Whamcloud - gitweb
b3bc375ed6f062873b27679261b7f5c1fd04a68c
[fs/lustre-release.git] / lustre / obdclass / lu_object.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
30  * Use is subject to license terms.
31  */
32 /*
33  * Copyright (c) 2011 Whamcloud, Inc.
34  */
35 /*
36  * This file is part of Lustre, http://www.lustre.org/
37  * Lustre is a trademark of Sun Microsystems, Inc.
38  *
39  * lustre/obdclass/lu_object.c
40  *
41  * Lustre Object.
42  * These are the only exported functions, they provide some generic
43  * infrastructure for managing object devices
44  *
45  *   Author: Nikita Danilov <nikita.danilov@sun.com>
46  */
47
48 #define DEBUG_SUBSYSTEM S_CLASS
49 #ifndef EXPORT_SYMTAB
50 # define EXPORT_SYMTAB
51 #endif
52
53 #include <libcfs/libcfs.h>
54
55 #ifdef __KERNEL__
56 # include <linux/module.h>
57 #endif
58
59 /* hash_long() */
60 #include <libcfs/libcfs_hash.h>
61 #include <obd_class.h>
62 #include <obd_support.h>
63 #include <lustre_disk.h>
64 #include <lustre_fid.h>
65 #include <lu_object.h>
66 #include <libcfs/list.h>
67 /* lu_time_global_{init,fini}() */
68 #include <lu_time.h>
69
70 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
71
72 /**
73  * Decrease reference counter on object. If last reference is freed, return
74  * object to the cache, unless lu_object_is_dying(o) holds. In the latter
75  * case, free object immediately.
76  */
77 void lu_object_put(const struct lu_env *env, struct lu_object *o)
78 {
79         struct lu_site_bkt_data *bkt;
80         struct lu_object_header *top;
81         struct lu_site          *site;
82         struct lu_object        *orig;
83         cfs_hash_bd_t            bd;
84
85         top  = o->lo_header;
86         site = o->lo_dev->ld_site;
87         orig = o;
88
89         cfs_hash_bd_get(site->ls_obj_hash, &top->loh_fid, &bd);
90         bkt = cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
91
92         if (!cfs_hash_bd_dec_and_lock(site->ls_obj_hash, &bd, &top->loh_ref)) {
93                 if (lu_object_is_dying(top)) {
94
95                         /*
96                          * somebody may be waiting for this, currently only
97                          * used for cl_object, see cl_object_put_last().
98                          */
99                         cfs_waitq_broadcast(&bkt->lsb_marche_funebre);
100                 }
101                 return;
102         }
103
104         LASSERT(bkt->lsb_busy > 0);
105         bkt->lsb_busy--;
106         /*
107          * When last reference is released, iterate over object
108          * layers, and notify them that object is no longer busy.
109          */
110         cfs_list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
111                 if (o->lo_ops->loo_object_release != NULL)
112                         o->lo_ops->loo_object_release(env, o);
113         }
114
115         if (!lu_object_is_dying(top)) {
116                 LASSERT(cfs_list_empty(&top->loh_lru));
117                 cfs_list_add_tail(&top->loh_lru, &bkt->lsb_lru);
118                 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
119                 return;
120         }
121
122         /*
123          * If object is dying (will not be cached), removed it
124          * from hash table and LRU.
125          *
126          * This is done with hash table and LRU lists locked. As the only
127          * way to acquire first reference to previously unreferenced
128          * object is through hash-table lookup (lu_object_find()),
129          * or LRU scanning (lu_site_purge()), that are done under hash-table
130          * and LRU lock, no race with concurrent object lookup is possible
131          * and we can safely destroy object below.
132          */
133         cfs_hash_bd_del_locked(site->ls_obj_hash, &bd, &top->loh_hash);
134         cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
135         /*
136          * Object was already removed from hash and lru above, can
137          * kill it.
138          */
139         lu_object_free(env, orig);
140 }
141 EXPORT_SYMBOL(lu_object_put);
142
143 /**
144  * Allocate new object.
145  *
146  * This follows object creation protocol, described in the comment within
147  * struct lu_device_operations definition.
148  */
149 static struct lu_object *lu_object_alloc(const struct lu_env *env,
150                                          struct lu_device *dev,
151                                          const struct lu_fid *f,
152                                          const struct lu_object_conf *conf)
153 {
154         struct lu_object *scan;
155         struct lu_object *top;
156         cfs_list_t *layers;
157         int clean;
158         int result;
159         ENTRY;
160
161         /*
162          * Create top-level object slice. This will also create
163          * lu_object_header.
164          */
165         top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
166         if (top == NULL)
167                 RETURN(ERR_PTR(-ENOMEM));
168         /*
169          * This is the only place where object fid is assigned. It's constant
170          * after this point.
171          */
172         LASSERT(fid_is_igif(f) || fid_ver(f) == 0);
173         top->lo_header->loh_fid = *f;
174         layers = &top->lo_header->loh_layers;
175         do {
176                 /*
177                  * Call ->loo_object_init() repeatedly, until no more new
178                  * object slices are created.
179                  */
180                 clean = 1;
181                 cfs_list_for_each_entry(scan, layers, lo_linkage) {
182                         if (scan->lo_flags & LU_OBJECT_ALLOCATED)
183                                 continue;
184                         clean = 0;
185                         scan->lo_header = top->lo_header;
186                         result = scan->lo_ops->loo_object_init(env, scan, conf);
187                         if (result != 0) {
188                                 lu_object_free(env, top);
189                                 RETURN(ERR_PTR(result));
190                         }
191                         scan->lo_flags |= LU_OBJECT_ALLOCATED;
192                 }
193         } while (!clean);
194
195         cfs_list_for_each_entry_reverse(scan, layers, lo_linkage) {
196                 if (scan->lo_ops->loo_object_start != NULL) {
197                         result = scan->lo_ops->loo_object_start(env, scan);
198                         if (result != 0) {
199                                 lu_object_free(env, top);
200                                 RETURN(ERR_PTR(result));
201                         }
202                 }
203         }
204
205         lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
206         RETURN(top);
207 }
208
209 /**
210  * Free an object.
211  */
212 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
213 {
214         struct lu_site_bkt_data *bkt;
215         struct lu_site          *site;
216         struct lu_object        *scan;
217         cfs_list_t              *layers;
218         cfs_list_t               splice;
219
220         site   = o->lo_dev->ld_site;
221         layers = &o->lo_header->loh_layers;
222         bkt    = lu_site_bkt_from_fid(site, &o->lo_header->loh_fid);
223         /*
224          * First call ->loo_object_delete() method to release all resources.
225          */
226         cfs_list_for_each_entry_reverse(scan, layers, lo_linkage) {
227                 if (scan->lo_ops->loo_object_delete != NULL)
228                         scan->lo_ops->loo_object_delete(env, scan);
229         }
230
231         /*
232          * Then, splice object layers into stand-alone list, and call
233          * ->loo_object_free() on all layers to free memory. Splice is
234          * necessary, because lu_object_header is freed together with the
235          * top-level slice.
236          */
237         CFS_INIT_LIST_HEAD(&splice);
238         cfs_list_splice_init(layers, &splice);
239         while (!cfs_list_empty(&splice)) {
240                 /*
241                  * Free layers in bottom-to-top order, so that object header
242                  * lives as long as possible and ->loo_object_free() methods
243                  * can look at its contents.
244                  */
245                 o = container_of0(splice.prev, struct lu_object, lo_linkage);
246                 cfs_list_del_init(&o->lo_linkage);
247                 LASSERT(o->lo_ops->loo_object_free != NULL);
248                 o->lo_ops->loo_object_free(env, o);
249         }
250
251         if (cfs_waitq_active(&bkt->lsb_marche_funebre))
252                 cfs_waitq_broadcast(&bkt->lsb_marche_funebre);
253 }
254
255 /**
256  * Free \a nr objects from the cold end of the site LRU list.
257  */
258 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
259 {
260         struct lu_object_header *h;
261         struct lu_object_header *temp;
262         struct lu_site_bkt_data *bkt;
263         cfs_hash_bd_t            bd;
264         cfs_hash_bd_t            bd2;
265         cfs_list_t               dispose;
266         int                      did_sth;
267         int                      start;
268         int                      count;
269         int                      bnr;
270         int                      i;
271
272         CFS_INIT_LIST_HEAD(&dispose);
273         /*
274          * Under LRU list lock, scan LRU list and move unreferenced objects to
275          * the dispose list, removing them from LRU and hash table.
276          */
277         start = s->ls_purge_start;
278         bnr = (nr == ~0) ? -1 : nr / CFS_HASH_NBKT(s->ls_obj_hash) + 1;
279  again:
280         did_sth = 0;
281         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
282                 if (i < start)
283                         continue;
284                 count = bnr;
285                 cfs_hash_bd_lock(s->ls_obj_hash, &bd, 1);
286                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
287
288                 cfs_list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
289                         LASSERT(cfs_atomic_read(&h->loh_ref) == 0);
290
291                         cfs_hash_bd_get(s->ls_obj_hash, &h->loh_fid, &bd2);
292                         LASSERT(bd.bd_bucket == bd2.bd_bucket);
293
294                         cfs_hash_bd_del_locked(s->ls_obj_hash,
295                                                &bd2, &h->loh_hash);
296                         cfs_list_move(&h->loh_lru, &dispose);
297                         if (did_sth == 0)
298                                 did_sth = 1;
299
300                         if (nr != ~0 && --nr == 0)
301                                 break;
302
303                         if (count > 0 && --count == 0)
304                                 break;
305
306                 }
307                 cfs_hash_bd_unlock(s->ls_obj_hash, &bd, 1);
308                 cfs_cond_resched();
309                 /*
310                  * Free everything on the dispose list. This is safe against
311                  * races due to the reasons described in lu_object_put().
312                  */
313                 while (!cfs_list_empty(&dispose)) {
314                         h = container_of0(dispose.next,
315                                           struct lu_object_header, loh_lru);
316                         cfs_list_del_init(&h->loh_lru);
317                         lu_object_free(env, lu_object_top(h));
318                         lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
319                 }
320
321                 if (nr == 0)
322                         break;
323         }
324
325         if (nr != 0 && did_sth && start != 0) {
326                 start = 0; /* restart from the first bucket */
327                 goto again;
328         }
329         /* race on s->ls_purge_start, but nobody cares */
330         s->ls_purge_start = i % CFS_HASH_NBKT(s->ls_obj_hash);
331
332         return nr;
333 }
334 EXPORT_SYMBOL(lu_site_purge);
335
336 /*
337  * Object printing.
338  *
339  * Code below has to jump through certain loops to output object description
340  * into libcfs_debug_msg-based log. The problem is that lu_object_print()
341  * composes object description from strings that are parts of _lines_ of
342  * output (i.e., strings that are not terminated by newline). This doesn't fit
343  * very well into libcfs_debug_msg() interface that assumes that each message
344  * supplied to it is a self-contained output line.
345  *
346  * To work around this, strings are collected in a temporary buffer
347  * (implemented as a value of lu_cdebug_key key), until terminating newline
348  * character is detected.
349  *
350  */
351
352 enum {
353         /**
354          * Maximal line size.
355          *
356          * XXX overflow is not handled correctly.
357          */
358         LU_CDEBUG_LINE = 256
359 };
360
361 struct lu_cdebug_data {
362         /**
363          * Temporary buffer.
364          */
365         char lck_area[LU_CDEBUG_LINE];
366 };
367
368 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
369 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
370
371 /**
372  * Key, holding temporary buffer. This key is registered very early by
373  * lu_global_init().
374  */
375 struct lu_context_key lu_global_key = {
376         .lct_tags = LCT_MD_THREAD|LCT_DT_THREAD|LCT_CL_THREAD,
377         .lct_init = lu_global_key_init,
378         .lct_fini = lu_global_key_fini
379 };
380
381 /**
382  * Printer function emitting messages through libcfs_debug_msg().
383  */
384 int lu_cdebug_printer(const struct lu_env *env,
385                       void *cookie, const char *format, ...)
386 {
387         struct lu_cdebug_print_info *info = cookie;
388         struct lu_cdebug_data       *key;
389         int used;
390         int complete;
391         va_list args;
392
393         va_start(args, format);
394
395         key = lu_context_key_get(&env->le_ctx, &lu_global_key);
396         LASSERT(key != NULL);
397
398         used = strlen(key->lck_area);
399         complete = format[strlen(format) - 1] == '\n';
400         /*
401          * Append new chunk to the buffer.
402          */
403         vsnprintf(key->lck_area + used,
404                   ARRAY_SIZE(key->lck_area) - used, format, args);
405         if (complete) {
406                 if (cfs_cdebug_show(info->lpi_mask, info->lpi_subsys))
407                         libcfs_debug_msg(NULL, info->lpi_subsys, info->lpi_mask,
408                                          (char *)info->lpi_file, info->lpi_fn,
409                                          info->lpi_line, "%s", key->lck_area);
410                 key->lck_area[0] = 0;
411         }
412         va_end(args);
413         return 0;
414 }
415 EXPORT_SYMBOL(lu_cdebug_printer);
416
417 /**
418  * Print object header.
419  */
420 void lu_object_header_print(const struct lu_env *env, void *cookie,
421                             lu_printer_t printer,
422                             const struct lu_object_header *hdr)
423 {
424         (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
425                    hdr, hdr->loh_flags, cfs_atomic_read(&hdr->loh_ref),
426                    PFID(&hdr->loh_fid),
427                    cfs_hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
428                    cfs_list_empty((cfs_list_t *)&hdr->loh_lru) ? \
429                    "" : " lru",
430                    hdr->loh_attr & LOHA_EXISTS ? " exist":"");
431 }
432 EXPORT_SYMBOL(lu_object_header_print);
433
434 /**
435  * Print human readable representation of the \a o to the \a printer.
436  */
437 void lu_object_print(const struct lu_env *env, void *cookie,
438                      lu_printer_t printer, const struct lu_object *o)
439 {
440         static const char ruler[] = "........................................";
441         struct lu_object_header *top;
442         int depth;
443
444         top = o->lo_header;
445         lu_object_header_print(env, cookie, printer, top);
446         (*printer)(env, cookie, "{ \n");
447         cfs_list_for_each_entry(o, &top->loh_layers, lo_linkage) {
448                 depth = o->lo_depth + 4;
449
450                 /*
451                  * print `.' \a depth times followed by type name and address
452                  */
453                 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
454                            o->lo_dev->ld_type->ldt_name, o);
455                 if (o->lo_ops->loo_object_print != NULL)
456                         o->lo_ops->loo_object_print(env, cookie, printer, o);
457                 (*printer)(env, cookie, "\n");
458         }
459         (*printer)(env, cookie, "} header@%p\n", top);
460 }
461 EXPORT_SYMBOL(lu_object_print);
462
463 /**
464  * Check object consistency.
465  */
466 int lu_object_invariant(const struct lu_object *o)
467 {
468         struct lu_object_header *top;
469
470         top = o->lo_header;
471         cfs_list_for_each_entry(o, &top->loh_layers, lo_linkage) {
472                 if (o->lo_ops->loo_object_invariant != NULL &&
473                     !o->lo_ops->loo_object_invariant(o))
474                         return 0;
475         }
476         return 1;
477 }
478 EXPORT_SYMBOL(lu_object_invariant);
479
480 static struct lu_object *htable_lookup(struct lu_site *s,
481                                        cfs_hash_bd_t *bd,
482                                        const struct lu_fid *f,
483                                        cfs_waitlink_t *waiter,
484                                        __u64 *version)
485 {
486         struct lu_site_bkt_data *bkt;
487         struct lu_object_header *h;
488         cfs_hlist_node_t        *hnode;
489         __u64  ver = cfs_hash_bd_version_get(bd);
490
491         if (*version == ver)
492                 return NULL;
493
494         *version = ver;
495         bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, bd);
496         /* cfs_hash_bd_lookup_intent is a somehow "internal" function
497          * of cfs_hash, but we don't want refcount on object right now */
498         hnode = cfs_hash_bd_lookup_locked(s->ls_obj_hash, bd, (void *)f);
499         if (hnode == NULL) {
500                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
501                 return NULL;
502         }
503
504         h = container_of0(hnode, struct lu_object_header, loh_hash);
505         if (likely(!lu_object_is_dying(h))) {
506                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
507                 return lu_object_top(h);
508         }
509
510         /*
511          * Lookup found an object being destroyed this object cannot be
512          * returned (to assure that references to dying objects are eventually
513          * drained), and moreover, lookup has to wait until object is freed.
514          */
515         cfs_atomic_dec(&h->loh_ref);
516
517         cfs_waitlink_init(waiter);
518         cfs_waitq_add(&bkt->lsb_marche_funebre, waiter);
519         cfs_set_current_state(CFS_TASK_UNINT);
520         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_DEATH_RACE);
521         return ERR_PTR(-EAGAIN);
522 }
523
524 /**
525  * Search cache for an object with the fid \a f. If such object is found,
526  * return it. Otherwise, create new object, insert it into cache and return
527  * it. In any case, additional reference is acquired on the returned object.
528  */
529 struct lu_object *lu_object_find(const struct lu_env *env,
530                                  struct lu_device *dev, const struct lu_fid *f,
531                                  const struct lu_object_conf *conf)
532 {
533         return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
534 }
535 EXPORT_SYMBOL(lu_object_find);
536
537 static struct lu_object *lu_object_new(const struct lu_env *env,
538                                        struct lu_device *dev,
539                                        const struct lu_fid *f,
540                                        const struct lu_object_conf *conf)
541 {
542         struct lu_object        *o;
543         cfs_hash_t              *hs;
544         cfs_hash_bd_t            bd;
545         struct lu_site_bkt_data *bkt;
546
547         o = lu_object_alloc(env, dev, f, conf);
548         if (unlikely(IS_ERR(o)))
549                 return o;
550
551         hs = dev->ld_site->ls_obj_hash;
552         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
553         bkt = cfs_hash_bd_extra_get(hs, &bd);
554         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
555         bkt->lsb_busy++;
556         cfs_hash_bd_unlock(hs, &bd, 1);
557         return o;
558 }
559
560 /**
561  * Core logic of lu_object_find*() functions.
562  */
563 static struct lu_object *lu_object_find_try(const struct lu_env *env,
564                                             struct lu_device *dev,
565                                             const struct lu_fid *f,
566                                             const struct lu_object_conf *conf,
567                                             cfs_waitlink_t *waiter)
568 {
569         struct lu_object      *o;
570         struct lu_object      *shadow;
571         struct lu_site        *s;
572         cfs_hash_t            *hs;
573         cfs_hash_bd_t          bd;
574         __u64                  version = 0;
575
576         /*
577          * This uses standard index maintenance protocol:
578          *
579          *     - search index under lock, and return object if found;
580          *     - otherwise, unlock index, allocate new object;
581          *     - lock index and search again;
582          *     - if nothing is found (usual case), insert newly created
583          *       object into index;
584          *     - otherwise (race: other thread inserted object), free
585          *       object just allocated.
586          *     - unlock index;
587          *     - return object.
588          *
589          * For "LOC_F_NEW" case, we are sure the object is new established.
590          * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
591          * just alloc and insert directly.
592          *
593          * If dying object is found during index search, add @waiter to the
594          * site wait-queue and return ERR_PTR(-EAGAIN).
595          */
596         if (conf != NULL && conf->loc_flags & LOC_F_NEW)
597                 return lu_object_new(env, dev, f, conf);
598
599         s  = dev->ld_site;
600         hs = s->ls_obj_hash;
601         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
602         o = htable_lookup(s, &bd, f, waiter, &version);
603         if (o != NULL && !cfs_list_empty(&o->lo_header->loh_lru))
604                 cfs_list_del_init(&o->lo_header->loh_lru);
605         cfs_hash_bd_unlock(hs, &bd, 1);
606         if (o != NULL)
607                 return o;
608
609         /*
610          * Allocate new object. This may result in rather complicated
611          * operations, including fld queries, inode loading, etc.
612          */
613         o = lu_object_alloc(env, dev, f, conf);
614         if (unlikely(IS_ERR(o)))
615                 return o;
616
617         LASSERT(lu_fid_eq(lu_object_fid(o), f));
618
619         cfs_hash_bd_lock(hs, &bd, 1);
620
621         shadow = htable_lookup(s, &bd, f, waiter, &version);
622         if (likely(shadow == NULL)) {
623                 struct lu_site_bkt_data *bkt;
624
625                 bkt = cfs_hash_bd_extra_get(hs, &bd);
626                 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
627                 bkt->lsb_busy++;
628                 cfs_hash_bd_unlock(hs, &bd, 1);
629                 return o;
630         }
631
632         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
633         cfs_hash_bd_unlock(hs, &bd, 1);
634         lu_object_free(env, o);
635         return shadow;
636 }
637
638 /**
639  * Much like lu_object_find(), but top level device of object is specifically
640  * \a dev rather than top level device of the site. This interface allows
641  * objects of different "stacking" to be created within the same site.
642  */
643 struct lu_object *lu_object_find_at(const struct lu_env *env,
644                                     struct lu_device *dev,
645                                     const struct lu_fid *f,
646                                     const struct lu_object_conf *conf)
647 {
648         struct lu_site_bkt_data *bkt;
649         struct lu_object        *obj;
650         cfs_waitlink_t           wait;
651
652         while (1) {
653                 obj = lu_object_find_try(env, dev, f, conf, &wait);
654                 if (obj != ERR_PTR(-EAGAIN))
655                         return obj;
656                 /*
657                  * lu_object_find_try() already added waiter into the
658                  * wait queue.
659                  */
660                 cfs_waitq_wait(&wait, CFS_TASK_UNINT);
661                 bkt = lu_site_bkt_from_fid(dev->ld_site, (void *)f);
662                 cfs_waitq_del(&bkt->lsb_marche_funebre, &wait);
663         }
664 }
665 EXPORT_SYMBOL(lu_object_find_at);
666
667 /**
668  * Find object with given fid, and return its slice belonging to given device.
669  */
670 struct lu_object *lu_object_find_slice(const struct lu_env *env,
671                                        struct lu_device *dev,
672                                        const struct lu_fid *f,
673                                        const struct lu_object_conf *conf)
674 {
675         struct lu_object *top;
676         struct lu_object *obj;
677
678         top = lu_object_find(env, dev, f, conf);
679         if (!IS_ERR(top)) {
680                 obj = lu_object_locate(top->lo_header, dev->ld_type);
681                 if (obj == NULL)
682                         lu_object_put(env, top);
683         } else
684                 obj = top;
685         return obj;
686 }
687 EXPORT_SYMBOL(lu_object_find_slice);
688
689 /**
690  * Global list of all device types.
691  */
692 static CFS_LIST_HEAD(lu_device_types);
693
694 int lu_device_type_init(struct lu_device_type *ldt)
695 {
696         int result;
697
698         CFS_INIT_LIST_HEAD(&ldt->ldt_linkage);
699         result = ldt->ldt_ops->ldto_init(ldt);
700         if (result == 0)
701                 cfs_list_add(&ldt->ldt_linkage, &lu_device_types);
702         return result;
703 }
704 EXPORT_SYMBOL(lu_device_type_init);
705
706 void lu_device_type_fini(struct lu_device_type *ldt)
707 {
708         cfs_list_del_init(&ldt->ldt_linkage);
709         ldt->ldt_ops->ldto_fini(ldt);
710 }
711 EXPORT_SYMBOL(lu_device_type_fini);
712
713 void lu_types_stop(void)
714 {
715         struct lu_device_type *ldt;
716
717         cfs_list_for_each_entry(ldt, &lu_device_types, ldt_linkage) {
718                 if (ldt->ldt_device_nr == 0)
719                         ldt->ldt_ops->ldto_stop(ldt);
720         }
721 }
722 EXPORT_SYMBOL(lu_types_stop);
723
724 /**
725  * Global list of all sites on this node
726  */
727 static CFS_LIST_HEAD(lu_sites);
728 static CFS_DECLARE_MUTEX(lu_sites_guard);
729
730 /**
731  * Global environment used by site shrinker.
732  */
733 static struct lu_env lu_shrink_env;
734
735 struct lu_site_print_arg {
736         struct lu_env   *lsp_env;
737         void            *lsp_cookie;
738         lu_printer_t     lsp_printer;
739 };
740
741 static int
742 lu_site_obj_print(cfs_hash_t *hs, cfs_hash_bd_t *bd,
743                   cfs_hlist_node_t *hnode, void *data)
744 {
745         struct lu_site_print_arg *arg = (struct lu_site_print_arg *)data;
746         struct lu_object_header  *h;
747
748         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
749         if (!cfs_list_empty(&h->loh_layers)) {
750                 const struct lu_object *o;
751
752                 o = lu_object_top(h);
753                 lu_object_print(arg->lsp_env, arg->lsp_cookie,
754                                 arg->lsp_printer, o);
755         } else {
756                 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
757                                        arg->lsp_printer, h);
758         }
759         return 0;
760 }
761
762 /**
763  * Print all objects in \a s.
764  */
765 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
766                    lu_printer_t printer)
767 {
768         struct lu_site_print_arg arg = {
769                 .lsp_env     = (struct lu_env *)env,
770                 .lsp_cookie  = cookie,
771                 .lsp_printer = printer,
772         };
773
774         cfs_hash_for_each(s->ls_obj_hash, lu_site_obj_print, &arg);
775 }
776 EXPORT_SYMBOL(lu_site_print);
777
778 enum {
779         LU_CACHE_PERCENT_MAX     = 50,
780         LU_CACHE_PERCENT_DEFAULT = 20
781 };
782
783 static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
784 CFS_MODULE_PARM(lu_cache_percent, "i", int, 0644,
785                 "Percentage of memory to be used as lu_object cache");
786
787 /**
788  * Return desired hash table order.
789  */
790 static int lu_htable_order(void)
791 {
792         unsigned long cache_size;
793         int bits;
794
795         /*
796          * Calculate hash table size, assuming that we want reasonable
797          * performance when 20% of total memory is occupied by cache of
798          * lu_objects.
799          *
800          * Size of lu_object is (arbitrary) taken as 1K (together with inode).
801          */
802         cache_size = cfs_num_physpages;
803
804 #if BITS_PER_LONG == 32
805         /* limit hashtable size for lowmem systems to low RAM */
806         if (cache_size > 1 << (30 - CFS_PAGE_SHIFT))
807                 cache_size = 1 << (30 - CFS_PAGE_SHIFT) * 3 / 4;
808 #endif
809
810         /* clear off unreasonable cache setting. */
811         if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
812                 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in"
813                       " the range of (0, %u]. Will use default value: %u.\n",
814                       lu_cache_percent, LU_CACHE_PERCENT_MAX,
815                       LU_CACHE_PERCENT_DEFAULT);
816
817                 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
818         }
819         cache_size = cache_size / 100 * lu_cache_percent *
820                 (CFS_PAGE_SIZE / 1024);
821
822         for (bits = 1; (1 << bits) < cache_size; ++bits) {
823                 ;
824         }
825         return bits;
826 }
827
828 static unsigned lu_obj_hop_hash(cfs_hash_t *hs,
829                                 const void *key, unsigned mask)
830 {
831         struct lu_fid  *fid = (struct lu_fid *)key;
832         unsigned        hash;
833
834         hash = (fid_seq(fid) + fid_oid(fid)) & (CFS_HASH_NBKT(hs) - 1);
835         hash += fid_hash(fid, hs->hs_bkt_bits) << hs->hs_bkt_bits;
836         return hash & mask;
837 }
838
839 static void *lu_obj_hop_object(cfs_hlist_node_t *hnode)
840 {
841         return cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
842 }
843
844 static void *lu_obj_hop_key(cfs_hlist_node_t *hnode)
845 {
846         struct lu_object_header *h;
847
848         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
849         return &h->loh_fid;
850 }
851
852 static int lu_obj_hop_keycmp(const void *key, cfs_hlist_node_t *hnode)
853 {
854         struct lu_object_header *h;
855
856         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
857         return lu_fid_eq(&h->loh_fid, (struct lu_fid *)key);
858 }
859
860 static void lu_obj_hop_get(cfs_hash_t *hs, cfs_hlist_node_t *hnode)
861 {
862         struct lu_object_header *h;
863
864         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
865         if (cfs_atomic_add_return(1, &h->loh_ref) == 1) {
866                 struct lu_site_bkt_data *bkt;
867                 cfs_hash_bd_t            bd;
868
869                 cfs_hash_bd_get(hs, &h->loh_fid, &bd);
870                 bkt = cfs_hash_bd_extra_get(hs, &bd);
871                 bkt->lsb_busy++;
872         }
873 }
874
875 static void lu_obj_hop_put_locked(cfs_hash_t *hs, cfs_hlist_node_t *hnode)
876 {
877         LBUG(); /* we should never called it */
878 }
879
880 cfs_hash_ops_t lu_site_hash_ops = {
881         .hs_hash        = lu_obj_hop_hash,
882         .hs_key         = lu_obj_hop_key,
883         .hs_keycmp      = lu_obj_hop_keycmp,
884         .hs_object      = lu_obj_hop_object,
885         .hs_get         = lu_obj_hop_get,
886         .hs_put_locked  = lu_obj_hop_put_locked,
887 };
888
889 /**
890  * Initialize site \a s, with \a d as the top level device.
891  */
892 #define LU_SITE_BITS_MIN    12
893 #define LU_SITE_BITS_MAX    23
894 /**
895  * total 128 buckets, we don't want too many buckets because:
896  * - consume too much memory
897  * - avoid unbalanced LRU list
898  */
899 #define LU_SITE_BKT_BITS    7
900
901 int lu_site_init(struct lu_site *s, struct lu_device *top)
902 {
903         struct lu_site_bkt_data *bkt;
904         cfs_hash_bd_t bd;
905         int bits;
906         int i;
907         ENTRY;
908
909         memset(s, 0, sizeof *s);
910         bits = lu_htable_order();
911         for (bits = min(max(LU_SITE_BITS_MIN, bits), LU_SITE_BITS_MAX);
912              bits >= LU_SITE_BITS_MIN; bits--) {
913                 s->ls_obj_hash = cfs_hash_create("lu_site", bits, bits,
914                                                  bits - LU_SITE_BKT_BITS,
915                                                  sizeof(*bkt), 0, 0,
916                                                  &lu_site_hash_ops,
917                                                  CFS_HASH_SPIN_BKTLOCK |
918                                                  CFS_HASH_NO_ITEMREF |
919                                                  CFS_HASH_DEPTH |
920                                                  CFS_HASH_ASSERT_EMPTY);
921                 if (s->ls_obj_hash != NULL)
922                         break;
923         }
924
925         if (s->ls_obj_hash == NULL) {
926                 CERROR("failed to create lu_site hash with bits: %d\n", bits);
927                 return -ENOMEM;
928         }
929
930         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
931                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
932                 CFS_INIT_LIST_HEAD(&bkt->lsb_lru);
933                 cfs_waitq_init(&bkt->lsb_marche_funebre);
934         }
935
936         s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
937         if (s->ls_stats == NULL) {
938                 cfs_hash_putref(s->ls_obj_hash);
939                 s->ls_obj_hash = NULL;
940                 return -ENOMEM;
941         }
942
943         lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
944                              0, "created", "created");
945         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
946                              0, "cache_hit", "cache_hit");
947         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
948                              0, "cache_miss", "cache_miss");
949         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
950                              0, "cache_race", "cache_race");
951         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
952                              0, "cache_death_race", "cache_death_race");
953         lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
954                              0, "lru_purged", "lru_purged");
955
956         CFS_INIT_LIST_HEAD(&s->ls_linkage);
957         s->ls_top_dev = top;
958         top->ld_site = s;
959         lu_device_get(top);
960         lu_ref_add(&top->ld_reference, "site-top", s);
961
962         RETURN(0);
963 }
964 EXPORT_SYMBOL(lu_site_init);
965
966 /**
967  * Finalize \a s and release its resources.
968  */
969 void lu_site_fini(struct lu_site *s)
970 {
971         cfs_down(&lu_sites_guard);
972         cfs_list_del_init(&s->ls_linkage);
973         cfs_up(&lu_sites_guard);
974
975         if (s->ls_obj_hash != NULL) {
976                 cfs_hash_putref(s->ls_obj_hash);
977                 s->ls_obj_hash = NULL;
978         }
979
980         if (s->ls_top_dev != NULL) {
981                 s->ls_top_dev->ld_site = NULL;
982                 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
983                 lu_device_put(s->ls_top_dev);
984                 s->ls_top_dev = NULL;
985         }
986
987         if (s->ls_stats != NULL)
988                 lprocfs_free_stats(&s->ls_stats);
989 }
990 EXPORT_SYMBOL(lu_site_fini);
991
992 /**
993  * Called when initialization of stack for this site is completed.
994  */
995 int lu_site_init_finish(struct lu_site *s)
996 {
997         int result;
998         cfs_down(&lu_sites_guard);
999         result = lu_context_refill(&lu_shrink_env.le_ctx);
1000         if (result == 0)
1001                 cfs_list_add(&s->ls_linkage, &lu_sites);
1002         cfs_up(&lu_sites_guard);
1003         return result;
1004 }
1005 EXPORT_SYMBOL(lu_site_init_finish);
1006
1007 /**
1008  * Acquire additional reference on device \a d
1009  */
1010 void lu_device_get(struct lu_device *d)
1011 {
1012         cfs_atomic_inc(&d->ld_ref);
1013 }
1014 EXPORT_SYMBOL(lu_device_get);
1015
1016 /**
1017  * Release reference on device \a d.
1018  */
1019 void lu_device_put(struct lu_device *d)
1020 {
1021         LASSERT(cfs_atomic_read(&d->ld_ref) > 0);
1022         cfs_atomic_dec(&d->ld_ref);
1023 }
1024 EXPORT_SYMBOL(lu_device_put);
1025
1026 /**
1027  * Initialize device \a d of type \a t.
1028  */
1029 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1030 {
1031         if (t->ldt_device_nr++ == 0 && t->ldt_ops->ldto_start != NULL)
1032                 t->ldt_ops->ldto_start(t);
1033         memset(d, 0, sizeof *d);
1034         cfs_atomic_set(&d->ld_ref, 0);
1035         d->ld_type = t;
1036         lu_ref_init(&d->ld_reference);
1037         return 0;
1038 }
1039 EXPORT_SYMBOL(lu_device_init);
1040
1041 /**
1042  * Finalize device \a d.
1043  */
1044 void lu_device_fini(struct lu_device *d)
1045 {
1046         struct lu_device_type *t;
1047
1048         t = d->ld_type;
1049         if (d->ld_obd != NULL) {
1050                 d->ld_obd->obd_lu_dev = NULL;
1051                 d->ld_obd = NULL;
1052         }
1053
1054         lu_ref_fini(&d->ld_reference);
1055         LASSERTF(cfs_atomic_read(&d->ld_ref) == 0,
1056                  "Refcount is %u\n", cfs_atomic_read(&d->ld_ref));
1057         LASSERT(t->ldt_device_nr > 0);
1058         if (--t->ldt_device_nr == 0 && t->ldt_ops->ldto_stop != NULL)
1059                 t->ldt_ops->ldto_stop(t);
1060 }
1061 EXPORT_SYMBOL(lu_device_fini);
1062
1063 /**
1064  * Initialize object \a o that is part of compound object \a h and was created
1065  * by device \a d.
1066  */
1067 int lu_object_init(struct lu_object *o,
1068                    struct lu_object_header *h, struct lu_device *d)
1069 {
1070         memset(o, 0, sizeof *o);
1071         o->lo_header = h;
1072         o->lo_dev    = d;
1073         lu_device_get(d);
1074         o->lo_dev_ref = lu_ref_add(&d->ld_reference, "lu_object", o);
1075         CFS_INIT_LIST_HEAD(&o->lo_linkage);
1076         return 0;
1077 }
1078 EXPORT_SYMBOL(lu_object_init);
1079
1080 /**
1081  * Finalize object and release its resources.
1082  */
1083 void lu_object_fini(struct lu_object *o)
1084 {
1085         struct lu_device *dev = o->lo_dev;
1086
1087         LASSERT(cfs_list_empty(&o->lo_linkage));
1088
1089         if (dev != NULL) {
1090                 lu_ref_del_at(&dev->ld_reference,
1091                               o->lo_dev_ref , "lu_object", o);
1092                 lu_device_put(dev);
1093                 o->lo_dev = NULL;
1094         }
1095 }
1096 EXPORT_SYMBOL(lu_object_fini);
1097
1098 /**
1099  * Add object \a o as first layer of compound object \a h
1100  *
1101  * This is typically called by the ->ldo_object_alloc() method of top-level
1102  * device.
1103  */
1104 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1105 {
1106         cfs_list_move(&o->lo_linkage, &h->loh_layers);
1107 }
1108 EXPORT_SYMBOL(lu_object_add_top);
1109
1110 /**
1111  * Add object \a o as a layer of compound object, going after \a before.
1112  *
1113  * This is typically called by the ->ldo_object_alloc() method of \a
1114  * before->lo_dev.
1115  */
1116 void lu_object_add(struct lu_object *before, struct lu_object *o)
1117 {
1118         cfs_list_move(&o->lo_linkage, &before->lo_linkage);
1119 }
1120 EXPORT_SYMBOL(lu_object_add);
1121
1122 /**
1123  * Initialize compound object.
1124  */
1125 int lu_object_header_init(struct lu_object_header *h)
1126 {
1127         memset(h, 0, sizeof *h);
1128         cfs_atomic_set(&h->loh_ref, 1);
1129         CFS_INIT_HLIST_NODE(&h->loh_hash);
1130         CFS_INIT_LIST_HEAD(&h->loh_lru);
1131         CFS_INIT_LIST_HEAD(&h->loh_layers);
1132         lu_ref_init(&h->loh_reference);
1133         return 0;
1134 }
1135 EXPORT_SYMBOL(lu_object_header_init);
1136
1137 /**
1138  * Finalize compound object.
1139  */
1140 void lu_object_header_fini(struct lu_object_header *h)
1141 {
1142         LASSERT(cfs_list_empty(&h->loh_layers));
1143         LASSERT(cfs_list_empty(&h->loh_lru));
1144         LASSERT(cfs_hlist_unhashed(&h->loh_hash));
1145         lu_ref_fini(&h->loh_reference);
1146 }
1147 EXPORT_SYMBOL(lu_object_header_fini);
1148
1149 /**
1150  * Given a compound object, find its slice, corresponding to the device type
1151  * \a dtype.
1152  */
1153 struct lu_object *lu_object_locate(struct lu_object_header *h,
1154                                    const struct lu_device_type *dtype)
1155 {
1156         struct lu_object *o;
1157
1158         cfs_list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1159                 if (o->lo_dev->ld_type == dtype)
1160                         return o;
1161         }
1162         return NULL;
1163 }
1164 EXPORT_SYMBOL(lu_object_locate);
1165
1166
1167
1168 /**
1169  * Finalize and free devices in the device stack.
1170  *
1171  * Finalize device stack by purging object cache, and calling
1172  * lu_device_type_operations::ldto_device_fini() and
1173  * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1174  */
1175 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1176 {
1177         struct lu_site   *site = top->ld_site;
1178         struct lu_device *scan;
1179         struct lu_device *next;
1180
1181         lu_site_purge(env, site, ~0);
1182         for (scan = top; scan != NULL; scan = next) {
1183                 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1184                 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1185                 lu_device_put(scan);
1186         }
1187
1188         /* purge again. */
1189         lu_site_purge(env, site, ~0);
1190
1191         if (!cfs_hash_is_empty(site->ls_obj_hash)) {
1192                 /*
1193                  * Uh-oh, objects still exist.
1194                  */
1195                 static DECLARE_LU_CDEBUG_PRINT_INFO(cookie, D_ERROR);
1196
1197                 lu_site_print(env, site, &cookie, lu_cdebug_printer);
1198         }
1199
1200         for (scan = top; scan != NULL; scan = next) {
1201                 const struct lu_device_type *ldt = scan->ld_type;
1202                 struct obd_type             *type;
1203
1204                 next = ldt->ldt_ops->ldto_device_free(env, scan);
1205                 type = ldt->ldt_obd_type;
1206                 if (type != NULL) {
1207                         type->typ_refcnt--;
1208                         class_put_type(type);
1209                 }
1210         }
1211 }
1212 EXPORT_SYMBOL(lu_stack_fini);
1213
1214 enum {
1215         /**
1216          * Maximal number of tld slots.
1217          */
1218         LU_CONTEXT_KEY_NR = 32
1219 };
1220
1221 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1222
1223 static cfs_spinlock_t lu_keys_guard = CFS_SPIN_LOCK_UNLOCKED;
1224
1225 /**
1226  * Global counter incremented whenever key is registered, unregistered,
1227  * revived or quiesced. This is used to void unnecessary calls to
1228  * lu_context_refill(). No locking is provided, as initialization and shutdown
1229  * are supposed to be externally serialized.
1230  */
1231 static unsigned key_set_version = 0;
1232
1233 /**
1234  * Register new key.
1235  */
1236 int lu_context_key_register(struct lu_context_key *key)
1237 {
1238         int result;
1239         int i;
1240
1241         LASSERT(key->lct_init != NULL);
1242         LASSERT(key->lct_fini != NULL);
1243         LASSERT(key->lct_tags != 0);
1244         LASSERT(key->lct_owner != NULL);
1245
1246         result = -ENFILE;
1247         cfs_spin_lock(&lu_keys_guard);
1248         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1249                 if (lu_keys[i] == NULL) {
1250                         key->lct_index = i;
1251                         cfs_atomic_set(&key->lct_used, 1);
1252                         lu_keys[i] = key;
1253                         lu_ref_init(&key->lct_reference);
1254                         result = 0;
1255                         ++key_set_version;
1256                         break;
1257                 }
1258         }
1259         cfs_spin_unlock(&lu_keys_guard);
1260         return result;
1261 }
1262 EXPORT_SYMBOL(lu_context_key_register);
1263
1264 static void key_fini(struct lu_context *ctx, int index)
1265 {
1266         if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1267                 struct lu_context_key *key;
1268
1269                 key = lu_keys[index];
1270                 LASSERT(key != NULL);
1271                 LASSERT(key->lct_fini != NULL);
1272                 LASSERT(cfs_atomic_read(&key->lct_used) > 1);
1273
1274                 key->lct_fini(ctx, key, ctx->lc_value[index]);
1275                 lu_ref_del(&key->lct_reference, "ctx", ctx);
1276                 cfs_atomic_dec(&key->lct_used);
1277                 LASSERT(key->lct_owner != NULL);
1278                 if (!(ctx->lc_tags & LCT_NOREF)) {
1279                         LASSERT(cfs_module_refcount(key->lct_owner) > 0);
1280                         cfs_module_put(key->lct_owner);
1281                 }
1282                 ctx->lc_value[index] = NULL;
1283         }
1284 }
1285
1286 /**
1287  * Deregister key.
1288  */
1289 void lu_context_key_degister(struct lu_context_key *key)
1290 {
1291         LASSERT(cfs_atomic_read(&key->lct_used) >= 1);
1292         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1293
1294         lu_context_key_quiesce(key);
1295
1296         ++key_set_version;
1297         cfs_spin_lock(&lu_keys_guard);
1298         key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1299         if (lu_keys[key->lct_index]) {
1300                 lu_keys[key->lct_index] = NULL;
1301                 lu_ref_fini(&key->lct_reference);
1302         }
1303         cfs_spin_unlock(&lu_keys_guard);
1304
1305         LASSERTF(cfs_atomic_read(&key->lct_used) == 1,
1306                  "key has instances: %d\n",
1307                  cfs_atomic_read(&key->lct_used));
1308 }
1309 EXPORT_SYMBOL(lu_context_key_degister);
1310
1311 /**
1312  * Register a number of keys. This has to be called after all keys have been
1313  * initialized by a call to LU_CONTEXT_KEY_INIT().
1314  */
1315 int lu_context_key_register_many(struct lu_context_key *k, ...)
1316 {
1317         struct lu_context_key *key = k;
1318         va_list args;
1319         int result;
1320
1321         va_start(args, k);
1322         do {
1323                 result = lu_context_key_register(key);
1324                 if (result)
1325                         break;
1326                 key = va_arg(args, struct lu_context_key *);
1327         } while (key != NULL);
1328         va_end(args);
1329
1330         if (result != 0) {
1331                 va_start(args, k);
1332                 while (k != key) {
1333                         lu_context_key_degister(k);
1334                         k = va_arg(args, struct lu_context_key *);
1335                 }
1336                 va_end(args);
1337         }
1338
1339         return result;
1340 }
1341 EXPORT_SYMBOL(lu_context_key_register_many);
1342
1343 /**
1344  * De-register a number of keys. This is a dual to
1345  * lu_context_key_register_many().
1346  */
1347 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1348 {
1349         va_list args;
1350
1351         va_start(args, k);
1352         do {
1353                 lu_context_key_degister(k);
1354                 k = va_arg(args, struct lu_context_key*);
1355         } while (k != NULL);
1356         va_end(args);
1357 }
1358 EXPORT_SYMBOL(lu_context_key_degister_many);
1359
1360 /**
1361  * Revive a number of keys.
1362  */
1363 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1364 {
1365         va_list args;
1366
1367         va_start(args, k);
1368         do {
1369                 lu_context_key_revive(k);
1370                 k = va_arg(args, struct lu_context_key*);
1371         } while (k != NULL);
1372         va_end(args);
1373 }
1374 EXPORT_SYMBOL(lu_context_key_revive_many);
1375
1376 /**
1377  * Quiescent a number of keys.
1378  */
1379 void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1380 {
1381         va_list args;
1382
1383         va_start(args, k);
1384         do {
1385                 lu_context_key_quiesce(k);
1386                 k = va_arg(args, struct lu_context_key*);
1387         } while (k != NULL);
1388         va_end(args);
1389 }
1390 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1391
1392 /**
1393  * Return value associated with key \a key in context \a ctx.
1394  */
1395 void *lu_context_key_get(const struct lu_context *ctx,
1396                          const struct lu_context_key *key)
1397 {
1398         LINVRNT(ctx->lc_state == LCS_ENTERED);
1399         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1400         LASSERT(lu_keys[key->lct_index] == key);
1401         return ctx->lc_value[key->lct_index];
1402 }
1403 EXPORT_SYMBOL(lu_context_key_get);
1404
1405 /**
1406  * List of remembered contexts. XXX document me.
1407  */
1408 static CFS_LIST_HEAD(lu_context_remembered);
1409
1410 /**
1411  * Destroy \a key in all remembered contexts. This is used to destroy key
1412  * values in "shared" contexts (like service threads), when a module owning
1413  * the key is about to be unloaded.
1414  */
1415 void lu_context_key_quiesce(struct lu_context_key *key)
1416 {
1417         struct lu_context *ctx;
1418         extern unsigned cl_env_cache_purge(unsigned nr);
1419
1420         if (!(key->lct_tags & LCT_QUIESCENT)) {
1421                 /*
1422                  * XXX layering violation.
1423                  */
1424                 cl_env_cache_purge(~0);
1425                 key->lct_tags |= LCT_QUIESCENT;
1426                 /*
1427                  * XXX memory barrier has to go here.
1428                  */
1429                 cfs_spin_lock(&lu_keys_guard);
1430                 cfs_list_for_each_entry(ctx, &lu_context_remembered,
1431                                         lc_remember)
1432                         key_fini(ctx, key->lct_index);
1433                 cfs_spin_unlock(&lu_keys_guard);
1434                 ++key_set_version;
1435         }
1436 }
1437 EXPORT_SYMBOL(lu_context_key_quiesce);
1438
1439 void lu_context_key_revive(struct lu_context_key *key)
1440 {
1441         key->lct_tags &= ~LCT_QUIESCENT;
1442         ++key_set_version;
1443 }
1444 EXPORT_SYMBOL(lu_context_key_revive);
1445
1446 static void keys_fini(struct lu_context *ctx)
1447 {
1448         int i;
1449
1450         cfs_spin_lock(&lu_keys_guard);
1451         if (ctx->lc_value != NULL) {
1452                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1453                         key_fini(ctx, i);
1454                 OBD_FREE(ctx->lc_value,
1455                          ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1456                 ctx->lc_value = NULL;
1457         }
1458         cfs_spin_unlock(&lu_keys_guard);
1459 }
1460
1461 static int keys_fill(struct lu_context *ctx)
1462 {
1463         int i;
1464
1465         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1466                 struct lu_context_key *key;
1467
1468                 key = lu_keys[i];
1469                 if (ctx->lc_value[i] == NULL && key != NULL &&
1470                     (key->lct_tags & ctx->lc_tags) &&
1471                     /*
1472                      * Don't create values for a LCT_QUIESCENT key, as this
1473                      * will pin module owning a key.
1474                      */
1475                     !(key->lct_tags & LCT_QUIESCENT)) {
1476                         void *value;
1477
1478                         LINVRNT(key->lct_init != NULL);
1479                         LINVRNT(key->lct_index == i);
1480
1481                         value = key->lct_init(ctx, key);
1482                         if (unlikely(IS_ERR(value)))
1483                                 return PTR_ERR(value);
1484
1485                         LASSERT(key->lct_owner != NULL);
1486                         if (!(ctx->lc_tags & LCT_NOREF))
1487                                 cfs_try_module_get(key->lct_owner);
1488                         lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1489                         cfs_atomic_inc(&key->lct_used);
1490                         /*
1491                          * This is the only place in the code, where an
1492                          * element of ctx->lc_value[] array is set to non-NULL
1493                          * value.
1494                          */
1495                         ctx->lc_value[i] = value;
1496                         if (key->lct_exit != NULL)
1497                                 ctx->lc_tags |= LCT_HAS_EXIT;
1498                 }
1499                 ctx->lc_version = key_set_version;
1500         }
1501         return 0;
1502 }
1503
1504 static int keys_init(struct lu_context *ctx)
1505 {
1506         int result;
1507
1508         OBD_ALLOC(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1509         if (likely(ctx->lc_value != NULL))
1510                 result = keys_fill(ctx);
1511         else
1512                 result = -ENOMEM;
1513
1514         if (result != 0)
1515                 keys_fini(ctx);
1516         return result;
1517 }
1518
1519 /**
1520  * Initialize context data-structure. Create values for all keys.
1521  */
1522 int lu_context_init(struct lu_context *ctx, __u32 tags)
1523 {
1524         memset(ctx, 0, sizeof *ctx);
1525         ctx->lc_state = LCS_INITIALIZED;
1526         ctx->lc_tags = tags;
1527         if (tags & LCT_REMEMBER) {
1528                 cfs_spin_lock(&lu_keys_guard);
1529                 cfs_list_add(&ctx->lc_remember, &lu_context_remembered);
1530                 cfs_spin_unlock(&lu_keys_guard);
1531         } else
1532                 CFS_INIT_LIST_HEAD(&ctx->lc_remember);
1533         return keys_init(ctx);
1534 }
1535 EXPORT_SYMBOL(lu_context_init);
1536
1537 /**
1538  * Finalize context data-structure. Destroy key values.
1539  */
1540 void lu_context_fini(struct lu_context *ctx)
1541 {
1542         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1543         ctx->lc_state = LCS_FINALIZED;
1544         keys_fini(ctx);
1545         cfs_spin_lock(&lu_keys_guard);
1546         cfs_list_del_init(&ctx->lc_remember);
1547         cfs_spin_unlock(&lu_keys_guard);
1548 }
1549 EXPORT_SYMBOL(lu_context_fini);
1550
1551 /**
1552  * Called before entering context.
1553  */
1554 void lu_context_enter(struct lu_context *ctx)
1555 {
1556         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1557         ctx->lc_state = LCS_ENTERED;
1558 }
1559 EXPORT_SYMBOL(lu_context_enter);
1560
1561 /**
1562  * Called after exiting from \a ctx
1563  */
1564 void lu_context_exit(struct lu_context *ctx)
1565 {
1566         int i;
1567
1568         LINVRNT(ctx->lc_state == LCS_ENTERED);
1569         ctx->lc_state = LCS_LEFT;
1570         if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value != NULL) {
1571                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1572                         if (ctx->lc_value[i] != NULL) {
1573                                 struct lu_context_key *key;
1574
1575                                 key = lu_keys[i];
1576                                 LASSERT(key != NULL);
1577                                 if (key->lct_exit != NULL)
1578                                         key->lct_exit(ctx,
1579                                                       key, ctx->lc_value[i]);
1580                         }
1581                 }
1582         }
1583 }
1584 EXPORT_SYMBOL(lu_context_exit);
1585
1586 /**
1587  * Allocate for context all missing keys that were registered after context
1588  * creation.
1589  */
1590 int lu_context_refill(struct lu_context *ctx)
1591 {
1592         LINVRNT(ctx->lc_value != NULL);
1593         return ctx->lc_version == key_set_version ? 0 : keys_fill(ctx);
1594 }
1595 EXPORT_SYMBOL(lu_context_refill);
1596
1597 int lu_env_init(struct lu_env *env, __u32 tags)
1598 {
1599         int result;
1600
1601         env->le_ses = NULL;
1602         result = lu_context_init(&env->le_ctx, tags);
1603         if (likely(result == 0))
1604                 lu_context_enter(&env->le_ctx);
1605         return result;
1606 }
1607 EXPORT_SYMBOL(lu_env_init);
1608
1609 void lu_env_fini(struct lu_env *env)
1610 {
1611         lu_context_exit(&env->le_ctx);
1612         lu_context_fini(&env->le_ctx);
1613         env->le_ses = NULL;
1614 }
1615 EXPORT_SYMBOL(lu_env_fini);
1616
1617 int lu_env_refill(struct lu_env *env)
1618 {
1619         int result;
1620
1621         result = lu_context_refill(&env->le_ctx);
1622         if (result == 0 && env->le_ses != NULL)
1623                 result = lu_context_refill(env->le_ses);
1624         return result;
1625 }
1626 EXPORT_SYMBOL(lu_env_refill);
1627
1628 static struct cfs_shrinker *lu_site_shrinker = NULL;
1629
1630 typedef struct lu_site_stats{
1631         unsigned        lss_populated;
1632         unsigned        lss_max_search;
1633         unsigned        lss_total;
1634         unsigned        lss_busy;
1635 } lu_site_stats_t;
1636
1637 static void lu_site_stats_get(cfs_hash_t *hs,
1638                               lu_site_stats_t *stats, int populated)
1639 {
1640         cfs_hash_bd_t bd;
1641         int           i;
1642
1643         cfs_hash_for_each_bucket(hs, &bd, i) {
1644                 struct lu_site_bkt_data *bkt = cfs_hash_bd_extra_get(hs, &bd);
1645                 cfs_hlist_head_t        *hhead;
1646
1647                 cfs_hash_bd_lock(hs, &bd, 1);
1648                 stats->lss_busy  += bkt->lsb_busy;
1649                 stats->lss_total += cfs_hash_bd_count_get(&bd);
1650                 stats->lss_max_search = max((int)stats->lss_max_search,
1651                                             cfs_hash_bd_depmax_get(&bd));
1652                 if (!populated) {
1653                         cfs_hash_bd_unlock(hs, &bd, 1);
1654                         continue;
1655                 }
1656
1657                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1658                         if (!cfs_hlist_empty(hhead))
1659                                 stats->lss_populated++;
1660                 }
1661                 cfs_hash_bd_unlock(hs, &bd, 1);
1662         }
1663 }
1664
1665 #ifdef __KERNEL__
1666
1667 static int lu_cache_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1668 {
1669         lu_site_stats_t stats;
1670         struct lu_site *s;
1671         struct lu_site *tmp;
1672         int cached = 0;
1673         int remain = shrink_param(sc, nr_to_scan);
1674         CFS_LIST_HEAD(splice);
1675
1676         if (remain != 0) {
1677                 if (!(shrink_param(sc, gfp_mask) & __GFP_FS))
1678                         return -1;
1679                 CDEBUG(D_INODE, "Shrink %d objects\n", remain);
1680         }
1681
1682         cfs_down(&lu_sites_guard);
1683         cfs_list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1684                 if (shrink_param(sc, nr_to_scan) != 0) {
1685                         remain = lu_site_purge(&lu_shrink_env, s, remain);
1686                         /*
1687                          * Move just shrunk site to the tail of site list to
1688                          * assure shrinking fairness.
1689                          */
1690                         cfs_list_move_tail(&s->ls_linkage, &splice);
1691                 }
1692
1693                 memset(&stats, 0, sizeof(stats));
1694                 lu_site_stats_get(s->ls_obj_hash, &stats, 0);
1695                 cached += stats.lss_total - stats.lss_busy;
1696                 if (shrink_param(sc, nr_to_scan) && remain <= 0)
1697                         break;
1698         }
1699         cfs_list_splice(&splice, lu_sites.prev);
1700         cfs_up(&lu_sites_guard);
1701
1702         cached = (cached / 100) * sysctl_vfs_cache_pressure;
1703         if (shrink_param(sc, nr_to_scan) == 0)
1704                 CDEBUG(D_INODE, "%d objects cached\n", cached);
1705         return cached;
1706 }
1707
1708 /*
1709  * Debugging stuff.
1710  */
1711
1712 /**
1713  * Environment to be used in debugger, contains all tags.
1714  */
1715 struct lu_env lu_debugging_env;
1716
1717 /**
1718  * Debugging printer function using printk().
1719  */
1720 int lu_printk_printer(const struct lu_env *env,
1721                       void *unused, const char *format, ...)
1722 {
1723         va_list args;
1724
1725         va_start(args, format);
1726         vprintk(format, args);
1727         va_end(args);
1728         return 0;
1729 }
1730
1731 void lu_debugging_setup(void)
1732 {
1733         lu_env_init(&lu_debugging_env, ~0);
1734 }
1735
1736 void lu_context_keys_dump(void)
1737 {
1738         int i;
1739
1740         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1741                 struct lu_context_key *key;
1742
1743                 key = lu_keys[i];
1744                 if (key != NULL) {
1745                         CERROR("[%d]: %p %x (%p,%p,%p) %d %d \"%s\"@%p\n",
1746                                i, key, key->lct_tags,
1747                                key->lct_init, key->lct_fini, key->lct_exit,
1748                                key->lct_index, cfs_atomic_read(&key->lct_used),
1749                                key->lct_owner ? key->lct_owner->name : "",
1750                                key->lct_owner);
1751                         lu_ref_print(&key->lct_reference);
1752                 }
1753         }
1754 }
1755 EXPORT_SYMBOL(lu_context_keys_dump);
1756 #else  /* !__KERNEL__ */
1757 static int lu_cache_shrink(int nr, unsigned int gfp_mask)
1758 {
1759         return 0;
1760 }
1761 #endif /* __KERNEL__ */
1762
1763 int  cl_global_init(void);
1764 void cl_global_fini(void);
1765 int  lu_ref_global_init(void);
1766 void lu_ref_global_fini(void);
1767
1768 int dt_global_init(void);
1769 void dt_global_fini(void);
1770
1771 int llo_global_init(void);
1772 void llo_global_fini(void);
1773
1774 /**
1775  * Initialization of global lu_* data.
1776  */
1777 int lu_global_init(void)
1778 {
1779         int result;
1780
1781         CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
1782
1783         result = lu_ref_global_init();
1784         if (result != 0)
1785                 return result;
1786
1787         LU_CONTEXT_KEY_INIT(&lu_global_key);
1788         result = lu_context_key_register(&lu_global_key);
1789         if (result != 0)
1790                 return result;
1791         /*
1792          * At this level, we don't know what tags are needed, so allocate them
1793          * conservatively. This should not be too bad, because this
1794          * environment is global.
1795          */
1796         cfs_down(&lu_sites_guard);
1797         result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
1798         cfs_up(&lu_sites_guard);
1799         if (result != 0)
1800                 return result;
1801
1802         /*
1803          * seeks estimation: 3 seeks to read a record from oi, one to read
1804          * inode, one for ea. Unfortunately setting this high value results in
1805          * lu_object/inode cache consuming all the memory.
1806          */
1807         lu_site_shrinker = cfs_set_shrinker(CFS_DEFAULT_SEEKS, lu_cache_shrink);
1808         if (lu_site_shrinker == NULL)
1809                 return -ENOMEM;
1810
1811         result = lu_time_global_init();
1812         if (result)
1813                 GOTO(out, result);
1814
1815 #ifdef __KERNEL__
1816         result = dt_global_init();
1817         if (result)
1818                 GOTO(out, result);
1819
1820         result = llo_global_init();
1821         if (result)
1822                 GOTO(out, result);
1823 #endif
1824         result = cl_global_init();
1825 out:
1826
1827         return result;
1828 }
1829
1830 /**
1831  * Dual to lu_global_init().
1832  */
1833 void lu_global_fini(void)
1834 {
1835         cl_global_fini();
1836 #ifdef __KERNEL__
1837         llo_global_fini();
1838         dt_global_fini();
1839 #endif
1840         lu_time_global_fini();
1841         if (lu_site_shrinker != NULL) {
1842                 cfs_remove_shrinker(lu_site_shrinker);
1843                 lu_site_shrinker = NULL;
1844         }
1845
1846         lu_context_key_degister(&lu_global_key);
1847
1848         /*
1849          * Tear shrinker environment down _after_ de-registering
1850          * lu_global_key, because the latter has a value in the former.
1851          */
1852         cfs_down(&lu_sites_guard);
1853         lu_env_fini(&lu_shrink_env);
1854         cfs_up(&lu_sites_guard);
1855
1856         lu_ref_global_fini();
1857 }
1858
1859 struct lu_buf LU_BUF_NULL = {
1860         .lb_buf = NULL,
1861         .lb_len = 0
1862 };
1863 EXPORT_SYMBOL(LU_BUF_NULL);
1864
1865 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
1866 {
1867 #ifdef LPROCFS
1868         struct lprocfs_counter ret;
1869
1870         lprocfs_stats_collect(stats, idx, &ret);
1871         return (__u32)ret.lc_count;
1872 #else
1873         return 0;
1874 #endif
1875 }
1876
1877 /**
1878  * Output site statistical counters into a buffer. Suitable for
1879  * lprocfs_rd_*()-style functions.
1880  */
1881 int lu_site_stats_print(const struct lu_site *s, char *page, int count)
1882 {
1883         lu_site_stats_t stats;
1884
1885         memset(&stats, 0, sizeof(stats));
1886         lu_site_stats_get(s->ls_obj_hash, &stats, 1);
1887
1888         return snprintf(page, count, "%d/%d %d/%d %d %d %d %d %d %d %d\n",
1889                         stats.lss_busy,
1890                         stats.lss_total,
1891                         stats.lss_populated,
1892                         CFS_HASH_NHLIST(s->ls_obj_hash),
1893                         stats.lss_max_search,
1894                         ls_stats_read(s->ls_stats, LU_SS_CREATED),
1895                         ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
1896                         ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
1897                         ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
1898                         ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
1899                         ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
1900 }
1901 EXPORT_SYMBOL(lu_site_stats_print);
1902
1903 const char *lu_time_names[LU_TIME_NR] = {
1904         [LU_TIME_FIND_LOOKUP] = "find_lookup",
1905         [LU_TIME_FIND_ALLOC]  = "find_alloc",
1906         [LU_TIME_FIND_INSERT] = "find_insert"
1907 };
1908 EXPORT_SYMBOL(lu_time_names);
1909
1910 /**
1911  * Helper function to initialize a number of kmem slab caches at once.
1912  */
1913 int lu_kmem_init(struct lu_kmem_descr *caches)
1914 {
1915         int result;
1916         struct lu_kmem_descr *iter = caches;
1917
1918         for (result = 0; iter->ckd_cache != NULL; ++iter) {
1919                 *iter->ckd_cache = cfs_mem_cache_create(iter->ckd_name,
1920                                                         iter->ckd_size,
1921                                                         0, 0);
1922                 if (*iter->ckd_cache == NULL) {
1923                         result = -ENOMEM;
1924                         /* free all previously allocated caches */
1925                         lu_kmem_fini(caches);
1926                         break;
1927                 }
1928         }
1929         return result;
1930 }
1931 EXPORT_SYMBOL(lu_kmem_init);
1932
1933 /**
1934  * Helper function to finalize a number of kmem slab cached at once. Dual to
1935  * lu_kmem_init().
1936  */
1937 void lu_kmem_fini(struct lu_kmem_descr *caches)
1938 {
1939         int rc;
1940
1941         for (; caches->ckd_cache != NULL; ++caches) {
1942                 if (*caches->ckd_cache != NULL) {
1943                         rc = cfs_mem_cache_destroy(*caches->ckd_cache);
1944                         LASSERTF(rc == 0, "couldn't destroy %s slab\n",
1945                                  caches->ckd_name);
1946                         *caches->ckd_cache = NULL;
1947                 }
1948         }
1949 }
1950 EXPORT_SYMBOL(lu_kmem_fini);