off,
1385                  * or AT service time x 125% + 5s, see at_est2timeout) */
1386                 if (req->rq_nr_resend > req->rq_timeout)
1387                         req->rq_sent = now + req->rq_timeout;
1388                 else
1389                         req->rq_sent = now + req->rq_nr_resend;
1390
1391                 /* Resend for EINPROGRESS will use a new XID */
1392                 spin_lock(&imp->imp_lock);
1393                 list_del_init(&req->rq_unreplied_list);
1394                 spin_unlock(&imp->imp_lock);
1395
1396                 RETURN(0);
1397         }
1398
1399         if (obd->obd_svc_stats != NULL) {
1400                 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1401                                     timediff);
1402                 ptlrpc_lprocfs_rpc_sent(req, timediff);
1403         }
1404
1405         if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1406             lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1407                 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1408                           lustre_msg_get_type(req->rq_repmsg));
1409                 RETURN(-EPROTO);
1410         }
1411
1412         if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1413                 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1414         ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1415         ptlrpc_at_adj_net_latency(req,
1416                                   lustre_msg_get_service_time(req->rq_repmsg));
1417
1418         rc = ptlrpc_check_status(req);
1419         imp->imp_connect_error = rc;
1420
1421         if (rc) {
1422                 /*
1423                  * Either we've been evicted, or the server has failed for
1424                  * some reason. Try to reconnect, and if that fails, punt to
1425                  * the upcall.
1426                  */
1427                 if (ptlrpc_recoverable_error(rc)) {
1428                         if (req->rq_send_state != LUSTRE_IMP_FULL ||
1429                             imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
1430                                 RETURN(rc);
1431                         }
1432                         ptlrpc_request_handle_notconn(req);
1433                         RETURN(rc);
1434                 }
1435         } else {
1436                 /*
1437                  * Let's look if server sent slv. Do it only for RPC with
1438                  * rc == 0.
1439                  */
1440                 ldlm_cli_update_pool(req);
1441         }
1442
1443         /*
1444          * Store transno in reqmsg for replay.
1445          */
1446         if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1447                 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1448                 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1449         }
1450
1451         if (imp->imp_replayable) {
1452                 spin_lock(&imp->imp_lock);
1453                 /*
1454                  * No point in adding already-committed requests to the replay
1455                  * list, we will just remove them immediately. b=9829
1456                  */
1457                 if (req->rq_transno != 0 &&
1458                     (req->rq_transno >
1459                      lustre_msg_get_last_committed(req->rq_repmsg) ||
1460                      req->rq_replay)) {
1461                         /** version recovery */
1462                         ptlrpc_save_versions(req);
1463                         ptlrpc_retain_replayable_request(req, imp);
1464                 } else if (req->rq_commit_cb != NULL &&
1465                            list_empty(&req->rq_replay_list)) {
1466                         /* NB: don't call rq_commit_cb if it's already on
1467                          * rq_replay_list, ptlrpc_free_committed() will call
1468                          * it later, see LU-3618 for details */
1469                         spin_unlock(&imp->imp_lock);
1470                         req->rq_commit_cb(req);
1471                         spin_lock(&imp->imp_lock);
1472                 }
1473
1474                 /*
1475                  * Replay-enabled imports return commit-status information.
1476                  */
1477                 committed = lustre_msg_get_last_committed(req->rq_repmsg);
1478                 if (likely(committed > imp->imp_peer_committed_transno))
1479                         imp->imp_peer_committed_transno = committed;
1480
1481                 ptlrpc_free_committed(imp);
1482
1483                 if (!list_empty(&imp->imp_replay_list)) {
1484                         struct ptlrpc_request *last;
1485
1486                         last = list_entry(imp->imp_replay_list.prev,
1487                                           struct ptlrpc_request,
1488                                           rq_replay_list);
1489                         /*
1490                          * Requests with rq_replay stay on the list even if no
1491                          * commit is expected.
1492                          */
1493                         if (last->rq_transno > imp->imp_peer_committed_transno)
1494                                 ptlrpc_pinger_commit_expected(imp);
1495                 }
1496
1497                 spin_unlock(&imp->imp_lock);
1498         }
1499
1500         RETURN(rc);
1501 }
1502
1503 /**
1504  * Helper function to send request \a req over the network for the first time
1505  * Also adjusts request phase.
1506  * Returns 0 on success or error code.
1507  */
1508 static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1509 {
1510         struct obd_import     *imp = req->rq_import;
1511         __u64                  min_xid = 0;
1512         int rc;
1513         ENTRY;
1514
1515         LASSERT(req->rq_phase == RQ_PHASE_NEW);
1516
1517         /* do not try to go further if there is not enough memory in enc_pool */
1518         if (req->rq_sent && req->rq_bulk != NULL)
1519                 if (req->rq_bulk->bd_iov_count > get_free_pages_in_pool() &&
1520                     pool_is_at_full_capacity())
1521                         RETURN(-ENOMEM);
1522
1523         if (req->rq_sent && (req->rq_sent > ktime_get_real_seconds()) &&
1524             (!req->rq_generation_set ||
1525              req->rq_import_generation == imp->imp_generation))
1526                 RETURN (0);
1527
1528         ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1529
1530         spin_lock(&imp->imp_lock);
1531
1532         LASSERT(req->rq_xid != 0);
1533         LASSERT(!list_empty(&req->rq_unreplied_list));
1534
1535         if (!req->rq_generation_set)
1536                 req->rq_import_generation = imp->imp_generation;
1537
1538         if (ptlrpc_import_delay_req(imp, req, &rc)) {
1539                 spin_lock(&req->rq_lock);
1540                 req->rq_waiting = 1;
1541                 spin_unlock(&req->rq_lock);
1542
1543                 DEBUG_REQ(D_HA, req, "req waiting for recovery: (%s != %s)",
1544                           ptlrpc_import_state_name(req->rq_send_state),
1545                           ptlrpc_import_state_name(imp->imp_state));
1546                 LASSERT(list_empty(&req->rq_list));
1547                 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1548                 atomic_inc(&req->rq_import->imp_inflight);
1549                 spin_unlock(&imp->imp_lock);
1550                 RETURN(0);
1551         }
1552
1553         if (rc != 0) {
1554                 spin_unlock(&imp->imp_lock);
1555                 req->rq_status = rc;
1556                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1557                 RETURN(rc);
1558         }
1559
1560         LASSERT(list_empty(&req->rq_list));
1561         list_add_tail(&req->rq_list, &imp->imp_sending_list);
1562         atomic_inc(&req->rq_import->imp_inflight);
1563
1564         /* find the known replied XID from the unreplied list, CONNECT
1565          * and DISCONNECT requests are skipped to make the sanity check
1566          * on server side happy. see process_req_last_xid().
1567          *
1568          * For CONNECT: Because replay requests have lower XID, it'll
1569          * break the sanity check if CONNECT bump the exp_last_xid on
1570          * server.
1571          *
1572          * For DISCONNECT: Since client will abort inflight RPC before
1573          * sending DISCONNECT, DISCONNECT may carry an XID which higher
1574          * than the inflight RPC.
1575          */
1576         if (!ptlrpc_req_is_connect(req) && !ptlrpc_req_is_disconnect(req))
1577                 min_xid = ptlrpc_known_replied_xid(imp);
1578         spin_unlock(&imp->imp_lock);
1579
1580         lustre_msg_set_last_xid(req->rq_reqmsg, min_xid);
1581
1582         lustre_msg_set_status(req->rq_reqmsg, current_pid());
1583
1584         rc = sptlrpc_req_refresh_ctx(req, -1);
1585         if (rc) {
1586                 if (req->rq_err) {
1587                         req->rq_status = rc;
1588                         RETURN(1);
1589                 } else {
1590                         spin_lock(&req->rq_lock);
1591                         req->rq_wait_ctx = 1;
1592                         spin_unlock(&req->rq_lock);
1593                         RETURN(0);
1594                 }
1595         }
1596
1597         CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc"
1598                " %s:%s:%d:%llu:%s:%d\n", current_comm(),
1599                imp->imp_obd->obd_uuid.uuid,
1600                lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1601                libcfs_nid2str(imp->imp_connection->c_peer.nid),
1602                lustre_msg_get_opc(req->rq_reqmsg));
1603
1604         rc = ptl_send_rpc(req, 0);
1605         if (rc == -ENOMEM) {
1606                 spin_lock(&imp->imp_lock);
1607                 if (!list_empty(&req->rq_list)) {
1608                         list_del_init(&req->rq_list);
1609                         atomic_dec(&req->rq_import->imp_inflight);
1610                 }
1611                 spin_unlock(&imp->imp_lock);
1612                 ptlrpc_rqphase_move(req, RQ_PHASE_NEW);
1613                 RETURN(rc);
1614         }
1615         if (rc) {
1616                 DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
1617                 spin_lock(&req->rq_lock);
1618                 req->rq_net_err = 1;
1619                 spin_unlock(&req->rq_lock);
1620                 RETURN(rc);
1621         }
1622         RETURN(0);
1623 }
1624
1625 static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1626 {
1627         int remaining, rc;
1628         ENTRY;
1629
1630         LASSERT(set->set_producer != NULL);
1631
1632         remaining = atomic_read(&set->set_remaining);
1633
1634         /* populate the ->set_requests list with requests until we
1635          * reach the maximum number of RPCs in flight for this set */
1636         while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1637                 rc = set->set_producer(set, set->set_producer_arg);
1638                 if (rc == -ENOENT) {
1639                         /* no more RPC to produce */
1640                         set->set_producer     = NULL;
1641                         set->set_producer_arg = NULL;
1642                         RETURN(0);
1643                 }
1644         }
1645
1646         RETURN((atomic_read(&set->set_remaining) - remaining));
1647 }
1648
1649 /**
1650  * this sends any unsent RPCs in \a set and returns 1 if all are sent
1651  * and no more replies are expected.
1652  * (it is possible to get less replies than requests sent e.g. due to timed out
1653  * requests or requests that we had trouble to send out)
1654  *
1655  * NOTE: This function contains a potential schedule point (cond_resched()).
1656  */
1657 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1658 {
1659         struct list_head *tmp, *next;
1660         struct list_head  comp_reqs;
1661         int force_timer_recalc = 0;
1662         ENTRY;
1663
1664         if (atomic_read(&set->set_remaining) == 0)
1665                 RETURN(1);
1666
1667         INIT_LIST_HEAD(&comp_reqs);
1668         list_for_each_safe(tmp, next, &set->set_requests) {
1669                 struct ptlrpc_request *req =
1670                         list_entry(tmp, struct ptlrpc_request,
1671                                    rq_set_chain);
1672                 struct obd_import *imp = req->rq_import;
1673                 int unregistered = 0;
1674                 int async = 1;
1675                 int rc = 0;
1676
1677                 if (req->rq_phase == RQ_PHASE_COMPLETE) {
1678                         list_move_tail(&req->rq_set_chain, &comp_reqs);
1679                         continue;
1680                 }
1681
1682                 /* This schedule point is mainly for the ptlrpcd caller of this
1683                  * function.  Most ptlrpc sets are not long-lived and unbounded
1684                  * in length, but at the least the set used by the ptlrpcd is.
1685                  * Since the processing time is unbounded, we need to insert an
1686                  * explicit schedule point to make the thread well-behaved.
1687                  */
1688                 cond_resched();
1689
1690                 /* If the caller requires to allow to be interpreted by force
1691                  * and it has really been interpreted, then move the request
1692                  * to RQ_PHASE_INTERPRET phase in spite of what the current
1693                  * phase is. */
1694                 if (unlikely(req->rq_allow_intr && req->rq_intr)) {
1695                         req->rq_status = -EINTR;
1696                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1697
1698                         /* Since it is interpreted and we have to wait for
1699                          * the reply to be unlinked, then use sync mode. */
1700                         async = 0;
1701
1702                         GOTO(interpret, req->rq_status);
1703                 }
1704
1705                 if (req->rq_phase == RQ_PHASE_NEW && ptlrpc_send_new_req(req))
1706                         force_timer_recalc = 1;
1707
1708                 /* delayed send - skip */
1709                 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1710                         continue;
1711
1712                 /* delayed resend - skip */
1713                 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
1714                     req->rq_sent > ktime_get_real_seconds())
1715                         continue;
1716
1717                 if (!(req->rq_phase == RQ_PHASE_RPC ||
1718                       req->rq_phase == RQ_PHASE_BULK ||
1719                       req->rq_phase == RQ_PHASE_INTERPRET ||
1720                       req->rq_phase == RQ_PHASE_UNREG_RPC ||
1721                       req->rq_phase == RQ_PHASE_UNREG_BULK)) {
1722                         DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1723                         LBUG();
1724                 }
1725
1726                 if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
1727                     req->rq_phase == RQ_PHASE_UNREG_BULK) {
1728                         LASSERT(req->rq_next_phase != req->rq_phase);
1729                         LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1730
1731                         if (req->rq_req_deadline &&
1732                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK))
1733                                 req->rq_req_deadline = 0;
1734                         if (req->rq_reply_deadline &&
1735                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK))
1736                                 req->rq_reply_deadline = 0;
1737                         if (req->rq_bulk_deadline &&
1738                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK))
1739                                 req->rq_bulk_deadline = 0;
1740
1741                         /*
1742                          * Skip processing until reply is unlinked. We
1743                          * can't return to pool before that and we can't
1744                          * call interpret before that. We need to make
1745                          * sure that all rdma transfers finished and will
1746                          * not corrupt any data.
1747                          */
1748                         if (req->rq_phase == RQ_PHASE_UNREG_RPC &&
1749                             ptlrpc_client_recv_or_unlink(req))
1750                                 continue;
1751                         if (req->rq_phase == RQ_PHASE_UNREG_BULK &&
1752                             ptlrpc_client_bulk_active(req))
1753                                 continue;
1754
1755                         /*
1756                          * Turn fail_loc off to prevent it from looping
1757                          * forever.
1758                          */
1759                         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1760                                 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1761                                                      OBD_FAIL_ONCE);
1762                         }
1763                         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1764                                 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1765                                                      OBD_FAIL_ONCE);
1766                         }
1767
1768                         /*
1769                          * Move to next phase if reply was successfully
1770                          * unlinked.
1771                          */
1772                         ptlrpc_rqphase_move(req, req->rq_next_phase);
1773                 }
1774
1775                 if (req->rq_phase == RQ_PHASE_INTERPRET)
1776                         GOTO(interpret, req->rq_status);
1777
1778                 /*
1779                  * Note that this also will start async reply unlink.
1780                  */
1781                 if (req->rq_net_err && !req->rq_timedout) {
1782                         ptlrpc_expire_one_request(req, 1);
1783
1784                         /*
1785                          * Check if we still need to wait for unlink.
1786                          */
1787                         if (ptlrpc_client_recv_or_unlink(req) ||
1788                             ptlrpc_client_bulk_active(req))
1789                                 continue;
1790                         /* If there is no need to resend, fail it now. */
1791                         if (req->rq_no_resend) {
1792                                 if (req->rq_status == 0)
1793                                         req->rq_status = -EIO;
1794                                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1795                                 GOTO(interpret, req->rq_status);
1796                         } else {
1797                                 continue;
1798                         }
1799                 }
1800
1801                 if (req->rq_err) {
1802                         spin_lock(&req->rq_lock);
1803                         req->rq_replied = 0;
1804                         spin_unlock(&req->rq_lock);
1805                         if (req->rq_status == 0)
1806                                 req->rq_status = -EIO;
1807                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1808                         GOTO(interpret, req->rq_status);
1809                 }
1810
1811                 /* ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1812                  * so it sets rq_intr regardless of individual rpc
1813                  * timeouts. The synchronous IO waiting path sets
1814                  * rq_intr irrespective of whether ptlrpcd
1815                  * has seen a timeout.  Our policy is to only interpret
1816                  * interrupted rpcs after they have timed out, so we
1817                  * need to enforce that here.
1818                  */
1819
1820                 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1821                                      req->rq_wait_ctx)) {
1822                         req->rq_status = -EINTR;
1823                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1824                         GOTO(interpret, req->rq_status);
1825                 }
1826
1827                 if (req->rq_phase == RQ_PHASE_RPC) {
1828                         if (req->rq_timedout || req->rq_resend ||
1829                             req->rq_waiting || req->rq_wait_ctx) {
1830                                 int status;
1831
1832                                 if (!ptlrpc_unregister_reply(req, 1)) {
1833                                         ptlrpc_unregister_bulk(req, 1);
1834                                         continue;
1835                                 }
1836
1837                                 spin_lock(&imp->imp_lock);
1838                                 if (ptlrpc_import_delay_req(imp, req, &status)){
1839                                         /* put on delay list - only if we wait
1840                                          * recovery finished - before send */
1841                                         list_del_init(&req->rq_list);
1842                                         list_add_tail(&req->rq_list,
1843                                                           &imp->
1844                                                           imp_delayed_list);
1845                                         spin_unlock(&imp->imp_lock);
1846                                         continue;
1847                                 }
1848
1849                                 if (status != 0)  {
1850                                         req->rq_status = status;
1851                                         ptlrpc_rqphase_move(req,
1852                                                 RQ_PHASE_INTERPRET);
1853                                         spin_unlock(&imp->imp_lock);
1854                                         GOTO(interpret, req->rq_status);
1855                                 }
1856                                 if (ptlrpc_no_resend(req) &&
1857                                     !req->rq_wait_ctx) {
1858                                         req->rq_status = -ENOTCONN;
1859                                         ptlrpc_rqphase_move(req,
1860                                                             RQ_PHASE_INTERPRET);
1861                                         spin_unlock(&imp->imp_lock);
1862                                         GOTO(interpret, req->rq_status);
1863                                 }
1864
1865                                 list_del_init(&req->rq_list);
1866                                 list_add_tail(&req->rq_list,
1867                                                   &imp->imp_sending_list);
1868
1869                                 spin_unlock(&imp->imp_lock);
1870
1871                                 spin_lock(&req->rq_lock);
1872                                 req->rq_waiting = 0;
1873                                 spin_unlock(&req->rq_lock);
1874
1875                                 if (req->rq_timedout || req->rq_resend) {
1876                                         /* This is re-sending anyways,
1877                                          * let's mark req as resend. */
1878                                         spin_lock(&req->rq_lock);
1879                                         req->rq_resend = 1;
1880                                         spin_unlock(&req->rq_lock);
1881
1882                                         if (req->rq_bulk != NULL &&
1883                                             !ptlrpc_unregister_bulk(req, 1))
1884                                                 continue;
1885                                 }
1886                                 /*
1887                                  * rq_wait_ctx is only touched by ptlrpcd,
1888                                  * so no lock is needed here.
1889                                  */
1890                                 status = sptlrpc_req_refresh_ctx(req, -1);
1891                                 if (status) {
1892                                         if (req->rq_err) {
1893                                                 req->rq_status = status;
1894                                                 spin_lock(&req->rq_lock);
1895                                                 req->rq_wait_ctx = 0;
1896                                                 spin_unlock(&req->rq_lock);
1897                                                 force_timer_recalc = 1;
1898                                         } else {
1899                                                 spin_lock(&req->rq_lock);
1900                                                 req->rq_wait_ctx = 1;
1901                                                 spin_unlock(&req->rq_lock);
1902                                         }
1903
1904                                         continue;
1905                                 } else {
1906                                         spin_lock(&req->rq_lock);
1907                                         req->rq_wait_ctx = 0;
1908                                         spin_unlock(&req->rq_lock);
1909                                 }
1910
1911                                 rc = ptl_send_rpc(req, 0);
1912                                 if (rc == -ENOMEM) {
1913                                         spin_lock(&imp->imp_lock);
1914                                         if (!list_empty(&req->rq_list))
1915                                                 list_del_init(&req->rq_list);
1916                                         spin_unlock(&imp->imp_lock);
1917                                         ptlrpc_rqphase_move(req, RQ_PHASE_NEW);
1918                                         continue;
1919                                 }
1920                                 if (rc) {
1921                                         DEBUG_REQ(D_HA, req,
1922                                                   "send failed: rc = %d", rc);
1923                                         force_timer_recalc = 1;
1924                                         spin_lock(&req->rq_lock);
1925                                         req->rq_net_err = 1;
1926                                         spin_unlock(&req->rq_lock);
1927                                         continue;
1928                                 }
1929                                 /* need to reset the timeout */
1930                                 force_timer_recalc = 1;
1931                         }
1932
1933                         spin_lock(&req->rq_lock);
1934
1935                         if (ptlrpc_client_early(req)) {
1936                                 ptlrpc_at_recv_early_reply(req);
1937                                 spin_unlock(&req->rq_lock);
1938                                 continue;
1939                         }
1940
1941                         /* Still waiting for a reply? */
1942                         if (ptlrpc_client_recv(req)) {
1943                                 spin_unlock(&req->rq_lock);
1944                                 continue;
1945                         }
1946
1947                         /* Did we actually receive a reply? */
1948                         if (!ptlrpc_client_replied(req)) {
1949                                 spin_unlock(&req->rq_lock);
1950                                 continue;
1951                         }
1952
1953                         spin_unlock(&req->rq_lock);
1954
1955                         /* unlink from net because we are going to
1956                          * swab in-place of reply buffer */
1957                         unregistered = ptlrpc_unregister_reply(req, 1);
1958                         if (!unregistered)
1959                                 continue;
1960
1961                         req->rq_status = after_reply(req);
1962                         if (req->rq_resend)
1963                                 continue;
1964
1965                         /* If there is no bulk associated with this request,
1966                          * then we're done and should let the interpreter
1967                          * process the reply. Similarly if the RPC returned
1968                          * an error, and therefore the bulk will never arrive.
1969                          */
1970                         if (req->rq_bulk == NULL || req->rq_status < 0) {
1971                                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1972                                 GOTO(interpret, req->rq_status);
1973                         }
1974
1975                         ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
1976                 }
1977
1978                 LASSERT(req->rq_phase == RQ_PHASE_BULK);
1979                 if (ptlrpc_client_bulk_active(req))
1980                         continue;
1981
1982                 if (req->rq_bulk->bd_failure) {
1983                         /* The RPC reply arrived OK, but the bulk screwed
1984                          * up!  Dead weird since the server told us the RPC
1985                          * was good after getting the REPLY for her GET or
1986                          * the ACK for her PUT. */
1987                         DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
1988                         req->rq_status = -EIO;
1989                 }
1990
1991                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1992
1993         interpret:
1994                 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
1995
1996                 /* This moves to "unregistering" phase we need to wait for
1997                  * reply unlink. */
1998                 if (!unregistered && !ptlrpc_unregister_reply(req, async)) {
1999                         /* start async bulk unlink too */
2000                         ptlrpc_unregister_bulk(req, 1);
2001                         continue;
2002                 }
2003
2004                 if (!ptlrpc_unregister_bulk(req, async))
2005                         continue;
2006
2007                 /* When calling interpret receiving already should be
2008                  * finished. */
2009                 LASSERT(!req->rq_receiving_reply);
2010
2011                 ptlrpc_req_interpret(env, req, req->rq_status);
2012
2013                 if (ptlrpcd_check_work(req)) {
2014                         atomic_dec(&set->set_remaining);
2015                         continue;
2016                 }
2017                 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
2018
2019                 if (req->rq_reqmsg != NULL)
2020                         CDEBUG(D_RPCTRACE,
2021                                "Completed RPC pname:cluuid:pid:xid:nid:"
2022                                "opc %s:%s:%d:%llu:%s:%d\n", current_comm(),
2023                                imp->imp_obd->obd_uuid.uuid,
2024                                lustre_msg_get_status(req->rq_reqmsg),
2025                                req->rq_xid,
2026                                libcfs_nid2str(imp->imp_connection->c_peer.nid),
2027                                lustre_msg_get_opc(req->rq_reqmsg));
2028
2029                 spin_lock(&imp->imp_lock);
2030                 /* Request already may be not on sending or delaying list. This
2031                  * may happen in the case of marking it erroneous for the case
2032                  * ptlrpc_import_delay_req(req, status) find it impossible to
2033                  * allow sending this rpc and returns *status != 0. */
2034                 if (!list_empty(&req->rq_list)) {
2035                         list_del_init(&req->rq_list);
2036                         atomic_dec(&imp->imp_inflight);
2037                 }
2038                 list_del_init(&req->rq_unreplied_list);
2039                 spin_unlock(&imp->imp_lock);
2040
2041                 atomic_dec(&set->set_remaining);
2042                 wake_up_all(&imp->imp_recovery_waitq);
2043
2044                 if (set->set_producer) {
2045                         /* produce a new request if possible */
2046                         if (ptlrpc_set_producer(set) > 0)
2047                                 force_timer_recalc = 1;
2048
2049                         /* free the request that has just been completed
2050                          * in order not to pollute set->set_requests */
2051                         list_del_init(&req->rq_set_chain);
2052                         spin_lock(&req->rq_lock);
2053                         req->rq_set = NULL;
2054                         req->rq_invalid_rqset = 0;
2055                         spin_unlock(&req->rq_lock);
2056
2057                         /* record rq_status to compute the final status later */
2058                         if (req->rq_status != 0)
2059                                 set->set_rc = req->rq_status;
2060                         ptlrpc_req_finished(req);
2061                 } else {
2062                         list_move_tail(&req->rq_set_chain, &comp_reqs);
2063                 }
2064         }
2065
2066         /* move completed request at the head of list so it's easier for
2067          * caller to find them */
2068         list_splice(&comp_reqs, &set->set_requests);
2069
2070         /* If we hit an error, we want to recover promptly. */
2071         RETURN(atomic_read(&set->set_remaining) == 0 || force_timer_recalc);
2072 }
2073 EXPORT_SYMBOL(ptlrpc_check_set);
2074
2075 /**
2076  * Time out request \a req. is \a async_unlink is set, that means do not wait
2077  * until LNet actually confirms network buffer unlinking.
2078  * Return 1 if we should give up further retrying attempts or 0 otherwise.
2079  */
2080 int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
2081 {
2082         struct obd_import *imp = req->rq_import;
2083         unsigned int debug_mask = D_RPCTRACE;
2084         int rc = 0;
2085         ENTRY;
2086
2087         spin_lock(&req->rq_lock);
2088         req->rq_timedout = 1;
2089         spin_unlock(&req->rq_lock);
2090
2091         if (ptlrpc_console_allow(req, lustre_msg_get_opc(req->rq_reqmsg),
2092                                   lustre_msg_get_status(req->rq_reqmsg)))
2093                 debug_mask = D_WARNING;
2094         DEBUG_REQ(debug_mask, req, "Request sent has %s: [sent %lld/real %lld]",
2095                   req->rq_net_err ? "failed due to network error" :
2096                      ((req->rq_real_sent == 0 ||
2097                        req->rq_real_sent < req->rq_sent ||
2098                        req->rq_real_sent >= req->rq_deadline) ?
2099                       "timed out for sent delay" : "timed out for slow reply"),
2100                   (s64)req->rq_sent, (s64)req->rq_real_sent);
2101
2102         if (imp != NULL && obd_debug_peer_on_timeout)
2103                 LNetDebugPeer(imp->imp_connection->c_peer);
2104
2105         ptlrpc_unregister_reply(req, async_unlink);
2106         ptlrpc_unregister_bulk(req, async_unlink);
2107
2108         if (obd_dump_on_timeout)
2109                 libcfs_debug_dumplog();
2110
2111         if (imp == NULL) {
2112                 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
2113                 RETURN(1);
2114         }
2115
2116         atomic_inc(&imp->imp_timeouts);
2117
2118         /* The DLM server doesn't want recovery run on its imports. */
2119         if (imp->imp_dlm_fake)
2120                 RETURN(1);
2121
2122         /* If this request is for recovery or other primordial tasks,
2123          * then error it out here. */
2124         if (req->rq_ctx_init || req->rq_ctx_fini ||
2125             req->rq_send_state != LUSTRE_IMP_FULL ||
2126             imp->imp_obd->obd_no_recov) {
2127                 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
2128                           ptlrpc_import_state_name(req->rq_send_state),
2129                           ptlrpc_import_state_name(imp->imp_state));
2130                 spin_lock(&req->rq_lock);
2131                 req->rq_status = -ETIMEDOUT;
2132                 req->rq_err = 1;
2133                 spin_unlock(&req->rq_lock);
2134                 RETURN(1);
2135         }
2136
2137         /* if a request can't be resent we can't wait for an answer after
2138            the timeout */
2139         if (ptlrpc_no_resend(req)) {
2140                 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
2141                 rc = 1;
2142         }
2143
2144         ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
2145
2146         RETURN(rc);
2147 }
2148
2149 /**
2150  * Time out all uncompleted requests in request set pointed by \a data
2151  * Callback used when waiting on sets with l_wait_event.
2152  * Always returns 1.
2153  */
2154 int ptlrpc_expired_set(void *data)
2155 {
2156         struct ptlrpc_request_set *set = data;
2157         struct list_head *tmp;
2158         time64_t now = ktime_get_real_seconds();
2159
2160         ENTRY;
2161         LASSERT(set != NULL);
2162
2163         /*
2164          * A timeout expired. See which reqs it applies to...
2165          */
2166         list_for_each(tmp, &set->set_requests) {
2167                 struct ptlrpc_request *req =
2168                         list_entry(tmp, struct ptlrpc_request,
2169                                    rq_set_chain);
2170
2171                 /* don't expire request waiting for context */
2172                 if (req->rq_wait_ctx)
2173                         continue;
2174
2175                 /* Request in-flight? */
2176                 if (!((req->rq_phase == RQ_PHASE_RPC &&
2177                        !req->rq_waiting && !req->rq_resend) ||
2178                       (req->rq_phase == RQ_PHASE_BULK)))
2179                         continue;
2180
2181                 if (req->rq_timedout ||     /* already dealt with */
2182                     req->rq_deadline > now) /* not expired */
2183                         continue;
2184
2185                 /* Deal with this guy. Do it asynchronously to not block
2186                  * ptlrpcd thread. */
2187                 ptlrpc_expire_one_request(req, 1);
2188         }
2189
2190         /*
2191          * When waiting for a whole set, we always break out of the
2192          * sleep so we can recalculate the timeout, or enable interrupts
2193          * if everyone's timed out.
2194          */
2195         RETURN(1);
2196 }
2197
2198 /**
2199  * Sets rq_intr flag in \a req under spinlock.
2200  */
2201 void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
2202 {
2203         spin_lock(&req->rq_lock);
2204         req->rq_intr = 1;
2205         spin_unlock(&req->rq_lock);
2206 }
2207 EXPORT_SYMBOL(ptlrpc_mark_interrupted);
2208
2209 /**
2210  * Interrupts (sets interrupted flag) all uncompleted requests in
2211  * a set \a data. Callback for l_wait_event for interruptible waits.
2212  */
2213 static void ptlrpc_interrupted_set(void *data)
2214 {
2215         struct ptlrpc_request_set *set = data;
2216         struct list_head *tmp;
2217
2218         LASSERT(set != NULL);
2219         CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2220
2221         list_for_each(tmp, &set->set_requests) {
2222                 struct ptlrpc_request *req =
2223                         list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2224
2225                 if (req->rq_intr)
2226                         continue;
2227
2228                 if (req->rq_phase != RQ_PHASE_RPC &&
2229                     req->rq_phase != RQ_PHASE_UNREG_RPC &&
2230                     !req->rq_allow_intr)
2231                         continue;
2232
2233                 ptlrpc_mark_interrupted(req);
2234         }
2235 }
2236
2237 /**
2238  * Get the smallest timeout in the set; this does NOT set a timeout.
2239  */
2240 time64_t ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2241 {
2242         struct list_head *tmp;
2243         time64_t now = ktime_get_real_seconds();
2244         int timeout = 0;
2245         struct ptlrpc_request *req;
2246         time64_t deadline;
2247
2248         ENTRY;
2249         list_for_each(tmp, &set->set_requests) {
2250                 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2251
2252                 /*
2253                  * Request in-flight?
2254                  */
2255                 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2256                       (req->rq_phase == RQ_PHASE_BULK) ||
2257                       (req->rq_phase == RQ_PHASE_NEW)))
2258                         continue;
2259
2260                 /*
2261                  * Already timed out.
2262                  */
2263                 if (req->rq_timedout)
2264                         continue;
2265
2266                 /*
2267                  * Waiting for ctx.
2268                  */
2269                 if (req->rq_wait_ctx)
2270                         continue;
2271
2272                 if (req->rq_phase == RQ_PHASE_NEW)
2273                         deadline = req->rq_sent;
2274                 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2275                         deadline = req->rq_sent;
2276                 else
2277                         deadline = req->rq_sent + req->rq_timeout;
2278
2279                 if (deadline <= now)    /* actually expired already */
2280                         timeout = 1;    /* ASAP */
2281                 else if (timeout == 0 || timeout > deadline - now)
2282                         timeout = deadline - now;
2283         }
2284         RETURN(timeout);
2285 }
2286
2287 /**
2288  * Send all unset request from the set and then wait untill all
2289  * requests in the set complete (either get a reply, timeout, get an
2290  * error or otherwise be interrupted).
2291  * Returns 0 on success or error code otherwise.
2292  */
2293 int ptlrpc_set_wait(struct ptlrpc_request_set *set)
2294 {
2295         struct list_head            *tmp;
2296         struct ptlrpc_request *req;
2297         struct l_wait_info     lwi;
2298         time64_t timeout;
2299         int rc;
2300         ENTRY;
2301
2302         if (set->set_producer)
2303                 (void)ptlrpc_set_producer(set);
2304         else
2305                 list_for_each(tmp, &set->set_requests) {
2306                         req = list_entry(tmp, struct ptlrpc_request,
2307                                          rq_set_chain);
2308                         if (req->rq_phase == RQ_PHASE_NEW)
2309                                 (void)ptlrpc_send_new_req(req);
2310                 }
2311
2312         if (list_empty(&set->set_requests))
2313                 RETURN(0);
2314
2315         do {
2316                 timeout = ptlrpc_set_next_timeout(set);
2317
2318                 /* wait until all complete, interrupted, or an in-flight
2319                  * req times out */
2320                 CDEBUG(D_RPCTRACE, "set %p going to sleep for %lld seconds\n",
2321                        set, timeout);
2322
2323                 if ((timeout == 0 && !signal_pending(current)) ||
2324                     set->set_allow_intr)
2325                         /* No requests are in-flight (ether timed out
2326                          * or delayed), so we can allow interrupts.
2327                          * We still want to block for a limited time,
2328                          * so we allow interrupts during the timeout. */
2329                         lwi = LWI_TIMEOUT_INTR_ALL(
2330                                         cfs_time_seconds(timeout ? timeout : 1),
2331                                         ptlrpc_expired_set,
2332                                         ptlrpc_interrupted_set, set);
2333                 else
2334                         /*
2335                          * At least one request is in flight, so no
2336                          * interrupts are allowed. Wait until all
2337                          * complete, or an in-flight req times out.
2338                          */
2339                         lwi = LWI_TIMEOUT(cfs_time_seconds(timeout? timeout : 1),
2340                                           ptlrpc_expired_set, set);
2341
2342                 rc = l_wait_event(set->set_waitq, ptlrpc_check_set(NULL, set), &lwi);
2343
2344                 /* LU-769 - if we ignored the signal because it was already
2345                  * pending when we started, we need to handle it now or we risk
2346                  * it being ignored forever */
2347                 if (rc == -ETIMEDOUT &&
2348                     (!lwi.lwi_allow_intr || set->set_allow_intr) &&
2349                     signal_pending(current)) {
2350                         sigset_t blocked_sigs =
2351                                            cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2352
2353                         /* In fact we only interrupt for the "fatal" signals
2354                          * like SIGINT or SIGKILL. We still ignore less
2355                          * important signals since ptlrpc set is not easily
2356                          * reentrant from userspace again */
2357                         if (signal_pending(current))
2358                                 ptlrpc_interrupted_set(set);
2359                         cfs_restore_sigs(blocked_sigs);
2360                 }
2361
2362                 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2363
2364                 /* -EINTR => all requests have been flagged rq_intr so next
2365                  * check completes.
2366                  * -ETIMEDOUT => someone timed out.  When all reqs have
2367                  * timed out, signals are enabled allowing completion with
2368                  * EINTR.
2369                  * I don't really care if we go once more round the loop in
2370                  * the error cases -eeb. */
2371                 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2372                         list_for_each(tmp, &set->set_requests) {
2373                                 req = list_entry(tmp, struct ptlrpc_request,
2374                                                  rq_set_chain);
2375                                 spin_lock(&req->rq_lock);
2376                                 req->rq_invalid_rqset = 1;
2377                                 spin_unlock(&req->rq_lock);
2378                         }
2379                 }
2380         } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2381
2382         LASSERT(atomic_read(&set->set_remaining) == 0);
2383
2384         rc = set->set_rc; /* rq_status of already freed requests if any */
2385         list_for_each(tmp, &set->set_requests) {
2386                 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2387
2388                 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2389                 if (req->rq_status != 0)
2390                         rc = req->rq_status;
2391         }
2392
2393         RETURN(rc);
2394 }
2395 EXPORT_SYMBOL(ptlrpc_set_wait);
2396
2397 /**
2398  * Helper fuction for request freeing.
2399  * Called when request count reached zero and request needs to be freed.
2400  * Removes request from all sorts of sending/replay lists it might be on,
2401  * frees network buffers if any are present.
2402  * If \a locked is set, that means caller is already holding import imp_lock
2403  * and so we no longer need to reobtain it (for certain lists manipulations)
2404  */
2405 static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2406 {
2407         ENTRY;
2408
2409         if (request == NULL)
2410                 RETURN_EXIT;
2411
2412         LASSERT(!request->rq_srv_req);
2413         LASSERT(request->rq_export == NULL);
2414         LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
2415         LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2416         LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2417         LASSERTF(!request->rq_replay, "req %p\n", request);
2418
2419         req_capsule_fini(&request->rq_pill);
2420
2421         /* We must take it off the imp_replay_list first.  Otherwise, we'll set
2422          * request->rq_reqmsg to NULL while osc_close is dereferencing it. */
2423         if (request->rq_import != NULL) {
2424                 if (!locked)
2425                         spin_lock(&request->rq_import->imp_lock);
2426                 list_del_init(&request->rq_replay_list);
2427                 list_del_init(&request->rq_unreplied_list);
2428                 if (!locked)
2429                         spin_unlock(&request->rq_import->imp_lock);
2430         }
2431         LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2432
2433         if (atomic_read(&request->rq_refcount) != 0) {
2434                 DEBUG_REQ(D_ERROR, request,
2435                           "freeing request with nonzero refcount");
2436                 LBUG();
2437         }
2438
2439         if (request->rq_repbuf != NULL)
2440                 sptlrpc_cli_free_repbuf(request);
2441
2442         if (request->rq_import != NULL) {
2443                 class_import_put(request->rq_import);
2444                 request->rq_import = NULL;
2445         }
2446         if (request->rq_bulk != NULL)
2447                 ptlrpc_free_bulk(request->rq_bulk);
2448
2449         if (request->rq_reqbuf != NULL || request->rq_clrbuf != NULL)
2450                 sptlrpc_cli_free_reqbuf(request);
2451
2452         if (request->rq_cli_ctx)
2453                 sptlrpc_req_put_ctx(request, !locked);
2454
2455         if (request->rq_pool)
2456                 __ptlrpc_free_req_to_pool(request);
2457         else
2458                 ptlrpc_request_cache_free(request);
2459         EXIT;
2460 }
2461
2462 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked);
2463 /**
2464  * Drop one request reference. Must be called with import imp_lock held.
2465  * When reference count drops to zero, request is freed.
2466  */
2467 void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request)
2468 {
2469         assert_spin_locked(&request->rq_import->imp_lock);
2470         (void)__ptlrpc_req_finished(request, 1);
2471 }
2472
2473 /**
2474  * Helper function
2475  * Drops one reference count for request \a request.
2476  * \a locked set indicates that caller holds import imp_lock.
2477  * Frees the request whe reference count reaches zero.
2478  *
2479  * \retval 1    the request is freed
2480  * \retval 0    some others still hold references on the request
2481  */
2482 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2483 {
2484         int count;
2485         ENTRY;
2486
2487         if (!request)
2488                 RETURN(1);
2489
2490         LASSERT(request != LP_POISON);
2491         LASSERT(request->rq_reqmsg != LP_POISON);
2492
2493         DEBUG_REQ(D_INFO, request, "refcount now %u",
2494                   atomic_read(&request->rq_refcount) - 1);
2495
2496         spin_lock(&request->rq_lock);
2497         count = atomic_dec_return(&request->rq_refcount);
2498         LASSERTF(count >= 0, "Invalid ref count %d\n", count);
2499
2500         /* For open RPC, the client does not know the EA size (LOV, ACL, and
2501          * so on) before replied, then the client has to reserve very large
2502          * reply buffer. Such buffer will not be released until the RPC freed.
2503          * Since The open RPC is replayable, we need to keep it in the replay
2504          * list until close. If there are a lot of files opened concurrently,
2505          * then the client may be OOM.
2506          *
2507          * If fact, it is unnecessary to keep reply buffer for open replay,
2508          * related EAs have already been saved via mdc_save_lovea() before
2509          * coming here. So it is safe to free the reply buffer some earlier
2510          * before releasing the RPC to avoid client OOM. LU-9514 */
2511         if (count == 1 && request->rq_early_free_repbuf && request->rq_repbuf) {
2512                 spin_lock(&request->rq_early_free_lock);
2513                 sptlrpc_cli_free_repbuf(request);
2514                 request->rq_repbuf = NULL;
2515                 request->rq_repbuf_len = 0;
2516                 request->rq_repdata = NULL;
2517                 request->rq_reqdata_len = 0;
2518                 spin_unlock(&request->rq_early_free_lock);
2519         }
2520         spin_unlock(&request->rq_lock);
2521
2522         if (!count)
2523                 __ptlrpc_free_req(request, locked);
2524
2525         RETURN(!count);
2526 }
2527
2528 /**
2529  * Drops one reference count for a request.
2530  */
2531 void ptlrpc_req_finished(struct ptlrpc_request *request)
2532 {
2533         __ptlrpc_req_finished(request, 0);
2534 }
2535 EXPORT_SYMBOL(ptlrpc_req_finished);
2536
2537 /**
2538  * Returns xid of a \a request
2539  */
2540 __u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2541 {
2542         return request->rq_xid;
2543 }
2544 EXPORT_SYMBOL(ptlrpc_req_xid);
2545
2546 /**
2547  * Disengage the client's reply buffer from the network
2548  * NB does _NOT_ unregister any client-side bulk.
2549  * IDEMPOTENT, but _not_ safe against concurrent callers.
2550  * The request owner (i.e. the thread doing the I/O) must call...
2551  * Returns 0 on success or 1 if unregistering cannot be made.
2552  */
2553 static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2554 {
2555         int                rc;
2556         struct l_wait_info lwi;
2557
2558         /*
2559          * Might sleep.
2560          */
2561         LASSERT(!in_interrupt());
2562
2563         /* Let's setup deadline for reply unlink. */
2564         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2565             async && request->rq_reply_deadline == 0 && cfs_fail_val == 0)
2566                 request->rq_reply_deadline = ktime_get_real_seconds() +
2567                                              LONG_UNLINK;
2568
2569         /*
2570          * Nothing left to do.
2571          */
2572         if (!ptlrpc_client_recv_or_unlink(request))
2573                 RETURN(1);
2574
2575         LNetMDUnlink(request->rq_reply_md_h);
2576
2577         /*
2578          * Let's check it once again.
2579          */
2580         if (!ptlrpc_client_recv_or_unlink(request))
2581                 RETURN(1);
2582
2583         /* Move to "Unregistering" phase as reply was not unlinked yet. */
2584         ptlrpc_rqphase_move(request, RQ_PHASE_UNREG_RPC);
2585
2586         /*
2587          * Do not wait for unlink to finish.
2588          */
2589         if (async)
2590                 RETURN(0);
2591
2592         /*
2593          * We have to l_wait_event() whatever the result, to give liblustre
2594          * a chance to run reply_in_callback(), and to make sure we've
2595          * unlinked before returning a req to the pool.
2596          */
2597         for (;;) {
2598                 /* The wq argument is ignored by user-space wait_event macros */
2599                 wait_queue_head_t *wq = (request->rq_set != NULL) ?
2600                                         &request->rq_set->set_waitq :
2601                                         &request->rq_reply_waitq;
2602                 /* Network access will complete in finite time but the HUGE
2603                  * timeout lets us CWARN for visibility of sluggish NALs */
2604                 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2605                                            cfs_time_seconds(1), NULL, NULL);
2606                 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2607                                   &lwi);
2608                 if (rc == 0) {
2609                         ptlrpc_rqphase_move(request, request->rq_next_phase);
2610                         RETURN(1);
2611                 }
2612
2613                 LASSERT(rc == -ETIMEDOUT);
2614                 DEBUG_REQ(D_WARNING, request, "Unexpectedly long timeout "
2615                           "receiving_reply=%d req_ulinked=%d reply_unlinked=%d",
2616                           request->rq_receiving_reply,
2617                           request->rq_req_unlinked,
2618                           request->rq_reply_unlinked);
2619         }
2620         RETURN(0);
2621 }
2622
2623 static void ptlrpc_free_request(struct ptlrpc_request *req)
2624 {
2625         spin_lock(&req->rq_lock);
2626         req->rq_replay = 0;
2627         spin_unlock(&req->rq_lock);
2628
2629         if (req->rq_commit_cb != NULL)
2630                 req->rq_commit_cb(req);
2631         list_del_init(&req->rq_replay_list);
2632
2633         __ptlrpc_req_finished(req, 1);
2634 }
2635
2636 /**
2637  * the request is committed and dropped from the replay list of its import
2638  */
2639 void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2640 {
2641         struct obd_import       *imp = req->rq_import;
2642
2643         spin_lock(&imp->imp_lock);
2644         if (list_empty(&req->rq_replay_list)) {
2645                 spin_unlock(&imp->imp_lock);
2646                 return;
2647         }
2648
2649         if (force || req->rq_transno <= imp->imp_peer_committed_transno)
2650                 ptlrpc_free_request(req);
2651
2652         spin_unlock(&imp->imp_lock);
2653 }
2654 EXPORT_SYMBOL(ptlrpc_request_committed);
2655
2656 /**
2657  * Iterates through replay_list on import and prunes
2658  * all requests have transno smaller than last_committed for the
2659  * import and don't have rq_replay set.
2660  * Since requests are sorted in transno order, stops when meetign first
2661  * transno bigger than last_committed.
2662  * caller must hold imp->imp_lock
2663  */
2664 void ptlrpc_free_committed(struct obd_import *imp)
2665 {
2666         struct ptlrpc_request   *req, *saved;
2667         struct ptlrpc_request   *last_req = NULL; /* temporary fire escape */
2668         bool                     skip_committed_list = true;
2669         ENTRY;
2670
2671         LASSERT(imp != NULL);
2672         assert_spin_locked(&imp->imp_lock);
2673
2674         if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2675             imp->imp_generation == imp->imp_last_generation_checked) {
2676                 CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
2677                        imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
2678                 RETURN_EXIT;
2679         }
2680         CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
2681                imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2682                imp->imp_generation);
2683
2684         if (imp->imp_generation != imp->imp_last_generation_checked ||
2685             imp->imp_last_transno_checked == 0)
2686                 skip_committed_list = false;
2687
2688         imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2689         imp->imp_last_generation_checked = imp->imp_generation;
2690
2691         list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2692                                      rq_replay_list) {
2693                 /* XXX ok to remove when 1357 resolved - rread 05/29/03  */
2694                 LASSERT(req != last_req);
2695                 last_req = req;
2696
2697                 if (req->rq_transno == 0) {
2698                         DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2699                         LBUG();
2700                 }
2701                 if (req->rq_import_generation < imp->imp_generation) {
2702                         DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
2703                         GOTO(free_req, 0);
2704                 }
2705
2706                 /* not yet committed */
2707                 if (req->rq_transno > imp->imp_peer_committed_transno) {
2708                         DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2709                         break;
2710                 }
2711
2712                 if (req->rq_replay) {
2713                         DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2714                         list_move_tail(&req->rq_replay_list,
2715                                            &imp->imp_committed_list);
2716                         continue;
2717                 }
2718
2719                 DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
2720                           imp->imp_peer_committed_transno);
2721 free_req:
2722                 ptlrpc_free_request(req);
2723         }
2724
2725         if (skip_committed_list)
2726                 GOTO(out, 0);
2727
2728         list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2729                                  rq_replay_list) {
2730                 LASSERT(req->rq_transno != 0);
2731                 if (req->rq_import_generation < imp->imp_generation ||
2732                     !req->rq_replay) {
2733                         DEBUG_REQ(D_RPCTRACE, req, "free %s open request",
2734                                   req->rq_import_generation <
2735                                   imp->imp_generation ? "stale" : "closed");
2736
2737                         if (imp->imp_replay_cursor == &req->rq_replay_list)
2738                                 imp->imp_replay_cursor =
2739                                         req->rq_replay_list.next;
2740
2741                         ptlrpc_free_request(req);
2742                 }
2743         }
2744 out:
2745         EXIT;
2746 }
2747
2748 void ptlrpc_cleanup_client(struct obd_import *imp)
2749 {
2750         ENTRY;
2751         EXIT;
2752 }
2753
2754 /**
2755  * Schedule previously sent request for resend.
2756  * For bulk requests we assign new xid (to avoid problems with
2757  * lost replies and therefore several transfers landing into same buffer
2758  * from different sending attempts).
2759  */
2760 void ptlrpc_resend_req(struct ptlrpc_request *req)
2761 {
2762         DEBUG_REQ(D_HA, req, "going to resend");
2763         spin_lock(&req->rq_lock);
2764
2765         /* Request got reply but linked to the import list still.
2766            Let ptlrpc_check_set() to process it. */
2767         if (ptlrpc_client_replied(req)) {
2768                 spin_unlock(&req->rq_lock);
2769                 DEBUG_REQ(D_HA, req, "it has reply, so skip it");
2770                 return;
2771         }
2772
2773         lustre_msg_set_handle(req->rq_reqmsg, &(struct lustre_handle){ 0 });
2774         req->rq_status = -EAGAIN;
2775
2776         req->rq_resend = 1;
2777         req->rq_net_err = 0;
2778         req->rq_timedout = 0;
2779
2780         ptlrpc_client_wake_req(req);
2781         spin_unlock(&req->rq_lock);
2782 }
2783
2784 /* XXX: this function and rq_status are currently unused */
2785 void ptlrpc_restart_req(struct ptlrpc_request *req)
2786 {
2787         DEBUG_REQ(D_HA, req, "restarting (possibly-)completed request");
2788         req->rq_status = -ERESTARTSYS;
2789
2790         spin_lock(&req->rq_lock);
2791         req->rq_restart = 1;
2792         req->rq_timedout = 0;
2793         ptlrpc_client_wake_req(req);
2794         spin_unlock(&req->rq_lock);
2795 }
2796
2797 /**
2798  * Grab additional reference on a request \a req
2799  */
2800 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2801 {
2802         ENTRY;
2803         atomic_inc(&req->rq_refcount);
2804         RETURN(req);
2805 }
2806 EXPORT_SYMBOL(ptlrpc_request_addref);
2807
2808 /**
2809  * Add a request to import replay_list.
2810  * Must be called under imp_lock
2811  */
2812 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2813                                       struct obd_import *imp)
2814 {
2815         struct list_head *tmp;
2816
2817         assert_spin_locked(&imp->imp_lock);
2818
2819         if (req->rq_transno == 0) {
2820                 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2821                 LBUG();
2822         }
2823
2824         /* clear this for new requests that were resent as well
2825            as resent replayed requests. */
2826         lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2827
2828         /* don't re-add requests that have been replayed */
2829         if (!list_empty(&req->rq_replay_list))
2830                 return;
2831
2832         lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2833
2834         spin_lock(&req->rq_lock);
2835         req->rq_resend = 0;
2836         spin_unlock(&req->rq_lock);
2837
2838         LASSERT(imp->imp_replayable);
2839         /* Balanced in ptlrpc_free_committed, usually. */
2840         ptlrpc_request_addref(req);
2841         list_for_each_prev(tmp, &imp->imp_replay_list) {
2842                 struct ptlrpc_request *iter = list_entry(tmp,
2843                                                          struct ptlrpc_request,
2844                                                          rq_replay_list);
2845
2846                 /* We may have duplicate transnos if we create and then
2847                  * open a file, or for closes retained if to match creating
2848                  * opens, so use req->rq_xid as a secondary key.
2849                  * (See bugs 684, 685, and 428.)
2850                  * XXX no longer needed, but all opens need transnos!
2851                  */
2852                 if (iter->rq_transno > req->rq_transno)
2853                         continue;
2854
2855                 if (iter->rq_transno == req->rq_transno) {
2856                         LASSERT(iter->rq_xid != req->rq_xid);
2857                         if (iter->rq_xid > req->rq_xid)
2858                                 continue;
2859                 }
2860
2861                 list_add(&req->rq_replay_list, &iter->rq_replay_list);
2862                 return;
2863         }
2864
2865         list_add(&req->rq_replay_list, &imp->imp_replay_list);
2866 }
2867
2868 /**
2869  * Send request and wait until it completes.
2870  * Returns request processing status.
2871  */
2872 int ptlrpc_queue_wait(struct ptlrpc_request *req)
2873 {
2874         struct ptlrpc_request_set *set;
2875         int rc;
2876         ENTRY;
2877
2878         LASSERT(req->rq_set == NULL);
2879         LASSERT(!req->rq_receiving_reply);
2880
2881         set = ptlrpc_prep_set();
2882         if (set == NULL) {
2883                 CERROR("cannot allocate ptlrpc set: rc = %d\n", -ENOMEM);
2884                 RETURN(-ENOMEM);
2885         }
2886
2887         /* for distributed debugging */
2888         lustre_msg_set_status(req->rq_reqmsg, current_pid());
2889
2890         /* add a ref for the set (see comment in ptlrpc_set_add_req) */
2891         ptlrpc_request_addref(req);
2892         ptlrpc_set_add_req(set, req);
2893         rc = ptlrpc_set_wait(set);
2894         ptlrpc_set_destroy(set);
2895
2896         RETURN(rc);
2897 }
2898 EXPORT_SYMBOL(ptlrpc_queue_wait);
2899
2900 /**
2901  * Callback used for replayed requests reply processing.
2902  * In case of successful reply calls registered request replay callback.
2903  * In case of error restart replay process.
2904  */
2905 static int ptlrpc_replay_interpret(const struct lu_env *env,
2906                                    struct ptlrpc_request *req,
2907                                    void * data, int rc)
2908 {
2909         struct ptlrpc_replay_async_args *aa = data;
2910         struct obd_import *imp = req->rq_import;
2911
2912         ENTRY;
2913         atomic_dec(&imp->imp_replay_inflight);
2914
2915         /* Note: if it is bulk replay (MDS-MDS replay), then even if
2916          * server got the request, but bulk transfer timeout, let's
2917          * replay the bulk req again */
2918         if (!ptlrpc_client_replied(req) ||
2919             (req->rq_bulk != NULL &&
2920              lustre_msg_get_status(req->rq_repmsg) == -ETIMEDOUT)) {
2921                 DEBUG_REQ(D_ERROR, req, "request replay timed out.\n");
2922                 GOTO(out, rc = -ETIMEDOUT);
2923         }
2924
2925         if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
2926             (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
2927              lustre_msg_get_status(req->rq_repmsg) == -ENODEV))
2928                 GOTO(out, rc = lustre_msg_get_status(req->rq_repmsg));
2929
2930         /** VBR: check version failure */
2931         if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
2932                 /** replay was failed due to version mismatch */
2933                 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
2934                 spin_lock(&imp->imp_lock);
2935                 imp->imp_vbr_failed = 1;
2936                 spin_unlock(&imp->imp_lock);
2937                 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2938         } else {
2939                 /** The transno had better not change over replay. */
2940                 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
2941                          lustre_msg_get_transno(req->rq_repmsg) ||
2942                          lustre_msg_get_transno(req->rq_repmsg) == 0,
2943                          "%#llx/%#llx\n",
2944                          lustre_msg_get_transno(req->rq_reqmsg),
2945                          lustre_msg_get_transno(req->rq_repmsg));
2946         }
2947
2948         spin_lock(&imp->imp_lock);
2949         imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
2950         spin_unlock(&imp->imp_lock);
2951         LASSERT(imp->imp_last_replay_transno);
2952
2953         /* transaction number shouldn't be bigger than the latest replayed */
2954         if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
2955                 DEBUG_REQ(D_ERROR, req,
2956                           "Reported transno %llu is bigger than the "
2957                           "replayed one: %llu", req->rq_transno,
2958                           lustre_msg_get_transno(req->rq_reqmsg));
2959                 GOTO(out, rc = -EINVAL);
2960         }
2961
2962         DEBUG_REQ(D_HA, req, "got rep");
2963
2964         /* let the callback do fixups, possibly including in the request */
2965         if (req->rq_replay_cb)
2966                 req->rq_replay_cb(req);
2967
2968         if (ptlrpc_client_replied(req) &&
2969             lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
2970                 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
2971                           lustre_msg_get_status(req->rq_repmsg),
2972                           aa->praa_old_status);
2973
2974                 /* Note: If the replay fails for MDT-MDT recovery, let's
2975                  * abort all of the following requests in the replay
2976                  * and sending list, because MDT-MDT update requests
2977                  * are dependent on each other, see LU-7039 */
2978                 if (imp->imp_connect_flags_orig & OBD_CONNECT_MDS_MDS) {
2979                         struct ptlrpc_request *free_req;
2980                         struct ptlrpc_request *tmp;
2981
2982                         spin_lock(&imp->imp_lock);
2983                         list_for_each_entry_safe(free_req, tmp,
2984                                                  &imp->imp_replay_list,
2985                                                  rq_replay_list) {
2986                                 ptlrpc_free_request(free_req);
2987                         }
2988
2989                         list_for_each_entry_safe(free_req, tmp,
2990                                                  &imp->imp_committed_list,
2991                                                  rq_replay_list) {
2992                                 ptlrpc_free_request(free_req);
2993                         }
2994
2995                         list_for_each_entry_safe(free_req, tmp,
2996                                                 &imp->imp_delayed_list,
2997                                                 rq_list) {
2998                                 spin_lock(&free_req->rq_lock);
2999                                 free_req->rq_err = 1;
3000                                 free_req->rq_status = -EIO;
3001                                 ptlrpc_client_wake_req(free_req);
3002                                 spin_unlock(&free_req->rq_lock);
3003                         }
3004
3005                         list_for_each_entry_safe(free_req, tmp,
3006                                                 &imp->imp_sending_list,
3007                                                 rq_list) {
3008                                 spin_lock(&free_req->rq_lock);
3009                                 free_req->rq_err = 1;
3010                                 free_req->rq_status = -EIO;
3011                                 ptlrpc_client_wake_req(free_req);
3012                                 spin_unlock(&free_req->rq_lock);
3013                         }
3014                         spin_unlock(&imp->imp_lock);
3015                 }
3016         } else {
3017                 /* Put it back for re-replay. */
3018                 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
3019         }
3020
3021         /*
3022          * Errors while replay can set transno to 0, but
3023          * imp_last_replay_transno shouldn't be set to 0 anyway
3024          */
3025         if (req->rq_transno == 0)
3026                 CERROR("Transno is 0 during replay!\n");
3027
3028         /* continue with recovery */
3029         rc = ptlrpc_import_recovery_state_machine(imp);
3030  out:
3031         req->rq_send_state = aa->praa_old_state;
3032
3033         if (rc != 0)
3034                 /* this replay failed, so restart recovery */
3035                 ptlrpc_connect_import(imp);
3036
3037         RETURN(rc);
3038 }
3039
3040 /**
3041  * Prepares and queues request for replay.
3042  * Adds it to ptlrpcd queue for actual sending.
3043  * Returns 0 on success.
3044  */
3045 int ptlrpc_replay_req(struct ptlrpc_request *req)
3046 {
3047         struct ptlrpc_replay_async_args *aa;
3048
3049         ENTRY;
3050
3051         LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
3052
3053         CLASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
3054         aa = ptlrpc_req_async_args(req);
3055         memset(aa, 0, sizeof(*aa));
3056
3057         /* Prepare request to be resent with ptlrpcd */
3058         aa->praa_old_state = req->rq_send_state;
3059         req->rq_send_state = LUSTRE_IMP_REPLAY;
3060         req->rq_phase = RQ_PHASE_NEW;
3061         req->rq_next_phase = RQ_PHASE_UNDEFINED;
3062         if (req->rq_repmsg)
3063                 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
3064         req->rq_status = 0;
3065         req->rq_interpret_reply = ptlrpc_replay_interpret;
3066         /* Readjust the timeout for current conditions */
3067         ptlrpc_at_set_req_timeout(req);
3068
3069         /* Tell server the net_latency, so the server can calculate how long
3070          * it should wait for next replay */
3071         lustre_msg_set_service_time(req->rq_reqmsg,
3072                                     ptlrpc_at_get_net_latency(req));
3073         DEBUG_REQ(D_HA, req, "REPLAY");
3074
3075         atomic_inc(&req->rq_import->imp_replay_inflight);
3076         spin_lock(&req->rq_lock);
3077         req->rq_early_free_repbuf = 0;
3078         spin_unlock(&req->rq_lock);
3079         ptlrpc_request_addref(req);     /* ptlrpcd needs a ref */
3080
3081         ptlrpcd_add_req(req);
3082         RETURN(0);
3083 }
3084
3085 /**
3086  * Aborts all in-flight request on import \a imp sending and delayed lists
3087  */
3088 void ptlrpc_abort_inflight(struct obd_import *imp)
3089 {
3090         struct list_head *tmp, *n;
3091         ENTRY;
3092
3093         /* Make sure that no new requests get processed for this import.
3094          * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
3095          * this flag and then putting requests on sending_list or delayed_list.
3096          */
3097         spin_lock(&imp->imp_lock);
3098
3099         /* XXX locking?  Maybe we should remove each request with the list
3100          * locked?  Also, how do we know if the requests on the list are
3101          * being freed at this time?
3102          */
3103         list_for_each_safe(tmp, n, &imp->imp_sending_list) {
3104                 struct ptlrpc_request *req = list_entry(tmp,
3105                                                         struct ptlrpc_request,
3106                                                         rq_list);
3107
3108                 DEBUG_REQ(D_RPCTRACE, req, "inflight");
3109
3110                 spin_lock(&req->rq_lock);
3111                 if (req->rq_import_generation < imp->imp_generation) {
3112                         req->rq_err = 1;
3113                         req->rq_status = -EIO;
3114                         ptlrpc_client_wake_req(req);
3115                 }
3116                 spin_unlock(&req->rq_lock);
3117         }
3118
3119         list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
3120                 struct ptlrpc_request *req =
3121                         list_entry(tmp, struct ptlrpc_request, rq_list);
3122
3123                 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
3124
3125                 spin_lock(&req->rq_lock);
3126                 if (req->rq_import_generation < imp->imp_generation) {
3127                         req->rq_err = 1;
3128                         req->rq_status = -EIO;
3129                         ptlrpc_client_wake_req(req);
3130                 }
3131                 spin_unlock(&req->rq_lock);
3132         }
3133
3134         /* Last chance to free reqs left on the replay list, but we
3135          * will still leak reqs that haven't committed.  */
3136         if (imp->imp_replayable)
3137                 ptlrpc_free_committed(imp);
3138
3139         spin_unlock(&imp->imp_lock);
3140
3141         EXIT;
3142 }
3143
3144 /**
3145  * Abort all uncompleted requests in request set \a set
3146  */
3147 void ptlrpc_abort_set(struct ptlrpc_request_set *set)
3148 {
3149         struct list_head *tmp, *pos;
3150
3151         LASSERT(set != NULL);
3152
3153         list_for_each_safe(pos, tmp, &set->set_requests) {
3154                 struct ptlrpc_request *req =
3155                         list_entry(pos, struct ptlrpc_request,
3156                                    rq_set_chain);
3157
3158                 spin_lock(&req->rq_lock);
3159                 if (req->rq_phase != RQ_PHASE_RPC) {
3160                         spin_unlock(&req->rq_lock);
3161                         continue;
3162                 }
3163
3164                 req->rq_err = 1;
3165                 req->rq_status = -EINTR;
3166                 ptlrpc_client_wake_req(req);
3167                 spin_unlock(&req->rq_lock);
3168         }
3169 }
3170
3171 static __u64 ptlrpc_last_xid;
3172 static spinlock_t ptlrpc_last_xid_lock;
3173
3174 /**
3175  * Initialize the XID for the node.  This is common among all requests on
3176  * this node, and only requires the property that it is monotonically
3177  * increasing.  It does not need to be sequential.  Since this is also used
3178  * as the RDMA match bits, it is important that a single client NOT have
3179  * the same match bits for two different in-flight requests, hence we do
3180  * NOT want to have an XID per target or similar.
3181  *
3182  * To avoid an unlikely collision between match bits after a client reboot
3183  * (which would deliver old data into the wrong RDMA buffer) initialize
3184  * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
3185  * If the time is clearly incorrect, we instead use a 62-bit random number.
3186  * In the worst case the random number will overflow 1M RPCs per second in
3187  * 9133 years, or permutations thereof.
3188  */
3189 #define YEAR_2004 (1ULL << 30)
3190 void ptlrpc_init_xid(void)
3191 {
3192         time64_t now = ktime_get_real_seconds();
3193
3194         spin_lock_init(&ptlrpc_last_xid_lock);
3195         if (now < YEAR_2004) {
3196                 cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid));
3197                 ptlrpc_last_xid >>= 2;
3198                 ptlrpc_last_xid |= (1ULL << 61);
3199         } else {
3200                 ptlrpc_last_xid = (__u64)now << 20;
3201         }
3202
3203         /* Need to always be aligned to a power-of-two for mutli-bulk BRW */
3204         CLASSERT((PTLRPC_BULK_OPS_COUNT & (PTLRPC_BULK_OPS_COUNT - 1)) == 0);
3205         ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK;
3206 }
3207
3208 /**
3209  * Increase xid and returns resulting new value to the caller.
3210  *
3211  * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
3212  * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
3213  * itself uses the last bulk xid needed, so the server can determine the
3214  * the number of bulk transfers from the RPC XID and a bitmask.  The starting
3215  * xid must align to a power-of-two value.
3216  *
3217  * This is assumed to be true due to the initial ptlrpc_last_xid
3218  * value also being initialized to a power-of-two value. LU-1431
3219  */
3220 __u64 ptlrpc_next_xid(void)
3221 {
3222         __u64 next;
3223
3224         spin_lock(&ptlrpc_last_xid_lock);
3225         next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
3226         ptlrpc_last_xid = next;
3227         spin_unlock(&ptlrpc_last_xid_lock);
3228
3229         return next;
3230 }
3231
3232 /**
3233  * If request has a new allocated XID (new request or EINPROGRESS resend),
3234  * use this XID as matchbits of bulk, otherwise allocate a new matchbits for
3235  * request to ensure previous bulk fails and avoid problems with lost replies
3236  * and therefore several transfers landing into the same buffer from different
3237  * sending attempts.
3238  */
3239 void ptlrpc_set_bulk_mbits(struct ptlrpc_request *req)
3240 {
3241         struct ptlrpc_bulk_desc *bd = req->rq_bulk;
3242
3243         LASSERT(bd != NULL);
3244
3245         /* Generate new matchbits for all resend requests, including
3246          * resend replay. */
3247         if (req->rq_resend) {
3248                 __u64 old_mbits = req->rq_mbits;
3249
3250                 /* First time resend on -EINPROGRESS will generate new xid,
3251                  * so we can actually use the rq_xid as rq_mbits in such case,
3252                  * however, it's bit hard to distinguish such resend with a
3253                  * 'resend for the -EINPROGRESS resend'. To make it simple,
3254                  * we opt to generate mbits for all resend cases. */
3255                 if (OCD_HAS_FLAG(&bd->bd_import->imp_connect_data, BULK_MBITS)){
3256                         req->rq_mbits = ptlrpc_next_xid();
3257                 } else {
3258                         /* Old version transfers rq_xid to peer as
3259                          * matchbits. */
3260                         spin_lock(&req->rq_import->imp_lock);
3261                         list_del_init(&req->rq_unreplied_list);
3262                         ptlrpc_assign_next_xid_nolock(req);
3263                         spin_unlock(&req->rq_import->imp_lock);
3264                         req->rq_mbits = req->rq_xid;
3265                 }
3266                 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
3267                        old_mbits, req->rq_mbits);
3268         } else if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
3269                 /* Request being sent first time, use xid as matchbits. */
3270                 req->rq_mbits = req->rq_xid;
3271         } else {
3272                 /* Replay request, xid and matchbits have already been
3273                  * correctly assigned. */
3274                 return;
3275         }
3276
3277         /* For multi-bulk RPCs, rq_mbits is the last mbits needed for bulks so
3278          * that server can infer the number of bulks that were prepared,
3279          * see LU-1431 */
3280         req->rq_mbits += ((bd->bd_iov_count + LNET_MAX_IOV - 1) /
3281                           LNET_MAX_IOV) - 1;
3282
3283         /* Set rq_xid as rq_mbits to indicate the final bulk for the old
3284          * server which does not support OBD_CONNECT_BULK_MBITS. LU-6808.
3285          *
3286          * It's ok to directly set the rq_xid here, since this xid bump
3287          * won't affect the request position in unreplied list. */
3288         if (!OCD_HAS_FLAG(&bd->bd_import->imp_connect_data, BULK_MBITS))
3289                 req->rq_xid = req->rq_mbits;
3290 }
3291
3292 /**
3293  * Get a glimpse at what next xid value might have been.
3294  * Returns possible next xid.
3295  */
3296 __u64 ptlrpc_sample_next_xid(void)
3297 {
3298 #if BITS_PER_LONG == 32
3299         /* need to avoid possible word tearing on 32-bit systems */
3300         __u64 next;
3301
3302         spin_lock(&ptlrpc_last_xid_lock);
3303         next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
3304         spin_unlock(&ptlrpc_last_xid_lock);
3305
3306         return next;
3307 #else
3308         /* No need to lock, since returned value is racy anyways */
3309         return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
3310 #endif
3311 }
3312 EXPORT_SYMBOL(ptlrpc_sample_next_xid);
3313
3314 /**
3315  * Functions for operating ptlrpc workers.
3316  *
3317  * A ptlrpc work is a function which will be running inside ptlrpc context.
3318  * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
3319  *
3320  * 1. after a work is created, it can be used many times, that is:
3321  *         handler = ptlrpcd_alloc_work();
3322  *         ptlrpcd_queue_work();
3323  *
3324  *    queue it again when necessary:
3325  *         ptlrpcd_queue_work();
3326  *         ptlrpcd_destroy_work();
3327  * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
3328  *    it will only be queued once in any time. Also as its name implies, it may
3329  *    have delay before it really runs by ptlrpcd thread.
3330  */
3331 struct ptlrpc_work_async_args {
3332         int   (*cb)(const struct lu_env *, void *);
3333         void   *cbdata;
3334 };
3335
3336 static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
3337 {
3338         /* re-initialize the req */
3339         req->rq_timeout         = obd_timeout;
3340         req->rq_sent            = ktime_get_real_seconds();
3341         req->rq_deadline        = req->rq_sent + req->rq_timeout;
3342         req->rq_phase           = RQ_PHASE_INTERPRET;
3343         req->rq_next_phase      = RQ_PHASE_COMPLETE;
3344         req->rq_xid             = ptlrpc_next_xid();
3345         req->rq_import_generation = req->rq_import->imp_generation;
3346
3347         ptlrpcd_add_req(req);
3348 }
3349
3350 static int work_interpreter(const struct lu_env *env,
3351                             struct ptlrpc_request *req, void *data, int rc)
3352 {
3353         struct ptlrpc_work_async_args *arg = data;
3354
3355         LASSERT(ptlrpcd_check_work(req));
3356         LASSERT(arg->cb != NULL);
3357
3358         rc = arg->cb(env, arg->cbdata);
3359
3360         list_del_init(&req->rq_set_chain);
3361         req->rq_set = NULL;
3362
3363         if (atomic_dec_return(&req->rq_refcount) > 1) {
3364                 atomic_set(&req->rq_refcount, 2);
3365                 ptlrpcd_add_work_req(req);
3366         }
3367         return rc;
3368 }
3369
3370 static int worker_format;
3371
3372 static int ptlrpcd_check_work(struct ptlrpc_request *req)
3373 {
3374         return req->rq_pill.rc_fmt == (void *)&worker_format;
3375 }
3376
3377 /**
3378  * Create a work for ptlrpc.
3379  */
3380 void *ptlrpcd_alloc_work(struct obd_import *imp,
3381                          int (*cb)(const struct lu_env *, void *), void *cbdata)
3382 {
3383         struct ptlrpc_request         *req = NULL;
3384         struct ptlrpc_work_async_args *args;
3385         ENTRY;
3386
3387         might_sleep();
3388
3389         if (cb == NULL)
3390                 RETURN(ERR_PTR(-EINVAL));
3391
3392         /* copy some code from deprecated fakereq. */
3393         req = ptlrpc_request_cache_alloc(GFP_NOFS);
3394         if (req == NULL) {
3395                 CERROR("ptlrpc: run out of memory!\n");
3396                 RETURN(ERR_PTR(-ENOMEM));
3397         }
3398
3399         ptlrpc_cli_req_init(req);
3400
3401         req->rq_send_state = LUSTRE_IMP_FULL;
3402         req->rq_type = PTL_RPC_MSG_REQUEST;
3403         req->rq_import = class_import_get(imp);
3404         req->rq_interpret_reply = work_interpreter;
3405         /* don't want reply */
3406         req->rq_no_delay = req->rq_no_resend = 1;
3407         req->rq_pill.rc_fmt = (void *)&worker_format;
3408
3409         CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
3410         args = ptlrpc_req_async_args(req);
3411         args->cb     = cb;
3412         args->cbdata = cbdata;
3413
3414         RETURN(req);
3415 }
3416 EXPORT_SYMBOL(ptlrpcd_alloc_work);
3417
3418 void ptlrpcd_destroy_work(void *handler)
3419 {
3420         struct ptlrpc_request *req = handler;
3421
3422         if (req)
3423                 ptlrpc_req_finished(req);
3424 }
3425 EXPORT_SYMBOL(ptlrpcd_destroy_work);
3426
3427 int ptlrpcd_queue_work(void *handler)
3428 {
3429         struct ptlrpc_request *req = handler;
3430
3431         /*
3432          * Check if the req is already being queued.
3433          *
3434          * Here comes a trick: it lacks a way of checking if a req is being
3435          * processed reliably in ptlrpc. Here I have to use refcount of req
3436          * for this purpose. This is okay because the caller should use this
3437          * req as opaque data. - Jinshan
3438          */
3439         LASSERT(atomic_read(&req->rq_refcount) > 0);
3440         if (atomic_inc_return(&req->rq_refcount) == 2)
3441                 ptlrpcd_add_work_req(req);
3442         return 0;
3443 }
3444 EXPORT_SYMBOL(ptlrpcd_queue_work);