Whamcloud - gitweb
LU-17744 ldiskfs: mballoc stats fixes
[fs/lustre-release.git] / lustre / obdclass / lu_object.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lustre/obdclass/lu_object.c
33  *
34  * Lustre Object.
35  * These are the only exported functions, they provide some generic
36  * infrastructure for managing object devices
37  *
38  *   Author: Nikita Danilov <nikita.danilov@sun.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_CLASS
42
43 #include <linux/delay.h>
44 #include <linux/module.h>
45 #include <linux/list.h>
46 #include <linux/processor.h>
47 #include <linux/random.h>
48
49 #include <libcfs/libcfs.h>
50 #include <libcfs/linux/linux-mem.h>
51 #include <obd_class.h>
52 #include <obd_support.h>
53 #include <lustre_disk.h>
54 #include <lustre_fid.h>
55 #include <lu_object.h>
56 #include <lu_ref.h>
57
58 struct lu_site_bkt_data {
59         /**
60          * LRU list, updated on each access to object. Protected by
61          * lsb_waitq.lock.
62          *
63          * "Cold" end of LRU is lu_site::ls_lru.next. Accessed object are
64          * moved to the lu_site::ls_lru.prev
65          */
66         struct list_head                lsb_lru;
67         /**
68          * Wait-queue signaled when an object in this site is ultimately
69          * destroyed (lu_object_free()) or initialized (lu_object_start()).
70          * It is used by lu_object_find() to wait before re-trying when
71          * object in the process of destruction is found in the hash table;
72          * or wait object to be initialized by the allocator.
73          *
74          * \see htable_lookup().
75          */
76         wait_queue_head_t               lsb_waitq;
77 };
78
79 enum {
80         LU_CACHE_PERCENT_MAX     = 50,
81         LU_CACHE_PERCENT_DEFAULT = 20
82 };
83
84 #define LU_CACHE_NR_MAX_ADJUST          512
85 #define LU_CACHE_NR_UNLIMITED           -1
86 #define LU_CACHE_NR_DEFAULT             LU_CACHE_NR_UNLIMITED
87 /** This is set to roughly (20 * OSS_NTHRS_MAX) to prevent thrashing */
88 #define LU_CACHE_NR_ZFS_LIMIT           10240
89
90 #define LU_CACHE_NR_MIN                 4096
91 #define LU_CACHE_NR_MAX                 0x80000000UL
92
93 /**
94  * Max 256 buckets, we don't want too many buckets because:
95  * - consume too much memory (currently max 16K)
96  * - avoid unbalanced LRU list
97  * With few cpus there is little gain from extra buckets, so
98  * we treat this as a maximum in lu_site_init().
99  */
100 #define LU_SITE_BKT_BITS    8
101
102 static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
103 module_param(lu_cache_percent, int, 0644);
104 MODULE_PARM_DESC(lu_cache_percent, "Percentage of memory to be used as lu_object cache");
105
106 static long lu_cache_nr = LU_CACHE_NR_DEFAULT;
107 module_param(lu_cache_nr, long, 0644);
108 MODULE_PARM_DESC(lu_cache_nr, "Maximum number of objects in lu_object cache");
109
110 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
111 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx);
112
113 static u32 lu_fid_hash(const void *data, u32 len, u32 seed)
114 {
115         const struct lu_fid *fid = data;
116
117         seed = cfs_hash_32(seed ^ fid->f_oid, 32);
118         seed ^= cfs_hash_64(fid->f_seq, 32);
119         return seed;
120 }
121
122 static const struct rhashtable_params obj_hash_params = {
123         .key_len        = sizeof(struct lu_fid),
124         .key_offset     = offsetof(struct lu_object_header, loh_fid),
125         .head_offset    = offsetof(struct lu_object_header, loh_hash),
126         .hashfn         = lu_fid_hash,
127         .automatic_shrinking = true,
128 };
129
130 static inline int lu_bkt_hash(struct lu_site *s, const struct lu_fid *fid)
131 {
132         return lu_fid_hash(fid, sizeof(*fid), s->ls_bkt_seed) &
133                (s->ls_bkt_cnt - 1);
134 }
135
136 wait_queue_head_t *
137 lu_site_wq_from_fid(struct lu_site *site, struct lu_fid *fid)
138 {
139         struct lu_site_bkt_data *bkt;
140
141         bkt = &site->ls_bkts[lu_bkt_hash(site, fid)];
142         return &bkt->lsb_waitq;
143 }
144 EXPORT_SYMBOL(lu_site_wq_from_fid);
145
146 /**
147  * Decrease reference counter on object. If last reference is freed, return
148  * object to the cache, unless lu_object_is_dying(o) holds. In the latter
149  * case, free object immediately.
150  */
151 void lu_object_put(const struct lu_env *env, struct lu_object *o)
152 {
153         struct lu_site_bkt_data *bkt;
154         struct lu_object_header *top = o->lo_header;
155         struct lu_site *site = o->lo_dev->ld_site;
156         struct lu_object *orig = o;
157         const struct lu_fid *fid = lu_object_fid(o);
158
159         /*
160          * till we have full fids-on-OST implemented anonymous objects
161          * are possible in OSP. such an object isn't listed in the site
162          * so we should not remove it from the site.
163          */
164         if (fid_is_zero(fid)) {
165                 LASSERT(list_empty(&top->loh_lru));
166                 if (!atomic_dec_and_test(&top->loh_ref))
167                         return;
168                 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
169                         if (o->lo_ops->loo_object_release != NULL)
170                                 o->lo_ops->loo_object_release(env, o);
171                 }
172                 lu_object_free(env, orig);
173                 return;
174         }
175
176         bkt = &site->ls_bkts[lu_bkt_hash(site, &top->loh_fid)];
177         if (atomic_add_unless(&top->loh_ref, -1, 1)) {
178 still_active:
179                 /*
180                  * At this point the object reference is dropped and lock is
181                  * not taken, so lu_object should not be touched because it
182                  * can be freed by concurrent thread.
183                  *
184                  * Somebody may be waiting for this, currently only used for
185                  * cl_object, see cl_object_put_last().
186                  */
187                 wake_up(&bkt->lsb_waitq);
188
189                 return;
190         }
191
192         spin_lock(&bkt->lsb_waitq.lock);
193         if (!atomic_dec_and_test(&top->loh_ref)) {
194                 spin_unlock(&bkt->lsb_waitq.lock);
195                 goto still_active;
196         }
197
198         /*
199          * Refcount is zero, and cannot be incremented without taking the bkt
200          * lock, so object is stable.
201          */
202
203         /*
204          * When last reference is released, iterate over object layers, and
205          * notify them that object is no longer busy.
206          */
207         list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
208                 if (o->lo_ops->loo_object_release != NULL)
209                         o->lo_ops->loo_object_release(env, o);
210         }
211
212         /*
213          * Don't use local 'is_dying' here because if was taken without lock but
214          * here we need the latest actual value of it so check lu_object
215          * directly here.
216          */
217         if (!lu_object_is_dying(top) &&
218             (lu_object_exists(orig) || lu_object_is_cl(orig))) {
219                 LASSERT(list_empty(&top->loh_lru));
220                 list_add_tail(&top->loh_lru, &bkt->lsb_lru);
221                 spin_unlock(&bkt->lsb_waitq.lock);
222                 percpu_counter_inc(&site->ls_lru_len_counter);
223                 CDEBUG(D_INODE, "Add %p/%p to site lru. bkt: %p\n",
224                        orig, top, bkt);
225                 return;
226         }
227
228         /*
229          * If object is dying (will not be cached) then remove it from hash
230          * table (it is already not on the LRU).
231          *
232          * This is done with bucket lock held.  As the only way to acquire first
233          * reference to previously unreferenced object is through hash-table
234          * lookup (lu_object_find()) which takes the lock for first reference,
235          * no race with concurrent object lookup is possible and we can safely
236          * destroy object below.
237          */
238         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags))
239                 rhashtable_remove_fast(&site->ls_obj_hash, &top->loh_hash,
240                                        obj_hash_params);
241
242         spin_unlock(&bkt->lsb_waitq.lock);
243         /* Object was already removed from hash above, can kill it. */
244         lu_object_free(env, orig);
245 }
246 EXPORT_SYMBOL(lu_object_put);
247
248 /**
249  * Put object and don't keep in cache. This is temporary solution for
250  * multi-site objects when its layering is not constant.
251  */
252 void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o)
253 {
254         set_bit(LU_OBJECT_HEARD_BANSHEE, &o->lo_header->loh_flags);
255         return lu_object_put(env, o);
256 }
257 EXPORT_SYMBOL(lu_object_put_nocache);
258
259 /**
260  * Kill the object and take it out of LRU cache.
261  * Currently used by client code for layout change.
262  */
263 void lu_object_unhash(const struct lu_env *env, struct lu_object *o)
264 {
265         struct lu_object_header *top;
266
267         top = o->lo_header;
268         set_bit(LU_OBJECT_HEARD_BANSHEE, &top->loh_flags);
269         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags)) {
270                 struct lu_site *site = o->lo_dev->ld_site;
271                 struct rhashtable *obj_hash = &site->ls_obj_hash;
272                 struct lu_site_bkt_data *bkt;
273
274                 bkt = &site->ls_bkts[lu_bkt_hash(site, &top->loh_fid)];
275                 spin_lock(&bkt->lsb_waitq.lock);
276                 if (!list_empty(&top->loh_lru)) {
277                         list_del_init(&top->loh_lru);
278                         percpu_counter_dec(&site->ls_lru_len_counter);
279                 }
280                 spin_unlock(&bkt->lsb_waitq.lock);
281
282                 rhashtable_remove_fast(obj_hash, &top->loh_hash,
283                                        obj_hash_params);
284         }
285 }
286 EXPORT_SYMBOL(lu_object_unhash);
287
288 /**
289  * Allocate new object.
290  *
291  * This follows object creation protocol, described in the comment within
292  * struct lu_device_operations definition.
293  */
294 static struct lu_object *lu_object_alloc(const struct lu_env *env,
295                                          struct lu_device *dev,
296                                          const struct lu_fid *f)
297 {
298         struct lu_object *top;
299
300         /*
301          * Create top-level object slice. This will also create
302          * lu_object_header.
303          */
304         top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
305         if (top == NULL)
306                 return ERR_PTR(-ENOMEM);
307         if (IS_ERR(top))
308                 return top;
309         /*
310          * This is the only place where object fid is assigned. It's constant
311          * after this point.
312          */
313         top->lo_header->loh_fid = *f;
314
315         return top;
316 }
317
318 /**
319  * Initialize object.
320  *
321  * This is called after object hash insertion to avoid returning an object with
322  * stale attributes.
323  */
324 static int lu_object_start(const struct lu_env *env, struct lu_device *dev,
325                            struct lu_object *top,
326                            const struct lu_object_conf *conf)
327 {
328         struct lu_object *scan;
329         struct list_head *layers;
330         unsigned int init_mask = 0;
331         unsigned int init_flag;
332         int clean;
333         int result;
334
335         layers = &top->lo_header->loh_layers;
336
337         do {
338                 /*
339                  * Call ->loo_object_init() repeatedly, until no more new
340                  * object slices are created.
341                  */
342                 clean = 1;
343                 init_flag = 1;
344                 list_for_each_entry(scan, layers, lo_linkage) {
345                         if (init_mask & init_flag)
346                                 goto next;
347                         clean = 0;
348                         scan->lo_header = top->lo_header;
349                         result = scan->lo_ops->loo_object_init(env, scan, conf);
350                         if (result)
351                                 return result;
352
353                         init_mask |= init_flag;
354 next:
355                         init_flag <<= 1;
356                 }
357         } while (!clean);
358
359         list_for_each_entry_reverse(scan, layers, lo_linkage) {
360                 if (scan->lo_ops->loo_object_start != NULL) {
361                         result = scan->lo_ops->loo_object_start(env, scan);
362                         if (result)
363                                 return result;
364                 }
365         }
366
367         lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
368
369         set_bit(LU_OBJECT_INITED, &top->lo_header->loh_flags);
370
371         return 0;
372 }
373
374 /**
375  * Free an object.
376  */
377 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
378 {
379         wait_queue_head_t *wq;
380         struct lu_site *site;
381         struct lu_object *scan;
382         struct list_head *layers;
383         LIST_HEAD(splice);
384
385         site = o->lo_dev->ld_site;
386         layers = &o->lo_header->loh_layers;
387         wq = lu_site_wq_from_fid(site, &o->lo_header->loh_fid);
388         /*
389          * First call ->loo_object_delete() method to release all resources.
390          */
391         list_for_each_entry_reverse(scan, layers, lo_linkage) {
392                 if (scan->lo_ops->loo_object_delete != NULL)
393                         scan->lo_ops->loo_object_delete(env, scan);
394         }
395
396         /*
397          * Then, splice object layers into stand-alone list, and call
398          * ->loo_object_free() on all layers to free memory. Splice is
399          * necessary, because lu_object_header is freed together with the
400          * top-level slice.
401          */
402         list_splice_init(layers, &splice);
403         while (!list_empty(&splice)) {
404                 /*
405                  * Free layers in bottom-to-top order, so that object header
406                  * lives as long as possible and ->loo_object_free() methods
407                  * can look at its contents.
408                  */
409                 o = container_of(splice.prev, struct lu_object, lo_linkage);
410                 list_del_init(&o->lo_linkage);
411                 LASSERT(o->lo_ops->loo_object_free != NULL);
412                 o->lo_ops->loo_object_free(env, o);
413         }
414
415         if (waitqueue_active(wq))
416                 wake_up_all(wq);
417 }
418
419 /**
420  * Free \a nr objects from the cold end of the site LRU list.
421  * if canblock is 0, then don't block awaiting for another
422  * instance of lu_site_purge() to complete
423  */
424 int lu_site_purge_objects(const struct lu_env *env, struct lu_site *s,
425                           int nr, int canblock)
426 {
427         struct lu_object_header *h;
428         struct lu_object_header *temp;
429         struct lu_site_bkt_data *bkt;
430         LIST_HEAD(dispose);
431         int                      did_sth;
432         unsigned int             start = 0;
433         int                      count;
434         int                      bnr;
435         unsigned int             i;
436
437         if (OBD_FAIL_CHECK(OBD_FAIL_OBD_NO_LRU))
438                 RETURN(0);
439
440         /*
441          * Under LRU list lock, scan LRU list and move unreferenced objects to
442          * the dispose list, removing them from LRU and hash table.
443          */
444         if (nr != ~0)
445                 start = s->ls_purge_start;
446         bnr = (nr == ~0) ? -1 : nr / s->ls_bkt_cnt + 1;
447 again:
448         /*
449          * It doesn't make any sense to make purge threads parallel, that can
450          * only bring troubles to us.  See LU-5331.
451          */
452         if (canblock != 0)
453                 mutex_lock(&s->ls_purge_mutex);
454         else if (mutex_trylock(&s->ls_purge_mutex) == 0)
455                 goto out;
456
457         did_sth = 0;
458         for (i = start; i < s->ls_bkt_cnt ; i++) {
459                 count = bnr;
460                 bkt = &s->ls_bkts[i];
461                 spin_lock(&bkt->lsb_waitq.lock);
462
463                 list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
464                         LASSERT(atomic_read(&h->loh_ref) == 0);
465
466                         LINVRNT(lu_bkt_hash(s, &h->loh_fid) == i);
467
468                         set_bit(LU_OBJECT_UNHASHED, &h->loh_flags);
469                         rhashtable_remove_fast(&s->ls_obj_hash, &h->loh_hash,
470                                                obj_hash_params);
471                         list_move(&h->loh_lru, &dispose);
472                         percpu_counter_dec(&s->ls_lru_len_counter);
473                         if (did_sth == 0)
474                                 did_sth = 1;
475
476                         if (nr != ~0 && --nr == 0)
477                                 break;
478
479                         if (count > 0 && --count == 0)
480                                 break;
481
482                 }
483                 spin_unlock(&bkt->lsb_waitq.lock);
484                 cond_resched();
485                 /*
486                  * Free everything on the dispose list. This is safe against
487                  * races due to the reasons described in lu_object_put().
488                  */
489                 while ((h = list_first_entry_or_null(&dispose,
490                                                      struct lu_object_header,
491                                                      loh_lru)) != NULL) {
492                         list_del_init(&h->loh_lru);
493                         lu_object_free(env, lu_object_top(h));
494                         lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
495                 }
496
497                 if (nr == 0)
498                         break;
499         }
500         mutex_unlock(&s->ls_purge_mutex);
501
502         if (nr != 0 && did_sth && start != 0) {
503                 start = 0; /* restart from the first bucket */
504                 goto again;
505         }
506         /* race on s->ls_purge_start, but nobody cares */
507         s->ls_purge_start = i & (s->ls_bkt_cnt - 1);
508 out:
509         return nr;
510 }
511 EXPORT_SYMBOL(lu_site_purge_objects);
512
513 /*
514  * Object printing.
515  *
516  * Code below has to jump through certain loops to output object description
517  * into libcfs_debug_msg-based log. The problem is that lu_object_print()
518  * composes object description from strings that are parts of _lines_ of
519  * output (i.e., strings that are not terminated by newline). This doesn't fit
520  * very well into libcfs_debug_msg() interface that assumes that each message
521  * supplied to it is a self-contained output line.
522  *
523  * To work around this, strings are collected in a temporary buffer
524  * (implemented as a value of lu_cdebug_key key), until terminating newline
525  * character is detected.
526  *
527  */
528
529 enum {
530         /**
531          * Maximal line size.
532          *
533          * XXX overflow is not handled correctly.
534          */
535         LU_CDEBUG_LINE = 512
536 };
537
538 struct lu_cdebug_data {
539         /**
540          * Temporary buffer.
541          */
542         char lck_area[LU_CDEBUG_LINE];
543 };
544
545 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
546 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
547
548 /**
549  * Key, holding temporary buffer. This key is registered very early by
550  * lu_global_init().
551  */
552 static struct lu_context_key lu_global_key = {
553         .lct_tags = LCT_MD_THREAD | LCT_DT_THREAD |
554                     LCT_MG_THREAD | LCT_CL_THREAD | LCT_LOCAL,
555         .lct_init = lu_global_key_init,
556         .lct_fini = lu_global_key_fini
557 };
558
559 /**
560  * Printer function emitting messages through libcfs_debug_msg().
561  */
562 int lu_cdebug_printer(const struct lu_env *env,
563                       void *cookie, const char *format, ...)
564 {
565         struct libcfs_debug_msg_data *msgdata = cookie;
566         struct lu_cdebug_data        *key;
567         int used;
568         int complete;
569         va_list args;
570
571         va_start(args, format);
572
573         key = lu_context_key_get(&env->le_ctx, &lu_global_key);
574         LASSERT(key != NULL);
575
576         used = strlen(key->lck_area);
577         complete = format[strlen(format) - 1] == '\n';
578         /*
579          * Append new chunk to the buffer.
580          */
581         vsnprintf(key->lck_area + used,
582                   ARRAY_SIZE(key->lck_area) - used, format, args);
583         if (complete) {
584                 if (cfs_cdebug_show(msgdata->msg_mask, msgdata->msg_subsys))
585                         libcfs_debug_msg(msgdata, "%s\n", key->lck_area);
586                 key->lck_area[0] = 0;
587         }
588         va_end(args);
589         return 0;
590 }
591 EXPORT_SYMBOL(lu_cdebug_printer);
592
593 /**
594  * Print object header.
595  */
596 void lu_object_header_print(const struct lu_env *env, void *cookie,
597                             lu_printer_t printer,
598                             const struct lu_object_header *hdr)
599 {
600         (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
601                    hdr, hdr->loh_flags, atomic_read(&hdr->loh_ref),
602                    PFID(&hdr->loh_fid),
603                    test_bit(LU_OBJECT_UNHASHED,
604                             &hdr->loh_flags) ? "" : " hash",
605                    list_empty(&hdr->loh_lru) ? "" : " lru",
606                    hdr->loh_attr & LOHA_EXISTS ? " exist" : "");
607 }
608 EXPORT_SYMBOL(lu_object_header_print);
609
610 /**
611  * Print human readable representation of the \a o to the \a printer.
612  */
613 void lu_object_print(const struct lu_env *env, void *cookie,
614                      lu_printer_t printer, const struct lu_object *o)
615 {
616         static const char ruler[] = "........................................";
617         struct lu_object_header *top;
618         int depth = 4;
619
620         top = o->lo_header;
621         lu_object_header_print(env, cookie, printer, top);
622         (*printer)(env, cookie, "{\n");
623
624         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
625                 /*
626                  * print `.' \a depth times followed by type name and address
627                  */
628                 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
629                            o->lo_dev->ld_type->ldt_name, o);
630
631                 if (o->lo_ops->loo_object_print != NULL)
632                         (*o->lo_ops->loo_object_print)(env, cookie, printer, o);
633
634                 (*printer)(env, cookie, "\n");
635         }
636
637         (*printer)(env, cookie, "} header@%p\n", top);
638 }
639 EXPORT_SYMBOL(lu_object_print);
640
641 /**
642  * Check object consistency.
643  */
644 int lu_object_invariant(const struct lu_object *o)
645 {
646         struct lu_object_header *top;
647
648         top = o->lo_header;
649         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
650                 if (o->lo_ops->loo_object_invariant != NULL &&
651                     !o->lo_ops->loo_object_invariant(o))
652                         return 0;
653         }
654         return 1;
655 }
656
657 /*
658  * Limit the lu_object cache to a maximum of lu_cache_nr objects.  Because the
659  * calculation for the number of objects to reclaim is not covered by a lock the
660  * maximum number of objects is capped by LU_CACHE_MAX_ADJUST.  This ensures
661  * that many concurrent threads will not accidentally purge the entire cache.
662  */
663 static void lu_object_limit(const struct lu_env *env,
664                             struct lu_device *dev)
665 {
666         u64 size, nr;
667
668         if (lu_cache_nr == LU_CACHE_NR_UNLIMITED)
669                 return;
670
671         size = atomic_read(&dev->ld_site->ls_obj_hash.nelems);
672         nr = (u64)lu_cache_nr;
673         if (size <= nr)
674                 return;
675
676         lu_site_purge_objects(env, dev->ld_site,
677                               min_t(u64, size - nr, LU_CACHE_NR_MAX_ADJUST),
678                               0);
679 }
680
681 static struct lu_object *htable_lookup(const struct lu_env *env,
682                                        struct lu_device *dev,
683                                        struct lu_site_bkt_data *bkt,
684                                        const struct lu_fid *f,
685                                        struct lu_object_header *new)
686 {
687         struct lu_site *s = dev->ld_site;
688         struct lu_object_header *h;
689
690 try_again:
691         rcu_read_lock();
692         if (new)
693                 h = rhashtable_lookup_get_insert_fast(&s->ls_obj_hash,
694                                                       &new->loh_hash,
695                                                       obj_hash_params);
696         else
697                 h = rhashtable_lookup(&s->ls_obj_hash, f, obj_hash_params);
698
699         if (IS_ERR_OR_NULL(h)) {
700                 /* Not found */
701                 if (!new)
702                         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
703                 rcu_read_unlock();
704                 if (PTR_ERR(h) == -ENOMEM) {
705                         msleep(20);
706                         goto try_again;
707                 }
708                 lu_object_limit(env, dev);
709                 if (PTR_ERR(h) == -E2BIG)
710                         goto try_again;
711
712                 return ERR_PTR(-ENOENT);
713         }
714
715         if (atomic_inc_not_zero(&h->loh_ref)) {
716                 rcu_read_unlock();
717                 return lu_object_top(h);
718         }
719
720         spin_lock(&bkt->lsb_waitq.lock);
721         if (lu_object_is_dying(h) ||
722             test_bit(LU_OBJECT_UNHASHED, &h->loh_flags)) {
723                 spin_unlock(&bkt->lsb_waitq.lock);
724                 rcu_read_unlock();
725                 if (new) {
726                         /*
727                          * Old object might have already been removed, or will
728                          * be soon.  We need to insert our new object, so
729                          * remove the old one just in case it is still there.
730                          */
731                         rhashtable_remove_fast(&s->ls_obj_hash, &h->loh_hash,
732                                                obj_hash_params);
733                         goto try_again;
734                 }
735                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
736                 return ERR_PTR(-ENOENT);
737         }
738         /* Now protected by spinlock */
739         rcu_read_unlock();
740
741         if (!list_empty(&h->loh_lru)) {
742                 list_del_init(&h->loh_lru);
743                 percpu_counter_dec(&s->ls_lru_len_counter);
744         }
745         atomic_inc(&h->loh_ref);
746         spin_unlock(&bkt->lsb_waitq.lock);
747         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
748         return lu_object_top(h);
749 }
750
751 /**
752  * Search cache for an object with the fid \a f. If such object is found,
753  * return it. Otherwise, create new object, insert it into cache and return
754  * it. In any case, additional reference is acquired on the returned object.
755  */
756 struct lu_object *lu_object_find(const struct lu_env *env,
757                                  struct lu_device *dev, const struct lu_fid *f,
758                                  const struct lu_object_conf *conf)
759 {
760         return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
761 }
762 EXPORT_SYMBOL(lu_object_find);
763
764 /*
765  * Get a 'first' reference to an object that was found while looking through the
766  * hash table.
767  */
768 struct lu_object *lu_object_get_first(struct lu_object_header *h,
769                                       struct lu_device *dev)
770 {
771         struct lu_site *s = dev->ld_site;
772         struct lu_object *ret;
773
774         if (IS_ERR_OR_NULL(h) || lu_object_is_dying(h))
775                 return NULL;
776
777         ret = lu_object_locate(h, dev->ld_type);
778         if (!ret)
779                 return ret;
780
781         if (!atomic_inc_not_zero(&h->loh_ref)) {
782                 struct lu_site_bkt_data *bkt;
783
784                 bkt = &s->ls_bkts[lu_bkt_hash(s, &h->loh_fid)];
785                 spin_lock(&bkt->lsb_waitq.lock);
786                 if (!lu_object_is_dying(h) &&
787                     !test_bit(LU_OBJECT_UNHASHED, &h->loh_flags))
788                         atomic_inc(&h->loh_ref);
789                 else
790                         ret = NULL;
791                 spin_unlock(&bkt->lsb_waitq.lock);
792         }
793         return ret;
794 }
795 EXPORT_SYMBOL(lu_object_get_first);
796
797 /**
798  * Core logic of lu_object_find*() functions.
799  *
800  * Much like lu_object_find(), but top level device of object is specifically
801  * \a dev rather than top level device of the site. This interface allows
802  * objects of different "stacking" to be created within the same site.
803  */
804 struct lu_object *lu_object_find_at(const struct lu_env *env,
805                                     struct lu_device *dev,
806                                     const struct lu_fid *f,
807                                     const struct lu_object_conf *conf)
808 {
809         struct lu_object *o;
810         struct lu_object *shadow;
811         struct lu_site *s;
812         struct lu_site_bkt_data *bkt;
813         struct rhashtable *hs;
814         int rc;
815
816         ENTRY;
817
818         /*
819          * This uses standard index maintenance protocol:
820          *
821          *     - search index under lock, and return object if found;
822          *     - otherwise, unlock index, allocate new object;
823          *     - lock index and search again;
824          *     - if nothing is found (usual case), insert newly created
825          *       object into index;
826          *     - otherwise (race: other thread inserted object), free
827          *       object just allocated.
828          *     - unlock index;
829          *     - return object.
830          *
831          * For "LOC_F_NEW" case, we are sure the object is new established.
832          * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
833          * just alloc and insert directly.
834          *
835          */
836         s  = dev->ld_site;
837         hs = &s->ls_obj_hash;
838
839         if (unlikely(OBD_FAIL_PRECHECK(OBD_FAIL_OBD_ZERO_NLINK_RACE)))
840                 lu_site_purge(env, s, -1);
841
842         bkt = &s->ls_bkts[lu_bkt_hash(s, f)];
843         if (!(conf && conf->loc_flags & LOC_F_NEW)) {
844                 o = htable_lookup(env, dev, bkt, f, NULL);
845
846                 if (!IS_ERR(o)) {
847                         if (likely(lu_object_is_inited(o->lo_header)))
848                                 RETURN(o);
849
850                         wait_event_idle(bkt->lsb_waitq,
851                                         lu_object_is_inited(o->lo_header) ||
852                                         lu_object_is_dying(o->lo_header));
853
854                         if (lu_object_is_dying(o->lo_header)) {
855                                 lu_object_put(env, o);
856
857                                 RETURN(ERR_PTR(-ENOENT));
858                         }
859
860                         RETURN(o);
861                 }
862
863                 if (PTR_ERR(o) != -ENOENT)
864                         RETURN(o);
865         }
866
867         /*
868          * Allocate new object, NB, object is unitialized in case object
869          * is changed between allocation and hash insertion, thus the object
870          * with stale attributes is returned.
871          */
872         o = lu_object_alloc(env, dev, f);
873         if (IS_ERR(o))
874                 RETURN(o);
875
876         LASSERT(lu_fid_eq(lu_object_fid(o), f));
877
878         CFS_RACE_WAIT(OBD_FAIL_OBD_ZERO_NLINK_RACE);
879
880         if (conf && conf->loc_flags & LOC_F_NEW) {
881                 int status = rhashtable_insert_fast(hs, &o->lo_header->loh_hash,
882                                                     obj_hash_params);
883                 if (status)
884                         /* Strange error - go the slow way */
885                         shadow = htable_lookup(env, dev, bkt, f, o->lo_header);
886                 else
887                         shadow = ERR_PTR(-ENOENT);
888         } else {
889                 shadow = htable_lookup(env, dev, bkt, f, o->lo_header);
890         }
891         if (likely(PTR_ERR(shadow) == -ENOENT)) {
892                 /*
893                  * The new object has been successfully inserted.
894                  *
895                  * This may result in rather complicated operations, including
896                  * fld queries, inode loading, etc.
897                  */
898                 rc = lu_object_start(env, dev, o, conf);
899                 if (rc) {
900                         lu_object_put_nocache(env, o);
901                         RETURN(ERR_PTR(rc));
902                 }
903
904                 wake_up(&bkt->lsb_waitq);
905
906                 lu_object_limit(env, dev);
907
908                 RETURN(o);
909         }
910
911         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
912         lu_object_free(env, o);
913
914         if (!(conf && conf->loc_flags & LOC_F_NEW) &&
915             !IS_ERR(shadow) &&
916             !lu_object_is_inited(shadow->lo_header)) {
917                 wait_event_idle(bkt->lsb_waitq,
918                                 lu_object_is_inited(shadow->lo_header) ||
919                                 lu_object_is_dying(shadow->lo_header));
920
921                 if (lu_object_is_dying(shadow->lo_header)) {
922                         lu_object_put(env, shadow);
923
924                         RETURN(ERR_PTR(-ENOENT));
925                 }
926         }
927
928         RETURN(shadow);
929 }
930 EXPORT_SYMBOL(lu_object_find_at);
931
932 /**
933  * Find object with given fid, and return its slice belonging to given device.
934  */
935 struct lu_object *lu_object_find_slice(const struct lu_env *env,
936                                        struct lu_device *dev,
937                                        const struct lu_fid *f,
938                                        const struct lu_object_conf *conf)
939 {
940         struct lu_object *top;
941         struct lu_object *obj;
942
943         top = lu_object_find(env, dev, f, conf);
944         if (IS_ERR(top))
945                 return top;
946
947         obj = lu_object_locate(top->lo_header, dev->ld_type);
948         if (unlikely(obj == NULL)) {
949                 lu_object_put(env, top);
950                 obj = ERR_PTR(-ENOENT);
951         }
952
953         return obj;
954 }
955 EXPORT_SYMBOL(lu_object_find_slice);
956
957 int lu_device_type_init(struct lu_device_type *ldt)
958 {
959         int result = 0;
960
961         atomic_set(&ldt->ldt_device_nr, 0);
962         if (ldt->ldt_ops->ldto_init)
963                 result = ldt->ldt_ops->ldto_init(ldt);
964
965         return result;
966 }
967 EXPORT_SYMBOL(lu_device_type_init);
968
969 void lu_device_type_fini(struct lu_device_type *ldt)
970 {
971         if (ldt->ldt_ops->ldto_fini)
972                 ldt->ldt_ops->ldto_fini(ldt);
973 }
974 EXPORT_SYMBOL(lu_device_type_fini);
975
976 /**
977  * Global list of all sites on this node
978  */
979 static LIST_HEAD(lu_sites);
980 static DECLARE_RWSEM(lu_sites_guard);
981
982 /**
983  * Global environment used by site shrinker.
984  */
985 static struct lu_env lu_shrink_env;
986
987 struct lu_site_print_arg {
988         struct lu_env   *lsp_env;
989         void            *lsp_cookie;
990         lu_printer_t     lsp_printer;
991 };
992
993 static void
994 lu_site_obj_print(struct lu_object_header *h, struct lu_site_print_arg *arg)
995 {
996         if (!list_empty(&h->loh_layers)) {
997                 const struct lu_object *o;
998
999                 o = lu_object_top(h);
1000                 lu_object_print(arg->lsp_env, arg->lsp_cookie,
1001                                 arg->lsp_printer, o);
1002         } else {
1003                 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
1004                                        arg->lsp_printer, h);
1005         }
1006 }
1007
1008 /**
1009  * Print all objects in \a s.
1010  */
1011 void lu_site_print(const struct lu_env *env, struct lu_site *s, atomic_t *ref,
1012                    int msg_flag, lu_printer_t printer)
1013 {
1014         struct lu_site_print_arg arg = {
1015                 .lsp_env     = (struct lu_env *)env,
1016                 .lsp_printer = printer,
1017         };
1018         struct rhashtable_iter iter;
1019         struct lu_object_header *h;
1020         LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, msg_flag, NULL);
1021
1022         if (!s || !atomic_read(ref))
1023                 return;
1024
1025         arg.lsp_cookie = (void *)&msgdata;
1026
1027         rhashtable_walk_enter(&s->ls_obj_hash, &iter);
1028         rhashtable_walk_start(&iter);
1029         while ((h = rhashtable_walk_next(&iter)) != NULL) {
1030                 if (IS_ERR(h))
1031                         continue;
1032                 lu_site_obj_print(h, &arg);
1033         }
1034         rhashtable_walk_stop(&iter);
1035         rhashtable_walk_exit(&iter);
1036 }
1037 EXPORT_SYMBOL(lu_site_print);
1038
1039 /**
1040  * Return desired hash table order.
1041  */
1042 static void lu_htable_limits(struct lu_device *top)
1043 {
1044         unsigned long cache_size;
1045
1046         /*
1047          * For ZFS based OSDs the cache should be disabled by default.  This
1048          * allows the ZFS ARC maximum flexibility in determining what buffers
1049          * to cache.  If Lustre has objects or buffer which it wants to ensure
1050          * always stay cached it must maintain a hold on them.
1051          */
1052         if (strcmp(top->ld_type->ldt_name, LUSTRE_OSD_ZFS_NAME) == 0) {
1053                 lu_cache_nr = LU_CACHE_NR_ZFS_LIMIT;
1054                 return;
1055         }
1056
1057         /*
1058          * Calculate hash table size, assuming that we want reasonable
1059          * performance when 20% of total memory is occupied by cache of
1060          * lu_objects.
1061          *
1062          * Size of lu_object is (arbitrary) taken as 1K (together with inode).
1063          */
1064         cache_size = cfs_totalram_pages();
1065
1066 #if BITS_PER_LONG == 32
1067         /* limit hashtable size for lowmem systems to low RAM */
1068         if (cache_size > 1 << (30 - PAGE_SHIFT))
1069                 cache_size = 1 << (30 - PAGE_SHIFT) * 3 / 4;
1070 #endif
1071
1072         /* clear off unreasonable cache setting. */
1073         if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
1074                 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in the range of (0, %u]. Will use default value: %u.\n",
1075                       lu_cache_percent, LU_CACHE_PERCENT_MAX,
1076                       LU_CACHE_PERCENT_DEFAULT);
1077
1078                 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
1079         }
1080         cache_size = cache_size / 100 * lu_cache_percent *
1081                 (PAGE_SIZE / 1024);
1082
1083         lu_cache_nr = clamp_t(typeof(cache_size), cache_size,
1084                               LU_CACHE_NR_MIN, LU_CACHE_NR_MAX);
1085 }
1086
1087 void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d)
1088 {
1089         spin_lock(&s->ls_ld_lock);
1090         if (list_empty(&d->ld_linkage))
1091                 list_add(&d->ld_linkage, &s->ls_ld_linkage);
1092         spin_unlock(&s->ls_ld_lock);
1093 }
1094 EXPORT_SYMBOL(lu_dev_add_linkage);
1095
1096 void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d)
1097 {
1098         spin_lock(&s->ls_ld_lock);
1099         list_del_init(&d->ld_linkage);
1100         spin_unlock(&s->ls_ld_lock);
1101 }
1102 EXPORT_SYMBOL(lu_dev_del_linkage);
1103
1104 /**
1105   * Initialize site \a s, with \a d as the top level device.
1106   */
1107 int lu_site_init(struct lu_site *s, struct lu_device *top)
1108 {
1109         struct lu_site_bkt_data *bkt;
1110         unsigned int i;
1111         int rc;
1112         ENTRY;
1113
1114         memset(s, 0, sizeof *s);
1115         mutex_init(&s->ls_purge_mutex);
1116         lu_htable_limits(top);
1117
1118 #ifdef HAVE_PERCPU_COUNTER_INIT_GFP_FLAG
1119         rc = percpu_counter_init(&s->ls_lru_len_counter, 0, GFP_NOFS);
1120 #else
1121         rc = percpu_counter_init(&s->ls_lru_len_counter, 0);
1122 #endif
1123         if (rc)
1124                 return -ENOMEM;
1125
1126         if (rhashtable_init(&s->ls_obj_hash, &obj_hash_params) != 0) {
1127                 CERROR("failed to create lu_site hash\n");
1128                 return -ENOMEM;
1129         }
1130
1131         s->ls_bkt_seed = prandom_u32();
1132         s->ls_bkt_cnt = max_t(long, 1 << LU_SITE_BKT_BITS,
1133                               2 * num_possible_cpus());
1134         s->ls_bkt_cnt = roundup_pow_of_two(s->ls_bkt_cnt);
1135         OBD_ALLOC_PTR_ARRAY_LARGE(s->ls_bkts, s->ls_bkt_cnt);
1136         if (!s->ls_bkts) {
1137                 rhashtable_destroy(&s->ls_obj_hash);
1138                 s->ls_bkts = NULL;
1139                 return -ENOMEM;
1140         }
1141
1142         for (i = 0; i < s->ls_bkt_cnt; i++) {
1143                 bkt = &s->ls_bkts[i];
1144                 INIT_LIST_HEAD(&bkt->lsb_lru);
1145                 init_waitqueue_head(&bkt->lsb_waitq);
1146         }
1147
1148         s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
1149         if (s->ls_stats == NULL) {
1150                 OBD_FREE_PTR_ARRAY_LARGE(s->ls_bkts, s->ls_bkt_cnt);
1151                 s->ls_bkts = NULL;
1152                 rhashtable_destroy(&s->ls_obj_hash);
1153                 return -ENOMEM;
1154         }
1155
1156         lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
1157                              0, "created", "created");
1158         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
1159                              0, "cache_hit", "cache_hit");
1160         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
1161                              0, "cache_miss", "cache_miss");
1162         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
1163                              0, "cache_race", "cache_race");
1164         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
1165                              0, "cache_death_race", "cache_death_race");
1166         lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
1167                              0, "lru_purged", "lru_purged");
1168
1169         INIT_LIST_HEAD(&s->ls_linkage);
1170         s->ls_top_dev = top;
1171         top->ld_site = s;
1172         lu_device_get(top);
1173         lu_ref_add(&top->ld_reference, "site-top", s);
1174
1175         INIT_LIST_HEAD(&s->ls_ld_linkage);
1176         spin_lock_init(&s->ls_ld_lock);
1177
1178         lu_dev_add_linkage(s, top);
1179
1180         RETURN(0);
1181 }
1182 EXPORT_SYMBOL(lu_site_init);
1183
1184 /**
1185  * Finalize \a s and release its resources.
1186  */
1187 void lu_site_fini(struct lu_site *s)
1188 {
1189         down_write(&lu_sites_guard);
1190         list_del_init(&s->ls_linkage);
1191         up_write(&lu_sites_guard);
1192
1193         percpu_counter_destroy(&s->ls_lru_len_counter);
1194
1195         if (s->ls_bkts) {
1196                 rhashtable_destroy(&s->ls_obj_hash);
1197                 OBD_FREE_PTR_ARRAY_LARGE(s->ls_bkts, s->ls_bkt_cnt);
1198                 s->ls_bkts = NULL;
1199         }
1200
1201         if (s->ls_top_dev != NULL) {
1202                 s->ls_top_dev->ld_site = NULL;
1203                 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
1204                 lu_device_put(s->ls_top_dev);
1205                 s->ls_top_dev = NULL;
1206         }
1207
1208         if (s->ls_stats != NULL)
1209                 lprocfs_free_stats(&s->ls_stats);
1210 }
1211 EXPORT_SYMBOL(lu_site_fini);
1212
1213 /**
1214  * Called when initialization of stack for this site is completed.
1215  */
1216 int lu_site_init_finish(struct lu_site *s)
1217 {
1218         int result;
1219         down_write(&lu_sites_guard);
1220         result = lu_context_refill(&lu_shrink_env.le_ctx);
1221         if (result == 0)
1222                 list_add(&s->ls_linkage, &lu_sites);
1223         up_write(&lu_sites_guard);
1224         return result;
1225 }
1226 EXPORT_SYMBOL(lu_site_init_finish);
1227
1228 /**
1229  * Acquire additional reference on device \a d
1230  */
1231 void lu_device_get(struct lu_device *d)
1232 {
1233         atomic_inc(&d->ld_ref);
1234 }
1235 EXPORT_SYMBOL(lu_device_get);
1236
1237 /**
1238  * Release reference on device \a d.
1239  */
1240 void lu_device_put(struct lu_device *d)
1241 {
1242         LASSERT(atomic_read(&d->ld_ref) > 0);
1243         atomic_dec(&d->ld_ref);
1244 }
1245 EXPORT_SYMBOL(lu_device_put);
1246
1247 enum { /* Maximal number of tld slots. */
1248         LU_CONTEXT_KEY_NR = 40
1249 };
1250 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1251 static DECLARE_RWSEM(lu_key_initing);
1252
1253 /**
1254  * Initialize device \a d of type \a t.
1255  */
1256 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1257 {
1258         if (atomic_add_unless(&t->ldt_device_nr, 1, 0) == 0) {
1259                 down_write(&lu_key_initing);
1260                 if (t->ldt_ops->ldto_start &&
1261                     atomic_read(&t->ldt_device_nr) == 0)
1262                         t->ldt_ops->ldto_start(t);
1263                 atomic_inc(&t->ldt_device_nr);
1264                 up_write(&lu_key_initing);
1265         }
1266
1267         memset(d, 0, sizeof *d);
1268         d->ld_type = t;
1269         lu_ref_init(&d->ld_reference);
1270         INIT_LIST_HEAD(&d->ld_linkage);
1271
1272         return 0;
1273 }
1274 EXPORT_SYMBOL(lu_device_init);
1275
1276 /**
1277  * Finalize device \a d.
1278  */
1279 void lu_device_fini(struct lu_device *d)
1280 {
1281         struct lu_device_type *t = d->ld_type;
1282
1283         if (d->ld_obd != NULL) {
1284                 d->ld_obd->obd_lu_dev = NULL;
1285                 d->ld_obd = NULL;
1286         }
1287
1288         lu_ref_fini(&d->ld_reference);
1289         LASSERTF(atomic_read(&d->ld_ref) == 0,
1290                  "Refcount is %u\n", atomic_read(&d->ld_ref));
1291         LASSERT(atomic_read(&t->ldt_device_nr) > 0);
1292
1293         if (atomic_dec_and_test(&t->ldt_device_nr) &&
1294             t->ldt_ops->ldto_stop != NULL)
1295                 t->ldt_ops->ldto_stop(t);
1296 }
1297 EXPORT_SYMBOL(lu_device_fini);
1298
1299 /**
1300  * Initialize object \a o that is part of compound object \a h and was created
1301  * by device \a d.
1302  */
1303 int lu_object_init(struct lu_object *o, struct lu_object_header *h,
1304                    struct lu_device *d)
1305 {
1306         memset(o, 0, sizeof(*o));
1307         o->lo_header = h;
1308         o->lo_dev = d;
1309         lu_device_get(d);
1310         lu_ref_add_at(&d->ld_reference, &o->lo_dev_ref, "lu_object", o);
1311         INIT_LIST_HEAD(&o->lo_linkage);
1312
1313         return 0;
1314 }
1315 EXPORT_SYMBOL(lu_object_init);
1316
1317 /**
1318  * Finalize object and release its resources.
1319  */
1320 void lu_object_fini(struct lu_object *o)
1321 {
1322         struct lu_device *dev = o->lo_dev;
1323
1324         LASSERT(list_empty(&o->lo_linkage));
1325
1326         if (dev != NULL) {
1327                 lu_ref_del_at(&dev->ld_reference, &o->lo_dev_ref,
1328                               "lu_object", o);
1329                 lu_device_put(dev);
1330                 o->lo_dev = NULL;
1331         }
1332 }
1333 EXPORT_SYMBOL(lu_object_fini);
1334
1335 /**
1336  * Add object \a o as first layer of compound object \a h
1337  *
1338  * This is typically called by the ->ldo_object_alloc() method of top-level
1339  * device.
1340  */
1341 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1342 {
1343         list_move(&o->lo_linkage, &h->loh_layers);
1344 }
1345 EXPORT_SYMBOL(lu_object_add_top);
1346
1347 /**
1348  * Add object \a o as a layer of compound object, going after \a before.
1349  *
1350  * This is typically called by the ->ldo_object_alloc() method of \a
1351  * before->lo_dev.
1352  */
1353 void lu_object_add(struct lu_object *before, struct lu_object *o)
1354 {
1355         list_move(&o->lo_linkage, &before->lo_linkage);
1356 }
1357 EXPORT_SYMBOL(lu_object_add);
1358
1359 /**
1360  * Initialize compound object.
1361  */
1362 int lu_object_header_init(struct lu_object_header *h)
1363 {
1364         memset(h, 0, sizeof *h);
1365         atomic_set(&h->loh_ref, 1);
1366         INIT_LIST_HEAD(&h->loh_lru);
1367         INIT_LIST_HEAD(&h->loh_layers);
1368         lu_ref_init(&h->loh_reference);
1369         return 0;
1370 }
1371 EXPORT_SYMBOL(lu_object_header_init);
1372
1373 /**
1374  * Finalize compound object.
1375  */
1376 void lu_object_header_fini(struct lu_object_header *h)
1377 {
1378         LASSERT(list_empty(&h->loh_layers));
1379         LASSERT(list_empty(&h->loh_lru));
1380         lu_ref_fini(&h->loh_reference);
1381 }
1382 EXPORT_SYMBOL(lu_object_header_fini);
1383
1384 /**
1385  * Given a compound object, find its slice, corresponding to the device type
1386  * \a dtype.
1387  */
1388 struct lu_object *lu_object_locate(struct lu_object_header *h,
1389                                    const struct lu_device_type *dtype)
1390 {
1391         struct lu_object *o;
1392
1393         list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1394                 if (o->lo_dev->ld_type == dtype)
1395                         return o;
1396         }
1397         return NULL;
1398 }
1399 EXPORT_SYMBOL(lu_object_locate);
1400
1401 /**
1402  * Finalize and free devices in the device stack.
1403  *
1404  * Finalize device stack by purging object cache, and calling
1405  * lu_device_type_operations::ldto_device_fini() and
1406  * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1407  */
1408 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1409 {
1410         struct lu_site   *site = top->ld_site;
1411         struct lu_device *scan;
1412         struct lu_device *next;
1413
1414         lu_site_purge(env, site, ~0);
1415         for (scan = top; scan != NULL; scan = next) {
1416                 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1417                 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1418                 lu_device_put(scan);
1419         }
1420
1421         /* purge again. */
1422         lu_site_purge(env, site, ~0);
1423
1424         for (scan = top; scan != NULL; scan = next) {
1425                 const struct lu_device_type *ldt = scan->ld_type;
1426
1427                 next = ldt->ldt_ops->ldto_device_free(env, scan);
1428         }
1429 }
1430
1431 /**
1432  * Global counter incremented whenever key is registered, unregistered,
1433  * revived or quiesced. This is used to void unnecessary calls to
1434  * lu_context_refill(). No locking is provided, as initialization and shutdown
1435  * are supposed to be externally serialized.
1436  */
1437 static atomic_t key_set_version = ATOMIC_INIT(0);
1438
1439 /**
1440  * Register new key.
1441  */
1442 int lu_context_key_register(struct lu_context_key *key)
1443 {
1444         int result;
1445         unsigned int i;
1446
1447         LASSERT(key->lct_init != NULL);
1448         LASSERT(key->lct_fini != NULL);
1449         LASSERT(key->lct_tags != 0);
1450         LASSERT(key->lct_owner != NULL);
1451
1452         result = -ENFILE;
1453         atomic_set(&key->lct_used, 1);
1454         lu_ref_init(&key->lct_reference);
1455         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1456                 if (lu_keys[i])
1457                         continue;
1458                 key->lct_index = i;
1459
1460                 if (strncmp("osd_", module_name(key->lct_owner), 4) == 0)
1461                         CFS_RACE_WAIT(OBD_FAIL_OBD_SETUP);
1462
1463                 if (cmpxchg(&lu_keys[i], NULL, key) != NULL)
1464                         continue;
1465
1466                 result = 0;
1467                 atomic_inc(&key_set_version);
1468                 break;
1469         }
1470         if (result) {
1471                 lu_ref_fini(&key->lct_reference);
1472                 atomic_set(&key->lct_used, 0);
1473         }
1474         return result;
1475 }
1476 EXPORT_SYMBOL(lu_context_key_register);
1477
1478 static void key_fini(struct lu_context *ctx, int index)
1479 {
1480         if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1481                 struct lu_context_key *key;
1482
1483                 key = lu_keys[index];
1484                 LASSERT(key != NULL);
1485                 LASSERT(key->lct_fini != NULL);
1486                 LASSERT(atomic_read(&key->lct_used) > 0);
1487
1488                 key->lct_fini(ctx, key, ctx->lc_value[index]);
1489                 lu_ref_del(&key->lct_reference, "ctx", ctx);
1490                 if (atomic_dec_and_test(&key->lct_used))
1491                         wake_up_var(&key->lct_used);
1492
1493                 LASSERT(key->lct_owner != NULL);
1494                 if ((ctx->lc_tags & LCT_NOREF) == 0) {
1495                         LINVRNT(module_refcount(key->lct_owner) > 0);
1496                         module_put(key->lct_owner);
1497                 }
1498                 ctx->lc_value[index] = NULL;
1499         }
1500 }
1501
1502 /**
1503  * Deregister key.
1504  */
1505 void lu_context_key_degister(struct lu_context_key *key)
1506 {
1507         LASSERT(atomic_read(&key->lct_used) >= 1);
1508         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1509
1510         lu_context_key_quiesce(NULL, key);
1511
1512         key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1513
1514         /**
1515          * Wait until all transient contexts referencing this key have
1516          * run lu_context_key::lct_fini() method.
1517          */
1518         atomic_dec(&key->lct_used);
1519         wait_var_event(&key->lct_used, atomic_read(&key->lct_used) == 0);
1520
1521         if (!WARN_ON(lu_keys[key->lct_index] == NULL))
1522                 lu_ref_fini(&key->lct_reference);
1523
1524         smp_store_release(&lu_keys[key->lct_index], NULL);
1525 }
1526 EXPORT_SYMBOL(lu_context_key_degister);
1527
1528 /**
1529  * Register a number of keys. This has to be called after all keys have been
1530  * initialized by a call to LU_CONTEXT_KEY_INIT().
1531  */
1532 int lu_context_key_register_many(struct lu_context_key *k, ...)
1533 {
1534         struct lu_context_key *key = k;
1535         va_list args;
1536         int result;
1537
1538         va_start(args, k);
1539         do {
1540                 result = lu_context_key_register(key);
1541                 if (result)
1542                         break;
1543                 key = va_arg(args, struct lu_context_key *);
1544         } while (key != NULL);
1545         va_end(args);
1546
1547         if (result != 0) {
1548                 va_start(args, k);
1549                 while (k != key) {
1550                         lu_context_key_degister(k);
1551                         k = va_arg(args, struct lu_context_key *);
1552                 }
1553                 va_end(args);
1554         }
1555
1556         return result;
1557 }
1558 EXPORT_SYMBOL(lu_context_key_register_many);
1559
1560 /**
1561  * De-register a number of keys. This is a dual to
1562  * lu_context_key_register_many().
1563  */
1564 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1565 {
1566         va_list args;
1567
1568         va_start(args, k);
1569         do {
1570                 lu_context_key_degister(k);
1571                 k = va_arg(args, struct lu_context_key*);
1572         } while (k != NULL);
1573         va_end(args);
1574 }
1575 EXPORT_SYMBOL(lu_context_key_degister_many);
1576
1577 /**
1578  * Revive a number of keys.
1579  */
1580 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1581 {
1582         va_list args;
1583
1584         va_start(args, k);
1585         do {
1586                 lu_context_key_revive(k);
1587                 k = va_arg(args, struct lu_context_key*);
1588         } while (k != NULL);
1589         va_end(args);
1590 }
1591 EXPORT_SYMBOL(lu_context_key_revive_many);
1592
1593 /**
1594  * Quiescent a number of keys.
1595  */
1596 void lu_context_key_quiesce_many(struct lu_device_type *t,
1597                                  struct lu_context_key *k, ...)
1598 {
1599         va_list args;
1600
1601         va_start(args, k);
1602         do {
1603                 lu_context_key_quiesce(t, k);
1604                 k = va_arg(args, struct lu_context_key*);
1605         } while (k != NULL);
1606         va_end(args);
1607 }
1608 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1609
1610 /**
1611  * Return value associated with key \a key in context \a ctx.
1612  */
1613 void *lu_context_key_get(const struct lu_context *ctx,
1614                          const struct lu_context_key *key)
1615 {
1616         LINVRNT(ctx->lc_state == LCS_ENTERED);
1617         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1618         LASSERT(lu_keys[key->lct_index] == key);
1619         return ctx->lc_value[key->lct_index];
1620 }
1621 EXPORT_SYMBOL(lu_context_key_get);
1622
1623 /**
1624  * List of remembered contexts. XXX document me.
1625  */
1626 static LIST_HEAD(lu_context_remembered);
1627 static DEFINE_SPINLOCK(lu_context_remembered_guard);
1628
1629 /**
1630  * Destroy \a key in all remembered contexts. This is used to destroy key
1631  * values in "shared" contexts (like service threads), when a module owning
1632  * the key is about to be unloaded.
1633  */
1634 void lu_context_key_quiesce(struct lu_device_type *t,
1635                             struct lu_context_key *key)
1636 {
1637         struct lu_context *ctx;
1638
1639         if (key->lct_tags & LCT_QUIESCENT)
1640                 return;
1641         /*
1642          * The write-lock on lu_key_initing will ensure that any
1643          * keys_fill() which didn't see LCT_QUIESCENT will have
1644          * finished before we call key_fini().
1645          */
1646         down_write(&lu_key_initing);
1647         if (!(key->lct_tags & LCT_QUIESCENT)) {
1648                 if (t == NULL || atomic_read(&t->ldt_device_nr) == 0)
1649                         key->lct_tags |= LCT_QUIESCENT;
1650                 up_write(&lu_key_initing);
1651
1652                 spin_lock(&lu_context_remembered_guard);
1653                 list_for_each_entry(ctx, &lu_context_remembered, lc_remember) {
1654                         spin_until_cond(READ_ONCE(ctx->lc_state) != LCS_LEAVING);
1655                         key_fini(ctx, key->lct_index);
1656                 }
1657                 spin_unlock(&lu_context_remembered_guard);
1658
1659                 return;
1660         }
1661         up_write(&lu_key_initing);
1662 }
1663
1664 void lu_context_key_revive(struct lu_context_key *key)
1665 {
1666         key->lct_tags &= ~LCT_QUIESCENT;
1667         atomic_inc(&key_set_version);
1668 }
1669
1670 static void keys_fini(struct lu_context *ctx)
1671 {
1672         unsigned int i;
1673
1674         if (ctx->lc_value == NULL)
1675                 return;
1676
1677         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1678                 key_fini(ctx, i);
1679
1680         OBD_FREE_PTR_ARRAY(ctx->lc_value, ARRAY_SIZE(lu_keys));
1681         ctx->lc_value = NULL;
1682 }
1683
1684 static int keys_fill(struct lu_context *ctx)
1685 {
1686         unsigned int i;
1687         int rc = 0;
1688
1689         /*
1690          * A serialisation with lu_context_key_quiesce() is needed, to
1691          * ensure we see LCT_QUIESCENT and don't allocate a new value
1692          * after it freed one.  The rwsem provides this.  As down_read()
1693          * does optimistic spinning while the writer is active, this is
1694          * unlikely to ever sleep.
1695          */
1696         down_read(&lu_key_initing);
1697         ctx->lc_version = atomic_read(&key_set_version);
1698
1699         LINVRNT(ctx->lc_value);
1700         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1701                 struct lu_context_key *key;
1702
1703                 key = lu_keys[i];
1704                 if (!ctx->lc_value[i] && key &&
1705                     (key->lct_tags & ctx->lc_tags) &&
1706                     /*
1707                      * Don't create values for a LCT_QUIESCENT key, as this
1708                      * will pin module owning a key.
1709                      */
1710                     !(key->lct_tags & LCT_QUIESCENT)) {
1711                         void *value;
1712
1713                         LINVRNT(key->lct_init != NULL);
1714                         LINVRNT(key->lct_index == i);
1715
1716                         LASSERT(key->lct_owner != NULL);
1717                         if (!(ctx->lc_tags & LCT_NOREF) &&
1718                             try_module_get(key->lct_owner) == 0) {
1719                                 /* module is unloading, skip this key */
1720                                 continue;
1721                         }
1722
1723                         value = key->lct_init(ctx, key);
1724                         if (unlikely(IS_ERR(value))) {
1725                                 rc = PTR_ERR(value);
1726                                 break;
1727                         }
1728
1729                         lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1730                         atomic_inc(&key->lct_used);
1731                         /*
1732                          * This is the only place in the code, where an
1733                          * element of ctx->lc_value[] array is set to non-NULL
1734                          * value.
1735                          */
1736                         ctx->lc_value[i] = value;
1737                         if (key->lct_exit != NULL)
1738                                 ctx->lc_tags |= LCT_HAS_EXIT;
1739                 }
1740         }
1741
1742         up_read(&lu_key_initing);
1743         return rc;
1744 }
1745
1746 static int keys_init(struct lu_context *ctx)
1747 {
1748         OBD_ALLOC_PTR_ARRAY(ctx->lc_value, ARRAY_SIZE(lu_keys));
1749         if (likely(ctx->lc_value != NULL))
1750                 return keys_fill(ctx);
1751
1752         return -ENOMEM;
1753 }
1754
1755 /**
1756  * Initialize context data-structure. Create values for all keys.
1757  */
1758 int lu_context_init(struct lu_context *ctx, __u32 tags)
1759 {
1760         int     rc;
1761
1762         memset(ctx, 0, sizeof *ctx);
1763         ctx->lc_state = LCS_INITIALIZED;
1764         ctx->lc_tags = tags;
1765         if (tags & LCT_REMEMBER) {
1766                 spin_lock(&lu_context_remembered_guard);
1767                 list_add(&ctx->lc_remember, &lu_context_remembered);
1768                 spin_unlock(&lu_context_remembered_guard);
1769         } else {
1770                 INIT_LIST_HEAD(&ctx->lc_remember);
1771         }
1772
1773         rc = keys_init(ctx);
1774         if (rc != 0)
1775                 lu_context_fini(ctx);
1776
1777         return rc;
1778 }
1779 EXPORT_SYMBOL(lu_context_init);
1780
1781 /**
1782  * Finalize context data-structure. Destroy key values.
1783  */
1784 void lu_context_fini(struct lu_context *ctx)
1785 {
1786         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1787         ctx->lc_state = LCS_FINALIZED;
1788
1789         if ((ctx->lc_tags & LCT_REMEMBER) == 0) {
1790                 LASSERT(list_empty(&ctx->lc_remember));
1791         } else {
1792                 /* could race with key degister */
1793                 spin_lock(&lu_context_remembered_guard);
1794                 list_del_init(&ctx->lc_remember);
1795                 spin_unlock(&lu_context_remembered_guard);
1796         }
1797         keys_fini(ctx);
1798 }
1799 EXPORT_SYMBOL(lu_context_fini);
1800
1801 /**
1802  * Called before entering context.
1803  */
1804 void lu_context_enter(struct lu_context *ctx)
1805 {
1806         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1807         ctx->lc_state = LCS_ENTERED;
1808 }
1809 EXPORT_SYMBOL(lu_context_enter);
1810
1811 /**
1812  * Called after exiting from \a ctx
1813  */
1814 void lu_context_exit(struct lu_context *ctx)
1815 {
1816         unsigned int i;
1817
1818         LINVRNT(ctx->lc_state == LCS_ENTERED);
1819         /*
1820          * Disable preempt to ensure we get a warning if
1821          * any lct_exit ever tries to sleep.  That would hurt
1822          * lu_context_key_quiesce() which spins waiting for us.
1823          * This also ensure we aren't preempted while the state
1824          * is LCS_LEAVING, as that too would cause problems for
1825          * lu_context_key_quiesce().
1826          */
1827         preempt_disable();
1828         /*
1829          * Ensure lu_context_key_quiesce() sees LCS_LEAVING
1830          * or we see LCT_QUIESCENT
1831          */
1832         smp_store_mb(ctx->lc_state, LCS_LEAVING);
1833         if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value) {
1834                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1835                         struct lu_context_key *key;
1836
1837                         key = lu_keys[i];
1838                         if (ctx->lc_value[i] &&
1839                             !(key->lct_tags & LCT_QUIESCENT) &&
1840                             key->lct_exit)
1841                                 key->lct_exit(ctx, key, ctx->lc_value[i]);
1842                 }
1843         }
1844
1845         smp_store_release(&ctx->lc_state, LCS_LEFT);
1846         preempt_enable();
1847 }
1848 EXPORT_SYMBOL(lu_context_exit);
1849
1850 /**
1851  * Allocate for context all missing keys that were registered after context
1852  * creation. key_set_version is only changed in rare cases when modules
1853  * are loaded and removed.
1854  */
1855 int lu_context_refill(struct lu_context *ctx)
1856 {
1857         if (likely(ctx->lc_version == atomic_read(&key_set_version)))
1858                 return 0;
1859
1860         return keys_fill(ctx);
1861 }
1862
1863 /**
1864  * lu_ctx_tags/lu_ses_tags will be updated if there are new types of
1865  * obd being added. Currently, this is only used on client side, specifically
1866  * for echo device client, for other stack (like ptlrpc threads), context are
1867  * predefined when the lu_device type are registered, during the module probe
1868  * phase.
1869  */
1870 u32 lu_context_tags_default = LCT_CL_THREAD;
1871 u32 lu_session_tags_default = LCT_SESSION;
1872
1873 void lu_context_tags_update(__u32 tags)
1874 {
1875         spin_lock(&lu_context_remembered_guard);
1876         lu_context_tags_default |= tags;
1877         atomic_inc(&key_set_version);
1878         spin_unlock(&lu_context_remembered_guard);
1879 }
1880 EXPORT_SYMBOL(lu_context_tags_update);
1881
1882 void lu_context_tags_clear(__u32 tags)
1883 {
1884         spin_lock(&lu_context_remembered_guard);
1885         lu_context_tags_default &= ~tags;
1886         atomic_inc(&key_set_version);
1887         spin_unlock(&lu_context_remembered_guard);
1888 }
1889 EXPORT_SYMBOL(lu_context_tags_clear);
1890
1891 void lu_session_tags_update(__u32 tags)
1892 {
1893         spin_lock(&lu_context_remembered_guard);
1894         lu_session_tags_default |= tags;
1895         atomic_inc(&key_set_version);
1896         spin_unlock(&lu_context_remembered_guard);
1897 }
1898 EXPORT_SYMBOL(lu_session_tags_update);
1899
1900 void lu_session_tags_clear(__u32 tags)
1901 {
1902         spin_lock(&lu_context_remembered_guard);
1903         lu_session_tags_default &= ~tags;
1904         atomic_inc(&key_set_version);
1905         spin_unlock(&lu_context_remembered_guard);
1906 }
1907 EXPORT_SYMBOL(lu_session_tags_clear);
1908
1909 int lu_env_init(struct lu_env *env, __u32 tags)
1910 {
1911         int result;
1912
1913         env->le_ses = NULL;
1914         result = lu_context_init(&env->le_ctx, tags);
1915         if (likely(result == 0))
1916                 lu_context_enter(&env->le_ctx);
1917         return result;
1918 }
1919 EXPORT_SYMBOL(lu_env_init);
1920
1921 void lu_env_fini(struct lu_env *env)
1922 {
1923         lu_context_exit(&env->le_ctx);
1924         lu_context_fini(&env->le_ctx);
1925         env->le_ses = NULL;
1926 }
1927 EXPORT_SYMBOL(lu_env_fini);
1928
1929 int lu_env_refill(struct lu_env *env)
1930 {
1931         int result;
1932
1933         result = lu_context_refill(&env->le_ctx);
1934         if (result == 0 && env->le_ses != NULL)
1935                 result = lu_context_refill(env->le_ses);
1936         return result;
1937 }
1938 EXPORT_SYMBOL(lu_env_refill);
1939
1940 /**
1941  * Currently, this API will only be used by echo client.
1942  * Because echo client and normal lustre client will share
1943  * same cl_env cache. So echo client needs to refresh
1944  * the env context after it get one from the cache, especially
1945  * when normal client and echo client co-exist in the same client.
1946  */
1947 int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags,
1948                           __u32 stags)
1949 {
1950         int    result;
1951
1952         if ((env->le_ctx.lc_tags & ctags) != ctags) {
1953                 env->le_ctx.lc_version = 0;
1954                 env->le_ctx.lc_tags |= ctags;
1955         }
1956
1957         if (env->le_ses && (env->le_ses->lc_tags & stags) != stags) {
1958                 env->le_ses->lc_version = 0;
1959                 env->le_ses->lc_tags |= stags;
1960         }
1961
1962         result = lu_env_refill(env);
1963
1964         return result;
1965 }
1966 EXPORT_SYMBOL(lu_env_refill_by_tags);
1967
1968
1969 struct lu_env_item {
1970         struct task_struct *lei_task;   /* rhashtable key */
1971         struct rhash_head lei_linkage;
1972         struct lu_env *lei_env;
1973         struct rcu_head lei_rcu_head;
1974 };
1975
1976 static const struct rhashtable_params lu_env_rhash_params = {
1977         .key_len     = sizeof(struct task_struct *),
1978         .key_offset  = offsetof(struct lu_env_item, lei_task),
1979         .head_offset = offsetof(struct lu_env_item, lei_linkage),
1980     };
1981
1982 struct rhashtable lu_env_rhash;
1983
1984 struct lu_env_percpu {
1985         struct task_struct *lep_task;
1986         struct lu_env *lep_env ____cacheline_aligned_in_smp;
1987 };
1988
1989 static struct lu_env_percpu lu_env_percpu[NR_CPUS];
1990
1991 int lu_env_add_task(struct lu_env *env, struct task_struct *task)
1992 {
1993         struct lu_env_item *lei, *old;
1994
1995         LASSERT(env);
1996
1997         OBD_ALLOC_PTR(lei);
1998         if (!lei)
1999                 return -ENOMEM;
2000
2001         lei->lei_task = task;
2002         lei->lei_env = env;
2003
2004         old = rhashtable_lookup_get_insert_fast(&lu_env_rhash,
2005                                                 &lei->lei_linkage,
2006                                                 lu_env_rhash_params);
2007         LASSERT(!old);
2008
2009         return 0;
2010 }
2011 EXPORT_SYMBOL(lu_env_add_task);
2012
2013 int lu_env_add(struct lu_env *env)
2014 {
2015         return lu_env_add_task(env, current);
2016 }
2017 EXPORT_SYMBOL(lu_env_add);
2018
2019 static void lu_env_item_free(struct rcu_head *head)
2020 {
2021         struct lu_env_item *lei;
2022
2023         lei = container_of(head, struct lu_env_item, lei_rcu_head);
2024         OBD_FREE_PTR(lei);
2025 }
2026
2027 void lu_env_remove(struct lu_env *env)
2028 {
2029         struct lu_env_item *lei;
2030         const void *task = current;
2031         int i;
2032
2033         for_each_possible_cpu(i) {
2034                 if (lu_env_percpu[i].lep_env == env) {
2035                         LASSERT(lu_env_percpu[i].lep_task == task);
2036                         lu_env_percpu[i].lep_task = NULL;
2037                         lu_env_percpu[i].lep_env = NULL;
2038                 }
2039         }
2040
2041         /* The rcu_lock is not taking in this case since the key
2042          * used is the actual task_struct. This implies that each
2043          * object is only removed by the owning thread, so there
2044          * can never be a race on a particular object.
2045          */
2046         lei = rhashtable_lookup_fast(&lu_env_rhash, &task,
2047                                      lu_env_rhash_params);
2048         if (lei && rhashtable_remove_fast(&lu_env_rhash, &lei->lei_linkage,
2049                                           lu_env_rhash_params) == 0)
2050                 call_rcu(&lei->lei_rcu_head, lu_env_item_free);
2051 }
2052 EXPORT_SYMBOL(lu_env_remove);
2053
2054 struct lu_env *lu_env_find(void)
2055 {
2056         struct lu_env *env = NULL;
2057         struct lu_env_item *lei;
2058         const void *task = current;
2059         int i = get_cpu();
2060
2061         if (lu_env_percpu[i].lep_task == current) {
2062                 env = lu_env_percpu[i].lep_env;
2063                 put_cpu();
2064                 LASSERT(env);
2065                 return env;
2066         }
2067
2068         lei = rhashtable_lookup_fast(&lu_env_rhash, &task,
2069                                      lu_env_rhash_params);
2070         if (lei) {
2071                 env = lei->lei_env;
2072                 lu_env_percpu[i].lep_task = current;
2073                 lu_env_percpu[i].lep_env = env;
2074         }
2075         put_cpu();
2076
2077         return env;
2078 }
2079 EXPORT_SYMBOL(lu_env_find);
2080
2081 static struct shrinker *lu_site_shrinker;
2082
2083 typedef struct lu_site_stats{
2084         unsigned        lss_populated;
2085         unsigned        lss_max_search;
2086         unsigned        lss_total;
2087         unsigned        lss_busy;
2088 } lu_site_stats_t;
2089
2090 static void lu_site_stats_get(const struct lu_site *s,
2091                               lu_site_stats_t *stats)
2092 {
2093         int cnt = atomic_read(&s->ls_obj_hash.nelems);
2094         /*
2095          * percpu_counter_sum_positive() won't accept a const pointer
2096          * as it does modify the struct by taking a spinlock
2097          */
2098         struct lu_site *s2 = (struct lu_site *)s;
2099
2100         stats->lss_busy += cnt -
2101                 percpu_counter_sum_positive(&s2->ls_lru_len_counter);
2102
2103         stats->lss_total += cnt;
2104         stats->lss_max_search = 0;
2105         stats->lss_populated = 0;
2106 }
2107
2108
2109 /*
2110  * lu_cache_shrink_count() returns an approximate number of cached objects
2111  * that can be freed by shrink_slab(). A counter, which tracks the
2112  * number of items in the site's lru, is maintained in a percpu_counter
2113  * for each site. The percpu values are incremented and decremented as
2114  * objects are added or removed from the lru. The percpu values are summed
2115  * and saved whenever a percpu value exceeds a threshold. Thus the saved,
2116  * summed value at any given time may not accurately reflect the current
2117  * lru length. But this value is sufficiently accurate for the needs of
2118  * a shrinker.
2119  *
2120  * Using a per cpu counter is a compromise solution to concurrent access:
2121  * lu_object_put() can update the counter without locking the site and
2122  * lu_cache_shrink_count can sum the counters without locking each
2123  * ls_obj_hash bucket.
2124  */
2125 static unsigned long lu_cache_shrink_count(struct shrinker *sk,
2126                                            struct shrink_control *sc)
2127 {
2128         struct lu_site *s;
2129         struct lu_site *tmp;
2130         unsigned long cached = 0;
2131
2132         if (!(sc->gfp_mask & __GFP_FS))
2133                 return 0;
2134
2135         down_read(&lu_sites_guard);
2136         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage)
2137                 cached += percpu_counter_read_positive(&s->ls_lru_len_counter);
2138         up_read(&lu_sites_guard);
2139
2140         cached = (cached / 100) * sysctl_vfs_cache_pressure;
2141         CDEBUG(D_INODE, "%ld objects cached, cache pressure %d\n",
2142                cached, sysctl_vfs_cache_pressure);
2143
2144         return cached;
2145 }
2146
2147 static unsigned long lu_cache_shrink_scan(struct shrinker *sk,
2148                                           struct shrink_control *sc)
2149 {
2150         struct lu_site *s;
2151         struct lu_site *tmp;
2152         unsigned long remain = sc->nr_to_scan;
2153         LIST_HEAD(splice);
2154
2155         if (!(sc->gfp_mask & __GFP_FS))
2156                 /* We must not take the lu_sites_guard lock when
2157                  * __GFP_FS is *not* set because of the deadlock
2158                  * possibility detailed above. Additionally,
2159                  * since we cannot determine the number of
2160                  * objects in the cache without taking this
2161                  * lock, we're in a particularly tough spot. As
2162                  * a result, we'll just lie and say our cache is
2163                  * empty. This _should_ be ok, as we can't
2164                  * reclaim objects when __GFP_FS is *not* set
2165                  * anyways.
2166                  */
2167                 return SHRINK_STOP;
2168
2169         down_write(&lu_sites_guard);
2170         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
2171                 remain = lu_site_purge(&lu_shrink_env, s, remain);
2172                 /*
2173                  * Move just shrunk site to the tail of site list to
2174                  * assure shrinking fairness.
2175                  */
2176                 list_move_tail(&s->ls_linkage, &splice);
2177         }
2178         list_splice(&splice, lu_sites.prev);
2179         up_write(&lu_sites_guard);
2180
2181         return sc->nr_to_scan - remain;
2182 }
2183
2184 #ifndef HAVE_SHRINKER_COUNT
2185 /*
2186  * There exists a potential lock inversion deadlock scenario when using
2187  * Lustre on top of ZFS. This occurs between one of ZFS's
2188  * buf_hash_table.ht_lock's, and Lustre's lu_sites_guard lock. Essentially,
2189  * thread A will take the lu_sites_guard lock and sleep on the ht_lock,
2190  * while thread B will take the ht_lock and sleep on the lu_sites_guard
2191  * lock. Obviously neither thread will wake and drop their respective hold
2192  * on their lock.
2193  *
2194  * To prevent this from happening we must ensure the lu_sites_guard lock is
2195  * not taken while down this code path. ZFS reliably does not set the
2196  * __GFP_FS bit in its code paths, so this can be used to determine if it
2197  * is safe to take the lu_sites_guard lock.
2198  *
2199  * Ideally we should accurately return the remaining number of cached
2200  * objects without taking the lu_sites_guard lock, but this is not
2201  * possible in the current implementation.
2202  */
2203 static int lu_cache_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
2204 {
2205         int cached = 0;
2206         struct shrink_control scv = {
2207                  .nr_to_scan = shrink_param(sc, nr_to_scan),
2208                  .gfp_mask   = shrink_param(sc, gfp_mask)
2209         };
2210
2211         CDEBUG(D_INODE, "Shrink %lu objects\n", scv.nr_to_scan);
2212
2213         if (scv.nr_to_scan != 0)
2214                 lu_cache_shrink_scan(shrinker, &scv);
2215
2216         cached = lu_cache_shrink_count(shrinker, &scv);
2217         return cached;
2218 }
2219
2220 #endif /* HAVE_SHRINKER_COUNT */
2221
2222
2223 /*
2224  * Debugging stuff.
2225  */
2226
2227 /**
2228  * Environment to be used in debugger, contains all tags.
2229  */
2230 static struct lu_env lu_debugging_env;
2231
2232 /**
2233  * Debugging printer function using printk().
2234  */
2235 int lu_printk_printer(const struct lu_env *env,
2236                       void *unused, const char *format, ...)
2237 {
2238         va_list args;
2239
2240         va_start(args, format);
2241         vprintk(format, args);
2242         va_end(args);
2243         return 0;
2244 }
2245
2246 int lu_debugging_setup(void)
2247 {
2248         return lu_env_init(&lu_debugging_env, ~0);
2249 }
2250
2251 void lu_context_keys_dump(void)
2252 {
2253         unsigned int i;
2254
2255         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
2256                 struct lu_context_key *key;
2257
2258                 key = lu_keys[i];
2259                 if (key != NULL) {
2260                         CERROR("[%d]: %p %x (%p,%p,%p) %d %d \"%s\"@%p\n",
2261                                i, key, key->lct_tags,
2262                                key->lct_init, key->lct_fini, key->lct_exit,
2263                                key->lct_index, atomic_read(&key->lct_used),
2264                                key->lct_owner ? key->lct_owner->name : "",
2265                                key->lct_owner);
2266                         lu_ref_print(&key->lct_reference);
2267                 }
2268         }
2269 }
2270
2271 /**
2272  * Initialization of global lu_* data.
2273  */
2274 int lu_global_init(void)
2275 {
2276         int result;
2277         DEF_SHRINKER_VAR(shvar, lu_cache_shrink,
2278                          lu_cache_shrink_count, lu_cache_shrink_scan);
2279
2280         CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
2281
2282         result = lu_ref_global_init();
2283         if (result != 0)
2284                 return result;
2285
2286         LU_CONTEXT_KEY_INIT(&lu_global_key);
2287         result = lu_context_key_register(&lu_global_key);
2288         if (result != 0)
2289                 return result;
2290
2291         /*
2292          * At this level, we don't know what tags are needed, so allocate them
2293          * conservatively. This should not be too bad, because this
2294          * environment is global.
2295          */
2296         down_write(&lu_sites_guard);
2297         result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
2298         up_write(&lu_sites_guard);
2299         if (result != 0)
2300                 return result;
2301
2302         /*
2303          * seeks estimation: 3 seeks to read a record from oi, one to read
2304          * inode, one for ea. Unfortunately setting this high value results in
2305          * lu_object/inode cache consuming all the memory.
2306          */
2307         lu_site_shrinker = set_shrinker(DEFAULT_SEEKS, &shvar);
2308         if (lu_site_shrinker == NULL)
2309                 return -ENOMEM;
2310
2311         result = rhashtable_init(&lu_env_rhash, &lu_env_rhash_params);
2312
2313         return result;
2314 }
2315
2316 /**
2317  * Dual to lu_global_init().
2318  */
2319 void lu_global_fini(void)
2320 {
2321         if (lu_site_shrinker != NULL) {
2322                 remove_shrinker(lu_site_shrinker);
2323                 lu_site_shrinker = NULL;
2324         }
2325
2326         lu_context_key_degister(&lu_global_key);
2327
2328         /*
2329          * Tear shrinker environment down _after_ de-registering
2330          * lu_global_key, because the latter has a value in the former.
2331          */
2332         down_write(&lu_sites_guard);
2333         lu_env_fini(&lu_shrink_env);
2334         up_write(&lu_sites_guard);
2335
2336         rhashtable_destroy(&lu_env_rhash);
2337
2338         lu_ref_global_fini();
2339 }
2340
2341 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
2342 {
2343 #ifdef CONFIG_PROC_FS
2344         struct lprocfs_counter ret;
2345
2346         lprocfs_stats_collect(stats, idx, &ret);
2347         return (__u32)ret.lc_count;
2348 #else
2349         return 0;
2350 #endif
2351 }
2352
2353 /**
2354  * Output site statistical counters into a buffer. Suitable for
2355  * lprocfs_rd_*()-style functions.
2356  */
2357 int lu_site_stats_seq_print(const struct lu_site *s, struct seq_file *m)
2358 {
2359         const struct bucket_table *tbl;
2360         lu_site_stats_t stats;
2361         unsigned int chains;
2362
2363         memset(&stats, 0, sizeof(stats));
2364         lu_site_stats_get(s, &stats);
2365
2366         rcu_read_lock();
2367         tbl = rht_dereference_rcu(s->ls_obj_hash.tbl,
2368                                   &((struct lu_site *)s)->ls_obj_hash);
2369         chains = tbl->size;
2370         rcu_read_unlock();
2371         seq_printf(m, "%d/%d %d/%u %d %d %d %d %d %d %d\n",
2372                    stats.lss_busy,
2373                    stats.lss_total,
2374                    stats.lss_populated,
2375                    chains,
2376                    stats.lss_max_search,
2377                    ls_stats_read(s->ls_stats, LU_SS_CREATED),
2378                    ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
2379                    ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
2380                    ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
2381                    ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
2382                    ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
2383         return 0;
2384 }
2385 EXPORT_SYMBOL(lu_site_stats_seq_print);
2386
2387 /**
2388  * Helper function to initialize a number of kmem slab caches at once.
2389  */
2390 int lu_kmem_init(struct lu_kmem_descr *caches)
2391 {
2392         int result;
2393         struct lu_kmem_descr *iter = caches;
2394
2395         for (result = 0; iter->ckd_cache != NULL; ++iter) {
2396                 *iter->ckd_cache = kmem_cache_create(iter->ckd_name,
2397                                                      iter->ckd_size,
2398                                                      0, 0, NULL);
2399                 if (*iter->ckd_cache == NULL) {
2400                         result = -ENOMEM;
2401                         /* free all previously allocated caches */
2402                         lu_kmem_fini(caches);
2403                         break;
2404                 }
2405         }
2406         return result;
2407 }
2408 EXPORT_SYMBOL(lu_kmem_init);
2409
2410 /**
2411  * Helper function to finalize a number of kmem slab cached at once. Dual to
2412  * lu_kmem_init().
2413  */
2414 void lu_kmem_fini(struct lu_kmem_descr *caches)
2415 {
2416         for (; caches->ckd_cache != NULL; ++caches) {
2417                 if (*caches->ckd_cache != NULL) {
2418                         kmem_cache_destroy(*caches->ckd_cache);
2419                         *caches->ckd_cache = NULL;
2420                 }
2421         }
2422 }
2423 EXPORT_SYMBOL(lu_kmem_fini);
2424
2425 /**
2426  * Temporary solution to be able to assign fid in ->do_create()
2427  * till we have fully-functional OST fids
2428  */
2429 void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
2430                           const struct lu_fid *fid)
2431 {
2432         struct lu_site          *s = o->lo_dev->ld_site;
2433         struct lu_fid           *old = &o->lo_header->loh_fid;
2434         int rc;
2435
2436         LASSERT(fid_is_zero(old));
2437         *old = *fid;
2438 try_again:
2439         rc = rhashtable_lookup_insert_fast(&s->ls_obj_hash,
2440                                            &o->lo_header->loh_hash,
2441                                            obj_hash_params);
2442         /* supposed to be unique */
2443         LASSERT(rc != -EEXIST);
2444         /* handle hash table resizing */
2445         if (rc == -ENOMEM) {
2446                 msleep(20);
2447                 goto try_again;
2448         }
2449         /* trim the hash if its growing to big */
2450         lu_object_limit(env, o->lo_dev);
2451         if (rc == -E2BIG)
2452                 goto try_again;
2453
2454         LASSERTF(rc == 0, "failed hashtable insertion: rc = %d\n", rc);
2455 }
2456 EXPORT_SYMBOL(lu_object_assign_fid);
2457
2458 /**
2459  * allocates object with 0 (non-assiged) fid
2460  * XXX: temporary solution to be able to assign fid in ->do_create()
2461  *      till we have fully-functional OST fids
2462  */
2463 struct lu_object *lu_object_anon(const struct lu_env *env,
2464                                  struct lu_device *dev,
2465                                  const struct lu_object_conf *conf)
2466 {
2467         struct lu_fid fid;
2468         struct lu_object *o;
2469         int rc;
2470
2471         fid_zero(&fid);
2472         o = lu_object_alloc(env, dev, &fid);
2473         if (!IS_ERR(o)) {
2474                 rc = lu_object_start(env, dev, o, conf);
2475                 if (rc) {
2476                         lu_object_free(env, o);
2477                         return ERR_PTR(rc);
2478                 }
2479         }
2480
2481         return o;
2482 }
2483 EXPORT_SYMBOL(lu_object_anon);
2484
2485 struct lu_buf LU_BUF_NULL = {
2486         .lb_buf = NULL,
2487         .lb_len = 0
2488 };
2489 EXPORT_SYMBOL(LU_BUF_NULL);
2490
2491 void lu_buf_free(struct lu_buf *buf)
2492 {
2493         LASSERT(buf);
2494         if (buf->lb_buf) {
2495                 LASSERT(buf->lb_len > 0);
2496                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2497                 buf->lb_buf = NULL;
2498                 buf->lb_len = 0;
2499         }
2500 }
2501 EXPORT_SYMBOL(lu_buf_free);
2502
2503 void lu_buf_alloc(struct lu_buf *buf, size_t size)
2504 {
2505         LASSERT(buf);
2506         LASSERT(buf->lb_buf == NULL);
2507         LASSERT(buf->lb_len == 0);
2508         OBD_ALLOC_LARGE(buf->lb_buf, size);
2509         if (likely(buf->lb_buf))
2510                 buf->lb_len = size;
2511 }
2512 EXPORT_SYMBOL(lu_buf_alloc);
2513
2514 void lu_buf_realloc(struct lu_buf *buf, size_t size)
2515 {
2516         lu_buf_free(buf);
2517         lu_buf_alloc(buf, size);
2518 }
2519 EXPORT_SYMBOL(lu_buf_realloc);
2520
2521 struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, size_t len)
2522 {
2523         if (buf->lb_buf == NULL && buf->lb_len == 0)
2524                 lu_buf_alloc(buf, len);
2525
2526         if ((len > buf->lb_len) && (buf->lb_buf != NULL))
2527                 lu_buf_realloc(buf, len);
2528
2529         return buf;
2530 }
2531 EXPORT_SYMBOL(lu_buf_check_and_alloc);
2532
2533 /**
2534  * Increase the size of the \a buf.
2535  * preserves old data in buffer
2536  * old buffer remains unchanged on error
2537  * \retval 0 or -ENOMEM
2538  */
2539 int lu_buf_check_and_grow(struct lu_buf *buf, size_t len)
2540 {
2541         char *ptr;
2542
2543         if (len <= buf->lb_len)
2544                 return 0;
2545
2546         OBD_ALLOC_LARGE(ptr, len);
2547         if (ptr == NULL)
2548                 return -ENOMEM;
2549
2550         /* Free the old buf */
2551         if (buf->lb_buf != NULL) {
2552                 memcpy(ptr, buf->lb_buf, buf->lb_len);
2553                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2554         }
2555
2556         buf->lb_buf = ptr;
2557         buf->lb_len = len;
2558         return 0;
2559 }
2560 EXPORT_SYMBOL(lu_buf_check_and_grow);