Whamcloud - gitweb
LU-4423 ptlrpc: use list_move where appropriate.
[fs/lustre-release.git] / lustre / ptlrpc / client.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  */
32
33 /** Implementation of client-side PortalRPC interfaces */
34
35 #define DEBUG_SUBSYSTEM S_RPC
36
37 #include <linux/delay.h>
38 #include <linux/random.h>
39
40 #include <obd_support.h>
41 #include <obd_class.h>
42 #include <lustre_lib.h>
43 #include <lustre_ha.h>
44 #include <lustre_import.h>
45 #include <lustre_req_layout.h>
46
47 #include "ptlrpc_internal.h"
48
49 static void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
50                                       struct page *page, int pageoffset,
51                                       int len)
52 {
53         __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
54 }
55
56 static void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
57                                         struct page *page, int pageoffset,
58                                         int len)
59 {
60         __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
61 }
62
63 static void ptlrpc_release_bulk_page_pin(struct ptlrpc_bulk_desc *desc)
64 {
65         int i;
66
67         for (i = 0; i < desc->bd_iov_count ; i++)
68                 put_page(BD_GET_KIOV(desc, i).kiov_page);
69 }
70
71 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_pin_ops = {
72         .add_kiov_frag  = ptlrpc_prep_bulk_page_pin,
73         .release_frags  = ptlrpc_release_bulk_page_pin,
74 };
75 EXPORT_SYMBOL(ptlrpc_bulk_kiov_pin_ops);
76
77 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_nopin_ops = {
78         .add_kiov_frag  = ptlrpc_prep_bulk_page_nopin,
79         .release_frags  = ptlrpc_release_bulk_noop,
80 };
81 EXPORT_SYMBOL(ptlrpc_bulk_kiov_nopin_ops);
82
83 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kvec_ops = {
84         .add_iov_frag = ptlrpc_prep_bulk_frag,
85 };
86 EXPORT_SYMBOL(ptlrpc_bulk_kvec_ops);
87
88 static int ptlrpc_send_new_req(struct ptlrpc_request *req);
89 static int ptlrpcd_check_work(struct ptlrpc_request *req);
90 static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async);
91
92 /**
93  * Initialize passed in client structure \a cl.
94  */
95 void ptlrpc_init_client(int req_portal, int rep_portal, const char *name,
96                         struct ptlrpc_client *cl)
97 {
98         cl->cli_request_portal = req_portal;
99         cl->cli_reply_portal   = rep_portal;
100         cl->cli_name           = name;
101 }
102 EXPORT_SYMBOL(ptlrpc_init_client);
103
104 /**
105  * Return PortalRPC connection for remore uud \a uuid
106  */
107 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid,
108                                                     lnet_nid_t nid4refnet)
109 {
110         struct ptlrpc_connection *c;
111         lnet_nid_t self;
112         struct lnet_process_id peer;
113         int err;
114
115         /*
116          * ptlrpc_uuid_to_peer() initializes its 2nd parameter
117          * before accessing its values.
118          */
119         /* coverity[uninit_use_in_call] */
120         peer.nid = nid4refnet;
121         err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
122         if (err != 0) {
123                 CNETERR("cannot find peer %s!\n", uuid->uuid);
124                 return NULL;
125         }
126
127         c = ptlrpc_connection_get(peer, self, uuid);
128         if (c) {
129                 memcpy(c->c_remote_uuid.uuid,
130                        uuid->uuid, sizeof(c->c_remote_uuid.uuid));
131         }
132
133         CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
134
135         return c;
136 }
137
138 /**
139  * Allocate and initialize new bulk descriptor on the sender.
140  * Returns pointer to the descriptor or NULL on error.
141  */
142 struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned int nfrags,
143                                          unsigned int max_brw,
144                                          enum ptlrpc_bulk_op_type type,
145                                          unsigned int portal,
146                                          const struct ptlrpc_bulk_frag_ops *ops)
147 {
148         struct ptlrpc_bulk_desc *desc;
149         int i;
150
151         /* ensure that only one of KIOV or IOVEC is set but not both */
152         LASSERT((ptlrpc_is_bulk_desc_kiov(type) &&
153                  ops->add_kiov_frag != NULL) ||
154                 (ptlrpc_is_bulk_desc_kvec(type) &&
155                  ops->add_iov_frag != NULL));
156
157         OBD_ALLOC_PTR(desc);
158         if (!desc)
159                 return NULL;
160         if (type & PTLRPC_BULK_BUF_KIOV) {
161                 OBD_ALLOC_LARGE(GET_KIOV(desc),
162                                 nfrags * sizeof(*GET_KIOV(desc)));
163                 if (!GET_KIOV(desc))
164                         goto out;
165         } else {
166                 OBD_ALLOC_LARGE(GET_KVEC(desc),
167                                 nfrags * sizeof(*GET_KVEC(desc)));
168                 if (!GET_KVEC(desc))
169                         goto out;
170         }
171
172         spin_lock_init(&desc->bd_lock);
173         init_waitqueue_head(&desc->bd_waitq);
174         desc->bd_max_iov = nfrags;
175         desc->bd_iov_count = 0;
176         desc->bd_portal = portal;
177         desc->bd_type = type;
178         desc->bd_md_count = 0;
179         desc->bd_frag_ops = ops;
180         LASSERT(max_brw > 0);
181         desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
182         /*
183          * PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
184          * node. Negotiated ocd_brw_size will always be <= this number.
185          */
186         for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
187                 LNetInvalidateMDHandle(&desc->bd_mds[i]);
188
189         return desc;
190 out:
191         OBD_FREE_PTR(desc);
192         return NULL;
193 }
194
195 /**
196  * Prepare bulk descriptor for specified outgoing request \a req that
197  * can fit \a nfrags * pages. \a type is bulk type. \a portal is where
198  * the bulk to be sent. Used on client-side.
199  * Returns pointer to newly allocatrd initialized bulk descriptor or NULL on
200  * error.
201  */
202 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
203                                               unsigned int nfrags,
204                                               unsigned int max_brw,
205                                               unsigned int type,
206                                               unsigned int portal,
207                                               const struct ptlrpc_bulk_frag_ops
208                                                 *ops)
209 {
210         struct obd_import *imp = req->rq_import;
211         struct ptlrpc_bulk_desc *desc;
212
213         ENTRY;
214         LASSERT(ptlrpc_is_bulk_op_passive(type));
215
216         desc = ptlrpc_new_bulk(nfrags, max_brw, type, portal, ops);
217         if (!desc)
218                 RETURN(NULL);
219
220         desc->bd_import_generation = req->rq_import_generation;
221         desc->bd_import = class_import_get(imp);
222         desc->bd_req = req;
223
224         desc->bd_cbid.cbid_fn  = client_bulk_callback;
225         desc->bd_cbid.cbid_arg = desc;
226
227         /* This makes req own desc, and free it when she frees herself */
228         req->rq_bulk = desc;
229
230         return desc;
231 }
232 EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
233
234 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
235                              struct page *page, int pageoffset, int len,
236                              int pin)
237 {
238         lnet_kiov_t *kiov;
239
240         LASSERT(desc->bd_iov_count < desc->bd_max_iov);
241         LASSERT(page != NULL);
242         LASSERT(pageoffset >= 0);
243         LASSERT(len > 0);
244         LASSERT(pageoffset + len <= PAGE_SIZE);
245         LASSERT(ptlrpc_is_bulk_desc_kiov(desc->bd_type));
246
247         kiov = &BD_GET_KIOV(desc, desc->bd_iov_count);
248
249         desc->bd_nob += len;
250
251         if (pin)
252                 get_page(page);
253
254         kiov->kiov_page = page;
255         kiov->kiov_offset = pageoffset;
256         kiov->kiov_len = len;
257
258         desc->bd_iov_count++;
259 }
260 EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
261
262 int ptlrpc_prep_bulk_frag(struct ptlrpc_bulk_desc *desc,
263                           void *frag, int len)
264 {
265         struct kvec *iovec;
266
267         ENTRY;
268
269         LASSERT(desc->bd_iov_count < desc->bd_max_iov);
270         LASSERT(frag != NULL);
271         LASSERT(len > 0);
272         LASSERT(ptlrpc_is_bulk_desc_kvec(desc->bd_type));
273
274         iovec = &BD_GET_KVEC(desc, desc->bd_iov_count);
275
276         desc->bd_nob += len;
277
278         iovec->iov_base = frag;
279         iovec->iov_len = len;
280
281         desc->bd_iov_count++;
282
283         RETURN(desc->bd_nob);
284 }
285 EXPORT_SYMBOL(ptlrpc_prep_bulk_frag);
286
287 void ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc)
288 {
289         ENTRY;
290
291         LASSERT(desc != NULL);
292         LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
293         LASSERT(desc->bd_md_count == 0);         /* network hands off */
294         LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
295         LASSERT(desc->bd_frag_ops != NULL);
296
297         if (ptlrpc_is_bulk_desc_kiov(desc->bd_type))
298                 sptlrpc_enc_pool_put_pages(desc);
299
300         if (desc->bd_export)
301                 class_export_put(desc->bd_export);
302         else
303                 class_import_put(desc->bd_import);
304
305         if (desc->bd_frag_ops->release_frags != NULL)
306                 desc->bd_frag_ops->release_frags(desc);
307
308         if (ptlrpc_is_bulk_desc_kiov(desc->bd_type))
309                 OBD_FREE_LARGE(GET_KIOV(desc),
310                                desc->bd_max_iov * sizeof(*GET_KIOV(desc)));
311         else
312                 OBD_FREE_LARGE(GET_KVEC(desc),
313                                desc->bd_max_iov * sizeof(*GET_KVEC(desc)));
314         OBD_FREE_PTR(desc);
315         EXIT;
316 }
317 EXPORT_SYMBOL(ptlrpc_free_bulk);
318
319 /**
320  * Set server timelimit for this req, i.e. how long are we willing to wait
321  * for reply before timing out this request.
322  */
323 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
324 {
325         __u32 serv_est;
326         int idx;
327         struct imp_at *at;
328
329         LASSERT(req->rq_import);
330
331         if (AT_OFF) {
332                 /* non-AT settings */
333                 /**
334                  * \a imp_server_timeout means this is reverse import and
335                  * we send (currently only) ASTs to the client and cannot afford
336                  * to wait too long for the reply, otherwise the other client
337                  * (because of which we are sending this request) would
338                  * timeout waiting for us
339                  */
340                 req->rq_timeout = req->rq_import->imp_server_timeout ?
341                                   obd_timeout / 2 : obd_timeout;
342         } else {
343                 at = &req->rq_import->imp_at;
344                 idx = import_at_get_index(req->rq_import,
345                                           req->rq_request_portal);
346                 serv_est = at_get(&at->iat_service_estimate[idx]);
347                 req->rq_timeout = at_est2timeout(serv_est);
348         }
349         /*
350          * We could get even fancier here, using history to predict increased
351          * loading...
352          */
353
354         /*
355          * Let the server know what this RPC timeout is by putting it in the
356          * reqmsg
357          */
358         lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
359 }
360 EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
361
362 /* Adjust max service estimate based on server value */
363 static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
364                                   unsigned int serv_est)
365 {
366         int idx;
367         unsigned int oldse;
368         struct imp_at *at;
369
370         LASSERT(req->rq_import);
371         at = &req->rq_import->imp_at;
372
373         idx = import_at_get_index(req->rq_import, req->rq_request_portal);
374         /*
375          * max service estimates are tracked on the server side,
376          * so just keep minimal history here
377          */
378         oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
379         if (oldse != 0)
380                 CDEBUG(D_ADAPTTO,
381                        "The RPC service estimate for %s ptl %d has changed from %d to %d\n",
382                        req->rq_import->imp_obd->obd_name,
383                        req->rq_request_portal,
384                        oldse, at_get(&at->iat_service_estimate[idx]));
385 }
386
387 /* Expected network latency per remote node (secs) */
388 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
389 {
390         return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
391 }
392
393 /* Adjust expected network latency */
394 void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
395                                unsigned int service_time)
396 {
397         unsigned int nl, oldnl;
398         struct imp_at *at;
399         time64_t now = ktime_get_real_seconds();
400
401         LASSERT(req->rq_import);
402
403         if (service_time > now - req->rq_sent + 3) {
404                 /*
405                  * b=16408, however, this can also happen if early reply
406                  * is lost and client RPC is expired and resent, early reply
407                  * or reply of original RPC can still be fit in reply buffer
408                  * of resent RPC, now client is measuring time from the
409                  * resent time, but server sent back service time of original
410                  * RPC.
411                  */
412                 CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ?
413                        D_ADAPTTO : D_WARNING,
414                        "Reported service time %u > total measured time %lld\n",
415                        service_time, now - req->rq_sent);
416                 return;
417         }
418
419         /* Network latency is total time less server processing time */
420         nl = max_t(int, now - req->rq_sent -
421                         service_time, 0) + 1; /* st rounding */
422         at = &req->rq_import->imp_at;
423
424         oldnl = at_measured(&at->iat_net_latency, nl);
425         if (oldnl != 0)
426                 CDEBUG(D_ADAPTTO,
427                        "The network latency for %s (nid %s) has changed from %d to %d\n",
428                        req->rq_import->imp_obd->obd_name,
429                        obd_uuid2str(&req->rq_import->imp_connection->c_remote_uuid),
430                        oldnl, at_get(&at->iat_net_latency));
431 }
432
433 static int unpack_reply(struct ptlrpc_request *req)
434 {
435         int rc;
436
437         if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
438                 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
439                 if (rc) {
440                         DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
441                         return -EPROTO;
442                 }
443         }
444
445         rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
446         if (rc) {
447                 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
448                 return -EPROTO;
449         }
450         return 0;
451 }
452
453 /**
454  * Handle an early reply message, called with the rq_lock held.
455  * If anything goes wrong just ignore it - same as if it never happened
456  */
457 static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
458 __must_hold(&req->rq_lock)
459 {
460         struct ptlrpc_request *early_req;
461         time64_t olddl;
462         int rc;
463
464         ENTRY;
465         req->rq_early = 0;
466         spin_unlock(&req->rq_lock);
467
468         rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
469         if (rc) {
470                 spin_lock(&req->rq_lock);
471                 RETURN(rc);
472         }
473
474         rc = unpack_reply(early_req);
475         if (rc != 0) {
476                 sptlrpc_cli_finish_early_reply(early_req);
477                 spin_lock(&req->rq_lock);
478                 RETURN(rc);
479         }
480
481         /*
482          * Use new timeout value just to adjust the local value for this
483          * request, don't include it into at_history. It is unclear yet why
484          * service time increased and should it be counted or skipped, e.g.
485          * that can be recovery case or some error or server, the real reply
486          * will add all new data if it is worth to add.
487          */
488         req->rq_timeout = lustre_msg_get_timeout(early_req->rq_repmsg);
489         lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
490
491         /* Network latency can be adjusted, it is pure network delays */
492         ptlrpc_at_adj_net_latency(req,
493                                   lustre_msg_get_service_time(early_req->rq_repmsg));
494
495         sptlrpc_cli_finish_early_reply(early_req);
496
497         spin_lock(&req->rq_lock);
498         olddl = req->rq_deadline;
499         /*
500          * server assumes it now has rq_timeout from when the request
501          * arrived, so the client should give it at least that long.
502          * since we don't know the arrival time we'll use the original
503          * sent time
504          */
505         req->rq_deadline = req->rq_sent + req->rq_timeout +
506                            ptlrpc_at_get_net_latency(req);
507
508         DEBUG_REQ(D_ADAPTTO, req,
509                   "Early reply #%d, new deadline in %llds (%llds)",
510                   req->rq_early_count,
511                   req->rq_deadline - ktime_get_real_seconds(),
512                   req->rq_deadline - olddl);
513
514         RETURN(rc);
515 }
516
517 static struct kmem_cache *request_cache;
518
519 int ptlrpc_request_cache_init(void)
520 {
521         request_cache = kmem_cache_create("ptlrpc_cache",
522                                           sizeof(struct ptlrpc_request),
523                                           0, SLAB_HWCACHE_ALIGN, NULL);
524         return request_cache ? 0 : -ENOMEM;
525 }
526
527 void ptlrpc_request_cache_fini(void)
528 {
529         kmem_cache_destroy(request_cache);
530 }
531
532 struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
533 {
534         struct ptlrpc_request *req;
535
536         OBD_SLAB_ALLOC_PTR_GFP(req, request_cache, flags);
537         return req;
538 }
539
540 void ptlrpc_request_cache_free(struct ptlrpc_request *req)
541 {
542         OBD_SLAB_FREE_PTR(req, request_cache);
543 }
544
545 /**
546  * Wind down request pool \a pool.
547  * Frees all requests from the pool too
548  */
549 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
550 {
551         struct list_head *l, *tmp;
552         struct ptlrpc_request *req;
553
554         LASSERT(pool != NULL);
555
556         spin_lock(&pool->prp_lock);
557         list_for_each_safe(l, tmp, &pool->prp_req_list) {
558                 req = list_entry(l, struct ptlrpc_request, rq_list);
559                 list_del(&req->rq_list);
560                 LASSERT(req->rq_reqbuf);
561                 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
562                 OBD_FREE_LARGE(req->rq_reqbuf, pool->prp_rq_size);
563                 ptlrpc_request_cache_free(req);
564         }
565         spin_unlock(&pool->prp_lock);
566         OBD_FREE(pool, sizeof(*pool));
567 }
568 EXPORT_SYMBOL(ptlrpc_free_rq_pool);
569
570 /**
571  * Allocates, initializes and adds \a num_rq requests to the pool \a pool
572  */
573 int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
574 {
575         int i;
576         int size = 1;
577
578         while (size < pool->prp_rq_size)
579                 size <<= 1;
580
581         LASSERTF(list_empty(&pool->prp_req_list) ||
582                  size == pool->prp_rq_size,
583                  "Trying to change pool size with nonempty pool from %d to %d bytes\n",
584                  pool->prp_rq_size, size);
585
586         spin_lock(&pool->prp_lock);
587         pool->prp_rq_size = size;
588         for (i = 0; i < num_rq; i++) {
589                 struct ptlrpc_request *req;
590                 struct lustre_msg *msg;
591
592                 spin_unlock(&pool->prp_lock);
593                 req = ptlrpc_request_cache_alloc(GFP_NOFS);
594                 if (!req)
595                         return i;
596                 OBD_ALLOC_LARGE(msg, size);
597                 if (!msg) {
598                         ptlrpc_request_cache_free(req);
599                         return i;
600                 }
601                 req->rq_reqbuf = msg;
602                 req->rq_reqbuf_len = size;
603                 req->rq_pool = pool;
604                 spin_lock(&pool->prp_lock);
605                 list_add_tail(&req->rq_list, &pool->prp_req_list);
606         }
607         spin_unlock(&pool->prp_lock);
608         return num_rq;
609 }
610 EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
611
612 /**
613  * Create and initialize new request pool with given attributes:
614  * \a num_rq - initial number of requests to create for the pool
615  * \a msgsize - maximum message size possible for requests in thid pool
616  * \a populate_pool - function to be called when more requests need to be added
617  *                    to the pool
618  * Returns pointer to newly created pool or NULL on error.
619  */
620 struct ptlrpc_request_pool *
621 ptlrpc_init_rq_pool(int num_rq, int msgsize,
622                     int (*populate_pool)(struct ptlrpc_request_pool *, int))
623 {
624         struct ptlrpc_request_pool *pool;
625
626         OBD_ALLOC(pool, sizeof(struct ptlrpc_request_pool));
627         if (!pool)
628                 return NULL;
629
630         /*
631          * Request next power of two for the allocation, because internally
632          * kernel would do exactly this
633          */
634         spin_lock_init(&pool->prp_lock);
635         INIT_LIST_HEAD(&pool->prp_req_list);
636         pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
637         pool->prp_populate = populate_pool;
638
639         populate_pool(pool, num_rq);
640
641         return pool;
642 }
643 EXPORT_SYMBOL(ptlrpc_init_rq_pool);
644
645 /**
646  * Fetches one request from pool \a pool
647  */
648 static struct ptlrpc_request *
649 ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
650 {
651         struct ptlrpc_request *request;
652         struct lustre_msg *reqbuf;
653
654         if (!pool)
655                 return NULL;
656
657         spin_lock(&pool->prp_lock);
658
659         /*
660          * See if we have anything in a pool, and bail out if nothing,
661          * in writeout path, where this matters, this is safe to do, because
662          * nothing is lost in this case, and when some in-flight requests
663          * complete, this code will be called again.
664          */
665         if (unlikely(list_empty(&pool->prp_req_list))) {
666                 spin_unlock(&pool->prp_lock);
667                 return NULL;
668         }
669
670         request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
671                              rq_list);
672         list_del_init(&request->rq_list);
673         spin_unlock(&pool->prp_lock);
674
675         LASSERT(request->rq_reqbuf);
676         LASSERT(request->rq_pool);
677
678         reqbuf = request->rq_reqbuf;
679         memset(request, 0, sizeof(*request));
680         request->rq_reqbuf = reqbuf;
681         request->rq_reqbuf_len = pool->prp_rq_size;
682         request->rq_pool = pool;
683
684         return request;
685 }
686
687 /**
688  * Returns freed \a request to pool.
689  */
690 static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
691 {
692         struct ptlrpc_request_pool *pool = request->rq_pool;
693
694         spin_lock(&pool->prp_lock);
695         LASSERT(list_empty(&request->rq_list));
696         LASSERT(!request->rq_receiving_reply);
697         list_add_tail(&request->rq_list, &pool->prp_req_list);
698         spin_unlock(&pool->prp_lock);
699 }
700
701 void ptlrpc_add_unreplied(struct ptlrpc_request *req)
702 {
703         struct obd_import *imp = req->rq_import;
704         struct list_head *tmp;
705         struct ptlrpc_request *iter;
706
707         assert_spin_locked(&imp->imp_lock);
708         LASSERT(list_empty(&req->rq_unreplied_list));
709
710         /* unreplied list is sorted by xid in ascending order */
711         list_for_each_prev(tmp, &imp->imp_unreplied_list) {
712                 iter = list_entry(tmp, struct ptlrpc_request,
713                                   rq_unreplied_list);
714
715                 LASSERT(req->rq_xid != iter->rq_xid);
716                 if (req->rq_xid < iter->rq_xid)
717                         continue;
718                 list_add(&req->rq_unreplied_list, &iter->rq_unreplied_list);
719                 return;
720         }
721         list_add(&req->rq_unreplied_list, &imp->imp_unreplied_list);
722 }
723
724 void ptlrpc_assign_next_xid_nolock(struct ptlrpc_request *req)
725 {
726         req->rq_xid = ptlrpc_next_xid();
727         ptlrpc_add_unreplied(req);
728 }
729
730 static inline void ptlrpc_assign_next_xid(struct ptlrpc_request *req)
731 {
732         spin_lock(&req->rq_import->imp_lock);
733         ptlrpc_assign_next_xid_nolock(req);
734         spin_unlock(&req->rq_import->imp_lock);
735 }
736
737 static atomic64_t ptlrpc_last_xid;
738
739 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
740                              __u32 version, int opcode, char **bufs,
741                              struct ptlrpc_cli_ctx *ctx)
742 {
743         int count;
744         struct obd_import *imp;
745         __u32 *lengths;
746         int rc;
747
748         ENTRY;
749
750         count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
751         imp = request->rq_import;
752         lengths = request->rq_pill.rc_area[RCL_CLIENT];
753
754         if (ctx) {
755                 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
756         } else {
757                 rc = sptlrpc_req_get_ctx(request);
758                 if (rc)
759                         GOTO(out_free, rc);
760         }
761         sptlrpc_req_set_flavor(request, opcode);
762
763         rc = lustre_pack_request(request, imp->imp_msg_magic, count,
764                                  lengths, bufs);
765         if (rc)
766                 GOTO(out_ctx, rc);
767
768         lustre_msg_add_version(request->rq_reqmsg, version);
769         request->rq_send_state = LUSTRE_IMP_FULL;
770         request->rq_type = PTL_RPC_MSG_REQUEST;
771
772         request->rq_req_cbid.cbid_fn  = request_out_callback;
773         request->rq_req_cbid.cbid_arg = request;
774
775         request->rq_reply_cbid.cbid_fn  = reply_in_callback;
776         request->rq_reply_cbid.cbid_arg = request;
777
778         request->rq_reply_deadline = 0;
779         request->rq_bulk_deadline = 0;
780         request->rq_req_deadline = 0;
781         request->rq_phase = RQ_PHASE_NEW;
782         request->rq_next_phase = RQ_PHASE_UNDEFINED;
783
784         request->rq_request_portal = imp->imp_client->cli_request_portal;
785         request->rq_reply_portal = imp->imp_client->cli_reply_portal;
786
787         ptlrpc_at_set_req_timeout(request);
788
789         lustre_msg_set_opc(request->rq_reqmsg, opcode);
790
791         /* Let's setup deadline for req/reply/bulk unlink for opcode. */
792         if (cfs_fail_val == opcode) {
793                 time64_t *fail_t = NULL, *fail2_t = NULL;
794
795                 if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
796                         fail_t = &request->rq_bulk_deadline;
797                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
798                         fail_t = &request->rq_reply_deadline;
799                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK)) {
800                         fail_t = &request->rq_req_deadline;
801                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BOTH_UNLINK)) {
802                         fail_t = &request->rq_reply_deadline;
803                         fail2_t = &request->rq_bulk_deadline;
804                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_ROUND_XID)) {
805                         time64_t now = ktime_get_real_seconds();
806                         u64 xid = ((u64)now >> 4) << 24;
807
808                         atomic64_set(&ptlrpc_last_xid, xid);
809                 }
810
811                 if (fail_t) {
812                         *fail_t = ktime_get_real_seconds() + LONG_UNLINK;
813
814                         if (fail2_t)
815                                 *fail2_t = ktime_get_real_seconds() +
816                                            LONG_UNLINK;
817
818                         /*
819                          * The RPC is infected, let the test to change the
820                          * fail_loc
821                          */
822                         msleep(4 * MSEC_PER_SEC);
823                 }
824         }
825         ptlrpc_assign_next_xid(request);
826
827         RETURN(0);
828
829 out_ctx:
830         LASSERT(!request->rq_pool);
831         sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
832 out_free:
833         class_import_put(imp);
834
835         return rc;
836 }
837 EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
838
839 /**
840  * Pack request buffers for network transfer, performing necessary encryption
841  * steps if necessary.
842  */
843 int ptlrpc_request_pack(struct ptlrpc_request *request,
844                         __u32 version, int opcode)
845 {
846         int rc;
847
848         rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
849         if (rc)
850                 return rc;
851
852         /*
853          * For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
854          * ptlrpc_body sent from server equal to local ptlrpc_body size, so we
855          * have to send old ptlrpc_body to keep interoprability with these
856          * clients.
857          *
858          * Only three kinds of server->client RPCs so far:
859          *  - LDLM_BL_CALLBACK
860          *  - LDLM_CP_CALLBACK
861          *  - LDLM_GL_CALLBACK
862          *
863          * XXX This should be removed whenever we drop the interoprability with
864          *     the these old clients.
865          */
866         if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
867             opcode == LDLM_GL_CALLBACK)
868                 req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
869                                    sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
870
871         return rc;
872 }
873 EXPORT_SYMBOL(ptlrpc_request_pack);
874
875 /**
876  * Helper function to allocate new request on import \a imp
877  * and possibly using existing request from pool \a pool if provided.
878  * Returns allocated request structure with import field filled or
879  * NULL on error.
880  */
881 static inline
882 struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
883                                               struct ptlrpc_request_pool *pool)
884 {
885         struct ptlrpc_request *request = NULL;
886
887         request = ptlrpc_request_cache_alloc(GFP_NOFS);
888
889         if (!request && pool)
890                 request = ptlrpc_prep_req_from_pool(pool);
891
892         if (request) {
893                 ptlrpc_cli_req_init(request);
894
895                 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
896                 LASSERT(imp != LP_POISON);
897                 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p\n",
898                          imp->imp_client);
899                 LASSERT(imp->imp_client != LP_POISON);
900
901                 request->rq_import = class_import_get(imp);
902         } else {
903                 CERROR("request allocation out of memory\n");
904         }
905
906         return request;
907 }
908
909 /**
910  * Helper function for creating a request.
911  * Calls __ptlrpc_request_alloc to allocate new request sturcture and inits
912  * buffer structures according to capsule template \a format.
913  * Returns allocated request structure pointer or NULL on error.
914  */
915 static struct ptlrpc_request *
916 ptlrpc_request_alloc_internal(struct obd_import *imp,
917                               struct ptlrpc_request_pool *pool,
918                               const struct req_format *format)
919 {
920         struct ptlrpc_request *request;
921         int connect = 0;
922
923         request = __ptlrpc_request_alloc(imp, pool);
924         if (!request)
925                 return NULL;
926
927         /*
928          * initiate connection if needed when the import has been
929          * referenced by the new request to avoid races with disconnect
930          */
931         if (unlikely(imp->imp_state == LUSTRE_IMP_IDLE)) {
932                 int rc;
933
934                 CDEBUG_LIMIT(imp->imp_idle_debug,
935                              "%s: reconnect after %llds idle\n",
936                              imp->imp_obd->obd_name, ktime_get_real_seconds() -
937                                                      imp->imp_last_reply_time);
938                 spin_lock(&imp->imp_lock);
939                 if (imp->imp_state == LUSTRE_IMP_IDLE) {
940                         imp->imp_generation++;
941                         imp->imp_initiated_at = imp->imp_generation;
942                         imp->imp_state =  LUSTRE_IMP_NEW;
943                         connect = 1;
944                 }
945                 spin_unlock(&imp->imp_lock);
946                 if (connect) {
947                         rc = ptlrpc_connect_import(imp);
948                         if (rc < 0) {
949                                 ptlrpc_request_free(request);
950                                 return NULL;
951                         }
952                         ptlrpc_pinger_add_import(imp);
953                 }
954         }
955
956         req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
957         req_capsule_set(&request->rq_pill, format);
958         return request;
959 }
960
961 /**
962  * Allocate new request structure for import \a imp and initialize its
963  * buffer structure according to capsule template \a format.
964  */
965 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
966                                             const struct req_format *format)
967 {
968         return ptlrpc_request_alloc_internal(imp, NULL, format);
969 }
970 EXPORT_SYMBOL(ptlrpc_request_alloc);
971
972 /**
973  * Allocate new request structure for import \a imp from pool \a pool and
974  * initialize its buffer structure according to capsule template \a format.
975  */
976 struct ptlrpc_request *
977 ptlrpc_request_alloc_pool(struct obd_import *imp,
978                           struct ptlrpc_request_pool *pool,
979                           const struct req_format *format)
980 {
981         return ptlrpc_request_alloc_internal(imp, pool, format);
982 }
983 EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
984
985 /**
986  * For requests not from pool, free memory of the request structure.
987  * For requests obtained from a pool earlier, return request back to pool.
988  */
989 void ptlrpc_request_free(struct ptlrpc_request *request)
990 {
991         if (request->rq_pool)
992                 __ptlrpc_free_req_to_pool(request);
993         else
994                 ptlrpc_request_cache_free(request);
995 }
996 EXPORT_SYMBOL(ptlrpc_request_free);
997
998 /**
999  * Allocate new request for operatione \a opcode and immediatelly pack it for
1000  * network transfer.
1001  * Only used for simple requests like OBD_PING where the only important
1002  * part of the request is operation itself.
1003  * Returns allocated request or NULL on error.
1004  */
1005 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
1006                                                  const struct req_format *format,
1007                                                  __u32 version, int opcode)
1008 {
1009         struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
1010         int rc;
1011
1012         if (req) {
1013                 rc = ptlrpc_request_pack(req, version, opcode);
1014                 if (rc) {
1015                         ptlrpc_request_free(req);
1016                         req = NULL;
1017                 }
1018         }
1019         return req;
1020 }
1021 EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
1022
1023 /**
1024  * Allocate and initialize new request set structure on the current CPT.
1025  * Returns a pointer to the newly allocated set structure or NULL on error.
1026  */
1027 struct ptlrpc_request_set *ptlrpc_prep_set(void)
1028 {
1029         struct ptlrpc_request_set *set;
1030         int cpt;
1031
1032         ENTRY;
1033         cpt = cfs_cpt_current(cfs_cpt_table, 0);
1034         OBD_CPT_ALLOC(set, cfs_cpt_table, cpt, sizeof(*set));
1035         if (!set)
1036                 RETURN(NULL);
1037         atomic_set(&set->set_refcount, 1);
1038         INIT_LIST_HEAD(&set->set_requests);
1039         init_waitqueue_head(&set->set_waitq);
1040         atomic_set(&set->set_new_count, 0);
1041         atomic_set(&set->set_remaining, 0);
1042         spin_lock_init(&set->set_new_req_lock);
1043         INIT_LIST_HEAD(&set->set_new_requests);
1044         set->set_max_inflight = UINT_MAX;
1045         set->set_producer     = NULL;
1046         set->set_producer_arg = NULL;
1047         set->set_rc           = 0;
1048
1049         RETURN(set);
1050 }
1051 EXPORT_SYMBOL(ptlrpc_prep_set);
1052
1053 /**
1054  * Allocate and initialize new request set structure with flow control
1055  * extension. This extension allows to control the number of requests in-flight
1056  * for the whole set. A callback function to generate requests must be provided
1057  * and the request set will keep the number of requests sent over the wire to
1058  * @max_inflight.
1059  * Returns a pointer to the newly allocated set structure or NULL on error.
1060  */
1061 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
1062                                              void *arg)
1063
1064 {
1065         struct ptlrpc_request_set *set;
1066
1067         set = ptlrpc_prep_set();
1068         if (!set)
1069                 RETURN(NULL);
1070
1071         set->set_max_inflight  = max;
1072         set->set_producer      = func;
1073         set->set_producer_arg  = arg;
1074
1075         RETURN(set);
1076 }
1077
1078 /**
1079  * Wind down and free request set structure previously allocated with
1080  * ptlrpc_prep_set.
1081  * Ensures that all requests on the set have completed and removes
1082  * all requests from the request list in a set.
1083  * If any unsent request happen to be on the list, pretends that they got
1084  * an error in flight and calls their completion handler.
1085  */
1086 void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
1087 {
1088         struct list_head *tmp;
1089         struct list_head *next;
1090         int expected_phase;
1091         int n = 0;
1092
1093         ENTRY;
1094
1095         /* Requests on the set should either all be completed, or all be new */
1096         expected_phase = (atomic_read(&set->set_remaining) == 0) ?
1097                          RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
1098         list_for_each(tmp, &set->set_requests) {
1099                 struct ptlrpc_request *req =
1100                         list_entry(tmp, struct ptlrpc_request,
1101                                    rq_set_chain);
1102
1103                 LASSERT(req->rq_phase == expected_phase);
1104                 n++;
1105         }
1106
1107         LASSERTF(atomic_read(&set->set_remaining) == 0 ||
1108                  atomic_read(&set->set_remaining) == n, "%d / %d\n",
1109                  atomic_read(&set->set_remaining), n);
1110
1111         list_for_each_safe(tmp, next, &set->set_requests) {
1112                 struct ptlrpc_request *req =
1113                         list_entry(tmp, struct ptlrpc_request,
1114                                    rq_set_chain);
1115                 list_del_init(&req->rq_set_chain);
1116
1117                 LASSERT(req->rq_phase == expected_phase);
1118
1119                 if (req->rq_phase == RQ_PHASE_NEW) {
1120                         ptlrpc_req_interpret(NULL, req, -EBADR);
1121                         atomic_dec(&set->set_remaining);
1122                 }
1123
1124                 spin_lock(&req->rq_lock);
1125                 req->rq_set = NULL;
1126                 req->rq_invalid_rqset = 0;
1127                 spin_unlock(&req->rq_lock);
1128
1129                 ptlrpc_req_finished(req);
1130         }
1131
1132         LASSERT(atomic_read(&set->set_remaining) == 0);
1133
1134         ptlrpc_reqset_put(set);
1135         EXIT;
1136 }
1137 EXPORT_SYMBOL(ptlrpc_set_destroy);
1138
1139 /**
1140  * Add a new request to the general purpose request set.
1141  * Assumes request reference from the caller.
1142  */
1143 void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
1144                         struct ptlrpc_request *req)
1145 {
1146         LASSERT(req->rq_import->imp_state != LUSTRE_IMP_IDLE);
1147         LASSERT(list_empty(&req->rq_set_chain));
1148
1149         if (req->rq_allow_intr)
1150                 set->set_allow_intr = 1;
1151
1152         /* The set takes over the caller's request reference */
1153         list_add_tail(&req->rq_set_chain, &set->set_requests);
1154         req->rq_set = set;
1155         atomic_inc(&set->set_remaining);
1156         req->rq_queued_time = ktime_get_seconds();
1157
1158         if (req->rq_reqmsg)
1159                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
1160
1161         if (set->set_producer)
1162                 /*
1163                  * If the request set has a producer callback, the RPC must be
1164                  * sent straight away
1165                  */
1166                 ptlrpc_send_new_req(req);
1167 }
1168 EXPORT_SYMBOL(ptlrpc_set_add_req);
1169
1170 /**
1171  * Add a request to a request with dedicated server thread
1172  * and wake the thread to make any necessary processing.
1173  * Currently only used for ptlrpcd.
1174  */
1175 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
1176                             struct ptlrpc_request *req)
1177 {
1178         struct ptlrpc_request_set *set = pc->pc_set;
1179         int count, i;
1180
1181         LASSERT(req->rq_set == NULL);
1182         LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
1183
1184         spin_lock(&set->set_new_req_lock);
1185         /*
1186          * The set takes over the caller's request reference.
1187          */
1188         req->rq_set = set;
1189         req->rq_queued_time = ktime_get_seconds();
1190         list_add_tail(&req->rq_set_chain, &set->set_new_requests);
1191         count = atomic_inc_return(&set->set_new_count);
1192         spin_unlock(&set->set_new_req_lock);
1193
1194         /* Only need to call wakeup once for the first entry. */
1195         if (count == 1) {
1196                 wake_up(&set->set_waitq);
1197
1198                 /*
1199                  * XXX: It maybe unnecessary to wakeup all the partners. But to
1200                  *      guarantee the async RPC can be processed ASAP, we have
1201                  *      no other better choice. It maybe fixed in future.
1202                  */
1203                 for (i = 0; i < pc->pc_npartners; i++)
1204                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
1205         }
1206 }
1207
1208 /**
1209  * Based on the current state of the import, determine if the request
1210  * can be sent, is an error, or should be delayed.
1211  *
1212  * Returns true if this request should be delayed. If false, and
1213  * *status is set, then the request can not be sent and *status is the
1214  * error code.  If false and status is 0, then request can be sent.
1215  *
1216  * The imp->imp_lock must be held.
1217  */
1218 static int ptlrpc_import_delay_req(struct obd_import *imp,
1219                                    struct ptlrpc_request *req, int *status)
1220 {
1221         int delay = 0;
1222
1223         ENTRY;
1224         LASSERT(status);
1225         *status = 0;
1226
1227         if (req->rq_ctx_init || req->rq_ctx_fini) {
1228                 /* always allow ctx init/fini rpc go through */
1229         } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1230                 DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
1231                 *status = -EIO;
1232         } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1233                 unsigned int opc = lustre_msg_get_opc(req->rq_reqmsg);
1234
1235                 /*
1236                  * pings or MDS-equivalent STATFS may safely
1237                  * race with umount
1238                  */
1239                 DEBUG_REQ((opc == OBD_PING || opc == OST_STATFS) ?
1240                           D_HA : D_ERROR, req, "IMP_CLOSED ");
1241                 *status = -EIO;
1242         } else if (ptlrpc_send_limit_expired(req)) {
1243                 /* probably doesn't need to be a D_ERROR afterinitial testing */
1244                 DEBUG_REQ(D_HA, req, "send limit expired ");
1245                 *status = -ETIMEDOUT;
1246         } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1247                    imp->imp_state == LUSTRE_IMP_CONNECTING) {
1248                 ;/* allow CONNECT even if import is invalid */
1249                 if (atomic_read(&imp->imp_inval_count) != 0) {
1250                         DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1251                         *status = -EIO;
1252                 }
1253         } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1254                 if (!imp->imp_deactive)
1255                         DEBUG_REQ(D_NET, req, "IMP_INVALID");
1256                 *status = -ESHUTDOWN; /* b=12940 */
1257         } else if (req->rq_import_generation != imp->imp_generation) {
1258                 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1259                 *status = -EIO;
1260         } else if (req->rq_send_state != imp->imp_state) {
1261                 /* invalidate in progress - any requests should be drop */
1262                 if (atomic_read(&imp->imp_inval_count) != 0) {
1263                         DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1264                         *status = -EIO;
1265                 } else if (req->rq_no_delay &&
1266                            imp->imp_generation != imp->imp_initiated_at) {
1267                         /* ignore nodelay for requests initiating connections */
1268                         *status = -EWOULDBLOCK;
1269                 } else if (req->rq_allow_replay &&
1270                            (imp->imp_state == LUSTRE_IMP_REPLAY ||
1271                             imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1272                             imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1273                             imp->imp_state == LUSTRE_IMP_RECOVER)) {
1274                         DEBUG_REQ(D_HA, req, "allow during recovery.\n");
1275                 } else {
1276                         delay = 1;
1277                 }
1278         }
1279
1280         RETURN(delay);
1281 }
1282
1283 /**
1284  * Decide if the error message should be printed to the console or not.
1285  * Makes its decision based on request type, status, and failure frequency.
1286  *
1287  * \param[in] req  request that failed and may need a console message
1288  *
1289  * \retval false if no message should be printed
1290  * \retval true  if console message should be printed
1291  */
1292 static bool ptlrpc_console_allow(struct ptlrpc_request *req, __u32 opc, int err)
1293 {
1294         LASSERT(req->rq_reqmsg != NULL);
1295
1296         /* Suppress particular reconnect errors which are to be expected. */
1297         if (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT) {
1298                 /* Suppress timed out reconnect requests */
1299                 if (lustre_handle_is_used(&req->rq_import->imp_remote_handle) ||
1300                     req->rq_timedout)
1301                         return false;
1302
1303                 /*
1304                  * Suppress most unavailable/again reconnect requests, but
1305                  * print occasionally so it is clear client is trying to
1306                  * connect to a server where no target is running.
1307                  */
1308                 if ((err == -ENODEV || err == -EAGAIN) &&
1309                     req->rq_import->imp_conn_cnt % 30 != 20)
1310                         return false;
1311         }
1312
1313         if (opc == LDLM_ENQUEUE && err == -EAGAIN)
1314                 /* -EAGAIN is normal when using POSIX flocks */
1315                 return false;
1316
1317         if (opc == OBD_PING && (err == -ENODEV || err == -ENOTCONN) &&
1318             (req->rq_xid & 0xf) != 10)
1319                 /* Suppress most ping requests, they may fail occasionally */
1320                 return false;
1321
1322         return true;
1323 }
1324
1325 /**
1326  * Check request processing status.
1327  * Returns the status.
1328  */
1329 static int ptlrpc_check_status(struct ptlrpc_request *req)
1330 {
1331         int err;
1332
1333         ENTRY;
1334         err = lustre_msg_get_status(req->rq_repmsg);
1335         if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1336                 struct obd_import *imp = req->rq_import;
1337                 lnet_nid_t nid = imp->imp_connection->c_peer.nid;
1338                 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1339
1340                 if (ptlrpc_console_allow(req, opc, err))
1341                         LCONSOLE_ERROR_MSG(0x11,
1342                                            "%s: operation %s to node %s failed: rc = %d\n",
1343                                            imp->imp_obd->obd_name,
1344                                            ll_opcode2str(opc),
1345                                            libcfs_nid2str(nid), err);
1346                 RETURN(err < 0 ? err : -EINVAL);
1347         }
1348
1349         if (err < 0) {
1350                 DEBUG_REQ(D_INFO, req, "status is %d", err);
1351         } else if (err > 0) {
1352                 /* XXX: translate this error from net to host */
1353                 DEBUG_REQ(D_INFO, req, "status is %d", err);
1354         }
1355
1356         RETURN(err);
1357 }
1358
1359 /**
1360  * save pre-versions of objects into request for replay.
1361  * Versions are obtained from server reply.
1362  * used for VBR.
1363  */
1364 static void ptlrpc_save_versions(struct ptlrpc_request *req)
1365 {
1366         struct lustre_msg *repmsg = req->rq_repmsg;
1367         struct lustre_msg *reqmsg = req->rq_reqmsg;
1368         __u64 *versions = lustre_msg_get_versions(repmsg);
1369
1370         ENTRY;
1371         if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1372                 return;
1373
1374         LASSERT(versions);
1375         lustre_msg_set_versions(reqmsg, versions);
1376         CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
1377                versions[0], versions[1]);
1378
1379         EXIT;
1380 }
1381
1382 __u64 ptlrpc_known_replied_xid(struct obd_import *imp)
1383 {
1384         struct ptlrpc_request *req;
1385
1386         assert_spin_locked(&imp->imp_lock);
1387         if (list_empty(&imp->imp_unreplied_list))
1388                 return 0;
1389
1390         req = list_entry(imp->imp_unreplied_list.next, struct ptlrpc_request,
1391                          rq_unreplied_list);
1392         LASSERTF(req->rq_xid >= 1, "XID:%llu\n", req->rq_xid);
1393
1394         if (imp->imp_known_replied_xid < req->rq_xid - 1)
1395                 imp->imp_known_replied_xid = req->rq_xid - 1;
1396
1397         return req->rq_xid - 1;
1398 }
1399
1400 /**
1401  * Callback function called when client receives RPC reply for \a req.
1402  * Returns 0 on success or error code.
1403  * The return alue would be assigned to req->rq_status by the caller
1404  * as request processing status.
1405  * This function also decides if the request needs to be saved for later replay.
1406  */
1407 static int after_reply(struct ptlrpc_request *req)
1408 {
1409         struct obd_import *imp = req->rq_import;
1410         struct obd_device *obd = req->rq_import->imp_obd;
1411         ktime_t work_start;
1412         u64 committed;
1413         s64 timediff;
1414         int rc;
1415
1416         ENTRY;
1417         LASSERT(obd != NULL);
1418         /* repbuf must be unlinked */
1419         LASSERT(!req->rq_receiving_reply && req->rq_reply_unlinked);
1420
1421         if (req->rq_reply_truncated) {
1422                 if (ptlrpc_no_resend(req)) {
1423                         DEBUG_REQ(D_ERROR, req,
1424                                   "reply buffer overflow, expected: %d, actual size: %d",
1425                                   req->rq_nob_received, req->rq_repbuf_len);
1426                         RETURN(-EOVERFLOW);
1427                 }
1428
1429                 sptlrpc_cli_free_repbuf(req);
1430                 /*
1431                  * Pass the required reply buffer size (include
1432                  * space for early reply).
1433                  * NB: no need to roundup because alloc_repbuf
1434                  * will roundup it
1435                  */
1436                 req->rq_replen = req->rq_nob_received;
1437                 req->rq_nob_received = 0;
1438                 spin_lock(&req->rq_lock);
1439                 req->rq_resend       = 1;
1440                 spin_unlock(&req->rq_lock);
1441                 RETURN(0);
1442         }
1443
1444         work_start = ktime_get_real();
1445         timediff = ktime_us_delta(work_start, req->rq_sent_ns);
1446
1447         /*
1448          * NB Until this point, the whole of the incoming message,
1449          * including buflens, status etc is in the sender's byte order.
1450          */
1451         rc = sptlrpc_cli_unwrap_reply(req);
1452         if (rc) {
1453                 DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
1454                 RETURN(rc);
1455         }
1456
1457         /*
1458          * Security layer unwrap might ask resend this request.
1459          */
1460         if (req->rq_resend)
1461                 RETURN(0);
1462
1463         rc = unpack_reply(req);
1464         if (rc)
1465                 RETURN(rc);
1466
1467         /* retry indefinitely on EINPROGRESS */
1468         if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1469             ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
1470                 time64_t now = ktime_get_real_seconds();
1471
1472                 DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
1473                 spin_lock(&req->rq_lock);
1474                 req->rq_resend = 1;
1475                 spin_unlock(&req->rq_lock);
1476                 req->rq_nr_resend++;
1477
1478                 /* Readjust the timeout for current conditions */
1479                 ptlrpc_at_set_req_timeout(req);
1480                 /*
1481                  * delay resend to give a chance to the server to get ready.
1482                  * The delay is increased by 1s on every resend and is capped to
1483                  * the current request timeout (i.e. obd_timeout if AT is off,
1484                  * or AT service time x 125% + 5s, see at_est2timeout)
1485                  */
1486                 if (req->rq_nr_resend > req->rq_timeout)
1487                         req->rq_sent = now + req->rq_timeout;
1488                 else
1489                         req->rq_sent = now + req->rq_nr_resend;
1490
1491                 /* Resend for EINPROGRESS will use a new XID */
1492                 spin_lock(&imp->imp_lock);
1493                 list_del_init(&req->rq_unreplied_list);
1494                 spin_unlock(&imp->imp_lock);
1495
1496                 RETURN(0);
1497         }
1498
1499         if (obd->obd_svc_stats) {
1500                 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1501                                     timediff);
1502                 ptlrpc_lprocfs_rpc_sent(req, timediff);
1503         }
1504
1505         if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1506             lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1507                 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1508                           lustre_msg_get_type(req->rq_repmsg));
1509                 RETURN(-EPROTO);
1510         }
1511
1512         if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1513                 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1514         ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1515         ptlrpc_at_adj_net_latency(req,
1516                                   lustre_msg_get_service_time(req->rq_repmsg));
1517
1518         rc = ptlrpc_check_status(req);
1519
1520         if (rc) {
1521                 /*
1522                  * Either we've been evicted, or the server has failed for
1523                  * some reason. Try to reconnect, and if that fails, punt to
1524                  * the upcall.
1525                  */
1526                 if (ptlrpc_recoverable_error(rc)) {
1527                         if (req->rq_send_state != LUSTRE_IMP_FULL ||
1528                             imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
1529                                 RETURN(rc);
1530                         }
1531                         ptlrpc_request_handle_notconn(req);
1532                         RETURN(rc);
1533                 }
1534         } else {
1535                 /*
1536                  * Let's look if server sent slv. Do it only for RPC with
1537                  * rc == 0.
1538                  */
1539                 ldlm_cli_update_pool(req);
1540         }
1541
1542         /*
1543          * Store transno in reqmsg for replay.
1544          */
1545         if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1546                 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1547                 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1548         }
1549
1550         if (imp->imp_replayable) {
1551                 spin_lock(&imp->imp_lock);
1552                 /*
1553                  * No point in adding already-committed requests to the replay
1554                  * list, we will just remove them immediately. b=9829
1555                  */
1556                 if (req->rq_transno != 0 &&
1557                     (req->rq_transno >
1558                      lustre_msg_get_last_committed(req->rq_repmsg) ||
1559                      req->rq_replay)) {
1560                         /** version recovery */
1561                         ptlrpc_save_versions(req);
1562                         ptlrpc_retain_replayable_request(req, imp);
1563                 } else if (req->rq_commit_cb &&
1564                            list_empty(&req->rq_replay_list)) {
1565                         /*
1566                          * NB: don't call rq_commit_cb if it's already on
1567                          * rq_replay_list, ptlrpc_free_committed() will call
1568                          * it later, see LU-3618 for details
1569                          */
1570                         spin_unlock(&imp->imp_lock);
1571                         req->rq_commit_cb(req);
1572                         spin_lock(&imp->imp_lock);
1573                 }
1574
1575                 /*
1576                  * Replay-enabled imports return commit-status information.
1577                  */
1578                 committed = lustre_msg_get_last_committed(req->rq_repmsg);
1579                 if (likely(committed > imp->imp_peer_committed_transno))
1580                         imp->imp_peer_committed_transno = committed;
1581
1582                 ptlrpc_free_committed(imp);
1583
1584                 if (!list_empty(&imp->imp_replay_list)) {
1585                         struct ptlrpc_request *last;
1586
1587                         last = list_entry(imp->imp_replay_list.prev,
1588                                           struct ptlrpc_request,
1589                                           rq_replay_list);
1590                         /*
1591                          * Requests with rq_replay stay on the list even if no
1592                          * commit is expected.
1593                          */
1594                         if (last->rq_transno > imp->imp_peer_committed_transno)
1595                                 ptlrpc_pinger_commit_expected(imp);
1596                 }
1597
1598                 spin_unlock(&imp->imp_lock);
1599         }
1600
1601         RETURN(rc);
1602 }
1603
1604 /**
1605  * Helper function to send request \a req over the network for the first time
1606  * Also adjusts request phase.
1607  * Returns 0 on success or error code.
1608  */
1609 static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1610 {
1611         struct obd_import *imp = req->rq_import;
1612         __u64 min_xid = 0;
1613         int rc;
1614
1615         ENTRY;
1616         LASSERT(req->rq_phase == RQ_PHASE_NEW);
1617
1618         /* do not try to go further if there is not enough memory in enc_pool */
1619         if (req->rq_sent && req->rq_bulk)
1620                 if (req->rq_bulk->bd_iov_count > get_free_pages_in_pool() &&
1621                     pool_is_at_full_capacity())
1622                         RETURN(-ENOMEM);
1623
1624         if (req->rq_sent && (req->rq_sent > ktime_get_real_seconds()) &&
1625             (!req->rq_generation_set ||
1626              req->rq_import_generation == imp->imp_generation))
1627                 RETURN(0);
1628
1629         ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1630
1631         spin_lock(&imp->imp_lock);
1632
1633         LASSERT(req->rq_xid != 0);
1634         LASSERT(!list_empty(&req->rq_unreplied_list));
1635
1636         if (!req->rq_generation_set)
1637                 req->rq_import_generation = imp->imp_generation;
1638
1639         if (ptlrpc_import_delay_req(imp, req, &rc)) {
1640                 spin_lock(&req->rq_lock);
1641                 req->rq_waiting = 1;
1642                 spin_unlock(&req->rq_lock);
1643
1644                 DEBUG_REQ(D_HA, req, "req waiting for recovery: (%s != %s)",
1645                           ptlrpc_import_state_name(req->rq_send_state),
1646                           ptlrpc_import_state_name(imp->imp_state));
1647                 LASSERT(list_empty(&req->rq_list));
1648                 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1649                 atomic_inc(&req->rq_import->imp_inflight);
1650                 spin_unlock(&imp->imp_lock);
1651                 RETURN(0);
1652         }
1653
1654         if (rc != 0) {
1655                 spin_unlock(&imp->imp_lock);
1656                 req->rq_status = rc;
1657                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1658                 RETURN(rc);
1659         }
1660
1661         LASSERT(list_empty(&req->rq_list));
1662         list_add_tail(&req->rq_list, &imp->imp_sending_list);
1663         atomic_inc(&req->rq_import->imp_inflight);
1664
1665         /*
1666          * find the known replied XID from the unreplied list, CONNECT
1667          * and DISCONNECT requests are skipped to make the sanity check
1668          * on server side happy. see process_req_last_xid().
1669          *
1670          * For CONNECT: Because replay requests have lower XID, it'll
1671          * break the sanity check if CONNECT bump the exp_last_xid on
1672          * server.
1673          *
1674          * For DISCONNECT: Since client will abort inflight RPC before
1675          * sending DISCONNECT, DISCONNECT may carry an XID which higher
1676          * than the inflight RPC.
1677          */
1678         if (!ptlrpc_req_is_connect(req) && !ptlrpc_req_is_disconnect(req))
1679                 min_xid = ptlrpc_known_replied_xid(imp);
1680         spin_unlock(&imp->imp_lock);
1681
1682         lustre_msg_set_last_xid(req->rq_reqmsg, min_xid);
1683
1684         lustre_msg_set_status(req->rq_reqmsg, current_pid());
1685
1686         rc = sptlrpc_req_refresh_ctx(req, -1);
1687         if (rc) {
1688                 if (req->rq_err) {
1689                         req->rq_status = rc;
1690                         RETURN(1);
1691                 } else {
1692                         spin_lock(&req->rq_lock);
1693                         req->rq_wait_ctx = 1;
1694                         spin_unlock(&req->rq_lock);
1695                         RETURN(0);
1696                 }
1697         }
1698
1699         CDEBUG(D_RPCTRACE,
1700                "Sending RPC req@%p pname:cluuid:pid:xid:nid:opc:job %s:%s:%d:%llu:%s:%d:%s\n",
1701                req, current_comm(),
1702                imp->imp_obd->obd_uuid.uuid,
1703                lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1704                obd_import_nid2str(imp), lustre_msg_get_opc(req->rq_reqmsg),
1705                lustre_msg_get_jobid(req->rq_reqmsg));
1706
1707         rc = ptl_send_rpc(req, 0);
1708         if (rc == -ENOMEM) {
1709                 spin_lock(&imp->imp_lock);
1710                 if (!list_empty(&req->rq_list)) {
1711                         list_del_init(&req->rq_list);
1712                         atomic_dec(&req->rq_import->imp_inflight);
1713                 }
1714                 spin_unlock(&imp->imp_lock);
1715                 ptlrpc_rqphase_move(req, RQ_PHASE_NEW);
1716                 RETURN(rc);
1717         }
1718         if (rc) {
1719                 DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
1720                 spin_lock(&req->rq_lock);
1721                 req->rq_net_err = 1;
1722                 spin_unlock(&req->rq_lock);
1723                 RETURN(rc);
1724         }
1725         RETURN(0);
1726 }
1727
1728 static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1729 {
1730         int remaining, rc;
1731
1732         ENTRY;
1733         LASSERT(set->set_producer != NULL);
1734
1735         remaining = atomic_read(&set->set_remaining);
1736
1737         /*
1738          * populate the ->set_requests list with requests until we
1739          * reach the maximum number of RPCs in flight for this set
1740          */
1741         while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1742                 rc = set->set_producer(set, set->set_producer_arg);
1743                 if (rc == -ENOENT) {
1744                         /* no more RPC to produce */
1745                         set->set_producer     = NULL;
1746                         set->set_producer_arg = NULL;
1747                         RETURN(0);
1748                 }
1749         }
1750
1751         RETURN((atomic_read(&set->set_remaining) - remaining));
1752 }
1753
1754 /**
1755  * this sends any unsent RPCs in \a set and returns 1 if all are sent
1756  * and no more replies are expected.
1757  * (it is possible to get less replies than requests sent e.g. due to timed out
1758  * requests or requests that we had trouble to send out)
1759  *
1760  * NOTE: This function contains a potential schedule point (cond_resched()).
1761  */
1762 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1763 {
1764         struct list_head *tmp, *next;
1765         struct list_head  comp_reqs;
1766         int force_timer_recalc = 0;
1767
1768         ENTRY;
1769         if (atomic_read(&set->set_remaining) == 0)
1770                 RETURN(1);
1771
1772         INIT_LIST_HEAD(&comp_reqs);
1773         list_for_each_safe(tmp, next, &set->set_requests) {
1774                 struct ptlrpc_request *req =
1775                         list_entry(tmp, struct ptlrpc_request,
1776                                    rq_set_chain);
1777                 struct obd_import *imp = req->rq_import;
1778                 int unregistered = 0;
1779                 int async = 1;
1780                 int rc = 0;
1781
1782                 if (req->rq_phase == RQ_PHASE_COMPLETE) {
1783                         list_move_tail(&req->rq_set_chain, &comp_reqs);
1784                         continue;
1785                 }
1786
1787                 /*
1788                  * This schedule point is mainly for the ptlrpcd caller of this
1789                  * function.  Most ptlrpc sets are not long-lived and unbounded
1790                  * in length, but at the least the set used by the ptlrpcd is.
1791                  * Since the processing time is unbounded, we need to insert an
1792                  * explicit schedule point to make the thread well-behaved.
1793                  */
1794                 cond_resched();
1795
1796                 /*
1797                  * If the caller requires to allow to be interpreted by force
1798                  * and it has really been interpreted, then move the request
1799                  * to RQ_PHASE_INTERPRET phase in spite of what the current
1800                  * phase is.
1801                  */
1802                 if (unlikely(req->rq_allow_intr && req->rq_intr)) {
1803                         req->rq_status = -EINTR;
1804                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1805
1806                         /*
1807                          * Since it is interpreted and we have to wait for
1808                          * the reply to be unlinked, then use sync mode.
1809                          */
1810                         async = 0;
1811
1812                         GOTO(interpret, req->rq_status);
1813                 }
1814
1815                 if (req->rq_phase == RQ_PHASE_NEW && ptlrpc_send_new_req(req))
1816                         force_timer_recalc = 1;
1817
1818                 /* delayed send - skip */
1819                 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1820                         continue;
1821
1822                 /* delayed resend - skip */
1823                 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
1824                     req->rq_sent > ktime_get_real_seconds())
1825                         continue;
1826
1827                 if (!(req->rq_phase == RQ_PHASE_RPC ||
1828                       req->rq_phase == RQ_PHASE_BULK ||
1829                       req->rq_phase == RQ_PHASE_INTERPRET ||
1830                       req->rq_phase == RQ_PHASE_UNREG_RPC ||
1831                       req->rq_phase == RQ_PHASE_UNREG_BULK)) {
1832                         DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1833                         LBUG();
1834                 }
1835
1836                 if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
1837                     req->rq_phase == RQ_PHASE_UNREG_BULK) {
1838                         LASSERT(req->rq_next_phase != req->rq_phase);
1839                         LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1840
1841                         if (req->rq_req_deadline &&
1842                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK))
1843                                 req->rq_req_deadline = 0;
1844                         if (req->rq_reply_deadline &&
1845                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK))
1846                                 req->rq_reply_deadline = 0;
1847                         if (req->rq_bulk_deadline &&
1848                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK))
1849                                 req->rq_bulk_deadline = 0;
1850
1851                         /*
1852                          * Skip processing until reply is unlinked. We
1853                          * can't return to pool before that and we can't
1854                          * call interpret before that. We need to make
1855                          * sure that all rdma transfers finished and will
1856                          * not corrupt any data.
1857                          */
1858                         if (req->rq_phase == RQ_PHASE_UNREG_RPC &&
1859                             ptlrpc_client_recv_or_unlink(req))
1860                                 continue;
1861                         if (req->rq_phase == RQ_PHASE_UNREG_BULK &&
1862                             ptlrpc_client_bulk_active(req))
1863                                 continue;
1864
1865                         /*
1866                          * Turn fail_loc off to prevent it from looping
1867                          * forever.
1868                          */
1869                         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1870                                 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1871                                                      OBD_FAIL_ONCE);
1872                         }
1873                         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1874                                 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1875                                                      OBD_FAIL_ONCE);
1876                         }
1877
1878                         /*
1879                          * Move to next phase if reply was successfully
1880                          * unlinked.
1881                          */
1882                         ptlrpc_rqphase_move(req, req->rq_next_phase);
1883                 }
1884
1885                 if (req->rq_phase == RQ_PHASE_INTERPRET)
1886                         GOTO(interpret, req->rq_status);
1887
1888                 /*
1889                  * Note that this also will start async reply unlink.
1890                  */
1891                 if (req->rq_net_err && !req->rq_timedout) {
1892                         ptlrpc_expire_one_request(req, 1);
1893
1894                         /*
1895                          * Check if we still need to wait for unlink.
1896                          */
1897                         if (ptlrpc_client_recv_or_unlink(req) ||
1898                             ptlrpc_client_bulk_active(req))
1899                                 continue;
1900                         /* If there is no need to resend, fail it now. */
1901                         if (req->rq_no_resend) {
1902                                 if (req->rq_status == 0)
1903                                         req->rq_status = -EIO;
1904                                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1905                                 GOTO(interpret, req->rq_status);
1906                         } else {
1907                                 continue;
1908                         }
1909                 }
1910
1911                 if (req->rq_err) {
1912                         spin_lock(&req->rq_lock);
1913                         req->rq_replied = 0;
1914                         spin_unlock(&req->rq_lock);
1915                         if (req->rq_status == 0)
1916                                 req->rq_status = -EIO;
1917                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1918                         GOTO(interpret, req->rq_status);
1919                 }
1920
1921                 /*
1922                  * ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1923                  * so it sets rq_intr regardless of individual rpc
1924                  * timeouts. The synchronous IO waiting path sets
1925                  * rq_intr irrespective of whether ptlrpcd
1926                  * has seen a timeout.  Our policy is to only interpret
1927                  * interrupted rpcs after they have timed out, so we
1928                  * need to enforce that here.
1929                  */
1930
1931                 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1932                                      req->rq_wait_ctx)) {
1933                         req->rq_status = -EINTR;
1934                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1935                         GOTO(interpret, req->rq_status);
1936                 }
1937
1938                 if (req->rq_phase == RQ_PHASE_RPC) {
1939                         if (req->rq_timedout || req->rq_resend ||
1940                             req->rq_waiting || req->rq_wait_ctx) {
1941                                 int status;
1942
1943                                 if (!ptlrpc_unregister_reply(req, 1)) {
1944                                         ptlrpc_unregister_bulk(req, 1);
1945                                         continue;
1946                                 }
1947
1948                                 spin_lock(&imp->imp_lock);
1949                                 if (ptlrpc_import_delay_req(imp, req,
1950                                                             &status)) {
1951                                         /*
1952                                          * put on delay list - only if we wait
1953                                          * recovery finished - before send
1954                                          */
1955                                         list_move_tail(&req->rq_list,
1956                                                        &imp->imp_delayed_list);
1957                                         spin_unlock(&imp->imp_lock);
1958                                         continue;
1959                                 }
1960
1961                                 if (status != 0)  {
1962                                         req->rq_status = status;
1963                                         ptlrpc_rqphase_move(req,
1964                                                             RQ_PHASE_INTERPRET);
1965                                         spin_unlock(&imp->imp_lock);
1966                                         GOTO(interpret, req->rq_status);
1967                                 }
1968                                 /* ignore on just initiated connections */
1969                                 if (ptlrpc_no_resend(req) &&
1970                                     !req->rq_wait_ctx &&
1971                                     imp->imp_generation !=
1972                                     imp->imp_initiated_at) {
1973                                         req->rq_status = -ENOTCONN;
1974                                         ptlrpc_rqphase_move(req,
1975                                                             RQ_PHASE_INTERPRET);
1976                                         spin_unlock(&imp->imp_lock);
1977                                         GOTO(interpret, req->rq_status);
1978                                 }
1979
1980                                 list_move_tail(&req->rq_list,
1981                                                &imp->imp_sending_list);
1982
1983                                 spin_unlock(&imp->imp_lock);
1984
1985                                 spin_lock(&req->rq_lock);
1986                                 req->rq_waiting = 0;
1987                                 spin_unlock(&req->rq_lock);
1988
1989                                 if (req->rq_timedout || req->rq_resend) {
1990                                         /*
1991                                          * This is re-sending anyways,
1992                                          * let's mark req as resend.
1993                                          */
1994                                         spin_lock(&req->rq_lock);
1995                                         req->rq_resend = 1;
1996                                         spin_unlock(&req->rq_lock);
1997                                 }
1998                                 /*
1999                                  * rq_wait_ctx is only touched by ptlrpcd,
2000                                  * so no lock is needed here.
2001                                  */
2002                                 status = sptlrpc_req_refresh_ctx(req, -1);
2003                                 if (status) {
2004                                         if (req->rq_err) {
2005                                                 req->rq_status = status;
2006                                                 spin_lock(&req->rq_lock);
2007                                                 req->rq_wait_ctx = 0;
2008                                                 spin_unlock(&req->rq_lock);
2009                                                 force_timer_recalc = 1;
2010                                         } else {
2011                                                 spin_lock(&req->rq_lock);
2012                                                 req->rq_wait_ctx = 1;
2013                                                 spin_unlock(&req->rq_lock);
2014                                         }
2015
2016                                         continue;
2017                                 } else {
2018                                         spin_lock(&req->rq_lock);
2019                                         req->rq_wait_ctx = 0;
2020                                         spin_unlock(&req->rq_lock);
2021                                 }
2022
2023                                 /*
2024                                  * In any case, the previous bulk should be
2025                                  * cleaned up to prepare for the new sending
2026                                  */
2027                                 if (req->rq_bulk &&
2028                                     !ptlrpc_unregister_bulk(req, 1))
2029                                         continue;
2030
2031                                 rc = ptl_send_rpc(req, 0);
2032                                 if (rc == -ENOMEM) {
2033                                         spin_lock(&imp->imp_lock);
2034                                         if (!list_empty(&req->rq_list))
2035                                                 list_del_init(&req->rq_list);
2036                                         spin_unlock(&imp->imp_lock);
2037                                         ptlrpc_rqphase_move(req, RQ_PHASE_NEW);
2038                                         continue;
2039                                 }
2040                                 if (rc) {
2041                                         DEBUG_REQ(D_HA, req,
2042                                                   "send failed: rc = %d", rc);
2043                                         force_timer_recalc = 1;
2044                                         spin_lock(&req->rq_lock);
2045                                         req->rq_net_err = 1;
2046                                         spin_unlock(&req->rq_lock);
2047                                         continue;
2048                                 }
2049                                 /* need to reset the timeout */
2050                                 force_timer_recalc = 1;
2051                         }
2052
2053                         spin_lock(&req->rq_lock);
2054
2055                         if (ptlrpc_client_early(req)) {
2056                                 ptlrpc_at_recv_early_reply(req);
2057                                 spin_unlock(&req->rq_lock);
2058                                 continue;
2059                         }
2060
2061                         /* Still waiting for a reply? */
2062                         if (ptlrpc_client_recv(req)) {
2063                                 spin_unlock(&req->rq_lock);
2064                                 continue;
2065                         }
2066
2067                         /* Did we actually receive a reply? */
2068                         if (!ptlrpc_client_replied(req)) {
2069                                 spin_unlock(&req->rq_lock);
2070                                 continue;
2071                         }
2072
2073                         spin_unlock(&req->rq_lock);
2074
2075                         /*
2076                          * unlink from net because we are going to
2077                          * swab in-place of reply buffer
2078                          */
2079                         unregistered = ptlrpc_unregister_reply(req, 1);
2080                         if (!unregistered)
2081                                 continue;
2082
2083                         req->rq_status = after_reply(req);
2084                         if (req->rq_resend)
2085                                 continue;
2086
2087                         /*
2088                          * If there is no bulk associated with this request,
2089                          * then we're done and should let the interpreter
2090                          * process the reply. Similarly if the RPC returned
2091                          * an error, and therefore the bulk will never arrive.
2092                          */
2093                         if (!req->rq_bulk || req->rq_status < 0) {
2094                                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
2095                                 GOTO(interpret, req->rq_status);
2096                         }
2097
2098                         ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
2099                 }
2100
2101                 LASSERT(req->rq_phase == RQ_PHASE_BULK);
2102                 if (ptlrpc_client_bulk_active(req))
2103                         continue;
2104
2105                 if (req->rq_bulk->bd_failure) {
2106                         /*
2107                          * The RPC reply arrived OK, but the bulk screwed
2108                          * up!  Dead weird since the server told us the RPC
2109                          * was good after getting the REPLY for her GET or
2110                          * the ACK for her PUT.
2111                          */
2112                         DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
2113                         req->rq_status = -EIO;
2114                 }
2115
2116                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
2117
2118 interpret:
2119                 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
2120
2121                 /*
2122                  * This moves to "unregistering" phase we need to wait for
2123                  * reply unlink.
2124                  */
2125                 if (!unregistered && !ptlrpc_unregister_reply(req, async)) {
2126                         /* start async bulk unlink too */
2127                         ptlrpc_unregister_bulk(req, 1);
2128                         continue;
2129                 }
2130
2131                 if (!ptlrpc_unregister_bulk(req, async))
2132                         continue;
2133
2134                 /*
2135                  * When calling interpret receiving already should be
2136                  * finished.
2137                  */
2138                 LASSERT(!req->rq_receiving_reply);
2139
2140                 ptlrpc_req_interpret(env, req, req->rq_status);
2141
2142                 if (ptlrpcd_check_work(req)) {
2143                         atomic_dec(&set->set_remaining);
2144                         continue;
2145                 }
2146                 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
2147
2148                 if (req->rq_reqmsg)
2149                         CDEBUG(D_RPCTRACE,
2150                                "Completed RPC req@%p pname:cluuid:pid:xid:nid:opc:job %s:%s:%d:%llu:%s:%d:%s\n",
2151                                req, current_comm(),
2152                                imp->imp_obd->obd_uuid.uuid,
2153                                lustre_msg_get_status(req->rq_reqmsg),
2154                                req->rq_xid,
2155                                obd_import_nid2str(imp),
2156                                lustre_msg_get_opc(req->rq_reqmsg),
2157                                lustre_msg_get_jobid(req->rq_reqmsg));
2158
2159                 spin_lock(&imp->imp_lock);
2160                 /*
2161                  * Request already may be not on sending or delaying list. This
2162                  * may happen in the case of marking it erroneous for the case
2163                  * ptlrpc_import_delay_req(req, status) find it impossible to
2164                  * allow sending this rpc and returns *status != 0.
2165                  */
2166                 if (!list_empty(&req->rq_list)) {
2167                         list_del_init(&req->rq_list);
2168                         atomic_dec(&imp->imp_inflight);
2169                 }
2170                 list_del_init(&req->rq_unreplied_list);
2171                 spin_unlock(&imp->imp_lock);
2172
2173                 atomic_dec(&set->set_remaining);
2174                 wake_up_all(&imp->imp_recovery_waitq);
2175
2176                 if (set->set_producer) {
2177                         /* produce a new request if possible */
2178                         if (ptlrpc_set_producer(set) > 0)
2179                                 force_timer_recalc = 1;
2180
2181                         /*
2182                          * free the request that has just been completed
2183                          * in order not to pollute set->set_requests
2184                          */
2185                         list_del_init(&req->rq_set_chain);
2186                         spin_lock(&req->rq_lock);
2187                         req->rq_set = NULL;
2188                         req->rq_invalid_rqset = 0;
2189                         spin_unlock(&req->rq_lock);
2190
2191                         /* record rq_status to compute the final status later */
2192                         if (req->rq_status != 0)
2193                                 set->set_rc = req->rq_status;
2194                         ptlrpc_req_finished(req);
2195                 } else {
2196                         list_move_tail(&req->rq_set_chain, &comp_reqs);
2197                 }
2198         }
2199
2200         /*
2201          * move completed request at the head of list so it's easier for
2202          * caller to find them
2203          */
2204         list_splice(&comp_reqs, &set->set_requests);
2205
2206         /* If we hit an error, we want to recover promptly. */
2207         RETURN(atomic_read(&set->set_remaining) == 0 || force_timer_recalc);
2208 }
2209 EXPORT_SYMBOL(ptlrpc_check_set);
2210
2211 /**
2212  * Time out request \a req. is \a async_unlink is set, that means do not wait
2213  * until LNet actually confirms network buffer unlinking.
2214  * Return 1 if we should give up further retrying attempts or 0 otherwise.
2215  */
2216 int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
2217 {
2218         struct obd_import *imp = req->rq_import;
2219         unsigned int debug_mask = D_RPCTRACE;
2220         int rc = 0;
2221
2222         ENTRY;
2223         spin_lock(&req->rq_lock);
2224         req->rq_timedout = 1;
2225         spin_unlock(&req->rq_lock);
2226
2227         if (ptlrpc_console_allow(req, lustre_msg_get_opc(req->rq_reqmsg),
2228                                  lustre_msg_get_status(req->rq_reqmsg)))
2229                 debug_mask = D_WARNING;
2230         DEBUG_REQ(debug_mask, req, "Request sent has %s: [sent %lld/real %lld]",
2231                   req->rq_net_err ? "failed due to network error" :
2232                      ((req->rq_real_sent == 0 ||
2233                        req->rq_real_sent < req->rq_sent ||
2234                        req->rq_real_sent >= req->rq_deadline) ?
2235                       "timed out for sent delay" : "timed out for slow reply"),
2236                   (s64)req->rq_sent, (s64)req->rq_real_sent);
2237
2238         if (imp && obd_debug_peer_on_timeout)
2239                 LNetDebugPeer(imp->imp_connection->c_peer);
2240
2241         ptlrpc_unregister_reply(req, async_unlink);
2242         ptlrpc_unregister_bulk(req, async_unlink);
2243
2244         if (obd_dump_on_timeout)
2245                 libcfs_debug_dumplog();
2246
2247         if (!imp) {
2248                 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
2249                 RETURN(1);
2250         }
2251
2252         atomic_inc(&imp->imp_timeouts);
2253
2254         /* The DLM server doesn't want recovery run on its imports. */
2255         if (imp->imp_dlm_fake)
2256                 RETURN(1);
2257
2258         /*
2259          * If this request is for recovery or other primordial tasks,
2260          * then error it out here.
2261          */
2262         if (req->rq_ctx_init || req->rq_ctx_fini ||
2263             req->rq_send_state != LUSTRE_IMP_FULL ||
2264             imp->imp_obd->obd_no_recov) {
2265                 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
2266                           ptlrpc_import_state_name(req->rq_send_state),
2267                           ptlrpc_import_state_name(imp->imp_state));
2268                 spin_lock(&req->rq_lock);
2269                 req->rq_status = -ETIMEDOUT;
2270                 req->rq_err = 1;
2271                 spin_unlock(&req->rq_lock);
2272                 RETURN(1);
2273         }
2274
2275         /*
2276          * if a request can't be resent we can't wait for an answer after
2277          * the timeout
2278          */
2279         if (ptlrpc_no_resend(req)) {
2280                 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
2281                 rc = 1;
2282         }
2283
2284         ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
2285
2286         RETURN(rc);
2287 }
2288
2289 /**
2290  * Time out all uncompleted requests in request set pointed by \a data
2291  * Callback used when waiting on sets with l_wait_event.
2292  * Always returns 1.
2293  */
2294 int ptlrpc_expired_set(void *data)
2295 {
2296         struct ptlrpc_request_set *set = data;
2297         struct list_head *tmp;
2298         time64_t now = ktime_get_real_seconds();
2299
2300         ENTRY;
2301         LASSERT(set != NULL);
2302
2303         /*
2304          * A timeout expired. See which reqs it applies to...
2305          */
2306         list_for_each(tmp, &set->set_requests) {
2307                 struct ptlrpc_request *req =
2308                         list_entry(tmp, struct ptlrpc_request,
2309                                    rq_set_chain);
2310
2311                 /* don't expire request waiting for context */
2312                 if (req->rq_wait_ctx)
2313                         continue;
2314
2315                 /* Request in-flight? */
2316                 if (!((req->rq_phase == RQ_PHASE_RPC &&
2317                        !req->rq_waiting && !req->rq_resend) ||
2318                       (req->rq_phase == RQ_PHASE_BULK)))
2319                         continue;
2320
2321                 if (req->rq_timedout ||     /* already dealt with */
2322                     req->rq_deadline > now) /* not expired */
2323                         continue;
2324
2325                 /*
2326                  * Deal with this guy. Do it asynchronously to not block
2327                  * ptlrpcd thread.
2328                  */
2329                 ptlrpc_expire_one_request(req, 1);
2330         }
2331
2332         /*
2333          * When waiting for a whole set, we always break out of the
2334          * sleep so we can recalculate the timeout, or enable interrupts
2335          * if everyone's timed out.
2336          */
2337         RETURN(1);
2338 }
2339
2340 /**
2341  * Sets rq_intr flag in \a req under spinlock.
2342  */
2343 void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
2344 {
2345         spin_lock(&req->rq_lock);
2346         req->rq_intr = 1;
2347         spin_unlock(&req->rq_lock);
2348 }
2349 EXPORT_SYMBOL(ptlrpc_mark_interrupted);
2350
2351 /**
2352  * Interrupts (sets interrupted flag) all uncompleted requests in
2353  * a set \a data. Callback for l_wait_event for interruptible waits.
2354  */
2355 static void ptlrpc_interrupted_set(void *data)
2356 {
2357         struct ptlrpc_request_set *set = data;
2358         struct list_head *tmp;
2359
2360         LASSERT(set != NULL);
2361         CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2362
2363         list_for_each(tmp, &set->set_requests) {
2364                 struct ptlrpc_request *req =
2365                         list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2366
2367                 if (req->rq_intr)
2368                         continue;
2369
2370                 if (req->rq_phase != RQ_PHASE_RPC &&
2371                     req->rq_phase != RQ_PHASE_UNREG_RPC &&
2372                     !req->rq_allow_intr)
2373                         continue;
2374
2375                 ptlrpc_mark_interrupted(req);
2376         }
2377 }
2378
2379 /**
2380  * Get the smallest timeout in the set; this does NOT set a timeout.
2381  */
2382 time64_t ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2383 {
2384         struct list_head *tmp;
2385         time64_t now = ktime_get_real_seconds();
2386         int timeout = 0;
2387         struct ptlrpc_request *req;
2388         time64_t deadline;
2389
2390         ENTRY;
2391         list_for_each(tmp, &set->set_requests) {
2392                 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2393
2394                 /* Request in-flight? */
2395                 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2396                       (req->rq_phase == RQ_PHASE_BULK) ||
2397                       (req->rq_phase == RQ_PHASE_NEW)))
2398                         continue;
2399
2400                 /* Already timed out. */
2401                 if (req->rq_timedout)
2402                         continue;
2403
2404                 /* Waiting for ctx. */
2405                 if (req->rq_wait_ctx)
2406                         continue;
2407
2408                 if (req->rq_phase == RQ_PHASE_NEW)
2409                         deadline = req->rq_sent;
2410                 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2411                         deadline = req->rq_sent;
2412                 else
2413                         deadline = req->rq_sent + req->rq_timeout;
2414
2415                 if (deadline <= now)    /* actually expired already */
2416                         timeout = 1;    /* ASAP */
2417                 else if (timeout == 0 || timeout > deadline - now)
2418                         timeout = deadline - now;
2419         }
2420         RETURN(timeout);
2421 }
2422
2423 /**
2424  * Send all unset request from the set and then wait untill all
2425  * requests in the set complete (either get a reply, timeout, get an
2426  * error or otherwise be interrupted).
2427  * Returns 0 on success or error code otherwise.
2428  */
2429 int ptlrpc_set_wait(const struct lu_env *env, struct ptlrpc_request_set *set)
2430 {
2431         struct list_head *tmp;
2432         struct ptlrpc_request *req;
2433         struct l_wait_info lwi;
2434         time64_t timeout;
2435         int rc;
2436
2437         ENTRY;
2438         if (set->set_producer)
2439                 (void)ptlrpc_set_producer(set);
2440         else
2441                 list_for_each(tmp, &set->set_requests) {
2442                         req = list_entry(tmp, struct ptlrpc_request,
2443                                          rq_set_chain);
2444                         if (req->rq_phase == RQ_PHASE_NEW)
2445                                 (void)ptlrpc_send_new_req(req);
2446                 }
2447
2448         if (list_empty(&set->set_requests))
2449                 RETURN(0);
2450
2451         do {
2452                 timeout = ptlrpc_set_next_timeout(set);
2453
2454                 /*
2455                  * wait until all complete, interrupted, or an in-flight
2456                  * req times out
2457                  */
2458                 CDEBUG(D_RPCTRACE, "set %p going to sleep for %lld seconds\n",
2459                        set, timeout);
2460
2461                 if ((timeout == 0 && !signal_pending(current)) ||
2462                     set->set_allow_intr)
2463                         /*
2464                          * No requests are in-flight (ether timed out
2465                          * or delayed), so we can allow interrupts.
2466                          * We still want to block for a limited time,
2467                          * so we allow interrupts during the timeout.
2468                          */
2469                         lwi = LWI_TIMEOUT_INTR_ALL(
2470                                         cfs_time_seconds(timeout ? timeout : 1),
2471                                         ptlrpc_expired_set,
2472                                         ptlrpc_interrupted_set, set);
2473                 else
2474                         /*
2475                          * At least one request is in flight, so no
2476                          * interrupts are allowed. Wait until all
2477                          * complete, or an in-flight req times out.
2478                          */
2479                         lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
2480                                           ptlrpc_expired_set, set);
2481
2482                 rc = l_wait_event(set->set_waitq,
2483                                   ptlrpc_check_set(NULL, set), &lwi);
2484
2485                 /*
2486                  * LU-769 - if we ignored the signal because it was already
2487                  * pending when we started, we need to handle it now or we risk
2488                  * it being ignored forever
2489                  */
2490                 if (rc == -ETIMEDOUT &&
2491                     (!lwi.lwi_allow_intr || set->set_allow_intr) &&
2492                     signal_pending(current)) {
2493                         sigset_t blocked_sigs =
2494                                            cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2495
2496                         /*
2497                          * In fact we only interrupt for the "fatal" signals
2498                          * like SIGINT or SIGKILL. We still ignore less
2499                          * important signals since ptlrpc set is not easily
2500                          * reentrant from userspace again
2501                          */
2502                         if (signal_pending(current))
2503                                 ptlrpc_interrupted_set(set);
2504                         cfs_restore_sigs(blocked_sigs);
2505                 }
2506
2507                 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2508
2509                 /*
2510                  * -EINTR => all requests have been flagged rq_intr so next
2511                  * check completes.
2512                  * -ETIMEDOUT => someone timed out.  When all reqs have
2513                  * timed out, signals are enabled allowing completion with
2514                  * EINTR.
2515                  * I don't really care if we go once more round the loop in
2516                  * the error cases -eeb.
2517                  */
2518                 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2519                         list_for_each(tmp, &set->set_requests) {
2520                                 req = list_entry(tmp, struct ptlrpc_request,
2521                                                  rq_set_chain);
2522                                 spin_lock(&req->rq_lock);
2523                                 req->rq_invalid_rqset = 1;
2524                                 spin_unlock(&req->rq_lock);
2525                         }
2526                 }
2527         } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2528
2529         LASSERT(atomic_read(&set->set_remaining) == 0);
2530
2531         rc = set->set_rc; /* rq_status of already freed requests if any */
2532         list_for_each(tmp, &set->set_requests) {
2533                 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2534
2535                 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2536                 if (req->rq_status != 0)
2537                         rc = req->rq_status;
2538         }
2539
2540         RETURN(rc);
2541 }
2542 EXPORT_SYMBOL(ptlrpc_set_wait);
2543
2544 /**
2545  * Helper fuction for request freeing.
2546  * Called when request count reached zero and request needs to be freed.
2547  * Removes request from all sorts of sending/replay lists it might be on,
2548  * frees network buffers if any are present.
2549  * If \a locked is set, that means caller is already holding import imp_lock
2550  * and so we no longer need to reobtain it (for certain lists manipulations)
2551  */
2552 static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2553 {
2554         ENTRY;
2555
2556         if (!request)
2557                 RETURN_EXIT;
2558
2559         LASSERT(!request->rq_srv_req);
2560         LASSERT(request->rq_export == NULL);
2561         LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
2562         LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2563         LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2564         LASSERTF(!request->rq_replay, "req %p\n", request);
2565
2566         req_capsule_fini(&request->rq_pill);
2567
2568         /*
2569          * We must take it off the imp_replay_list first.  Otherwise, we'll set
2570          * request->rq_reqmsg to NULL while osc_close is dereferencing it.
2571          */
2572         if (request->rq_import) {
2573                 if (!locked)
2574                         spin_lock(&request->rq_import->imp_lock);
2575                 list_del_init(&request->rq_replay_list);
2576                 list_del_init(&request->rq_unreplied_list);
2577                 if (!locked)
2578                         spin_unlock(&request->rq_import->imp_lock);
2579         }
2580         LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2581
2582         if (atomic_read(&request->rq_refcount) != 0) {
2583                 DEBUG_REQ(D_ERROR, request,
2584                           "freeing request with nonzero refcount");
2585                 LBUG();
2586         }
2587
2588         if (request->rq_repbuf)
2589                 sptlrpc_cli_free_repbuf(request);
2590
2591         if (request->rq_import) {
2592                 class_import_put(request->rq_import);
2593                 request->rq_import = NULL;
2594         }
2595         if (request->rq_bulk)
2596                 ptlrpc_free_bulk(request->rq_bulk);
2597
2598         if (request->rq_reqbuf || request->rq_clrbuf)
2599                 sptlrpc_cli_free_reqbuf(request);
2600
2601         if (request->rq_cli_ctx)
2602                 sptlrpc_req_put_ctx(request, !locked);
2603
2604         if (request->rq_pool)
2605                 __ptlrpc_free_req_to_pool(request);
2606         else
2607                 ptlrpc_request_cache_free(request);
2608         EXIT;
2609 }
2610
2611 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked);
2612 /**
2613  * Drop one request reference. Must be called with import imp_lock held.
2614  * When reference count drops to zero, request is freed.
2615  */
2616 void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request)
2617 {
2618         assert_spin_locked(&request->rq_import->imp_lock);
2619         (void)__ptlrpc_req_finished(request, 1);
2620 }
2621
2622 /**
2623  * Helper function
2624  * Drops one reference count for request \a request.
2625  * \a locked set indicates that caller holds import imp_lock.
2626  * Frees the request whe reference count reaches zero.
2627  *
2628  * \retval 1    the request is freed
2629  * \retval 0    some others still hold references on the request
2630  */
2631 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2632 {
2633         int count;
2634
2635         ENTRY;
2636         if (!request)
2637                 RETURN(1);
2638
2639         LASSERT(request != LP_POISON);
2640         LASSERT(request->rq_reqmsg != LP_POISON);
2641
2642         DEBUG_REQ(D_INFO, request, "refcount now %u",
2643                   atomic_read(&request->rq_refcount) - 1);
2644
2645         spin_lock(&request->rq_lock);
2646         count = atomic_dec_return(&request->rq_refcount);
2647         LASSERTF(count >= 0, "Invalid ref count %d\n", count);
2648
2649         /*
2650          * For open RPC, the client does not know the EA size (LOV, ACL, and
2651          * so on) before replied, then the client has to reserve very large
2652          * reply buffer. Such buffer will not be released until the RPC freed.
2653          * Since The open RPC is replayable, we need to keep it in the replay
2654          * list until close. If there are a lot of files opened concurrently,
2655          * then the client may be OOM.
2656          *
2657          * If fact, it is unnecessary to keep reply buffer for open replay,
2658          * related EAs have already been saved via mdc_save_lovea() before
2659          * coming here. So it is safe to free the reply buffer some earlier
2660          * before releasing the RPC to avoid client OOM. LU-9514
2661          */
2662         if (count == 1 && request->rq_early_free_repbuf && request->rq_repbuf) {
2663                 spin_lock(&request->rq_early_free_lock);
2664                 sptlrpc_cli_free_repbuf(request);
2665                 request->rq_repbuf = NULL;
2666                 request->rq_repbuf_len = 0;
2667                 request->rq_repdata = NULL;
2668                 request->rq_reqdata_len = 0;
2669                 spin_unlock(&request->rq_early_free_lock);
2670         }
2671         spin_unlock(&request->rq_lock);
2672
2673         if (!count)
2674                 __ptlrpc_free_req(request, locked);
2675
2676         RETURN(!count);
2677 }
2678
2679 /**
2680  * Drops one reference count for a request.
2681  */
2682 void ptlrpc_req_finished(struct ptlrpc_request *request)
2683 {
2684         __ptlrpc_req_finished(request, 0);
2685 }
2686 EXPORT_SYMBOL(ptlrpc_req_finished);
2687
2688 /**
2689  * Returns xid of a \a request
2690  */
2691 __u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2692 {
2693         return request->rq_xid;
2694 }
2695 EXPORT_SYMBOL(ptlrpc_req_xid);
2696
2697 /**
2698  * Disengage the client's reply buffer from the network
2699  * NB does _NOT_ unregister any client-side bulk.
2700  * IDEMPOTENT, but _not_ safe against concurrent callers.
2701  * The request owner (i.e. the thread doing the I/O) must call...
2702  * Returns 0 on success or 1 if unregistering cannot be made.
2703  */
2704 static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2705 {
2706         int rc;
2707         struct l_wait_info lwi;
2708
2709         /*
2710          * Might sleep.
2711          */
2712         LASSERT(!in_interrupt());
2713
2714         /* Let's setup deadline for reply unlink. */
2715         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2716             async && request->rq_reply_deadline == 0 && cfs_fail_val == 0)
2717                 request->rq_reply_deadline = ktime_get_real_seconds() +
2718                                              LONG_UNLINK;
2719
2720         /*
2721          * Nothing left to do.
2722          */
2723         if (!ptlrpc_client_recv_or_unlink(request))
2724                 RETURN(1);
2725
2726         LNetMDUnlink(request->rq_reply_md_h);
2727
2728         /*
2729          * Let's check it once again.
2730          */
2731         if (!ptlrpc_client_recv_or_unlink(request))
2732                 RETURN(1);
2733
2734         /* Move to "Unregistering" phase as reply was not unlinked yet. */
2735         ptlrpc_rqphase_move(request, RQ_PHASE_UNREG_RPC);
2736
2737         /*
2738          * Do not wait for unlink to finish.
2739          */
2740         if (async)
2741                 RETURN(0);
2742
2743         /*
2744          * We have to l_wait_event() whatever the result, to give liblustre
2745          * a chance to run reply_in_callback(), and to make sure we've
2746          * unlinked before returning a req to the pool.
2747          */
2748         for (;;) {
2749                 /* The wq argument is ignored by user-space wait_event macros */
2750                 wait_queue_head_t *wq = (request->rq_set) ?
2751                                         &request->rq_set->set_waitq :
2752                                         &request->rq_reply_waitq;
2753                 /*
2754                  * Network access will complete in finite time but the HUGE
2755                  * timeout lets us CWARN for visibility of sluggish NALs
2756                  */
2757                 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2758                                            cfs_time_seconds(1), NULL, NULL);
2759                 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2760                                   &lwi);
2761                 if (rc == 0) {
2762                         ptlrpc_rqphase_move(request, request->rq_next_phase);
2763                         RETURN(1);
2764                 }
2765
2766                 LASSERT(rc == -ETIMEDOUT);
2767                 DEBUG_REQ(D_WARNING, request,
2768                           "Unexpectedly long timeout receiving_reply=%d req_ulinked=%d reply_unlinked=%d",
2769                           request->rq_receiving_reply,
2770                           request->rq_req_unlinked,
2771                           request->rq_reply_unlinked);
2772         }
2773         RETURN(0);
2774 }
2775
2776 static void ptlrpc_free_request(struct ptlrpc_request *req)
2777 {
2778         spin_lock(&req->rq_lock);
2779         req->rq_replay = 0;
2780         spin_unlock(&req->rq_lock);
2781
2782         if (req->rq_commit_cb)
2783                 req->rq_commit_cb(req);
2784         list_del_init(&req->rq_replay_list);
2785
2786         __ptlrpc_req_finished(req, 1);
2787 }
2788
2789 /**
2790  * the request is committed and dropped from the replay list of its import
2791  */
2792 void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2793 {
2794         struct obd_import *imp = req->rq_import;
2795
2796         spin_lock(&imp->imp_lock);
2797         if (list_empty(&req->rq_replay_list)) {
2798                 spin_unlock(&imp->imp_lock);
2799                 return;
2800         }
2801
2802         if (force || req->rq_transno <= imp->imp_peer_committed_transno) {
2803                 if (imp->imp_replay_cursor == &req->rq_replay_list)
2804                         imp->imp_replay_cursor = req->rq_replay_list.next;
2805                 ptlrpc_free_request(req);
2806         }
2807
2808         spin_unlock(&imp->imp_lock);
2809 }
2810 EXPORT_SYMBOL(ptlrpc_request_committed);
2811
2812 /**
2813  * Iterates through replay_list on import and prunes
2814  * all requests have transno smaller than last_committed for the
2815  * import and don't have rq_replay set.
2816  * Since requests are sorted in transno order, stops when meetign first
2817  * transno bigger than last_committed.
2818  * caller must hold imp->imp_lock
2819  */
2820 void ptlrpc_free_committed(struct obd_import *imp)
2821 {
2822         struct ptlrpc_request *req, *saved;
2823         struct ptlrpc_request *last_req = NULL; /* temporary fire escape */
2824         bool skip_committed_list = true;
2825
2826         ENTRY;
2827         LASSERT(imp != NULL);
2828         assert_spin_locked(&imp->imp_lock);
2829
2830         if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2831             imp->imp_generation == imp->imp_last_generation_checked) {
2832                 CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
2833                        imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
2834                 RETURN_EXIT;
2835         }
2836         CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
2837                imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2838                imp->imp_generation);
2839
2840         if (imp->imp_generation != imp->imp_last_generation_checked ||
2841             imp->imp_last_transno_checked == 0)
2842                 skip_committed_list = false;
2843
2844         imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2845         imp->imp_last_generation_checked = imp->imp_generation;
2846
2847         list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2848                                  rq_replay_list) {
2849                 /* XXX ok to remove when 1357 resolved - rread 05/29/03  */
2850                 LASSERT(req != last_req);
2851                 last_req = req;
2852
2853                 if (req->rq_transno == 0) {
2854                         DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2855                         LBUG();
2856                 }
2857                 if (req->rq_import_generation < imp->imp_generation) {
2858                         DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
2859                         GOTO(free_req, 0);
2860                 }
2861
2862                 /* not yet committed */
2863                 if (req->rq_transno > imp->imp_peer_committed_transno) {
2864                         DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2865                         break;
2866                 }
2867
2868                 if (req->rq_replay) {
2869                         DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2870                         list_move_tail(&req->rq_replay_list,
2871                                        &imp->imp_committed_list);
2872                         continue;
2873                 }
2874
2875                 DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
2876                           imp->imp_peer_committed_transno);
2877 free_req:
2878                 ptlrpc_free_request(req);
2879         }
2880
2881         if (skip_committed_list)
2882                 GOTO(out, 0);
2883
2884         list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2885                                  rq_replay_list) {
2886                 LASSERT(req->rq_transno != 0);
2887                 if (req->rq_import_generation < imp->imp_generation ||
2888                     !req->rq_replay) {
2889                         DEBUG_REQ(D_RPCTRACE, req, "free %s open request",
2890                                   req->rq_import_generation <
2891                                   imp->imp_generation ? "stale" : "closed");
2892
2893                         if (imp->imp_replay_cursor == &req->rq_replay_list)
2894                                 imp->imp_replay_cursor =
2895                                         req->rq_replay_list.next;
2896
2897                         ptlrpc_free_request(req);
2898                 }
2899         }
2900 out:
2901         EXIT;
2902 }
2903
2904 void ptlrpc_cleanup_client(struct obd_import *imp)
2905 {
2906         ENTRY;
2907         EXIT;
2908 }
2909
2910 /**
2911  * Schedule previously sent request for resend.
2912  * For bulk requests we assign new xid (to avoid problems with
2913  * lost replies and therefore several transfers landing into same buffer
2914  * from different sending attempts).
2915  */
2916 void ptlrpc_resend_req(struct ptlrpc_request *req)
2917 {
2918         DEBUG_REQ(D_HA, req, "going to resend");
2919         spin_lock(&req->rq_lock);
2920
2921         /*
2922          * Request got reply but linked to the import list still.
2923          * Let ptlrpc_check_set() process it.
2924          */
2925         if (ptlrpc_client_replied(req)) {
2926                 spin_unlock(&req->rq_lock);
2927                 DEBUG_REQ(D_HA, req, "it has reply, so skip it");
2928                 return;
2929         }
2930
2931         req->rq_status = -EAGAIN;
2932
2933         req->rq_resend = 1;
2934         req->rq_net_err = 0;
2935         req->rq_timedout = 0;
2936
2937         ptlrpc_client_wake_req(req);
2938         spin_unlock(&req->rq_lock);
2939 }
2940
2941 /* XXX: this function and rq_status are currently unused */
2942 void ptlrpc_restart_req(struct ptlrpc_request *req)
2943 {
2944         DEBUG_REQ(D_HA, req, "restarting (possibly-)completed request");
2945         req->rq_status = -ERESTARTSYS;
2946
2947         spin_lock(&req->rq_lock);
2948         req->rq_restart = 1;
2949         req->rq_timedout = 0;
2950         ptlrpc_client_wake_req(req);
2951         spin_unlock(&req->rq_lock);
2952 }
2953
2954 /**
2955  * Grab additional reference on a request \a req
2956  */
2957 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2958 {
2959         ENTRY;
2960         atomic_inc(&req->rq_refcount);
2961         RETURN(req);
2962 }
2963 EXPORT_SYMBOL(ptlrpc_request_addref);
2964
2965 /**
2966  * Add a request to import replay_list.
2967  * Must be called under imp_lock
2968  */
2969 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2970                                       struct obd_import *imp)
2971 {
2972         struct list_head *tmp;
2973
2974         assert_spin_locked(&imp->imp_lock);
2975
2976         if (req->rq_transno == 0) {
2977                 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2978                 LBUG();
2979         }
2980
2981         /*
2982          * clear this for new requests that were resent as well
2983          * as resent replayed requests.
2984          */
2985         lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2986
2987         /* don't re-add requests that have been replayed */
2988         if (!list_empty(&req->rq_replay_list))
2989                 return;
2990
2991         lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2992
2993         spin_lock(&req->rq_lock);
2994         req->rq_resend = 0;
2995         spin_unlock(&req->rq_lock);
2996
2997         LASSERT(imp->imp_replayable);
2998         /* Balanced in ptlrpc_free_committed, usually. */
2999         ptlrpc_request_addref(req);
3000         list_for_each_prev(tmp, &imp->imp_replay_list) {
3001                 struct ptlrpc_request *iter = list_entry(tmp,
3002                                                          struct ptlrpc_request,
3003                                                          rq_replay_list);
3004
3005                 /*
3006                  * We may have duplicate transnos if we create and then
3007                  * open a file, or for closes retained if to match creating
3008                  * opens, so use req->rq_xid as a secondary key.
3009                  * (See bugs 684, 685, and 428.)
3010                  * XXX no longer needed, but all opens need transnos!
3011                  */
3012                 if (iter->rq_transno > req->rq_transno)
3013                         continue;
3014
3015                 if (iter->rq_transno == req->rq_transno) {
3016                         LASSERT(iter->rq_xid != req->rq_xid);
3017                         if (iter->rq_xid > req->rq_xid)
3018                                 continue;
3019                 }
3020
3021                 list_add(&req->rq_replay_list, &iter->rq_replay_list);
3022                 return;
3023         }
3024
3025         list_add(&req->rq_replay_list, &imp->imp_replay_list);
3026 }
3027
3028 /**
3029  * Send request and wait until it completes.
3030  * Returns request processing status.
3031  */
3032 int ptlrpc_queue_wait(struct ptlrpc_request *req)
3033 {
3034         struct ptlrpc_request_set *set;
3035         int rc;
3036
3037         ENTRY;
3038         LASSERT(req->rq_set == NULL);
3039         LASSERT(!req->rq_receiving_reply);
3040
3041         set = ptlrpc_prep_set();
3042         if (!set) {
3043                 CERROR("cannot allocate ptlrpc set: rc = %d\n", -ENOMEM);
3044                 RETURN(-ENOMEM);
3045         }
3046
3047         /* for distributed debugging */
3048         lustre_msg_set_status(req->rq_reqmsg, current_pid());
3049
3050         /* add a ref for the set (see comment in ptlrpc_set_add_req) */
3051         ptlrpc_request_addref(req);
3052         ptlrpc_set_add_req(set, req);
3053         rc = ptlrpc_set_wait(NULL, set);
3054         ptlrpc_set_destroy(set);
3055
3056         RETURN(rc);
3057 }
3058 EXPORT_SYMBOL(ptlrpc_queue_wait);
3059
3060 /**
3061  * Callback used for replayed requests reply processing.
3062  * In case of successful reply calls registered request replay callback.
3063  * In case of error restart replay process.
3064  */
3065 static int ptlrpc_replay_interpret(const struct lu_env *env,
3066                                    struct ptlrpc_request *req,
3067                                    void *args, int rc)
3068 {
3069         struct ptlrpc_replay_async_args *aa = args;
3070         struct obd_import *imp = req->rq_import;
3071
3072         ENTRY;
3073         atomic_dec(&imp->imp_replay_inflight);
3074
3075         /*
3076          * Note: if it is bulk replay (MDS-MDS replay), then even if
3077          * server got the request, but bulk transfer timeout, let's
3078          * replay the bulk req again
3079          */
3080         if (!ptlrpc_client_replied(req) ||
3081             (req->rq_bulk &&
3082              lustre_msg_get_status(req->rq_repmsg) == -ETIMEDOUT)) {
3083                 DEBUG_REQ(D_ERROR, req, "request replay timed out.\n");
3084                 GOTO(out, rc = -ETIMEDOUT);
3085         }
3086
3087         if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
3088             (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
3089             lustre_msg_get_status(req->rq_repmsg) == -ENODEV))
3090                 GOTO(out, rc = lustre_msg_get_status(req->rq_repmsg));
3091
3092         /** VBR: check version failure */
3093         if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
3094                 /** replay was failed due to version mismatch */
3095                 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
3096                 spin_lock(&imp->imp_lock);
3097                 imp->imp_vbr_failed = 1;
3098                 spin_unlock(&imp->imp_lock);
3099                 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
3100         } else {
3101                 /** The transno had better not change over replay. */
3102                 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
3103                          lustre_msg_get_transno(req->rq_repmsg) ||
3104                          lustre_msg_get_transno(req->rq_repmsg) == 0,
3105                          "%#llx/%#llx\n",
3106                          lustre_msg_get_transno(req->rq_reqmsg),
3107                          lustre_msg_get_transno(req->rq_repmsg));
3108         }
3109
3110         spin_lock(&imp->imp_lock);
3111         imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
3112         spin_unlock(&imp->imp_lock);
3113         LASSERT(imp->imp_last_replay_transno);
3114
3115         /* transaction number shouldn't be bigger than the latest replayed */
3116         if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
3117                 DEBUG_REQ(D_ERROR, req,
3118                           "Reported transno %llu is bigger than the replayed one: %llu",
3119                           req->rq_transno,
3120                           lustre_msg_get_transno(req->rq_reqmsg));
3121                 GOTO(out, rc = -EINVAL);
3122         }
3123
3124         DEBUG_REQ(D_HA, req, "got rep");
3125
3126         /* let the callback do fixups, possibly including in the request */
3127         if (req->rq_replay_cb)
3128                 req->rq_replay_cb(req);
3129
3130         if (ptlrpc_client_replied(req) &&
3131             lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
3132                 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
3133                           lustre_msg_get_status(req->rq_repmsg),
3134                           aa->praa_old_status);
3135
3136                 /*
3137                  * Note: If the replay fails for MDT-MDT recovery, let's
3138                  * abort all of the following requests in the replay
3139                  * and sending list, because MDT-MDT update requests
3140                  * are dependent on each other, see LU-7039
3141                  */
3142                 if (imp->imp_connect_flags_orig & OBD_CONNECT_MDS_MDS) {
3143                         struct ptlrpc_request *free_req;
3144                         struct ptlrpc_request *tmp;
3145
3146                         spin_lock(&imp->imp_lock);
3147                         list_for_each_entry_safe(free_req, tmp,
3148                                                  &imp->imp_replay_list,
3149                                                  rq_replay_list) {
3150                                 ptlrpc_free_request(free_req);
3151                         }
3152
3153                         list_for_each_entry_safe(free_req, tmp,
3154                                                  &imp->imp_committed_list,
3155                                                  rq_replay_list) {
3156                                 ptlrpc_free_request(free_req);
3157                         }
3158
3159                         list_for_each_entry_safe(free_req, tmp,
3160                                                  &imp->imp_delayed_list,
3161                                                  rq_list) {
3162                                 spin_lock(&free_req->rq_lock);
3163                                 free_req->rq_err = 1;
3164                                 free_req->rq_status = -EIO;
3165                                 ptlrpc_client_wake_req(free_req);
3166                                 spin_unlock(&free_req->rq_lock);
3167                         }
3168
3169                         list_for_each_entry_safe(free_req, tmp,
3170                                                  &imp->imp_sending_list,
3171                                                  rq_list) {
3172                                 spin_lock(&free_req->rq_lock);
3173                                 free_req->rq_err = 1;
3174                                 free_req->rq_status = -EIO;
3175                                 ptlrpc_client_wake_req(free_req);
3176                                 spin_unlock(&free_req->rq_lock);
3177                         }
3178                         spin_unlock(&imp->imp_lock);
3179                 }
3180         } else {
3181                 /* Put it back for re-replay. */
3182                 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
3183         }
3184
3185         /*
3186          * Errors while replay can set transno to 0, but
3187          * imp_last_replay_transno shouldn't be set to 0 anyway
3188          */
3189         if (req->rq_transno == 0)
3190                 CERROR("Transno is 0 during replay!\n");
3191
3192         /* continue with recovery */
3193         rc = ptlrpc_import_recovery_state_machine(imp);
3194  out:
3195         req->rq_send_state = aa->praa_old_state;
3196
3197         if (rc != 0)
3198                 /* this replay failed, so restart recovery */
3199                 ptlrpc_connect_import(imp);
3200
3201         RETURN(rc);
3202 }
3203
3204 /**
3205  * Prepares and queues request for replay.
3206  * Adds it to ptlrpcd queue for actual sending.
3207  * Returns 0 on success.
3208  */
3209 int ptlrpc_replay_req(struct ptlrpc_request *req)
3210 {
3211         struct ptlrpc_replay_async_args *aa;
3212
3213         ENTRY;
3214
3215         LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
3216
3217         CLASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
3218         aa = ptlrpc_req_async_args(req);
3219         memset(aa, 0, sizeof(*aa));
3220
3221         /* Prepare request to be resent with ptlrpcd */
3222         aa->praa_old_state = req->rq_send_state;
3223         req->rq_send_state = LUSTRE_IMP_REPLAY;
3224         req->rq_phase = RQ_PHASE_NEW;
3225         req->rq_next_phase = RQ_PHASE_UNDEFINED;
3226         if (req->rq_repmsg)
3227                 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
3228         req->rq_status = 0;
3229         req->rq_interpret_reply = ptlrpc_replay_interpret;
3230         /* Readjust the timeout for current conditions */
3231         ptlrpc_at_set_req_timeout(req);
3232
3233         /* Tell server net_latency to calculate how long to wait for reply. */
3234         lustre_msg_set_service_time(req->rq_reqmsg,
3235                                     ptlrpc_at_get_net_latency(req));
3236         DEBUG_REQ(D_HA, req, "REPLAY");
3237
3238         atomic_inc(&req->rq_import->imp_replay_inflight);
3239         spin_lock(&req->rq_lock);
3240         req->rq_early_free_repbuf = 0;
3241         spin_unlock(&req->rq_lock);
3242         ptlrpc_request_addref(req); /* ptlrpcd needs a ref */
3243
3244         ptlrpcd_add_req(req);
3245         RETURN(0);
3246 }
3247
3248 /**
3249  * Aborts all in-flight request on import \a imp sending and delayed lists
3250  */
3251 void ptlrpc_abort_inflight(struct obd_import *imp)
3252 {
3253         struct list_head *tmp, *n;
3254
3255         ENTRY;
3256         /*
3257          * Make sure that no new requests get processed for this import.
3258          * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
3259          * this flag and then putting requests on sending_list or delayed_list.
3260          */
3261         spin_lock(&imp->imp_lock);
3262
3263         /*
3264          * XXX locking?  Maybe we should remove each request with the list
3265          * locked?  Also, how do we know if the requests on the list are
3266          * being freed at this time?
3267          */
3268         list_for_each_safe(tmp, n, &imp->imp_sending_list) {
3269                 struct ptlrpc_request *req = list_entry(tmp,
3270                                                         struct ptlrpc_request,
3271                                                         rq_list);
3272
3273                 DEBUG_REQ(D_RPCTRACE, req, "inflight");
3274
3275                 spin_lock(&req->rq_lock);
3276                 if (req->rq_import_generation < imp->imp_generation) {
3277                         req->rq_err = 1;
3278                         req->rq_status = -EIO;
3279                         ptlrpc_client_wake_req(req);
3280                 }
3281                 spin_unlock(&req->rq_lock);
3282         }
3283
3284         list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
3285                 struct ptlrpc_request *req =
3286                         list_entry(tmp, struct ptlrpc_request, rq_list);
3287
3288                 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
3289
3290                 spin_lock(&req->rq_lock);
3291                 if (req->rq_import_generation < imp->imp_generation) {
3292                         req->rq_err = 1;
3293                         req->rq_status = -EIO;
3294                         ptlrpc_client_wake_req(req);
3295                 }
3296                 spin_unlock(&req->rq_lock);
3297         }
3298
3299         /*
3300          * Last chance to free reqs left on the replay list, but we
3301          * will still leak reqs that haven't committed.
3302          */
3303         if (imp->imp_replayable)
3304                 ptlrpc_free_committed(imp);
3305
3306         spin_unlock(&imp->imp_lock);
3307
3308         EXIT;
3309 }
3310
3311 /**
3312  * Abort all uncompleted requests in request set \a set
3313  */
3314 void ptlrpc_abort_set(struct ptlrpc_request_set *set)
3315 {
3316         struct list_head *tmp, *pos;
3317
3318         LASSERT(set != NULL);
3319
3320         list_for_each_safe(pos, tmp, &set->set_requests) {
3321                 struct ptlrpc_request *req =
3322                         list_entry(pos, struct ptlrpc_request,
3323                                    rq_set_chain);
3324
3325                 spin_lock(&req->rq_lock);
3326                 if (req->rq_phase != RQ_PHASE_RPC) {
3327                         spin_unlock(&req->rq_lock);
3328                         continue;
3329                 }
3330
3331                 req->rq_err = 1;
3332                 req->rq_status = -EINTR;
3333                 ptlrpc_client_wake_req(req);
3334                 spin_unlock(&req->rq_lock);
3335         }
3336 }
3337
3338 /**
3339  * Initialize the XID for the node.  This is common among all requests on
3340  * this node, and only requires the property that it is monotonically
3341  * increasing.  It does not need to be sequential.  Since this is also used
3342  * as the RDMA match bits, it is important that a single client NOT have
3343  * the same match bits for two different in-flight requests, hence we do
3344  * NOT want to have an XID per target or similar.
3345  *
3346  * To avoid an unlikely collision between match bits after a client reboot
3347  * (which would deliver old data into the wrong RDMA buffer) initialize
3348  * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
3349  * If the time is clearly incorrect, we instead use a 62-bit random number.
3350  * In the worst case the random number will overflow 1M RPCs per second in
3351  * 9133 years, or permutations thereof.
3352  */
3353 #define YEAR_2004 (1ULL << 30)
3354 void ptlrpc_init_xid(void)
3355 {
3356         time64_t now = ktime_get_real_seconds();
3357         u64 xid;
3358
3359         if (now < YEAR_2004) {
3360                 get_random_bytes(&xid, sizeof(xid));
3361                 xid >>= 2;
3362                 xid |= (1ULL << 61);
3363         } else {
3364                 xid = (u64)now << 20;
3365         }
3366
3367         /* Need to always be aligned to a power-of-two for mutli-bulk BRW */
3368         CLASSERT((PTLRPC_BULK_OPS_COUNT & (PTLRPC_BULK_OPS_COUNT - 1)) == 0);
3369         xid &= PTLRPC_BULK_OPS_MASK;
3370         atomic64_set(&ptlrpc_last_xid, xid);
3371 }
3372
3373 /**
3374  * Increase xid and returns resulting new value to the caller.
3375  *
3376  * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
3377  * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
3378  * itself uses the last bulk xid needed, so the server can determine the
3379  * the number of bulk transfers from the RPC XID and a bitmask.  The starting
3380  * xid must align to a power-of-two value.
3381  *
3382  * This is assumed to be true due to the initial ptlrpc_last_xid
3383  * value also being initialized to a power-of-two value. LU-1431
3384  */
3385 __u64 ptlrpc_next_xid(void)
3386 {
3387         return atomic64_add_return(PTLRPC_BULK_OPS_COUNT, &ptlrpc_last_xid);
3388 }
3389
3390 /**
3391  * If request has a new allocated XID (new request or EINPROGRESS resend),
3392  * use this XID as matchbits of bulk, otherwise allocate a new matchbits for
3393  * request to ensure previous bulk fails and avoid problems with lost replies
3394  * and therefore several transfers landing into the same buffer from different
3395  * sending attempts.
3396  */
3397 void ptlrpc_set_bulk_mbits(struct ptlrpc_request *req)
3398 {
3399         struct ptlrpc_bulk_desc *bd = req->rq_bulk;
3400
3401         LASSERT(bd != NULL);
3402
3403         /*
3404          * Generate new matchbits for all resend requests, including
3405          * resend replay.
3406          */
3407         if (req->rq_resend) {
3408                 __u64 old_mbits = req->rq_mbits;
3409
3410                 /*
3411                  * First time resend on -EINPROGRESS will generate new xid,
3412                  * so we can actually use the rq_xid as rq_mbits in such case,
3413                  * however, it's bit hard to distinguish such resend with a
3414                  * 'resend for the -EINPROGRESS resend'. To make it simple,
3415                  * we opt to generate mbits for all resend cases.
3416                  */
3417                 if (OCD_HAS_FLAG(&bd->bd_import->imp_connect_data,
3418                                  BULK_MBITS)) {
3419                         req->rq_mbits = ptlrpc_next_xid();
3420                 } else {
3421                         /*
3422                          * Old version transfers rq_xid to peer as
3423                          * matchbits.
3424                          */
3425                         spin_lock(&req->rq_import->imp_lock);
3426                         list_del_init(&req->rq_unreplied_list);
3427                         ptlrpc_assign_next_xid_nolock(req);
3428                         spin_unlock(&req->rq_import->imp_lock);
3429                         req->rq_mbits = req->rq_xid;
3430                 }
3431                 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
3432                        old_mbits, req->rq_mbits);
3433         } else if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
3434                 /* Request being sent first time, use xid as matchbits. */
3435                 if (OCD_HAS_FLAG(&bd->bd_import->imp_connect_data, BULK_MBITS)
3436                     || req->rq_mbits == 0) {
3437                         req->rq_mbits = req->rq_xid;
3438                 } else {
3439                         int total_md = (bd->bd_iov_count + LNET_MAX_IOV - 1) /
3440                                         LNET_MAX_IOV;
3441                         req->rq_mbits -= total_md - 1;
3442                 }
3443         } else {
3444                 /*
3445                  * Replay request, xid and matchbits have already been
3446                  * correctly assigned.
3447                  */
3448                 return;
3449         }
3450
3451         /*
3452          * For multi-bulk RPCs, rq_mbits is the last mbits needed for bulks so
3453          * that server can infer the number of bulks that were prepared,
3454          * see LU-1431
3455          */
3456         req->rq_mbits += ((bd->bd_iov_count + LNET_MAX_IOV - 1) /
3457                           LNET_MAX_IOV) - 1;
3458
3459         /*
3460          * Set rq_xid as rq_mbits to indicate the final bulk for the old
3461          * server which does not support OBD_CONNECT_BULK_MBITS. LU-6808.
3462          *
3463          * It's ok to directly set the rq_xid here, since this xid bump
3464          * won't affect the request position in unreplied list.
3465          */
3466         if (!OCD_HAS_FLAG(&bd->bd_import->imp_connect_data, BULK_MBITS))
3467                 req->rq_xid = req->rq_mbits;
3468 }
3469
3470 /**
3471  * Get a glimpse at what next xid value might have been.
3472  * Returns possible next xid.
3473  */
3474 __u64 ptlrpc_sample_next_xid(void)
3475 {
3476         return atomic64_read(&ptlrpc_last_xid) + PTLRPC_BULK_OPS_COUNT;
3477 }
3478 EXPORT_SYMBOL(ptlrpc_sample_next_xid);
3479
3480 /**
3481  * Functions for operating ptlrpc workers.
3482  *
3483  * A ptlrpc work is a function which will be running inside ptlrpc context.
3484  * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
3485  *
3486  * 1. after a work is created, it can be used many times, that is:
3487  *         handler = ptlrpcd_alloc_work();
3488  *         ptlrpcd_queue_work();
3489  *
3490  *    queue it again when necessary:
3491  *         ptlrpcd_queue_work();
3492  *         ptlrpcd_destroy_work();
3493  * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
3494  *    it will only be queued once in any time. Also as its name implies, it may
3495  *    have delay before it really runs by ptlrpcd thread.
3496  */
3497 struct ptlrpc_work_async_args {
3498         int (*cb)(const struct lu_env *, void *);
3499         void *cbdata;
3500 };
3501
3502 static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
3503 {
3504         /* re-initialize the req */
3505         req->rq_timeout         = obd_timeout;
3506         req->rq_sent            = ktime_get_real_seconds();
3507         req->rq_deadline        = req->rq_sent + req->rq_timeout;
3508         req->rq_phase           = RQ_PHASE_INTERPRET;
3509         req->rq_next_phase      = RQ_PHASE_COMPLETE;
3510         req->rq_xid             = ptlrpc_next_xid();
3511         req->rq_import_generation = req->rq_import->imp_generation;
3512
3513         ptlrpcd_add_req(req);
3514 }
3515
3516 static int work_interpreter(const struct lu_env *env,
3517                             struct ptlrpc_request *req, void *args, int rc)
3518 {
3519         struct ptlrpc_work_async_args *arg = args;
3520
3521         LASSERT(ptlrpcd_check_work(req));
3522         LASSERT(arg->cb != NULL);
3523
3524         rc = arg->cb(env, arg->cbdata);
3525
3526         list_del_init(&req->rq_set_chain);
3527         req->rq_set = NULL;
3528
3529         if (atomic_dec_return(&req->rq_refcount) > 1) {
3530                 atomic_set(&req->rq_refcount, 2);
3531                 ptlrpcd_add_work_req(req);
3532         }
3533         return rc;
3534 }
3535
3536 static int worker_format;
3537
3538 static int ptlrpcd_check_work(struct ptlrpc_request *req)
3539 {
3540         return req->rq_pill.rc_fmt == (void *)&worker_format;
3541 }
3542
3543 /**
3544  * Create a work for ptlrpc.
3545  */
3546 void *ptlrpcd_alloc_work(struct obd_import *imp,
3547                          int (*cb)(const struct lu_env *, void *), void *cbdata)
3548 {
3549         struct ptlrpc_request *req = NULL;
3550         struct ptlrpc_work_async_args *args;
3551
3552         ENTRY;
3553         might_sleep();
3554
3555         if (!cb)
3556                 RETURN(ERR_PTR(-EINVAL));
3557
3558         /* copy some code from deprecated fakereq. */
3559         req = ptlrpc_request_cache_alloc(GFP_NOFS);
3560         if (!req) {
3561                 CERROR("ptlrpc: run out of memory!\n");
3562                 RETURN(ERR_PTR(-ENOMEM));
3563         }
3564
3565         ptlrpc_cli_req_init(req);
3566
3567         req->rq_send_state = LUSTRE_IMP_FULL;
3568         req->rq_type = PTL_RPC_MSG_REQUEST;
3569         req->rq_import = class_import_get(imp);
3570         req->rq_interpret_reply = work_interpreter;
3571         /* don't want reply */
3572         req->rq_no_delay = req->rq_no_resend = 1;
3573         req->rq_pill.rc_fmt = (void *)&worker_format;
3574
3575         CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
3576         args = ptlrpc_req_async_args(req);
3577         args->cb     = cb;
3578         args->cbdata = cbdata;
3579
3580         RETURN(req);
3581 }
3582 EXPORT_SYMBOL(ptlrpcd_alloc_work);
3583
3584 void ptlrpcd_destroy_work(void *handler)
3585 {
3586         struct ptlrpc_request *req = handler;
3587
3588         if (req)
3589                 ptlrpc_req_finished(req);
3590 }
3591 EXPORT_SYMBOL(ptlrpcd_destroy_work);
3592
3593 int ptlrpcd_queue_work(void *handler)
3594 {
3595         struct ptlrpc_request *req = handler;
3596
3597         /*
3598          * Check if the req is already being queued.
3599          *
3600          * Here comes a trick: it lacks a way of checking if a req is being
3601          * processed reliably in ptlrpc. Here I have to use refcount of req
3602          * for this purpose. This is okay because the caller should use this
3603          * req as opaque data. - Jinshan
3604          */
3605         LASSERT(atomic_read(&req->rq_refcount) > 0);
3606         if (atomic_inc_return(&req->rq_refcount) == 2)
3607                 ptlrpcd_add_work_req(req);
3608         return 0;
3609 }
3610 EXPORT_SYMBOL(ptlrpcd_queue_work);