Whamcloud - gitweb
fe4333186399e2ae0ae95f89bf6e97295cb8ae13
[fs/lustre-release.git] / lustre / obdclass / lu_object.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2013, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/obdclass/lu_object.c
37  *
38  * Lustre Object.
39  * These are the only exported functions, they provide some generic
40  * infrastructure for managing object devices
41  *
42  *   Author: Nikita Danilov <nikita.danilov@sun.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_CLASS
46
47 #include <libcfs/libcfs.h>
48
49 #ifdef __KERNEL__
50 # include <linux/module.h>
51 #endif
52
53 /* hash_long() */
54 #include <libcfs/libcfs_hash.h>
55 #include <obd_class.h>
56 #include <obd_support.h>
57 #include <lustre_disk.h>
58 #include <lustre_fid.h>
59 #include <lu_object.h>
60 #include <lu_ref.h>
61 #include <libcfs/list.h>
62
63 extern spinlock_t obd_types_lock;
64
65 enum {
66         LU_CACHE_PERCENT_MAX     = 50,
67         LU_CACHE_PERCENT_DEFAULT = 20
68 };
69
70 #define LU_CACHE_NR_MAX_ADJUST          128
71 #define LU_CACHE_NR_UNLIMITED           -1
72 #define LU_CACHE_NR_DEFAULT             LU_CACHE_NR_UNLIMITED
73 #define LU_CACHE_NR_LDISKFS_LIMIT       LU_CACHE_NR_UNLIMITED
74 #define LU_CACHE_NR_ZFS_LIMIT           256
75
76 #define LU_SITE_BITS_MIN    12
77 #define LU_SITE_BITS_MAX    24
78 /**
79  * total 256 buckets, we don't want too many buckets because:
80  * - consume too much memory
81  * - avoid unbalanced LRU list
82  */
83 #define LU_SITE_BKT_BITS    8
84
85
86 static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
87 CFS_MODULE_PARM(lu_cache_percent, "i", int, 0644,
88                 "Percentage of memory to be used as lu_object cache");
89
90 static long lu_cache_nr = LU_CACHE_NR_DEFAULT;
91 CFS_MODULE_PARM(lu_cache_nr, "l", long, 0644,
92                 "Maximum number of objects in lu_object cache");
93
94 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
95
96 /**
97  * Decrease reference counter on object. If last reference is freed, return
98  * object to the cache, unless lu_object_is_dying(o) holds. In the latter
99  * case, free object immediately.
100  */
101 void lu_object_put(const struct lu_env *env, struct lu_object *o)
102 {
103         struct lu_site_bkt_data *bkt;
104         struct lu_object_header *top;
105         struct lu_site          *site;
106         struct lu_object        *orig;
107         cfs_hash_bd_t            bd;
108         const struct lu_fid     *fid;
109
110         top  = o->lo_header;
111         site = o->lo_dev->ld_site;
112         orig = o;
113
114         /*
115          * till we have full fids-on-OST implemented anonymous objects
116          * are possible in OSP. such an object isn't listed in the site
117          * so we should not remove it from the site.
118          */
119         fid = lu_object_fid(o);
120         if (fid_is_zero(fid)) {
121                 LASSERT(top->loh_hash.next == NULL
122                         && top->loh_hash.pprev == NULL);
123                 LASSERT(cfs_list_empty(&top->loh_lru));
124                 if (!atomic_dec_and_test(&top->loh_ref))
125                         return;
126                 cfs_list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
127                         if (o->lo_ops->loo_object_release != NULL)
128                                 o->lo_ops->loo_object_release(env, o);
129                 }
130                 lu_object_free(env, orig);
131                 return;
132         }
133
134         cfs_hash_bd_get(site->ls_obj_hash, &top->loh_fid, &bd);
135         bkt = cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
136
137         if (!cfs_hash_bd_dec_and_lock(site->ls_obj_hash, &bd, &top->loh_ref)) {
138                 if (lu_object_is_dying(top)) {
139
140                         /*
141                          * somebody may be waiting for this, currently only
142                          * used for cl_object, see cl_object_put_last().
143                          */
144                         wake_up_all(&bkt->lsb_marche_funebre);
145                 }
146                 return;
147         }
148
149         LASSERT(bkt->lsb_busy > 0);
150         bkt->lsb_busy--;
151         /*
152          * When last reference is released, iterate over object
153          * layers, and notify them that object is no longer busy.
154          */
155         cfs_list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
156                 if (o->lo_ops->loo_object_release != NULL)
157                         o->lo_ops->loo_object_release(env, o);
158         }
159
160         if (!lu_object_is_dying(top)) {
161                 LASSERT(cfs_list_empty(&top->loh_lru));
162                 cfs_list_add_tail(&top->loh_lru, &bkt->lsb_lru);
163                 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
164                 return;
165         }
166
167         /*
168          * If object is dying (will not be cached), removed it
169          * from hash table and LRU.
170          *
171          * This is done with hash table and LRU lists locked. As the only
172          * way to acquire first reference to previously unreferenced
173          * object is through hash-table lookup (lu_object_find()),
174          * or LRU scanning (lu_site_purge()), that are done under hash-table
175          * and LRU lock, no race with concurrent object lookup is possible
176          * and we can safely destroy object below.
177          */
178         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags))
179                 cfs_hash_bd_del_locked(site->ls_obj_hash, &bd, &top->loh_hash);
180         cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
181         /*
182          * Object was already removed from hash and lru above, can
183          * kill it.
184          */
185         lu_object_free(env, orig);
186 }
187 EXPORT_SYMBOL(lu_object_put);
188
189 /**
190  * Put object and don't keep in cache. This is temporary solution for
191  * multi-site objects when its layering is not constant.
192  */
193 void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o)
194 {
195         set_bit(LU_OBJECT_HEARD_BANSHEE, &o->lo_header->loh_flags);
196         return lu_object_put(env, o);
197 }
198 EXPORT_SYMBOL(lu_object_put_nocache);
199
200 /**
201  * Kill the object and take it out of LRU cache.
202  * Currently used by client code for layout change.
203  */
204 void lu_object_unhash(const struct lu_env *env, struct lu_object *o)
205 {
206         struct lu_object_header *top;
207
208         top = o->lo_header;
209         set_bit(LU_OBJECT_HEARD_BANSHEE, &top->loh_flags);
210         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags)) {
211                 cfs_hash_t *obj_hash = o->lo_dev->ld_site->ls_obj_hash;
212                 cfs_hash_bd_t bd;
213
214                 cfs_hash_bd_get_and_lock(obj_hash, &top->loh_fid, &bd, 1);
215                 cfs_list_del_init(&top->loh_lru);
216                 cfs_hash_bd_del_locked(obj_hash, &bd, &top->loh_hash);
217                 cfs_hash_bd_unlock(obj_hash, &bd, 1);
218         }
219 }
220 EXPORT_SYMBOL(lu_object_unhash);
221
222 /**
223  * Allocate new object.
224  *
225  * This follows object creation protocol, described in the comment within
226  * struct lu_device_operations definition.
227  */
228 static struct lu_object *lu_object_alloc(const struct lu_env *env,
229                                          struct lu_device *dev,
230                                          const struct lu_fid *f,
231                                          const struct lu_object_conf *conf)
232 {
233         struct lu_object *scan;
234         struct lu_object *top;
235         cfs_list_t *layers;
236         unsigned int init_mask = 0;
237         unsigned int init_flag;
238         int clean;
239         int result;
240         ENTRY;
241
242         /*
243          * Create top-level object slice. This will also create
244          * lu_object_header.
245          */
246         top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
247         if (top == NULL)
248                 RETURN(ERR_PTR(-ENOMEM));
249         if (IS_ERR(top))
250                 RETURN(top);
251         /*
252          * This is the only place where object fid is assigned. It's constant
253          * after this point.
254          */
255         top->lo_header->loh_fid = *f;
256         layers = &top->lo_header->loh_layers;
257
258         do {
259                 /*
260                  * Call ->loo_object_init() repeatedly, until no more new
261                  * object slices are created.
262                  */
263                 clean = 1;
264                 init_flag = 1;
265                 cfs_list_for_each_entry(scan, layers, lo_linkage) {
266                         if (init_mask & init_flag)
267                                 goto next;
268                         clean = 0;
269                         scan->lo_header = top->lo_header;
270                         result = scan->lo_ops->loo_object_init(env, scan, conf);
271                         if (result != 0) {
272                                 lu_object_free(env, top);
273                                 RETURN(ERR_PTR(result));
274                         }
275                         init_mask |= init_flag;
276 next:
277                         init_flag <<= 1;
278                 }
279         } while (!clean);
280
281         cfs_list_for_each_entry_reverse(scan, layers, lo_linkage) {
282                 if (scan->lo_ops->loo_object_start != NULL) {
283                         result = scan->lo_ops->loo_object_start(env, scan);
284                         if (result != 0) {
285                                 lu_object_free(env, top);
286                                 RETURN(ERR_PTR(result));
287                         }
288                 }
289         }
290
291         lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
292         RETURN(top);
293 }
294
295 /**
296  * Free an object.
297  */
298 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
299 {
300         struct lu_site_bkt_data *bkt;
301         struct lu_site          *site;
302         struct lu_object        *scan;
303         cfs_list_t              *layers;
304         cfs_list_t               splice;
305
306         site   = o->lo_dev->ld_site;
307         layers = &o->lo_header->loh_layers;
308         bkt    = lu_site_bkt_from_fid(site, &o->lo_header->loh_fid);
309         /*
310          * First call ->loo_object_delete() method to release all resources.
311          */
312         cfs_list_for_each_entry_reverse(scan, layers, lo_linkage) {
313                 if (scan->lo_ops->loo_object_delete != NULL)
314                         scan->lo_ops->loo_object_delete(env, scan);
315         }
316
317         /*
318          * Then, splice object layers into stand-alone list, and call
319          * ->loo_object_free() on all layers to free memory. Splice is
320          * necessary, because lu_object_header is freed together with the
321          * top-level slice.
322          */
323         CFS_INIT_LIST_HEAD(&splice);
324         cfs_list_splice_init(layers, &splice);
325         while (!cfs_list_empty(&splice)) {
326                 /*
327                  * Free layers in bottom-to-top order, so that object header
328                  * lives as long as possible and ->loo_object_free() methods
329                  * can look at its contents.
330                  */
331                 o = container_of0(splice.prev, struct lu_object, lo_linkage);
332                 cfs_list_del_init(&o->lo_linkage);
333                 LASSERT(o->lo_ops->loo_object_free != NULL);
334                 o->lo_ops->loo_object_free(env, o);
335         }
336
337         if (waitqueue_active(&bkt->lsb_marche_funebre))
338                 wake_up_all(&bkt->lsb_marche_funebre);
339 }
340
341 /**
342  * Free \a nr objects from the cold end of the site LRU list.
343  */
344 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
345 {
346         struct lu_object_header *h;
347         struct lu_object_header *temp;
348         struct lu_site_bkt_data *bkt;
349         cfs_hash_bd_t            bd;
350         cfs_hash_bd_t            bd2;
351         cfs_list_t               dispose;
352         int                      did_sth;
353         int                      start;
354         int                      count;
355         int                      bnr;
356         int                      i;
357
358         if (OBD_FAIL_CHECK(OBD_FAIL_OBD_NO_LRU))
359                 RETURN(0);
360
361         CFS_INIT_LIST_HEAD(&dispose);
362         /*
363          * Under LRU list lock, scan LRU list and move unreferenced objects to
364          * the dispose list, removing them from LRU and hash table.
365          */
366         start = s->ls_purge_start;
367         bnr = (nr == ~0) ? -1 : nr / CFS_HASH_NBKT(s->ls_obj_hash) + 1;
368  again:
369         did_sth = 0;
370         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
371                 if (i < start)
372                         continue;
373                 count = bnr;
374                 cfs_hash_bd_lock(s->ls_obj_hash, &bd, 1);
375                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
376
377                 cfs_list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
378                         LASSERT(atomic_read(&h->loh_ref) == 0);
379
380                         cfs_hash_bd_get(s->ls_obj_hash, &h->loh_fid, &bd2);
381                         LASSERT(bd.bd_bucket == bd2.bd_bucket);
382
383                         cfs_hash_bd_del_locked(s->ls_obj_hash,
384                                                &bd2, &h->loh_hash);
385                         cfs_list_move(&h->loh_lru, &dispose);
386                         if (did_sth == 0)
387                                 did_sth = 1;
388
389                         if (nr != ~0 && --nr == 0)
390                                 break;
391
392                         if (count > 0 && --count == 0)
393                                 break;
394
395                 }
396                 cfs_hash_bd_unlock(s->ls_obj_hash, &bd, 1);
397                 cond_resched();
398                 /*
399                  * Free everything on the dispose list. This is safe against
400                  * races due to the reasons described in lu_object_put().
401                  */
402                 while (!cfs_list_empty(&dispose)) {
403                         h = container_of0(dispose.next,
404                                           struct lu_object_header, loh_lru);
405                         cfs_list_del_init(&h->loh_lru);
406                         lu_object_free(env, lu_object_top(h));
407                         lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
408                 }
409
410                 if (nr == 0)
411                         break;
412         }
413
414         if (nr != 0 && did_sth && start != 0) {
415                 start = 0; /* restart from the first bucket */
416                 goto again;
417         }
418         /* race on s->ls_purge_start, but nobody cares */
419         s->ls_purge_start = i % CFS_HASH_NBKT(s->ls_obj_hash);
420
421         return nr;
422 }
423 EXPORT_SYMBOL(lu_site_purge);
424
425 /*
426  * Object printing.
427  *
428  * Code below has to jump through certain loops to output object description
429  * into libcfs_debug_msg-based log. The problem is that lu_object_print()
430  * composes object description from strings that are parts of _lines_ of
431  * output (i.e., strings that are not terminated by newline). This doesn't fit
432  * very well into libcfs_debug_msg() interface that assumes that each message
433  * supplied to it is a self-contained output line.
434  *
435  * To work around this, strings are collected in a temporary buffer
436  * (implemented as a value of lu_cdebug_key key), until terminating newline
437  * character is detected.
438  *
439  */
440
441 enum {
442         /**
443          * Maximal line size.
444          *
445          * XXX overflow is not handled correctly.
446          */
447         LU_CDEBUG_LINE = 512
448 };
449
450 struct lu_cdebug_data {
451         /**
452          * Temporary buffer.
453          */
454         char lck_area[LU_CDEBUG_LINE];
455 };
456
457 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
458 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
459
460 /**
461  * Key, holding temporary buffer. This key is registered very early by
462  * lu_global_init().
463  */
464 struct lu_context_key lu_global_key = {
465         .lct_tags = LCT_MD_THREAD | LCT_DT_THREAD |
466                     LCT_MG_THREAD | LCT_CL_THREAD | LCT_LOCAL,
467         .lct_init = lu_global_key_init,
468         .lct_fini = lu_global_key_fini
469 };
470
471 /**
472  * Printer function emitting messages through libcfs_debug_msg().
473  */
474 int lu_cdebug_printer(const struct lu_env *env,
475                       void *cookie, const char *format, ...)
476 {
477         struct libcfs_debug_msg_data *msgdata = cookie;
478         struct lu_cdebug_data        *key;
479         int used;
480         int complete;
481         va_list args;
482
483         va_start(args, format);
484
485         key = lu_context_key_get(&env->le_ctx, &lu_global_key);
486         LASSERT(key != NULL);
487
488         used = strlen(key->lck_area);
489         complete = format[strlen(format) - 1] == '\n';
490         /*
491          * Append new chunk to the buffer.
492          */
493         vsnprintf(key->lck_area + used,
494                   ARRAY_SIZE(key->lck_area) - used, format, args);
495         if (complete) {
496                 if (cfs_cdebug_show(msgdata->msg_mask, msgdata->msg_subsys))
497                         libcfs_debug_msg(msgdata, "%s", key->lck_area);
498                 key->lck_area[0] = 0;
499         }
500         va_end(args);
501         return 0;
502 }
503 EXPORT_SYMBOL(lu_cdebug_printer);
504
505 /**
506  * Print object header.
507  */
508 void lu_object_header_print(const struct lu_env *env, void *cookie,
509                             lu_printer_t printer,
510                             const struct lu_object_header *hdr)
511 {
512         (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
513                    hdr, hdr->loh_flags, atomic_read(&hdr->loh_ref),
514                    PFID(&hdr->loh_fid),
515                    cfs_hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
516                    cfs_list_empty((cfs_list_t *)&hdr->loh_lru) ? \
517                    "" : " lru",
518                    hdr->loh_attr & LOHA_EXISTS ? " exist":"");
519 }
520 EXPORT_SYMBOL(lu_object_header_print);
521
522 /**
523  * Print human readable representation of the \a o to the \a printer.
524  */
525 void lu_object_print(const struct lu_env *env, void *cookie,
526                      lu_printer_t printer, const struct lu_object *o)
527 {
528         static const char ruler[] = "........................................";
529         struct lu_object_header *top;
530         int depth = 4;
531
532         top = o->lo_header;
533         lu_object_header_print(env, cookie, printer, top);
534         (*printer)(env, cookie, "{\n");
535
536         cfs_list_for_each_entry(o, &top->loh_layers, lo_linkage) {
537                 /*
538                  * print `.' \a depth times followed by type name and address
539                  */
540                 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
541                            o->lo_dev->ld_type->ldt_name, o);
542
543                 if (o->lo_ops->loo_object_print != NULL)
544                         (*o->lo_ops->loo_object_print)(env, cookie, printer, o);
545
546                 (*printer)(env, cookie, "\n");
547         }
548
549         (*printer)(env, cookie, "} header@%p\n", top);
550 }
551 EXPORT_SYMBOL(lu_object_print);
552
553 /**
554  * Check object consistency.
555  */
556 int lu_object_invariant(const struct lu_object *o)
557 {
558         struct lu_object_header *top;
559
560         top = o->lo_header;
561         cfs_list_for_each_entry(o, &top->loh_layers, lo_linkage) {
562                 if (o->lo_ops->loo_object_invariant != NULL &&
563                     !o->lo_ops->loo_object_invariant(o))
564                         return 0;
565         }
566         return 1;
567 }
568 EXPORT_SYMBOL(lu_object_invariant);
569
570 static struct lu_object *htable_lookup(struct lu_site *s,
571                                        cfs_hash_bd_t *bd,
572                                        const struct lu_fid *f,
573                                        wait_queue_t *waiter,
574                                        __u64 *version)
575 {
576         struct lu_site_bkt_data *bkt;
577         struct lu_object_header *h;
578         cfs_hlist_node_t        *hnode;
579         __u64  ver = cfs_hash_bd_version_get(bd);
580
581         if (*version == ver)
582                 return ERR_PTR(-ENOENT);
583
584         *version = ver;
585         bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, bd);
586         /* cfs_hash_bd_peek_locked is a somehow "internal" function
587          * of cfs_hash, it doesn't add refcount on object. */
588         hnode = cfs_hash_bd_peek_locked(s->ls_obj_hash, bd, (void *)f);
589         if (hnode == NULL) {
590                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
591                 return ERR_PTR(-ENOENT);
592         }
593
594         h = container_of0(hnode, struct lu_object_header, loh_hash);
595         if (likely(!lu_object_is_dying(h))) {
596                 cfs_hash_get(s->ls_obj_hash, hnode);
597                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
598                 cfs_list_del_init(&h->loh_lru);
599                 return lu_object_top(h);
600         }
601
602         /*
603          * Lookup found an object being destroyed this object cannot be
604          * returned (to assure that references to dying objects are eventually
605          * drained), and moreover, lookup has to wait until object is freed.
606          */
607
608         init_waitqueue_entry_current(waiter);
609         add_wait_queue(&bkt->lsb_marche_funebre, waiter);
610         set_current_state(TASK_UNINTERRUPTIBLE);
611         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_DEATH_RACE);
612         return ERR_PTR(-EAGAIN);
613 }
614
615 static struct lu_object *htable_lookup_nowait(struct lu_site *s,
616                                               cfs_hash_bd_t *bd,
617                                               const struct lu_fid *f)
618 {
619         cfs_hlist_node_t        *hnode;
620         struct lu_object_header *h;
621
622         /* cfs_hash_bd_peek_locked is a somehow "internal" function
623          * of cfs_hash, it doesn't add refcount on object. */
624         hnode = cfs_hash_bd_peek_locked(s->ls_obj_hash, bd, (void *)f);
625         if (hnode == NULL) {
626                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
627                 return ERR_PTR(-ENOENT);
628         }
629
630         h = container_of0(hnode, struct lu_object_header, loh_hash);
631         if (unlikely(lu_object_is_dying(h)))
632                 return ERR_PTR(-ENOENT);
633
634         cfs_hash_get(s->ls_obj_hash, hnode);
635         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
636         cfs_list_del_init(&h->loh_lru);
637         return lu_object_top(h);
638 }
639
640 /**
641  * Search cache for an object with the fid \a f. If such object is found,
642  * return it. Otherwise, create new object, insert it into cache and return
643  * it. In any case, additional reference is acquired on the returned object.
644  */
645 struct lu_object *lu_object_find(const struct lu_env *env,
646                                  struct lu_device *dev, const struct lu_fid *f,
647                                  const struct lu_object_conf *conf)
648 {
649         return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
650 }
651 EXPORT_SYMBOL(lu_object_find);
652
653 /*
654  * Limit the lu_object cache to a maximum of lu_cache_nr objects.  Because
655  * the calculation for the number of objects to reclaim is not covered by
656  * a lock the maximum number of objects is capped by LU_CACHE_MAX_ADJUST.
657  * This ensures that many concurrent threads will not accidentally purge
658  * the entire cache.
659  */
660 static void lu_object_limit(const struct lu_env *env,
661                             struct lu_device *dev)
662 {
663         __u64 size, nr;
664
665         if (lu_cache_nr == LU_CACHE_NR_UNLIMITED)
666                 return;
667
668         size = cfs_hash_size_get(dev->ld_site->ls_obj_hash);
669         nr = (__u64)lu_cache_nr;
670         if (size > nr)
671                 lu_site_purge(env, dev->ld_site,
672                               MIN(size - nr, LU_CACHE_NR_MAX_ADJUST));
673
674         return;
675 }
676
677 static struct lu_object *lu_object_new(const struct lu_env *env,
678                                        struct lu_device *dev,
679                                        const struct lu_fid *f,
680                                        const struct lu_object_conf *conf)
681 {
682         struct lu_object        *o;
683         cfs_hash_t              *hs;
684         cfs_hash_bd_t            bd;
685         struct lu_site_bkt_data *bkt;
686
687         o = lu_object_alloc(env, dev, f, conf);
688         if (unlikely(IS_ERR(o)))
689                 return o;
690
691         hs = dev->ld_site->ls_obj_hash;
692         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
693         bkt = cfs_hash_bd_extra_get(hs, &bd);
694         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
695         bkt->lsb_busy++;
696         cfs_hash_bd_unlock(hs, &bd, 1);
697
698         lu_object_limit(env, dev);
699
700         return o;
701 }
702
703 /**
704  * Core logic of lu_object_find*() functions.
705  */
706 static struct lu_object *lu_object_find_try(const struct lu_env *env,
707                                             struct lu_device *dev,
708                                             const struct lu_fid *f,
709                                             const struct lu_object_conf *conf,
710                                             wait_queue_t *waiter)
711 {
712         struct lu_object      *o;
713         struct lu_object      *shadow;
714         struct lu_site        *s;
715         cfs_hash_t            *hs;
716         cfs_hash_bd_t          bd;
717         __u64                  version = 0;
718
719         /*
720          * This uses standard index maintenance protocol:
721          *
722          *     - search index under lock, and return object if found;
723          *     - otherwise, unlock index, allocate new object;
724          *     - lock index and search again;
725          *     - if nothing is found (usual case), insert newly created
726          *       object into index;
727          *     - otherwise (race: other thread inserted object), free
728          *       object just allocated.
729          *     - unlock index;
730          *     - return object.
731          *
732          * For "LOC_F_NEW" case, we are sure the object is new established.
733          * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
734          * just alloc and insert directly.
735          *
736          * If dying object is found during index search, add @waiter to the
737          * site wait-queue and return ERR_PTR(-EAGAIN).
738          */
739         if (conf != NULL && conf->loc_flags & LOC_F_NEW)
740                 return lu_object_new(env, dev, f, conf);
741
742         s  = dev->ld_site;
743         hs = s->ls_obj_hash;
744         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
745         o = htable_lookup(s, &bd, f, waiter, &version);
746         cfs_hash_bd_unlock(hs, &bd, 1);
747         if (!IS_ERR(o) || PTR_ERR(o) != -ENOENT)
748                 return o;
749
750         /*
751          * Allocate new object. This may result in rather complicated
752          * operations, including fld queries, inode loading, etc.
753          */
754         o = lu_object_alloc(env, dev, f, conf);
755         if (unlikely(IS_ERR(o)))
756                 return o;
757
758         LASSERT(lu_fid_eq(lu_object_fid(o), f));
759
760         cfs_hash_bd_lock(hs, &bd, 1);
761
762         shadow = htable_lookup(s, &bd, f, waiter, &version);
763         if (likely(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT)) {
764                 struct lu_site_bkt_data *bkt;
765
766                 bkt = cfs_hash_bd_extra_get(hs, &bd);
767                 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
768                 bkt->lsb_busy++;
769                 cfs_hash_bd_unlock(hs, &bd, 1);
770
771                 lu_object_limit(env, dev);
772
773                 return o;
774         }
775
776         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
777         cfs_hash_bd_unlock(hs, &bd, 1);
778         lu_object_free(env, o);
779         return shadow;
780 }
781
782 /**
783  * Much like lu_object_find(), but top level device of object is specifically
784  * \a dev rather than top level device of the site. This interface allows
785  * objects of different "stacking" to be created within the same site.
786  */
787 struct lu_object *lu_object_find_at(const struct lu_env *env,
788                                     struct lu_device *dev,
789                                     const struct lu_fid *f,
790                                     const struct lu_object_conf *conf)
791 {
792         struct lu_site_bkt_data *bkt;
793         struct lu_object        *obj;
794         wait_queue_t           wait;
795
796         while (1) {
797                 obj = lu_object_find_try(env, dev, f, conf, &wait);
798                 if (obj != ERR_PTR(-EAGAIN))
799                         return obj;
800                 /*
801                  * lu_object_find_try() already added waiter into the
802                  * wait queue.
803                  */
804                 waitq_wait(&wait, TASK_UNINTERRUPTIBLE);
805                 bkt = lu_site_bkt_from_fid(dev->ld_site, (void *)f);
806                 remove_wait_queue(&bkt->lsb_marche_funebre, &wait);
807         }
808 }
809 EXPORT_SYMBOL(lu_object_find_at);
810
811 /**
812  * Try to find the object in cache without waiting for the dead object
813  * to be released nor allocating object if no cached one was found.
814  *
815  * The found object will be set as LU_OBJECT_HEARD_BANSHEE for purging.
816  */
817 void lu_object_purge(const struct lu_env *env, struct lu_device *dev,
818                      const struct lu_fid *f)
819 {
820         struct lu_site          *s  = dev->ld_site;
821         cfs_hash_t              *hs = s->ls_obj_hash;
822         cfs_hash_bd_t            bd;
823         struct lu_object        *o;
824
825         cfs_hash_bd_get_and_lock(hs, f, &bd, 1);
826         o = htable_lookup_nowait(s, &bd, f);
827         cfs_hash_bd_unlock(hs, &bd, 1);
828         if (!IS_ERR(o)) {
829                 set_bit(LU_OBJECT_HEARD_BANSHEE, &o->lo_header->loh_flags);
830                 lu_object_put(env, o);
831         }
832 }
833 EXPORT_SYMBOL(lu_object_purge);
834
835 /**
836  * Find object with given fid, and return its slice belonging to given device.
837  */
838 struct lu_object *lu_object_find_slice(const struct lu_env *env,
839                                        struct lu_device *dev,
840                                        const struct lu_fid *f,
841                                        const struct lu_object_conf *conf)
842 {
843         struct lu_object *top;
844         struct lu_object *obj;
845
846         top = lu_object_find(env, dev, f, conf);
847         if (!IS_ERR(top)) {
848                 obj = lu_object_locate(top->lo_header, dev->ld_type);
849                 if (obj == NULL)
850                         lu_object_put(env, top);
851         } else
852                 obj = top;
853         return obj;
854 }
855 EXPORT_SYMBOL(lu_object_find_slice);
856
857 /**
858  * Global list of all device types.
859  */
860 static CFS_LIST_HEAD(lu_device_types);
861
862 int lu_device_type_init(struct lu_device_type *ldt)
863 {
864         int result = 0;
865
866         atomic_set(&ldt->ldt_device_nr, 0);
867         INIT_LIST_HEAD(&ldt->ldt_linkage);
868         if (ldt->ldt_ops->ldto_init)
869                 result = ldt->ldt_ops->ldto_init(ldt);
870
871         if (result == 0) {
872                 spin_lock(&obd_types_lock);
873                 list_add(&ldt->ldt_linkage, &lu_device_types);
874                 spin_unlock(&obd_types_lock);
875         }
876
877         return result;
878 }
879 EXPORT_SYMBOL(lu_device_type_init);
880
881 void lu_device_type_fini(struct lu_device_type *ldt)
882 {
883         spin_lock(&obd_types_lock);
884         list_del_init(&ldt->ldt_linkage);
885         spin_unlock(&obd_types_lock);
886         if (ldt->ldt_ops->ldto_fini)
887                 ldt->ldt_ops->ldto_fini(ldt);
888 }
889 EXPORT_SYMBOL(lu_device_type_fini);
890
891 /**
892  * Global list of all sites on this node
893  */
894 static CFS_LIST_HEAD(lu_sites);
895 static DEFINE_MUTEX(lu_sites_guard);
896
897 /**
898  * Global environment used by site shrinker.
899  */
900 static struct lu_env lu_shrink_env;
901
902 struct lu_site_print_arg {
903         struct lu_env   *lsp_env;
904         void            *lsp_cookie;
905         lu_printer_t     lsp_printer;
906 };
907
908 static int
909 lu_site_obj_print(cfs_hash_t *hs, cfs_hash_bd_t *bd,
910                   cfs_hlist_node_t *hnode, void *data)
911 {
912         struct lu_site_print_arg *arg = (struct lu_site_print_arg *)data;
913         struct lu_object_header  *h;
914
915         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
916         if (!cfs_list_empty(&h->loh_layers)) {
917                 const struct lu_object *o;
918
919                 o = lu_object_top(h);
920                 lu_object_print(arg->lsp_env, arg->lsp_cookie,
921                                 arg->lsp_printer, o);
922         } else {
923                 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
924                                        arg->lsp_printer, h);
925         }
926         return 0;
927 }
928
929 /**
930  * Print all objects in \a s.
931  */
932 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
933                    lu_printer_t printer)
934 {
935         struct lu_site_print_arg arg = {
936                 .lsp_env     = (struct lu_env *)env,
937                 .lsp_cookie  = cookie,
938                 .lsp_printer = printer,
939         };
940
941         cfs_hash_for_each(s->ls_obj_hash, lu_site_obj_print, &arg);
942 }
943 EXPORT_SYMBOL(lu_site_print);
944
945 /**
946  * Return desired hash table order.
947  */
948 static int lu_htable_order(struct lu_device *top)
949 {
950         unsigned long cache_size;
951         int bits;
952
953         /*
954          * For ZFS based OSDs the cache should be disabled by default.  This
955          * allows the ZFS ARC maximum flexibility in determining what buffers
956          * to cache.  If Lustre has objects or buffer which it wants to ensure
957          * always stay cached it must maintain a hold on them.
958          */
959         if (strcmp(top->ld_type->ldt_name, LUSTRE_OSD_ZFS_NAME) == 0) {
960                 lu_cache_percent = 1;
961                 lu_cache_nr = LU_CACHE_NR_ZFS_LIMIT;
962                 return LU_SITE_BITS_MIN;
963         }
964
965         /*
966          * Calculate hash table size, assuming that we want reasonable
967          * performance when 20% of total memory is occupied by cache of
968          * lu_objects.
969          *
970          * Size of lu_object is (arbitrary) taken as 1K (together with inode).
971          */
972         cache_size = totalram_pages;
973
974 #if BITS_PER_LONG == 32
975         /* limit hashtable size for lowmem systems to low RAM */
976         if (cache_size > 1 << (30 - PAGE_CACHE_SHIFT))
977                 cache_size = 1 << (30 - PAGE_CACHE_SHIFT) * 3 / 4;
978 #endif
979
980         /* clear off unreasonable cache setting. */
981         if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
982                 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in"
983                       " the range of (0, %u]. Will use default value: %u.\n",
984                       lu_cache_percent, LU_CACHE_PERCENT_MAX,
985                       LU_CACHE_PERCENT_DEFAULT);
986
987                 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
988         }
989         cache_size = cache_size / 100 * lu_cache_percent *
990                 (PAGE_CACHE_SIZE / 1024);
991
992         for (bits = 1; (1 << bits) < cache_size; ++bits) {
993                 ;
994         }
995         return bits;
996 }
997
998 static unsigned lu_obj_hop_hash(cfs_hash_t *hs,
999                                 const void *key, unsigned mask)
1000 {
1001         struct lu_fid  *fid = (struct lu_fid *)key;
1002         __u32           hash;
1003
1004         hash = fid_flatten32(fid);
1005         hash += (hash >> 4) + (hash << 12); /* mixing oid and seq */
1006         hash = hash_long(hash, hs->hs_bkt_bits);
1007
1008         /* give me another random factor */
1009         hash -= hash_long((unsigned long)hs, fid_oid(fid) % 11 + 3);
1010
1011         hash <<= hs->hs_cur_bits - hs->hs_bkt_bits;
1012         hash |= (fid_seq(fid) + fid_oid(fid)) & (CFS_HASH_NBKT(hs) - 1);
1013
1014         return hash & mask;
1015 }
1016
1017 static void *lu_obj_hop_object(cfs_hlist_node_t *hnode)
1018 {
1019         return cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
1020 }
1021
1022 static void *lu_obj_hop_key(cfs_hlist_node_t *hnode)
1023 {
1024         struct lu_object_header *h;
1025
1026         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
1027         return &h->loh_fid;
1028 }
1029
1030 static int lu_obj_hop_keycmp(const void *key, cfs_hlist_node_t *hnode)
1031 {
1032         struct lu_object_header *h;
1033
1034         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
1035         return lu_fid_eq(&h->loh_fid, (struct lu_fid *)key);
1036 }
1037
1038 static void lu_obj_hop_get(cfs_hash_t *hs, cfs_hlist_node_t *hnode)
1039 {
1040         struct lu_object_header *h;
1041
1042         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
1043         if (atomic_add_return(1, &h->loh_ref) == 1) {
1044                 struct lu_site_bkt_data *bkt;
1045                 cfs_hash_bd_t            bd;
1046
1047                 cfs_hash_bd_get(hs, &h->loh_fid, &bd);
1048                 bkt = cfs_hash_bd_extra_get(hs, &bd);
1049                 bkt->lsb_busy++;
1050         }
1051 }
1052
1053 static void lu_obj_hop_put_locked(cfs_hash_t *hs, cfs_hlist_node_t *hnode)
1054 {
1055         LBUG(); /* we should never called it */
1056 }
1057
1058 cfs_hash_ops_t lu_site_hash_ops = {
1059         .hs_hash        = lu_obj_hop_hash,
1060         .hs_key         = lu_obj_hop_key,
1061         .hs_keycmp      = lu_obj_hop_keycmp,
1062         .hs_object      = lu_obj_hop_object,
1063         .hs_get         = lu_obj_hop_get,
1064         .hs_put_locked  = lu_obj_hop_put_locked,
1065 };
1066
1067 void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d)
1068 {
1069         spin_lock(&s->ls_ld_lock);
1070         if (cfs_list_empty(&d->ld_linkage))
1071                 cfs_list_add(&d->ld_linkage, &s->ls_ld_linkage);
1072         spin_unlock(&s->ls_ld_lock);
1073 }
1074 EXPORT_SYMBOL(lu_dev_add_linkage);
1075
1076 void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d)
1077 {
1078         spin_lock(&s->ls_ld_lock);
1079         cfs_list_del_init(&d->ld_linkage);
1080         spin_unlock(&s->ls_ld_lock);
1081 }
1082 EXPORT_SYMBOL(lu_dev_del_linkage);
1083
1084 /**
1085   * Initialize site \a s, with \a d as the top level device.
1086   */
1087 int lu_site_init(struct lu_site *s, struct lu_device *top)
1088 {
1089         struct lu_site_bkt_data *bkt;
1090         cfs_hash_bd_t bd;
1091         char name[16];
1092         int bits;
1093         int i;
1094         ENTRY;
1095
1096         memset(s, 0, sizeof *s);
1097         bits = lu_htable_order(top);
1098         snprintf(name, 16, "lu_site_%s", top->ld_type->ldt_name);
1099         for (bits = min(max(LU_SITE_BITS_MIN, bits), LU_SITE_BITS_MAX);
1100              bits >= LU_SITE_BITS_MIN; bits--) {
1101                 s->ls_obj_hash = cfs_hash_create(name, bits, bits,
1102                                                  bits - LU_SITE_BKT_BITS,
1103                                                  sizeof(*bkt), 0, 0,
1104                                                  &lu_site_hash_ops,
1105                                                  CFS_HASH_SPIN_BKTLOCK |
1106                                                  CFS_HASH_NO_ITEMREF |
1107                                                  CFS_HASH_DEPTH |
1108                                                  CFS_HASH_ASSERT_EMPTY |
1109                                                  CFS_HASH_COUNTER);
1110                 if (s->ls_obj_hash != NULL)
1111                         break;
1112         }
1113
1114         if (s->ls_obj_hash == NULL) {
1115                 CERROR("failed to create lu_site hash with bits: %d\n", bits);
1116                 return -ENOMEM;
1117         }
1118
1119         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
1120                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
1121                 CFS_INIT_LIST_HEAD(&bkt->lsb_lru);
1122                 init_waitqueue_head(&bkt->lsb_marche_funebre);
1123         }
1124
1125         s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
1126         if (s->ls_stats == NULL) {
1127                 cfs_hash_putref(s->ls_obj_hash);
1128                 s->ls_obj_hash = NULL;
1129                 return -ENOMEM;
1130         }
1131
1132         lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
1133                              0, "created", "created");
1134         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
1135                              0, "cache_hit", "cache_hit");
1136         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
1137                              0, "cache_miss", "cache_miss");
1138         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
1139                              0, "cache_race", "cache_race");
1140         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
1141                              0, "cache_death_race", "cache_death_race");
1142         lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
1143                              0, "lru_purged", "lru_purged");
1144
1145         CFS_INIT_LIST_HEAD(&s->ls_linkage);
1146         s->ls_top_dev = top;
1147         top->ld_site = s;
1148         lu_device_get(top);
1149         lu_ref_add(&top->ld_reference, "site-top", s);
1150
1151         CFS_INIT_LIST_HEAD(&s->ls_ld_linkage);
1152         spin_lock_init(&s->ls_ld_lock);
1153
1154         lu_dev_add_linkage(s, top);
1155
1156         RETURN(0);
1157 }
1158 EXPORT_SYMBOL(lu_site_init);
1159
1160 /**
1161  * Finalize \a s and release its resources.
1162  */
1163 void lu_site_fini(struct lu_site *s)
1164 {
1165         mutex_lock(&lu_sites_guard);
1166         cfs_list_del_init(&s->ls_linkage);
1167         mutex_unlock(&lu_sites_guard);
1168
1169         if (s->ls_obj_hash != NULL) {
1170                 cfs_hash_putref(s->ls_obj_hash);
1171                 s->ls_obj_hash = NULL;
1172         }
1173
1174         if (s->ls_top_dev != NULL) {
1175                 s->ls_top_dev->ld_site = NULL;
1176                 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
1177                 lu_device_put(s->ls_top_dev);
1178                 s->ls_top_dev = NULL;
1179         }
1180
1181         if (s->ls_stats != NULL)
1182                 lprocfs_free_stats(&s->ls_stats);
1183 }
1184 EXPORT_SYMBOL(lu_site_fini);
1185
1186 /**
1187  * Called when initialization of stack for this site is completed.
1188  */
1189 int lu_site_init_finish(struct lu_site *s)
1190 {
1191         int result;
1192         mutex_lock(&lu_sites_guard);
1193         result = lu_context_refill(&lu_shrink_env.le_ctx);
1194         if (result == 0)
1195                 cfs_list_add(&s->ls_linkage, &lu_sites);
1196         mutex_unlock(&lu_sites_guard);
1197         return result;
1198 }
1199 EXPORT_SYMBOL(lu_site_init_finish);
1200
1201 /**
1202  * Acquire additional reference on device \a d
1203  */
1204 void lu_device_get(struct lu_device *d)
1205 {
1206         atomic_inc(&d->ld_ref);
1207 }
1208 EXPORT_SYMBOL(lu_device_get);
1209
1210 /**
1211  * Release reference on device \a d.
1212  */
1213 void lu_device_put(struct lu_device *d)
1214 {
1215         LASSERT(atomic_read(&d->ld_ref) > 0);
1216         atomic_dec(&d->ld_ref);
1217 }
1218 EXPORT_SYMBOL(lu_device_put);
1219
1220 /**
1221  * Initialize device \a d of type \a t.
1222  */
1223 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1224 {
1225         if (atomic_inc_return(&t->ldt_device_nr) == 1 &&
1226             t->ldt_ops->ldto_start != NULL)
1227                 t->ldt_ops->ldto_start(t);
1228
1229         memset(d, 0, sizeof *d);
1230         d->ld_type = t;
1231         lu_ref_init(&d->ld_reference);
1232         INIT_LIST_HEAD(&d->ld_linkage);
1233
1234         return 0;
1235 }
1236 EXPORT_SYMBOL(lu_device_init);
1237
1238 /**
1239  * Finalize device \a d.
1240  */
1241 void lu_device_fini(struct lu_device *d)
1242 {
1243         struct lu_device_type *t = d->ld_type;
1244
1245         if (d->ld_obd != NULL) {
1246                 d->ld_obd->obd_lu_dev = NULL;
1247                 d->ld_obd = NULL;
1248         }
1249
1250         lu_ref_fini(&d->ld_reference);
1251         LASSERTF(atomic_read(&d->ld_ref) == 0,
1252                  "Refcount is %u\n", atomic_read(&d->ld_ref));
1253         LASSERT(atomic_read(&t->ldt_device_nr) > 0);
1254
1255         if (atomic_dec_and_test(&t->ldt_device_nr) &&
1256             t->ldt_ops->ldto_stop != NULL)
1257                 t->ldt_ops->ldto_stop(t);
1258 }
1259 EXPORT_SYMBOL(lu_device_fini);
1260
1261 /**
1262  * Initialize object \a o that is part of compound object \a h and was created
1263  * by device \a d.
1264  */
1265 int lu_object_init(struct lu_object *o, struct lu_object_header *h,
1266                    struct lu_device *d)
1267 {
1268         memset(o, 0, sizeof(*o));
1269         o->lo_header = h;
1270         o->lo_dev = d;
1271         lu_device_get(d);
1272         lu_ref_add_at(&d->ld_reference, &o->lo_dev_ref, "lu_object", o);
1273         CFS_INIT_LIST_HEAD(&o->lo_linkage);
1274
1275         return 0;
1276 }
1277 EXPORT_SYMBOL(lu_object_init);
1278
1279 /**
1280  * Finalize object and release its resources.
1281  */
1282 void lu_object_fini(struct lu_object *o)
1283 {
1284         struct lu_device *dev = o->lo_dev;
1285
1286         LASSERT(cfs_list_empty(&o->lo_linkage));
1287
1288         if (dev != NULL) {
1289                 lu_ref_del_at(&dev->ld_reference, &o->lo_dev_ref,
1290                               "lu_object", o);
1291                 lu_device_put(dev);
1292                 o->lo_dev = NULL;
1293         }
1294 }
1295 EXPORT_SYMBOL(lu_object_fini);
1296
1297 /**
1298  * Add object \a o as first layer of compound object \a h
1299  *
1300  * This is typically called by the ->ldo_object_alloc() method of top-level
1301  * device.
1302  */
1303 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1304 {
1305         cfs_list_move(&o->lo_linkage, &h->loh_layers);
1306 }
1307 EXPORT_SYMBOL(lu_object_add_top);
1308
1309 /**
1310  * Add object \a o as a layer of compound object, going after \a before.
1311  *
1312  * This is typically called by the ->ldo_object_alloc() method of \a
1313  * before->lo_dev.
1314  */
1315 void lu_object_add(struct lu_object *before, struct lu_object *o)
1316 {
1317         cfs_list_move(&o->lo_linkage, &before->lo_linkage);
1318 }
1319 EXPORT_SYMBOL(lu_object_add);
1320
1321 /**
1322  * Initialize compound object.
1323  */
1324 int lu_object_header_init(struct lu_object_header *h)
1325 {
1326         memset(h, 0, sizeof *h);
1327         atomic_set(&h->loh_ref, 1);
1328         CFS_INIT_HLIST_NODE(&h->loh_hash);
1329         CFS_INIT_LIST_HEAD(&h->loh_lru);
1330         CFS_INIT_LIST_HEAD(&h->loh_layers);
1331         lu_ref_init(&h->loh_reference);
1332         return 0;
1333 }
1334 EXPORT_SYMBOL(lu_object_header_init);
1335
1336 /**
1337  * Finalize compound object.
1338  */
1339 void lu_object_header_fini(struct lu_object_header *h)
1340 {
1341         LASSERT(cfs_list_empty(&h->loh_layers));
1342         LASSERT(cfs_list_empty(&h->loh_lru));
1343         LASSERT(cfs_hlist_unhashed(&h->loh_hash));
1344         lu_ref_fini(&h->loh_reference);
1345 }
1346 EXPORT_SYMBOL(lu_object_header_fini);
1347
1348 /**
1349  * Given a compound object, find its slice, corresponding to the device type
1350  * \a dtype.
1351  */
1352 struct lu_object *lu_object_locate(struct lu_object_header *h,
1353                                    const struct lu_device_type *dtype)
1354 {
1355         struct lu_object *o;
1356
1357         cfs_list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1358                 if (o->lo_dev->ld_type == dtype)
1359                         return o;
1360         }
1361         return NULL;
1362 }
1363 EXPORT_SYMBOL(lu_object_locate);
1364
1365
1366
1367 /**
1368  * Finalize and free devices in the device stack.
1369  *
1370  * Finalize device stack by purging object cache, and calling
1371  * lu_device_type_operations::ldto_device_fini() and
1372  * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1373  */
1374 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1375 {
1376         struct lu_site   *site = top->ld_site;
1377         struct lu_device *scan;
1378         struct lu_device *next;
1379
1380         lu_site_purge(env, site, ~0);
1381         for (scan = top; scan != NULL; scan = next) {
1382                 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1383                 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1384                 lu_device_put(scan);
1385         }
1386
1387         /* purge again. */
1388         lu_site_purge(env, site, ~0);
1389
1390         for (scan = top; scan != NULL; scan = next) {
1391                 const struct lu_device_type *ldt = scan->ld_type;
1392                 struct obd_type             *type;
1393
1394                 next = ldt->ldt_ops->ldto_device_free(env, scan);
1395                 type = ldt->ldt_obd_type;
1396                 if (type != NULL) {
1397                         type->typ_refcnt--;
1398                         class_put_type(type);
1399                 }
1400         }
1401 }
1402 EXPORT_SYMBOL(lu_stack_fini);
1403
1404 enum {
1405         /**
1406          * Maximal number of tld slots.
1407          */
1408         LU_CONTEXT_KEY_NR = 40
1409 };
1410
1411 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1412
1413 static DEFINE_SPINLOCK(lu_keys_guard);
1414
1415 /**
1416  * Global counter incremented whenever key is registered, unregistered,
1417  * revived or quiesced. This is used to void unnecessary calls to
1418  * lu_context_refill(). No locking is provided, as initialization and shutdown
1419  * are supposed to be externally serialized.
1420  */
1421 static unsigned key_set_version = 0;
1422
1423 /**
1424  * Register new key.
1425  */
1426 int lu_context_key_register(struct lu_context_key *key)
1427 {
1428         int result;
1429         int i;
1430
1431         LASSERT(key->lct_init != NULL);
1432         LASSERT(key->lct_fini != NULL);
1433         LASSERT(key->lct_tags != 0);
1434         LASSERT(key->lct_owner != NULL);
1435
1436         result = -ENFILE;
1437         spin_lock(&lu_keys_guard);
1438         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1439                 if (lu_keys[i] == NULL) {
1440                         key->lct_index = i;
1441                         atomic_set(&key->lct_used, 1);
1442                         lu_keys[i] = key;
1443                         lu_ref_init(&key->lct_reference);
1444                         result = 0;
1445                         ++key_set_version;
1446                         break;
1447                 }
1448         }
1449         spin_unlock(&lu_keys_guard);
1450         return result;
1451 }
1452 EXPORT_SYMBOL(lu_context_key_register);
1453
1454 static void key_fini(struct lu_context *ctx, int index)
1455 {
1456         if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1457                 struct lu_context_key *key;
1458
1459                 key = lu_keys[index];
1460                 LASSERT(key != NULL);
1461                 LASSERT(key->lct_fini != NULL);
1462                 LASSERT(atomic_read(&key->lct_used) > 1);
1463
1464                 key->lct_fini(ctx, key, ctx->lc_value[index]);
1465                 lu_ref_del(&key->lct_reference, "ctx", ctx);
1466                 atomic_dec(&key->lct_used);
1467
1468                 LASSERT(key->lct_owner != NULL);
1469                 if ((ctx->lc_tags & LCT_NOREF) == 0) {
1470                         LINVRNT(module_refcount(key->lct_owner) > 0);
1471                         module_put(key->lct_owner);
1472                 }
1473                 ctx->lc_value[index] = NULL;
1474         }
1475 }
1476
1477 /**
1478  * Deregister key.
1479  */
1480 void lu_context_key_degister(struct lu_context_key *key)
1481 {
1482         LASSERT(atomic_read(&key->lct_used) >= 1);
1483         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1484
1485         lu_context_key_quiesce(key);
1486
1487         ++key_set_version;
1488         spin_lock(&lu_keys_guard);
1489         key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1490         if (lu_keys[key->lct_index]) {
1491                 lu_keys[key->lct_index] = NULL;
1492                 lu_ref_fini(&key->lct_reference);
1493         }
1494         spin_unlock(&lu_keys_guard);
1495
1496         LASSERTF(atomic_read(&key->lct_used) == 1,
1497                  "key has instances: %d\n",
1498                  atomic_read(&key->lct_used));
1499 }
1500 EXPORT_SYMBOL(lu_context_key_degister);
1501
1502 /**
1503  * Register a number of keys. This has to be called after all keys have been
1504  * initialized by a call to LU_CONTEXT_KEY_INIT().
1505  */
1506 int lu_context_key_register_many(struct lu_context_key *k, ...)
1507 {
1508         struct lu_context_key *key = k;
1509         va_list args;
1510         int result;
1511
1512         va_start(args, k);
1513         do {
1514                 result = lu_context_key_register(key);
1515                 if (result)
1516                         break;
1517                 key = va_arg(args, struct lu_context_key *);
1518         } while (key != NULL);
1519         va_end(args);
1520
1521         if (result != 0) {
1522                 va_start(args, k);
1523                 while (k != key) {
1524                         lu_context_key_degister(k);
1525                         k = va_arg(args, struct lu_context_key *);
1526                 }
1527                 va_end(args);
1528         }
1529
1530         return result;
1531 }
1532 EXPORT_SYMBOL(lu_context_key_register_many);
1533
1534 /**
1535  * De-register a number of keys. This is a dual to
1536  * lu_context_key_register_many().
1537  */
1538 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1539 {
1540         va_list args;
1541
1542         va_start(args, k);
1543         do {
1544                 lu_context_key_degister(k);
1545                 k = va_arg(args, struct lu_context_key*);
1546         } while (k != NULL);
1547         va_end(args);
1548 }
1549 EXPORT_SYMBOL(lu_context_key_degister_many);
1550
1551 /**
1552  * Revive a number of keys.
1553  */
1554 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1555 {
1556         va_list args;
1557
1558         va_start(args, k);
1559         do {
1560                 lu_context_key_revive(k);
1561                 k = va_arg(args, struct lu_context_key*);
1562         } while (k != NULL);
1563         va_end(args);
1564 }
1565 EXPORT_SYMBOL(lu_context_key_revive_many);
1566
1567 /**
1568  * Quiescent a number of keys.
1569  */
1570 void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1571 {
1572         va_list args;
1573
1574         va_start(args, k);
1575         do {
1576                 lu_context_key_quiesce(k);
1577                 k = va_arg(args, struct lu_context_key*);
1578         } while (k != NULL);
1579         va_end(args);
1580 }
1581 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1582
1583 /**
1584  * Return value associated with key \a key in context \a ctx.
1585  */
1586 void *lu_context_key_get(const struct lu_context *ctx,
1587                          const struct lu_context_key *key)
1588 {
1589         LINVRNT(ctx->lc_state == LCS_ENTERED);
1590         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1591         LASSERT(lu_keys[key->lct_index] == key);
1592         return ctx->lc_value[key->lct_index];
1593 }
1594 EXPORT_SYMBOL(lu_context_key_get);
1595
1596 /**
1597  * List of remembered contexts. XXX document me.
1598  */
1599 static CFS_LIST_HEAD(lu_context_remembered);
1600
1601 /**
1602  * Destroy \a key in all remembered contexts. This is used to destroy key
1603  * values in "shared" contexts (like service threads), when a module owning
1604  * the key is about to be unloaded.
1605  */
1606 void lu_context_key_quiesce(struct lu_context_key *key)
1607 {
1608         struct lu_context *ctx;
1609         extern unsigned cl_env_cache_purge(unsigned nr);
1610
1611         if (!(key->lct_tags & LCT_QUIESCENT)) {
1612                 /*
1613                  * XXX layering violation.
1614                  */
1615                 cl_env_cache_purge(~0);
1616                 key->lct_tags |= LCT_QUIESCENT;
1617                 /*
1618                  * XXX memory barrier has to go here.
1619                  */
1620                 spin_lock(&lu_keys_guard);
1621                 cfs_list_for_each_entry(ctx, &lu_context_remembered,
1622                                         lc_remember)
1623                         key_fini(ctx, key->lct_index);
1624                 spin_unlock(&lu_keys_guard);
1625                 ++key_set_version;
1626         }
1627 }
1628 EXPORT_SYMBOL(lu_context_key_quiesce);
1629
1630 void lu_context_key_revive(struct lu_context_key *key)
1631 {
1632         key->lct_tags &= ~LCT_QUIESCENT;
1633         ++key_set_version;
1634 }
1635 EXPORT_SYMBOL(lu_context_key_revive);
1636
1637 static void keys_fini(struct lu_context *ctx)
1638 {
1639         int     i;
1640
1641         if (ctx->lc_value == NULL)
1642                 return;
1643
1644         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1645                 key_fini(ctx, i);
1646
1647         OBD_FREE(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1648         ctx->lc_value = NULL;
1649 }
1650
1651 static int keys_fill(struct lu_context *ctx)
1652 {
1653         int i;
1654
1655         LINVRNT(ctx->lc_value != NULL);
1656         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1657                 struct lu_context_key *key;
1658
1659                 key = lu_keys[i];
1660                 if (ctx->lc_value[i] == NULL && key != NULL &&
1661                     (key->lct_tags & ctx->lc_tags) &&
1662                     /*
1663                      * Don't create values for a LCT_QUIESCENT key, as this
1664                      * will pin module owning a key.
1665                      */
1666                     !(key->lct_tags & LCT_QUIESCENT)) {
1667                         void *value;
1668
1669                         LINVRNT(key->lct_init != NULL);
1670                         LINVRNT(key->lct_index == i);
1671
1672                         value = key->lct_init(ctx, key);
1673                         if (unlikely(IS_ERR(value)))
1674                                 return PTR_ERR(value);
1675
1676                         LASSERT(key->lct_owner != NULL);
1677                         if (!(ctx->lc_tags & LCT_NOREF))
1678                                 try_module_get(key->lct_owner);
1679                         lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1680                         atomic_inc(&key->lct_used);
1681                         /*
1682                          * This is the only place in the code, where an
1683                          * element of ctx->lc_value[] array is set to non-NULL
1684                          * value.
1685                          */
1686                         ctx->lc_value[i] = value;
1687                         if (key->lct_exit != NULL)
1688                                 ctx->lc_tags |= LCT_HAS_EXIT;
1689                 }
1690                 ctx->lc_version = key_set_version;
1691         }
1692         return 0;
1693 }
1694
1695 static int keys_init(struct lu_context *ctx)
1696 {
1697         OBD_ALLOC(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1698         if (likely(ctx->lc_value != NULL))
1699                 return keys_fill(ctx);
1700
1701         return -ENOMEM;
1702 }
1703
1704 /**
1705  * Initialize context data-structure. Create values for all keys.
1706  */
1707 int lu_context_init(struct lu_context *ctx, __u32 tags)
1708 {
1709         int     rc;
1710
1711         memset(ctx, 0, sizeof *ctx);
1712         ctx->lc_state = LCS_INITIALIZED;
1713         ctx->lc_tags = tags;
1714         if (tags & LCT_REMEMBER) {
1715                 spin_lock(&lu_keys_guard);
1716                 cfs_list_add(&ctx->lc_remember, &lu_context_remembered);
1717                 spin_unlock(&lu_keys_guard);
1718         } else {
1719                 CFS_INIT_LIST_HEAD(&ctx->lc_remember);
1720         }
1721
1722         rc = keys_init(ctx);
1723         if (rc != 0)
1724                 lu_context_fini(ctx);
1725
1726         return rc;
1727 }
1728 EXPORT_SYMBOL(lu_context_init);
1729
1730 /**
1731  * Finalize context data-structure. Destroy key values.
1732  */
1733 void lu_context_fini(struct lu_context *ctx)
1734 {
1735         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1736         ctx->lc_state = LCS_FINALIZED;
1737
1738         if ((ctx->lc_tags & LCT_REMEMBER) == 0) {
1739                 LASSERT(cfs_list_empty(&ctx->lc_remember));
1740                 keys_fini(ctx);
1741
1742         } else { /* could race with key degister */
1743                 spin_lock(&lu_keys_guard);
1744                 keys_fini(ctx);
1745                 cfs_list_del_init(&ctx->lc_remember);
1746                 spin_unlock(&lu_keys_guard);
1747         }
1748 }
1749 EXPORT_SYMBOL(lu_context_fini);
1750
1751 /**
1752  * Called before entering context.
1753  */
1754 void lu_context_enter(struct lu_context *ctx)
1755 {
1756         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1757         ctx->lc_state = LCS_ENTERED;
1758 }
1759 EXPORT_SYMBOL(lu_context_enter);
1760
1761 /**
1762  * Called after exiting from \a ctx
1763  */
1764 void lu_context_exit(struct lu_context *ctx)
1765 {
1766         int i;
1767
1768         LINVRNT(ctx->lc_state == LCS_ENTERED);
1769         ctx->lc_state = LCS_LEFT;
1770         if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value != NULL) {
1771                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1772                         if (ctx->lc_value[i] != NULL) {
1773                                 struct lu_context_key *key;
1774
1775                                 key = lu_keys[i];
1776                                 LASSERT(key != NULL);
1777                                 if (key->lct_exit != NULL)
1778                                         key->lct_exit(ctx,
1779                                                       key, ctx->lc_value[i]);
1780                         }
1781                 }
1782         }
1783 }
1784 EXPORT_SYMBOL(lu_context_exit);
1785
1786 /**
1787  * Allocate for context all missing keys that were registered after context
1788  * creation. key_set_version is only changed in rare cases when modules
1789  * are loaded and removed.
1790  */
1791 int lu_context_refill(struct lu_context *ctx)
1792 {
1793         return likely(ctx->lc_version == key_set_version) ? 0 : keys_fill(ctx);
1794 }
1795 EXPORT_SYMBOL(lu_context_refill);
1796
1797 /**
1798  * lu_ctx_tags/lu_ses_tags will be updated if there are new types of
1799  * obd being added. Currently, this is only used on client side, specifically
1800  * for echo device client, for other stack (like ptlrpc threads), context are
1801  * predefined when the lu_device type are registered, during the module probe
1802  * phase.
1803  */
1804 __u32 lu_context_tags_default = 0;
1805 __u32 lu_session_tags_default = 0;
1806
1807 void lu_context_tags_update(__u32 tags)
1808 {
1809         spin_lock(&lu_keys_guard);
1810         lu_context_tags_default |= tags;
1811         key_set_version++;
1812         spin_unlock(&lu_keys_guard);
1813 }
1814 EXPORT_SYMBOL(lu_context_tags_update);
1815
1816 void lu_context_tags_clear(__u32 tags)
1817 {
1818         spin_lock(&lu_keys_guard);
1819         lu_context_tags_default &= ~tags;
1820         key_set_version++;
1821         spin_unlock(&lu_keys_guard);
1822 }
1823 EXPORT_SYMBOL(lu_context_tags_clear);
1824
1825 void lu_session_tags_update(__u32 tags)
1826 {
1827         spin_lock(&lu_keys_guard);
1828         lu_session_tags_default |= tags;
1829         key_set_version++;
1830         spin_unlock(&lu_keys_guard);
1831 }
1832 EXPORT_SYMBOL(lu_session_tags_update);
1833
1834 void lu_session_tags_clear(__u32 tags)
1835 {
1836         spin_lock(&lu_keys_guard);
1837         lu_session_tags_default &= ~tags;
1838         key_set_version++;
1839         spin_unlock(&lu_keys_guard);
1840 }
1841 EXPORT_SYMBOL(lu_session_tags_clear);
1842
1843 int lu_env_init(struct lu_env *env, __u32 tags)
1844 {
1845         int result;
1846
1847         env->le_ses = NULL;
1848         result = lu_context_init(&env->le_ctx, tags);
1849         if (likely(result == 0))
1850                 lu_context_enter(&env->le_ctx);
1851         return result;
1852 }
1853 EXPORT_SYMBOL(lu_env_init);
1854
1855 void lu_env_fini(struct lu_env *env)
1856 {
1857         lu_context_exit(&env->le_ctx);
1858         lu_context_fini(&env->le_ctx);
1859         env->le_ses = NULL;
1860 }
1861 EXPORT_SYMBOL(lu_env_fini);
1862
1863 int lu_env_refill(struct lu_env *env)
1864 {
1865         int result;
1866
1867         result = lu_context_refill(&env->le_ctx);
1868         if (result == 0 && env->le_ses != NULL)
1869                 result = lu_context_refill(env->le_ses);
1870         return result;
1871 }
1872 EXPORT_SYMBOL(lu_env_refill);
1873
1874 /**
1875  * Currently, this API will only be used by echo client.
1876  * Because echo client and normal lustre client will share
1877  * same cl_env cache. So echo client needs to refresh
1878  * the env context after it get one from the cache, especially
1879  * when normal client and echo client co-exist in the same client.
1880  */
1881 int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags,
1882                           __u32 stags)
1883 {
1884         int    result;
1885
1886         if ((env->le_ctx.lc_tags & ctags) != ctags) {
1887                 env->le_ctx.lc_version = 0;
1888                 env->le_ctx.lc_tags |= ctags;
1889         }
1890
1891         if (env->le_ses && (env->le_ses->lc_tags & stags) != stags) {
1892                 env->le_ses->lc_version = 0;
1893                 env->le_ses->lc_tags |= stags;
1894         }
1895
1896         result = lu_env_refill(env);
1897
1898         return result;
1899 }
1900 EXPORT_SYMBOL(lu_env_refill_by_tags);
1901
1902 static struct shrinker *lu_site_shrinker;
1903
1904 typedef struct lu_site_stats{
1905         unsigned        lss_populated;
1906         unsigned        lss_max_search;
1907         unsigned        lss_total;
1908         unsigned        lss_busy;
1909 } lu_site_stats_t;
1910
1911 static void lu_site_stats_get(cfs_hash_t *hs,
1912                               lu_site_stats_t *stats, int populated)
1913 {
1914         cfs_hash_bd_t bd;
1915         int           i;
1916
1917         cfs_hash_for_each_bucket(hs, &bd, i) {
1918                 struct lu_site_bkt_data *bkt = cfs_hash_bd_extra_get(hs, &bd);
1919                 cfs_hlist_head_t        *hhead;
1920
1921                 cfs_hash_bd_lock(hs, &bd, 1);
1922                 stats->lss_busy  += bkt->lsb_busy;
1923                 stats->lss_total += cfs_hash_bd_count_get(&bd);
1924                 stats->lss_max_search = max((int)stats->lss_max_search,
1925                                             cfs_hash_bd_depmax_get(&bd));
1926                 if (!populated) {
1927                         cfs_hash_bd_unlock(hs, &bd, 1);
1928                         continue;
1929                 }
1930
1931                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1932                         if (!cfs_hlist_empty(hhead))
1933                                 stats->lss_populated++;
1934                 }
1935                 cfs_hash_bd_unlock(hs, &bd, 1);
1936         }
1937 }
1938
1939 #ifdef __KERNEL__
1940
1941 static unsigned long lu_cache_shrink_count(struct shrinker *sk,
1942                                            struct shrink_control *sc)
1943 {
1944         lu_site_stats_t stats;
1945         struct lu_site *s;
1946         struct lu_site *tmp;
1947         unsigned long cached = 0;
1948
1949         if (!(sc->gfp_mask & __GFP_FS))
1950                 return 0;
1951
1952         mutex_lock(&lu_sites_guard);
1953         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1954                 memset(&stats, 0, sizeof(stats));
1955                 lu_site_stats_get(s->ls_obj_hash, &stats, 0);
1956                 cached += stats.lss_total - stats.lss_busy;
1957         }
1958         mutex_unlock(&lu_sites_guard);
1959
1960         cached = (cached / 100) * sysctl_vfs_cache_pressure;
1961         CDEBUG(D_INODE, "%ld objects cached\n", cached);
1962         return cached;
1963 }
1964
1965 static unsigned long lu_cache_shrink_scan(struct shrinker *sk,
1966                                           struct shrink_control *sc)
1967 {
1968         struct lu_site *s;
1969         struct lu_site *tmp;
1970         unsigned long remain = sc->nr_to_scan;
1971         LIST_HEAD(splice);
1972
1973         if (!(sc->gfp_mask & __GFP_FS))
1974                 /* We must not take the lu_sites_guard lock when
1975                  * __GFP_FS is *not* set because of the deadlock
1976                  * possibility detailed above. Additionally,
1977                  * since we cannot determine the number of
1978                  * objects in the cache without taking this
1979                  * lock, we're in a particularly tough spot. As
1980                  * a result, we'll just lie and say our cache is
1981                  * empty. This _should_ be ok, as we can't
1982                  * reclaim objects when __GFP_FS is *not* set
1983                  * anyways.
1984                  */
1985                 return SHRINK_STOP;
1986
1987         mutex_lock(&lu_sites_guard);
1988         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1989                 remain = lu_site_purge(&lu_shrink_env, s, remain);
1990                 /*
1991                  * Move just shrunk site to the tail of site list to
1992                  * assure shrinking fairness.
1993                  */
1994                 list_move_tail(&s->ls_linkage, &splice);
1995         }
1996         list_splice(&splice, lu_sites.prev);
1997         mutex_unlock(&lu_sites_guard);
1998
1999         return sc->nr_to_scan - remain;
2000 }
2001
2002 #ifndef HAVE_SHRINKER_COUNT
2003 /*
2004  * There exists a potential lock inversion deadlock scenario when using
2005  * Lustre on top of ZFS. This occurs between one of ZFS's
2006  * buf_hash_table.ht_lock's, and Lustre's lu_sites_guard lock. Essentially,
2007  * thread A will take the lu_sites_guard lock and sleep on the ht_lock,
2008  * while thread B will take the ht_lock and sleep on the lu_sites_guard
2009  * lock. Obviously neither thread will wake and drop their respective hold
2010  * on their lock.
2011  *
2012  * To prevent this from happening we must ensure the lu_sites_guard lock is
2013  * not taken while down this code path. ZFS reliably does not set the
2014  * __GFP_FS bit in its code paths, so this can be used to determine if it
2015  * is safe to take the lu_sites_guard lock.
2016  *
2017  * Ideally we should accurately return the remaining number of cached
2018  * objects without taking the  lu_sites_guard lock, but this is not
2019  * possible in the current implementation.
2020  */
2021 static int lu_cache_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
2022 {
2023         int cached = 0;
2024         struct shrink_control scv = {
2025                  .nr_to_scan = shrink_param(sc, nr_to_scan),
2026                  .gfp_mask   = shrink_param(sc, gfp_mask)
2027         };
2028 #if !defined(HAVE_SHRINKER_WANT_SHRINK_PTR) && !defined(HAVE_SHRINK_CONTROL)
2029         struct shrinker* shrinker = NULL;
2030 #endif
2031
2032
2033         CDEBUG(D_INODE, "Shrink %lu objects\n", scv.nr_to_scan);
2034
2035         lu_cache_shrink_scan(shrinker, &scv);
2036
2037         cached = lu_cache_shrink_count(shrinker, &scv);
2038         if (scv.nr_to_scan == 0)
2039                 CDEBUG(D_INODE, "%d objects cached\n", cached);
2040         return cached;
2041 }
2042
2043 #endif /* HAVE_SHRINKER_COUNT */
2044
2045
2046 /*
2047  * Debugging stuff.
2048  */
2049
2050 /**
2051  * Environment to be used in debugger, contains all tags.
2052  */
2053 struct lu_env lu_debugging_env;
2054
2055 /**
2056  * Debugging printer function using printk().
2057  */
2058 int lu_printk_printer(const struct lu_env *env,
2059                       void *unused, const char *format, ...)
2060 {
2061         va_list args;
2062
2063         va_start(args, format);
2064         vprintk(format, args);
2065         va_end(args);
2066         return 0;
2067 }
2068
2069 int lu_debugging_setup(void)
2070 {
2071         return lu_env_init(&lu_debugging_env, ~0);
2072 }
2073
2074 void lu_context_keys_dump(void)
2075 {
2076         int i;
2077
2078         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
2079                 struct lu_context_key *key;
2080
2081                 key = lu_keys[i];
2082                 if (key != NULL) {
2083                         CERROR("[%d]: %p %x (%p,%p,%p) %d %d \"%s\"@%p\n",
2084                                i, key, key->lct_tags,
2085                                key->lct_init, key->lct_fini, key->lct_exit,
2086                                key->lct_index, atomic_read(&key->lct_used),
2087                                key->lct_owner ? key->lct_owner->name : "",
2088                                key->lct_owner);
2089                         lu_ref_print(&key->lct_reference);
2090                 }
2091         }
2092 }
2093 EXPORT_SYMBOL(lu_context_keys_dump);
2094 #endif /* __KERNEL__ */
2095
2096 /**
2097  * Initialization of global lu_* data.
2098  */
2099 int lu_global_init(void)
2100 {
2101         int result;
2102         DEF_SHRINKER_VAR(shvar, lu_cache_shrink,
2103                          lu_cache_shrink_count, lu_cache_shrink_scan);
2104
2105         CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
2106
2107         result = lu_ref_global_init();
2108         if (result != 0)
2109                 return result;
2110
2111         LU_CONTEXT_KEY_INIT(&lu_global_key);
2112         result = lu_context_key_register(&lu_global_key);
2113         if (result != 0)
2114                 return result;
2115
2116         /*
2117          * At this level, we don't know what tags are needed, so allocate them
2118          * conservatively. This should not be too bad, because this
2119          * environment is global.
2120          */
2121         mutex_lock(&lu_sites_guard);
2122         result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
2123         mutex_unlock(&lu_sites_guard);
2124         if (result != 0)
2125                 return result;
2126
2127         /*
2128          * seeks estimation: 3 seeks to read a record from oi, one to read
2129          * inode, one for ea. Unfortunately setting this high value results in
2130          * lu_object/inode cache consuming all the memory.
2131          */
2132         lu_site_shrinker = set_shrinker(DEFAULT_SEEKS, &shvar);
2133         if (lu_site_shrinker == NULL)
2134                 return -ENOMEM;
2135
2136         return result;
2137 }
2138
2139 /**
2140  * Dual to lu_global_init().
2141  */
2142 void lu_global_fini(void)
2143 {
2144         if (lu_site_shrinker != NULL) {
2145                 remove_shrinker(lu_site_shrinker);
2146                 lu_site_shrinker = NULL;
2147         }
2148
2149         lu_context_key_degister(&lu_global_key);
2150
2151         /*
2152          * Tear shrinker environment down _after_ de-registering
2153          * lu_global_key, because the latter has a value in the former.
2154          */
2155         mutex_lock(&lu_sites_guard);
2156         lu_env_fini(&lu_shrink_env);
2157         mutex_unlock(&lu_sites_guard);
2158
2159         lu_ref_global_fini();
2160 }
2161
2162 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
2163 {
2164 #ifdef LPROCFS
2165         struct lprocfs_counter ret;
2166
2167         lprocfs_stats_collect(stats, idx, &ret);
2168         return (__u32)ret.lc_count;
2169 #else
2170         return 0;
2171 #endif
2172 }
2173
2174 /**
2175  * Output site statistical counters into a buffer. Suitable for
2176  * lprocfs_rd_*()-style functions.
2177  */
2178 int lu_site_stats_seq_print(const struct lu_site *s, struct seq_file *m)
2179 {
2180         lu_site_stats_t stats;
2181
2182         memset(&stats, 0, sizeof(stats));
2183         lu_site_stats_get(s->ls_obj_hash, &stats, 1);
2184
2185         return seq_printf(m, "%d/%d %d/%d %d %d %d %d %d %d %d\n",
2186                           stats.lss_busy,
2187                           stats.lss_total,
2188                           stats.lss_populated,
2189                           CFS_HASH_NHLIST(s->ls_obj_hash),
2190                           stats.lss_max_search,
2191                           ls_stats_read(s->ls_stats, LU_SS_CREATED),
2192                           ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
2193                           ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
2194                           ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
2195                           ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
2196                           ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
2197 }
2198 EXPORT_SYMBOL(lu_site_stats_seq_print);
2199
2200 int lu_site_stats_print(const struct lu_site *s, char *page, int count)
2201 {
2202         lu_site_stats_t stats;
2203
2204         memset(&stats, 0, sizeof(stats));
2205         lu_site_stats_get(s->ls_obj_hash, &stats, 1);
2206
2207         return snprintf(page, count, "%d/%d %d/%d %d %d %d %d %d %d %d\n",
2208                         stats.lss_busy,
2209                         stats.lss_total,
2210                         stats.lss_populated,
2211                         CFS_HASH_NHLIST(s->ls_obj_hash),
2212                         stats.lss_max_search,
2213                         ls_stats_read(s->ls_stats, LU_SS_CREATED),
2214                         ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
2215                         ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
2216                         ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
2217                         ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
2218                         ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
2219 }
2220 EXPORT_SYMBOL(lu_site_stats_print);
2221
2222 /**
2223  * Helper function to initialize a number of kmem slab caches at once.
2224  */
2225 int lu_kmem_init(struct lu_kmem_descr *caches)
2226 {
2227         int result;
2228         struct lu_kmem_descr *iter = caches;
2229
2230         for (result = 0; iter->ckd_cache != NULL; ++iter) {
2231                 *iter->ckd_cache = kmem_cache_create(iter->ckd_name,
2232                                                      iter->ckd_size,
2233                                                      0, 0, NULL);
2234                 if (*iter->ckd_cache == NULL) {
2235                         result = -ENOMEM;
2236                         /* free all previously allocated caches */
2237                         lu_kmem_fini(caches);
2238                         break;
2239                 }
2240         }
2241         return result;
2242 }
2243 EXPORT_SYMBOL(lu_kmem_init);
2244
2245 /**
2246  * Helper function to finalize a number of kmem slab cached at once. Dual to
2247  * lu_kmem_init().
2248  */
2249 void lu_kmem_fini(struct lu_kmem_descr *caches)
2250 {
2251         for (; caches->ckd_cache != NULL; ++caches) {
2252                 if (*caches->ckd_cache != NULL) {
2253                         kmem_cache_destroy(*caches->ckd_cache);
2254                         *caches->ckd_cache = NULL;
2255                 }
2256         }
2257 }
2258 EXPORT_SYMBOL(lu_kmem_fini);
2259
2260 /**
2261  * Temporary solution to be able to assign fid in ->do_create()
2262  * till we have fully-functional OST fids
2263  */
2264 void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
2265                           const struct lu_fid *fid)
2266 {
2267         struct lu_site          *s = o->lo_dev->ld_site;
2268         struct lu_fid           *old = &o->lo_header->loh_fid;
2269         struct lu_site_bkt_data *bkt;
2270         struct lu_object        *shadow;
2271         wait_queue_t             waiter;
2272         cfs_hash_t              *hs;
2273         cfs_hash_bd_t            bd;
2274         __u64                    version = 0;
2275
2276         LASSERT(fid_is_zero(old));
2277
2278         hs = s->ls_obj_hash;
2279         cfs_hash_bd_get_and_lock(hs, (void *)fid, &bd, 1);
2280         shadow = htable_lookup(s, &bd, fid, &waiter, &version);
2281         /* supposed to be unique */
2282         LASSERT(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT);
2283         *old = *fid;
2284         bkt = cfs_hash_bd_extra_get(hs, &bd);
2285         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
2286         bkt->lsb_busy++;
2287         cfs_hash_bd_unlock(hs, &bd, 1);
2288 }
2289 EXPORT_SYMBOL(lu_object_assign_fid);
2290
2291 /**
2292  * allocates object with 0 (non-assiged) fid
2293  * XXX: temporary solution to be able to assign fid in ->do_create()
2294  *      till we have fully-functional OST fids
2295  */
2296 struct lu_object *lu_object_anon(const struct lu_env *env,
2297                                  struct lu_device *dev,
2298                                  const struct lu_object_conf *conf)
2299 {
2300         struct lu_fid     fid;
2301         struct lu_object *o;
2302
2303         fid_zero(&fid);
2304         o = lu_object_alloc(env, dev, &fid, conf);
2305
2306         return o;
2307 }
2308 EXPORT_SYMBOL(lu_object_anon);
2309
2310 struct lu_buf LU_BUF_NULL = {
2311         .lb_buf = NULL,
2312         .lb_len = 0
2313 };
2314 EXPORT_SYMBOL(LU_BUF_NULL);
2315
2316 void lu_buf_free(struct lu_buf *buf)
2317 {
2318         LASSERT(buf);
2319         if (buf->lb_buf) {
2320                 LASSERT(buf->lb_len > 0);
2321                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2322                 buf->lb_buf = NULL;
2323                 buf->lb_len = 0;
2324         }
2325 }
2326 EXPORT_SYMBOL(lu_buf_free);
2327
2328 void lu_buf_alloc(struct lu_buf *buf, int size)
2329 {
2330         LASSERT(buf);
2331         LASSERT(buf->lb_buf == NULL);
2332         LASSERT(buf->lb_len == 0);
2333         OBD_ALLOC_LARGE(buf->lb_buf, size);
2334         if (likely(buf->lb_buf))
2335                 buf->lb_len = size;
2336 }
2337 EXPORT_SYMBOL(lu_buf_alloc);
2338
2339 void lu_buf_realloc(struct lu_buf *buf, int size)
2340 {
2341         lu_buf_free(buf);
2342         lu_buf_alloc(buf, size);
2343 }
2344 EXPORT_SYMBOL(lu_buf_realloc);
2345
2346 struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, int len)
2347 {
2348         if (buf->lb_buf == NULL && buf->lb_len == 0)
2349                 lu_buf_alloc(buf, len);
2350
2351         if ((len > buf->lb_len) && (buf->lb_buf != NULL))
2352                 lu_buf_realloc(buf, len);
2353
2354         return buf;
2355 }
2356 EXPORT_SYMBOL(lu_buf_check_and_alloc);
2357
2358 /**
2359  * Increase the size of the \a buf.
2360  * preserves old data in buffer
2361  * old buffer remains unchanged on error
2362  * \retval 0 or -ENOMEM
2363  */
2364 int lu_buf_check_and_grow(struct lu_buf *buf, int len)
2365 {
2366         char *ptr;
2367
2368         if (len <= buf->lb_len)
2369                 return 0;
2370
2371         OBD_ALLOC_LARGE(ptr, len);
2372         if (ptr == NULL)
2373                 return -ENOMEM;
2374
2375         /* Free the old buf */
2376         if (buf->lb_buf != NULL) {
2377                 memcpy(ptr, buf->lb_buf, buf->lb_len);
2378                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2379         }
2380
2381         buf->lb_buf = ptr;
2382         buf->lb_len = len;
2383         return 0;
2384 }
2385 EXPORT_SYMBOL(lu_buf_check_and_grow);
2386