Whamcloud - gitweb
LU-5829 obdclass: remove unnecessary EXPORT_SYMBOL
[fs/lustre-release.git] / lustre / obdclass / lu_object.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2014, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/obdclass/lu_object.c
37  *
38  * Lustre Object.
39  * These are the only exported functions, they provide some generic
40  * infrastructure for managing object devices
41  *
42  *   Author: Nikita Danilov <nikita.danilov@sun.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_CLASS
46
47 #include <libcfs/libcfs.h>
48 #include <linux/module.h>
49 #include <libcfs/libcfs_hash.h> /* hash_long() */
50 #include <obd_class.h>
51 #include <obd_support.h>
52 #include <lustre_disk.h>
53 #include <lustre_fid.h>
54 #include <lu_object.h>
55 #include <lu_ref.h>
56 #include <libcfs/list.h>
57
58 enum {
59         LU_CACHE_PERCENT_MAX     = 50,
60         LU_CACHE_PERCENT_DEFAULT = 20
61 };
62
63 #define LU_CACHE_NR_MAX_ADJUST          128
64 #define LU_CACHE_NR_UNLIMITED           -1
65 #define LU_CACHE_NR_DEFAULT             LU_CACHE_NR_UNLIMITED
66 #define LU_CACHE_NR_LDISKFS_LIMIT       LU_CACHE_NR_UNLIMITED
67 /** This is set to roughly (20 * OSS_NTHRS_MAX) to prevent thrashing */
68 #define LU_CACHE_NR_ZFS_LIMIT           10240
69
70 #define LU_SITE_BITS_MIN    12
71 #define LU_SITE_BITS_MAX    24
72 /**
73  * total 256 buckets, we don't want too many buckets because:
74  * - consume too much memory
75  * - avoid unbalanced LRU list
76  */
77 #define LU_SITE_BKT_BITS    8
78
79
80 static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
81 CFS_MODULE_PARM(lu_cache_percent, "i", int, 0644,
82                 "Percentage of memory to be used as lu_object cache");
83
84 static long lu_cache_nr = LU_CACHE_NR_DEFAULT;
85 CFS_MODULE_PARM(lu_cache_nr, "l", long, 0644,
86                 "Maximum number of objects in lu_object cache");
87
88 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
89
90 /**
91  * Decrease reference counter on object. If last reference is freed, return
92  * object to the cache, unless lu_object_is_dying(o) holds. In the latter
93  * case, free object immediately.
94  */
95 void lu_object_put(const struct lu_env *env, struct lu_object *o)
96 {
97         struct lu_site_bkt_data *bkt;
98         struct lu_object_header *top;
99         struct lu_site          *site;
100         struct lu_object        *orig;
101         cfs_hash_bd_t            bd;
102         const struct lu_fid     *fid;
103
104         top  = o->lo_header;
105         site = o->lo_dev->ld_site;
106         orig = o;
107
108         /*
109          * till we have full fids-on-OST implemented anonymous objects
110          * are possible in OSP. such an object isn't listed in the site
111          * so we should not remove it from the site.
112          */
113         fid = lu_object_fid(o);
114         if (fid_is_zero(fid)) {
115                 LASSERT(top->loh_hash.next == NULL
116                         && top->loh_hash.pprev == NULL);
117                 LASSERT(list_empty(&top->loh_lru));
118                 if (!atomic_dec_and_test(&top->loh_ref))
119                         return;
120                 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
121                         if (o->lo_ops->loo_object_release != NULL)
122                                 o->lo_ops->loo_object_release(env, o);
123                 }
124                 lu_object_free(env, orig);
125                 return;
126         }
127
128         cfs_hash_bd_get(site->ls_obj_hash, &top->loh_fid, &bd);
129         bkt = cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
130
131         if (!cfs_hash_bd_dec_and_lock(site->ls_obj_hash, &bd, &top->loh_ref)) {
132                 if (lu_object_is_dying(top)) {
133
134                         /*
135                          * somebody may be waiting for this, currently only
136                          * used for cl_object, see cl_object_put_last().
137                          */
138                         wake_up_all(&bkt->lsb_marche_funebre);
139                 }
140                 return;
141         }
142
143         LASSERT(bkt->lsb_busy > 0);
144         bkt->lsb_busy--;
145         /*
146          * When last reference is released, iterate over object
147          * layers, and notify them that object is no longer busy.
148          */
149         list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
150                 if (o->lo_ops->loo_object_release != NULL)
151                         o->lo_ops->loo_object_release(env, o);
152         }
153
154         if (!lu_object_is_dying(top) &&
155             (lu_object_exists(orig) || lu_object_is_cl(orig))) {
156                 LASSERT(list_empty(&top->loh_lru));
157                 list_add_tail(&top->loh_lru, &bkt->lsb_lru);
158                 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
159                 return;
160         }
161
162         /*
163          * If object is dying (will not be cached), removed it
164          * from hash table and LRU.
165          *
166          * This is done with hash table and LRU lists locked. As the only
167          * way to acquire first reference to previously unreferenced
168          * object is through hash-table lookup (lu_object_find()),
169          * or LRU scanning (lu_site_purge()), that are done under hash-table
170          * and LRU lock, no race with concurrent object lookup is possible
171          * and we can safely destroy object below.
172          */
173         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags))
174                 cfs_hash_bd_del_locked(site->ls_obj_hash, &bd, &top->loh_hash);
175         cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
176         /*
177          * Object was already removed from hash and lru above, can
178          * kill it.
179          */
180         lu_object_free(env, orig);
181 }
182 EXPORT_SYMBOL(lu_object_put);
183
184 /**
185  * Put object and don't keep in cache. This is temporary solution for
186  * multi-site objects when its layering is not constant.
187  */
188 void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o)
189 {
190         set_bit(LU_OBJECT_HEARD_BANSHEE, &o->lo_header->loh_flags);
191         return lu_object_put(env, o);
192 }
193 EXPORT_SYMBOL(lu_object_put_nocache);
194
195 /**
196  * Kill the object and take it out of LRU cache.
197  * Currently used by client code for layout change.
198  */
199 void lu_object_unhash(const struct lu_env *env, struct lu_object *o)
200 {
201         struct lu_object_header *top;
202
203         top = o->lo_header;
204         set_bit(LU_OBJECT_HEARD_BANSHEE, &top->loh_flags);
205         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags)) {
206                 cfs_hash_t *obj_hash = o->lo_dev->ld_site->ls_obj_hash;
207                 cfs_hash_bd_t bd;
208
209                 cfs_hash_bd_get_and_lock(obj_hash, &top->loh_fid, &bd, 1);
210                 list_del_init(&top->loh_lru);
211                 cfs_hash_bd_del_locked(obj_hash, &bd, &top->loh_hash);
212                 cfs_hash_bd_unlock(obj_hash, &bd, 1);
213         }
214 }
215 EXPORT_SYMBOL(lu_object_unhash);
216
217 /**
218  * Allocate new object.
219  *
220  * This follows object creation protocol, described in the comment within
221  * struct lu_device_operations definition.
222  */
223 static struct lu_object *lu_object_alloc(const struct lu_env *env,
224                                          struct lu_device *dev,
225                                          const struct lu_fid *f,
226                                          const struct lu_object_conf *conf)
227 {
228         struct lu_object *scan;
229         struct lu_object *top;
230         struct list_head *layers;
231         unsigned int init_mask = 0;
232         unsigned int init_flag;
233         int clean;
234         int result;
235         ENTRY;
236
237         /*
238          * Create top-level object slice. This will also create
239          * lu_object_header.
240          */
241         top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
242         if (top == NULL)
243                 RETURN(ERR_PTR(-ENOMEM));
244         if (IS_ERR(top))
245                 RETURN(top);
246         /*
247          * This is the only place where object fid is assigned. It's constant
248          * after this point.
249          */
250         top->lo_header->loh_fid = *f;
251         layers = &top->lo_header->loh_layers;
252
253         do {
254                 /*
255                  * Call ->loo_object_init() repeatedly, until no more new
256                  * object slices are created.
257                  */
258                 clean = 1;
259                 init_flag = 1;
260                 list_for_each_entry(scan, layers, lo_linkage) {
261                         if (init_mask & init_flag)
262                                 goto next;
263                         clean = 0;
264                         scan->lo_header = top->lo_header;
265                         result = scan->lo_ops->loo_object_init(env, scan, conf);
266                         if (result != 0) {
267                                 lu_object_free(env, top);
268                                 RETURN(ERR_PTR(result));
269                         }
270                         init_mask |= init_flag;
271 next:
272                         init_flag <<= 1;
273                 }
274         } while (!clean);
275
276         list_for_each_entry_reverse(scan, layers, lo_linkage) {
277                 if (scan->lo_ops->loo_object_start != NULL) {
278                         result = scan->lo_ops->loo_object_start(env, scan);
279                         if (result != 0) {
280                                 lu_object_free(env, top);
281                                 RETURN(ERR_PTR(result));
282                         }
283                 }
284         }
285
286         lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
287         RETURN(top);
288 }
289
290 /**
291  * Free an object.
292  */
293 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
294 {
295         struct lu_site_bkt_data *bkt;
296         struct lu_site          *site;
297         struct lu_object        *scan;
298         struct list_head        *layers;
299         struct list_head         splice;
300
301         site   = o->lo_dev->ld_site;
302         layers = &o->lo_header->loh_layers;
303         bkt    = lu_site_bkt_from_fid(site, &o->lo_header->loh_fid);
304         /*
305          * First call ->loo_object_delete() method to release all resources.
306          */
307         list_for_each_entry_reverse(scan, layers, lo_linkage) {
308                 if (scan->lo_ops->loo_object_delete != NULL)
309                         scan->lo_ops->loo_object_delete(env, scan);
310         }
311
312         /*
313          * Then, splice object layers into stand-alone list, and call
314          * ->loo_object_free() on all layers to free memory. Splice is
315          * necessary, because lu_object_header is freed together with the
316          * top-level slice.
317          */
318         INIT_LIST_HEAD(&splice);
319         list_splice_init(layers, &splice);
320         while (!list_empty(&splice)) {
321                 /*
322                  * Free layers in bottom-to-top order, so that object header
323                  * lives as long as possible and ->loo_object_free() methods
324                  * can look at its contents.
325                  */
326                 o = container_of0(splice.prev, struct lu_object, lo_linkage);
327                 list_del_init(&o->lo_linkage);
328                 LASSERT(o->lo_ops->loo_object_free != NULL);
329                 o->lo_ops->loo_object_free(env, o);
330         }
331
332         if (waitqueue_active(&bkt->lsb_marche_funebre))
333                 wake_up_all(&bkt->lsb_marche_funebre);
334 }
335
336 /**
337  * Free \a nr objects from the cold end of the site LRU list.
338  */
339 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
340 {
341         struct lu_object_header *h;
342         struct lu_object_header *temp;
343         struct lu_site_bkt_data *bkt;
344         cfs_hash_bd_t            bd;
345         cfs_hash_bd_t            bd2;
346         struct list_head         dispose;
347         int                      did_sth;
348         unsigned int             start;
349         int                      count;
350         int                      bnr;
351         unsigned int             i;
352
353         if (OBD_FAIL_CHECK(OBD_FAIL_OBD_NO_LRU))
354                 RETURN(0);
355
356         INIT_LIST_HEAD(&dispose);
357         /*
358          * Under LRU list lock, scan LRU list and move unreferenced objects to
359          * the dispose list, removing them from LRU and hash table.
360          */
361         start = s->ls_purge_start;
362         bnr = (nr == ~0) ? -1 : nr / (int)CFS_HASH_NBKT(s->ls_obj_hash) + 1;
363  again:
364         /*
365          * It doesn't make any sense to make purge threads parallel, that can
366          * only bring troubles to us. See LU-5331.
367          */
368         mutex_lock(&s->ls_purge_mutex);
369         did_sth = 0;
370         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
371                 if (i < start)
372                         continue;
373                 count = bnr;
374                 cfs_hash_bd_lock(s->ls_obj_hash, &bd, 1);
375                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
376
377                 list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
378                         LASSERT(atomic_read(&h->loh_ref) == 0);
379
380                         cfs_hash_bd_get(s->ls_obj_hash, &h->loh_fid, &bd2);
381                         LASSERT(bd.bd_bucket == bd2.bd_bucket);
382
383                         cfs_hash_bd_del_locked(s->ls_obj_hash,
384                                                &bd2, &h->loh_hash);
385                         list_move(&h->loh_lru, &dispose);
386                         if (did_sth == 0)
387                                 did_sth = 1;
388
389                         if (nr != ~0 && --nr == 0)
390                                 break;
391
392                         if (count > 0 && --count == 0)
393                                 break;
394
395                 }
396                 cfs_hash_bd_unlock(s->ls_obj_hash, &bd, 1);
397                 cond_resched();
398                 /*
399                  * Free everything on the dispose list. This is safe against
400                  * races due to the reasons described in lu_object_put().
401                  */
402                 while (!list_empty(&dispose)) {
403                         h = container_of0(dispose.next,
404                                           struct lu_object_header, loh_lru);
405                         list_del_init(&h->loh_lru);
406                         lu_object_free(env, lu_object_top(h));
407                         lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
408                 }
409
410                 if (nr == 0)
411                         break;
412         }
413         mutex_unlock(&s->ls_purge_mutex);
414
415         if (nr != 0 && did_sth && start != 0) {
416                 start = 0; /* restart from the first bucket */
417                 goto again;
418         }
419         /* race on s->ls_purge_start, but nobody cares */
420         s->ls_purge_start = i % CFS_HASH_NBKT(s->ls_obj_hash);
421
422         return nr;
423 }
424 EXPORT_SYMBOL(lu_site_purge);
425
426 /*
427  * Object printing.
428  *
429  * Code below has to jump through certain loops to output object description
430  * into libcfs_debug_msg-based log. The problem is that lu_object_print()
431  * composes object description from strings that are parts of _lines_ of
432  * output (i.e., strings that are not terminated by newline). This doesn't fit
433  * very well into libcfs_debug_msg() interface that assumes that each message
434  * supplied to it is a self-contained output line.
435  *
436  * To work around this, strings are collected in a temporary buffer
437  * (implemented as a value of lu_cdebug_key key), until terminating newline
438  * character is detected.
439  *
440  */
441
442 enum {
443         /**
444          * Maximal line size.
445          *
446          * XXX overflow is not handled correctly.
447          */
448         LU_CDEBUG_LINE = 512
449 };
450
451 struct lu_cdebug_data {
452         /**
453          * Temporary buffer.
454          */
455         char lck_area[LU_CDEBUG_LINE];
456 };
457
458 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
459 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
460
461 /**
462  * Key, holding temporary buffer. This key is registered very early by
463  * lu_global_init().
464  */
465 static struct lu_context_key lu_global_key = {
466         .lct_tags = LCT_MD_THREAD | LCT_DT_THREAD |
467                     LCT_MG_THREAD | LCT_CL_THREAD | LCT_LOCAL,
468         .lct_init = lu_global_key_init,
469         .lct_fini = lu_global_key_fini
470 };
471
472 /**
473  * Printer function emitting messages through libcfs_debug_msg().
474  */
475 int lu_cdebug_printer(const struct lu_env *env,
476                       void *cookie, const char *format, ...)
477 {
478         struct libcfs_debug_msg_data *msgdata = cookie;
479         struct lu_cdebug_data        *key;
480         int used;
481         int complete;
482         va_list args;
483
484         va_start(args, format);
485
486         key = lu_context_key_get(&env->le_ctx, &lu_global_key);
487         LASSERT(key != NULL);
488
489         used = strlen(key->lck_area);
490         complete = format[strlen(format) - 1] == '\n';
491         /*
492          * Append new chunk to the buffer.
493          */
494         vsnprintf(key->lck_area + used,
495                   ARRAY_SIZE(key->lck_area) - used, format, args);
496         if (complete) {
497                 if (cfs_cdebug_show(msgdata->msg_mask, msgdata->msg_subsys))
498                         libcfs_debug_msg(msgdata, "%s\n", key->lck_area);
499                 key->lck_area[0] = 0;
500         }
501         va_end(args);
502         return 0;
503 }
504 EXPORT_SYMBOL(lu_cdebug_printer);
505
506 /**
507  * Print object header.
508  */
509 void lu_object_header_print(const struct lu_env *env, void *cookie,
510                             lu_printer_t printer,
511                             const struct lu_object_header *hdr)
512 {
513         (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
514                    hdr, hdr->loh_flags, atomic_read(&hdr->loh_ref),
515                    PFID(&hdr->loh_fid),
516                    hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
517                    list_empty((struct list_head *)&hdr->loh_lru) ? \
518                    "" : " lru",
519                    hdr->loh_attr & LOHA_EXISTS ? " exist" : "");
520 }
521 EXPORT_SYMBOL(lu_object_header_print);
522
523 /**
524  * Print human readable representation of the \a o to the \a printer.
525  */
526 void lu_object_print(const struct lu_env *env, void *cookie,
527                      lu_printer_t printer, const struct lu_object *o)
528 {
529         static const char ruler[] = "........................................";
530         struct lu_object_header *top;
531         int depth = 4;
532
533         top = o->lo_header;
534         lu_object_header_print(env, cookie, printer, top);
535         (*printer)(env, cookie, "{\n");
536
537         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
538                 /*
539                  * print `.' \a depth times followed by type name and address
540                  */
541                 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
542                            o->lo_dev->ld_type->ldt_name, o);
543
544                 if (o->lo_ops->loo_object_print != NULL)
545                         (*o->lo_ops->loo_object_print)(env, cookie, printer, o);
546
547                 (*printer)(env, cookie, "\n");
548         }
549
550         (*printer)(env, cookie, "} header@%p\n", top);
551 }
552 EXPORT_SYMBOL(lu_object_print);
553
554 /**
555  * Check object consistency.
556  */
557 int lu_object_invariant(const struct lu_object *o)
558 {
559         struct lu_object_header *top;
560
561         top = o->lo_header;
562         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
563                 if (o->lo_ops->loo_object_invariant != NULL &&
564                     !o->lo_ops->loo_object_invariant(o))
565                         return 0;
566         }
567         return 1;
568 }
569
570 static struct lu_object *htable_lookup(struct lu_site *s,
571                                        cfs_hash_bd_t *bd,
572                                        const struct lu_fid *f,
573                                        wait_queue_t *waiter,
574                                        __u64 *version)
575 {
576         struct lu_site_bkt_data *bkt;
577         struct lu_object_header *h;
578         struct hlist_node       *hnode;
579         __u64  ver = cfs_hash_bd_version_get(bd);
580
581         if (*version == ver)
582                 return ERR_PTR(-ENOENT);
583
584         *version = ver;
585         bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, bd);
586         /* cfs_hash_bd_peek_locked is a somehow "internal" function
587          * of cfs_hash, it doesn't add refcount on object. */
588         hnode = cfs_hash_bd_peek_locked(s->ls_obj_hash, bd, (void *)f);
589         if (hnode == NULL) {
590                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
591                 return ERR_PTR(-ENOENT);
592         }
593
594         h = container_of0(hnode, struct lu_object_header, loh_hash);
595         if (likely(!lu_object_is_dying(h))) {
596                 cfs_hash_get(s->ls_obj_hash, hnode);
597                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
598                 list_del_init(&h->loh_lru);
599                 return lu_object_top(h);
600         }
601
602         /*
603          * Lookup found an object being destroyed this object cannot be
604          * returned (to assure that references to dying objects are eventually
605          * drained), and moreover, lookup has to wait until object is freed.
606          */
607
608         if (likely(waiter != NULL)) {
609                 init_waitqueue_entry_current(waiter);
610                 add_wait_queue(&bkt->lsb_marche_funebre, waiter);
611                 set_current_state(TASK_UNINTERRUPTIBLE);
612                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_DEATH_RACE);
613         }
614
615         return ERR_PTR(-EAGAIN);
616 }
617
618 /**
619  * Search cache for an object with the fid \a f. If such object is found,
620  * return it. Otherwise, create new object, insert it into cache and return
621  * it. In any case, additional reference is acquired on the returned object.
622  */
623 struct lu_object *lu_object_find(const struct lu_env *env,
624                                  struct lu_device *dev, const struct lu_fid *f,
625                                  const struct lu_object_conf *conf)
626 {
627         return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
628 }
629 EXPORT_SYMBOL(lu_object_find);
630
631 /*
632  * Limit the lu_object cache to a maximum of lu_cache_nr objects.  Because
633  * the calculation for the number of objects to reclaim is not covered by
634  * a lock the maximum number of objects is capped by LU_CACHE_MAX_ADJUST.
635  * This ensures that many concurrent threads will not accidentally purge
636  * the entire cache.
637  */
638 static void lu_object_limit(const struct lu_env *env,
639                             struct lu_device *dev)
640 {
641         __u64 size, nr;
642
643         if (lu_cache_nr == LU_CACHE_NR_UNLIMITED)
644                 return;
645
646         size = cfs_hash_size_get(dev->ld_site->ls_obj_hash);
647         nr = (__u64)lu_cache_nr;
648         if (size > nr)
649                 lu_site_purge(env, dev->ld_site,
650                               MIN(size - nr, LU_CACHE_NR_MAX_ADJUST));
651
652         return;
653 }
654
655 static struct lu_object *lu_object_new(const struct lu_env *env,
656                                        struct lu_device *dev,
657                                        const struct lu_fid *f,
658                                        const struct lu_object_conf *conf)
659 {
660         struct lu_object        *o;
661         cfs_hash_t              *hs;
662         cfs_hash_bd_t            bd;
663         struct lu_site_bkt_data *bkt;
664
665         o = lu_object_alloc(env, dev, f, conf);
666         if (unlikely(IS_ERR(o)))
667                 return o;
668
669         hs = dev->ld_site->ls_obj_hash;
670         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
671         bkt = cfs_hash_bd_extra_get(hs, &bd);
672         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
673         bkt->lsb_busy++;
674         cfs_hash_bd_unlock(hs, &bd, 1);
675
676         lu_object_limit(env, dev);
677
678         return o;
679 }
680
681 /**
682  * Core logic of lu_object_find*() functions.
683  */
684 static struct lu_object *lu_object_find_try(const struct lu_env *env,
685                                             struct lu_device *dev,
686                                             const struct lu_fid *f,
687                                             const struct lu_object_conf *conf,
688                                             wait_queue_t *waiter)
689 {
690         struct lu_object      *o;
691         struct lu_object      *shadow;
692         struct lu_site        *s;
693         cfs_hash_t            *hs;
694         cfs_hash_bd_t          bd;
695         __u64                  version = 0;
696
697         /*
698          * This uses standard index maintenance protocol:
699          *
700          *     - search index under lock, and return object if found;
701          *     - otherwise, unlock index, allocate new object;
702          *     - lock index and search again;
703          *     - if nothing is found (usual case), insert newly created
704          *       object into index;
705          *     - otherwise (race: other thread inserted object), free
706          *       object just allocated.
707          *     - unlock index;
708          *     - return object.
709          *
710          * For "LOC_F_NEW" case, we are sure the object is new established.
711          * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
712          * just alloc and insert directly.
713          *
714          * If dying object is found during index search, add @waiter to the
715          * site wait-queue and return ERR_PTR(-EAGAIN).
716          */
717         if (conf != NULL && conf->loc_flags & LOC_F_NEW)
718                 return lu_object_new(env, dev, f, conf);
719
720         s  = dev->ld_site;
721         hs = s->ls_obj_hash;
722         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
723         o = htable_lookup(s, &bd, f, waiter, &version);
724         cfs_hash_bd_unlock(hs, &bd, 1);
725         if (!IS_ERR(o) || PTR_ERR(o) != -ENOENT)
726                 return o;
727
728         /*
729          * Allocate new object. This may result in rather complicated
730          * operations, including fld queries, inode loading, etc.
731          */
732         o = lu_object_alloc(env, dev, f, conf);
733         if (unlikely(IS_ERR(o)))
734                 return o;
735
736         LASSERT(lu_fid_eq(lu_object_fid(o), f));
737
738         cfs_hash_bd_lock(hs, &bd, 1);
739
740         shadow = htable_lookup(s, &bd, f, waiter, &version);
741         if (likely(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT)) {
742                 struct lu_site_bkt_data *bkt;
743
744                 bkt = cfs_hash_bd_extra_get(hs, &bd);
745                 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
746                 bkt->lsb_busy++;
747                 cfs_hash_bd_unlock(hs, &bd, 1);
748
749                 lu_object_limit(env, dev);
750
751                 return o;
752         }
753
754         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
755         cfs_hash_bd_unlock(hs, &bd, 1);
756         lu_object_free(env, o);
757         return shadow;
758 }
759
760 /**
761  * Much like lu_object_find(), but top level device of object is specifically
762  * \a dev rather than top level device of the site. This interface allows
763  * objects of different "stacking" to be created within the same site.
764  */
765 struct lu_object *lu_object_find_at(const struct lu_env *env,
766                                     struct lu_device *dev,
767                                     const struct lu_fid *f,
768                                     const struct lu_object_conf *conf)
769 {
770         struct lu_site_bkt_data *bkt;
771         struct lu_object        *obj;
772         wait_queue_t           wait;
773
774         if (conf != NULL && conf->loc_flags & LOC_F_NOWAIT)
775                 return lu_object_find_try(env, dev, f, conf, NULL);
776
777         while (1) {
778                 obj = lu_object_find_try(env, dev, f, conf, &wait);
779                 if (obj != ERR_PTR(-EAGAIN))
780                         return obj;
781                 /*
782                  * lu_object_find_try() already added waiter into the
783                  * wait queue.
784                  */
785                 waitq_wait(&wait, TASK_UNINTERRUPTIBLE);
786                 bkt = lu_site_bkt_from_fid(dev->ld_site, (void *)f);
787                 remove_wait_queue(&bkt->lsb_marche_funebre, &wait);
788         }
789 }
790 EXPORT_SYMBOL(lu_object_find_at);
791
792 /**
793  * Find object with given fid, and return its slice belonging to given device.
794  */
795 struct lu_object *lu_object_find_slice(const struct lu_env *env,
796                                        struct lu_device *dev,
797                                        const struct lu_fid *f,
798                                        const struct lu_object_conf *conf)
799 {
800         struct lu_object *top;
801         struct lu_object *obj;
802
803         top = lu_object_find(env, dev, f, conf);
804         if (IS_ERR(top))
805                 return top;
806
807         obj = lu_object_locate(top->lo_header, dev->ld_type);
808         if (unlikely(obj == NULL)) {
809                 lu_object_put(env, top);
810                 obj = ERR_PTR(-ENOENT);
811         }
812
813         return obj;
814 }
815 EXPORT_SYMBOL(lu_object_find_slice);
816
817 /**
818  * Global list of all device types.
819  */
820 static struct list_head lu_device_types;
821
822 int lu_device_type_init(struct lu_device_type *ldt)
823 {
824         int result = 0;
825
826         atomic_set(&ldt->ldt_device_nr, 0);
827         INIT_LIST_HEAD(&ldt->ldt_linkage);
828         if (ldt->ldt_ops->ldto_init)
829                 result = ldt->ldt_ops->ldto_init(ldt);
830
831         if (result == 0) {
832                 spin_lock(&obd_types_lock);
833                 list_add(&ldt->ldt_linkage, &lu_device_types);
834                 spin_unlock(&obd_types_lock);
835         }
836
837         return result;
838 }
839 EXPORT_SYMBOL(lu_device_type_init);
840
841 void lu_device_type_fini(struct lu_device_type *ldt)
842 {
843         spin_lock(&obd_types_lock);
844         list_del_init(&ldt->ldt_linkage);
845         spin_unlock(&obd_types_lock);
846         if (ldt->ldt_ops->ldto_fini)
847                 ldt->ldt_ops->ldto_fini(ldt);
848 }
849 EXPORT_SYMBOL(lu_device_type_fini);
850
851 /**
852  * Global list of all sites on this node
853  */
854 static struct list_head lu_sites;
855 static DEFINE_MUTEX(lu_sites_guard);
856
857 /**
858  * Global environment used by site shrinker.
859  */
860 static struct lu_env lu_shrink_env;
861
862 struct lu_site_print_arg {
863         struct lu_env   *lsp_env;
864         void            *lsp_cookie;
865         lu_printer_t     lsp_printer;
866 };
867
868 static int
869 lu_site_obj_print(cfs_hash_t *hs, cfs_hash_bd_t *bd,
870                   struct hlist_node *hnode, void *data)
871 {
872         struct lu_site_print_arg *arg = (struct lu_site_print_arg *)data;
873         struct lu_object_header  *h;
874
875         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
876         if (!list_empty(&h->loh_layers)) {
877                 const struct lu_object *o;
878
879                 o = lu_object_top(h);
880                 lu_object_print(arg->lsp_env, arg->lsp_cookie,
881                                 arg->lsp_printer, o);
882         } else {
883                 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
884                                        arg->lsp_printer, h);
885         }
886         return 0;
887 }
888
889 /**
890  * Print all objects in \a s.
891  */
892 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
893                    lu_printer_t printer)
894 {
895         struct lu_site_print_arg arg = {
896                 .lsp_env     = (struct lu_env *)env,
897                 .lsp_cookie  = cookie,
898                 .lsp_printer = printer,
899         };
900
901         cfs_hash_for_each(s->ls_obj_hash, lu_site_obj_print, &arg);
902 }
903 EXPORT_SYMBOL(lu_site_print);
904
905 /**
906  * Return desired hash table order.
907  */
908 static unsigned long lu_htable_order(struct lu_device *top)
909 {
910         unsigned long cache_size;
911         unsigned long bits;
912
913         /*
914          * For ZFS based OSDs the cache should be disabled by default.  This
915          * allows the ZFS ARC maximum flexibility in determining what buffers
916          * to cache.  If Lustre has objects or buffer which it wants to ensure
917          * always stay cached it must maintain a hold on them.
918          */
919         if (strcmp(top->ld_type->ldt_name, LUSTRE_OSD_ZFS_NAME) == 0) {
920                 lu_cache_percent = 1;
921                 lu_cache_nr = LU_CACHE_NR_ZFS_LIMIT;
922                 return LU_SITE_BITS_MIN;
923         }
924
925         /*
926          * Calculate hash table size, assuming that we want reasonable
927          * performance when 20% of total memory is occupied by cache of
928          * lu_objects.
929          *
930          * Size of lu_object is (arbitrary) taken as 1K (together with inode).
931          */
932         cache_size = totalram_pages;
933
934 #if BITS_PER_LONG == 32
935         /* limit hashtable size for lowmem systems to low RAM */
936         if (cache_size > 1 << (30 - PAGE_CACHE_SHIFT))
937                 cache_size = 1 << (30 - PAGE_CACHE_SHIFT) * 3 / 4;
938 #endif
939
940         /* clear off unreasonable cache setting. */
941         if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
942                 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in"
943                       " the range of (0, %u]. Will use default value: %u.\n",
944                       lu_cache_percent, LU_CACHE_PERCENT_MAX,
945                       LU_CACHE_PERCENT_DEFAULT);
946
947                 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
948         }
949         cache_size = cache_size / 100 * lu_cache_percent *
950                 (PAGE_CACHE_SIZE / 1024);
951
952         for (bits = 1; (1 << bits) < cache_size; ++bits) {
953                 ;
954         }
955         return bits;
956 }
957
958 static unsigned lu_obj_hop_hash(cfs_hash_t *hs,
959                                 const void *key, unsigned mask)
960 {
961         struct lu_fid  *fid = (struct lu_fid *)key;
962         __u32           hash;
963
964         hash = fid_flatten32(fid);
965         hash += (hash >> 4) + (hash << 12); /* mixing oid and seq */
966         hash = hash_long(hash, hs->hs_bkt_bits);
967
968         /* give me another random factor */
969         hash -= hash_long((unsigned long)hs, fid_oid(fid) % 11 + 3);
970
971         hash <<= hs->hs_cur_bits - hs->hs_bkt_bits;
972         hash |= (fid_seq(fid) + fid_oid(fid)) & (CFS_HASH_NBKT(hs) - 1);
973
974         return hash & mask;
975 }
976
977 static void *lu_obj_hop_object(struct hlist_node *hnode)
978 {
979         return hlist_entry(hnode, struct lu_object_header, loh_hash);
980 }
981
982 static void *lu_obj_hop_key(struct hlist_node *hnode)
983 {
984         struct lu_object_header *h;
985
986         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
987         return &h->loh_fid;
988 }
989
990 static int lu_obj_hop_keycmp(const void *key, struct hlist_node *hnode)
991 {
992         struct lu_object_header *h;
993
994         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
995         return lu_fid_eq(&h->loh_fid, (struct lu_fid *)key);
996 }
997
998 static void lu_obj_hop_get(cfs_hash_t *hs, struct hlist_node *hnode)
999 {
1000         struct lu_object_header *h;
1001
1002         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
1003         if (atomic_add_return(1, &h->loh_ref) == 1) {
1004                 struct lu_site_bkt_data *bkt;
1005                 cfs_hash_bd_t            bd;
1006
1007                 cfs_hash_bd_get(hs, &h->loh_fid, &bd);
1008                 bkt = cfs_hash_bd_extra_get(hs, &bd);
1009                 bkt->lsb_busy++;
1010         }
1011 }
1012
1013 static void lu_obj_hop_put_locked(cfs_hash_t *hs, struct hlist_node *hnode)
1014 {
1015         LBUG(); /* we should never called it */
1016 }
1017
1018 static cfs_hash_ops_t lu_site_hash_ops = {
1019         .hs_hash        = lu_obj_hop_hash,
1020         .hs_key         = lu_obj_hop_key,
1021         .hs_keycmp      = lu_obj_hop_keycmp,
1022         .hs_object      = lu_obj_hop_object,
1023         .hs_get         = lu_obj_hop_get,
1024         .hs_put_locked  = lu_obj_hop_put_locked,
1025 };
1026
1027 void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d)
1028 {
1029         spin_lock(&s->ls_ld_lock);
1030         if (list_empty(&d->ld_linkage))
1031                 list_add(&d->ld_linkage, &s->ls_ld_linkage);
1032         spin_unlock(&s->ls_ld_lock);
1033 }
1034 EXPORT_SYMBOL(lu_dev_add_linkage);
1035
1036 void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d)
1037 {
1038         spin_lock(&s->ls_ld_lock);
1039         list_del_init(&d->ld_linkage);
1040         spin_unlock(&s->ls_ld_lock);
1041 }
1042 EXPORT_SYMBOL(lu_dev_del_linkage);
1043
1044 /**
1045   * Initialize site \a s, with \a d as the top level device.
1046   */
1047 int lu_site_init(struct lu_site *s, struct lu_device *top)
1048 {
1049         struct lu_site_bkt_data *bkt;
1050         cfs_hash_bd_t bd;
1051         char name[16];
1052         unsigned long bits;
1053         unsigned int i;
1054         ENTRY;
1055
1056         memset(s, 0, sizeof *s);
1057         mutex_init(&s->ls_purge_mutex);
1058         bits = lu_htable_order(top);
1059         snprintf(name, sizeof(name), "lu_site_%s", top->ld_type->ldt_name);
1060         for (bits = clamp_t(typeof(bits), bits,
1061                             LU_SITE_BITS_MIN, LU_SITE_BITS_MAX);
1062              bits >= LU_SITE_BITS_MIN; bits--) {
1063                 s->ls_obj_hash = cfs_hash_create(name, bits, bits,
1064                                                  bits - LU_SITE_BKT_BITS,
1065                                                  sizeof(*bkt), 0, 0,
1066                                                  &lu_site_hash_ops,
1067                                                  CFS_HASH_SPIN_BKTLOCK |
1068                                                  CFS_HASH_NO_ITEMREF |
1069                                                  CFS_HASH_DEPTH |
1070                                                  CFS_HASH_ASSERT_EMPTY |
1071                                                  CFS_HASH_COUNTER);
1072                 if (s->ls_obj_hash != NULL)
1073                         break;
1074         }
1075
1076         if (s->ls_obj_hash == NULL) {
1077                 CERROR("failed to create lu_site hash with bits: %lu\n", bits);
1078                 return -ENOMEM;
1079         }
1080
1081         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
1082                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
1083                 INIT_LIST_HEAD(&bkt->lsb_lru);
1084                 init_waitqueue_head(&bkt->lsb_marche_funebre);
1085         }
1086
1087         s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
1088         if (s->ls_stats == NULL) {
1089                 cfs_hash_putref(s->ls_obj_hash);
1090                 s->ls_obj_hash = NULL;
1091                 return -ENOMEM;
1092         }
1093
1094         lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
1095                              0, "created", "created");
1096         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
1097                              0, "cache_hit", "cache_hit");
1098         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
1099                              0, "cache_miss", "cache_miss");
1100         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
1101                              0, "cache_race", "cache_race");
1102         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
1103                              0, "cache_death_race", "cache_death_race");
1104         lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
1105                              0, "lru_purged", "lru_purged");
1106
1107         INIT_LIST_HEAD(&s->ls_linkage);
1108         s->ls_top_dev = top;
1109         top->ld_site = s;
1110         lu_device_get(top);
1111         lu_ref_add(&top->ld_reference, "site-top", s);
1112
1113         INIT_LIST_HEAD(&s->ls_ld_linkage);
1114         spin_lock_init(&s->ls_ld_lock);
1115
1116         lu_dev_add_linkage(s, top);
1117
1118         RETURN(0);
1119 }
1120 EXPORT_SYMBOL(lu_site_init);
1121
1122 /**
1123  * Finalize \a s and release its resources.
1124  */
1125 void lu_site_fini(struct lu_site *s)
1126 {
1127         mutex_lock(&lu_sites_guard);
1128         list_del_init(&s->ls_linkage);
1129         mutex_unlock(&lu_sites_guard);
1130
1131         if (s->ls_obj_hash != NULL) {
1132                 cfs_hash_putref(s->ls_obj_hash);
1133                 s->ls_obj_hash = NULL;
1134         }
1135
1136         if (s->ls_top_dev != NULL) {
1137                 s->ls_top_dev->ld_site = NULL;
1138                 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
1139                 lu_device_put(s->ls_top_dev);
1140                 s->ls_top_dev = NULL;
1141         }
1142
1143         if (s->ls_stats != NULL)
1144                 lprocfs_free_stats(&s->ls_stats);
1145 }
1146 EXPORT_SYMBOL(lu_site_fini);
1147
1148 /**
1149  * Called when initialization of stack for this site is completed.
1150  */
1151 int lu_site_init_finish(struct lu_site *s)
1152 {
1153         int result;
1154         mutex_lock(&lu_sites_guard);
1155         result = lu_context_refill(&lu_shrink_env.le_ctx);
1156         if (result == 0)
1157                 list_add(&s->ls_linkage, &lu_sites);
1158         mutex_unlock(&lu_sites_guard);
1159         return result;
1160 }
1161 EXPORT_SYMBOL(lu_site_init_finish);
1162
1163 /**
1164  * Acquire additional reference on device \a d
1165  */
1166 void lu_device_get(struct lu_device *d)
1167 {
1168         atomic_inc(&d->ld_ref);
1169 }
1170 EXPORT_SYMBOL(lu_device_get);
1171
1172 /**
1173  * Release reference on device \a d.
1174  */
1175 void lu_device_put(struct lu_device *d)
1176 {
1177         LASSERT(atomic_read(&d->ld_ref) > 0);
1178         atomic_dec(&d->ld_ref);
1179 }
1180 EXPORT_SYMBOL(lu_device_put);
1181
1182 /**
1183  * Initialize device \a d of type \a t.
1184  */
1185 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1186 {
1187         if (atomic_inc_return(&t->ldt_device_nr) == 1 &&
1188             t->ldt_ops->ldto_start != NULL)
1189                 t->ldt_ops->ldto_start(t);
1190
1191         memset(d, 0, sizeof *d);
1192         d->ld_type = t;
1193         lu_ref_init(&d->ld_reference);
1194         INIT_LIST_HEAD(&d->ld_linkage);
1195
1196         return 0;
1197 }
1198 EXPORT_SYMBOL(lu_device_init);
1199
1200 /**
1201  * Finalize device \a d.
1202  */
1203 void lu_device_fini(struct lu_device *d)
1204 {
1205         struct lu_device_type *t = d->ld_type;
1206
1207         if (d->ld_obd != NULL) {
1208                 d->ld_obd->obd_lu_dev = NULL;
1209                 d->ld_obd = NULL;
1210         }
1211
1212         lu_ref_fini(&d->ld_reference);
1213         LASSERTF(atomic_read(&d->ld_ref) == 0,
1214                  "Refcount is %u\n", atomic_read(&d->ld_ref));
1215         LASSERT(atomic_read(&t->ldt_device_nr) > 0);
1216
1217         if (atomic_dec_and_test(&t->ldt_device_nr) &&
1218             t->ldt_ops->ldto_stop != NULL)
1219                 t->ldt_ops->ldto_stop(t);
1220 }
1221 EXPORT_SYMBOL(lu_device_fini);
1222
1223 /**
1224  * Initialize object \a o that is part of compound object \a h and was created
1225  * by device \a d.
1226  */
1227 int lu_object_init(struct lu_object *o, struct lu_object_header *h,
1228                    struct lu_device *d)
1229 {
1230         memset(o, 0, sizeof(*o));
1231         o->lo_header = h;
1232         o->lo_dev = d;
1233         lu_device_get(d);
1234         lu_ref_add_at(&d->ld_reference, &o->lo_dev_ref, "lu_object", o);
1235         INIT_LIST_HEAD(&o->lo_linkage);
1236
1237         return 0;
1238 }
1239 EXPORT_SYMBOL(lu_object_init);
1240
1241 /**
1242  * Finalize object and release its resources.
1243  */
1244 void lu_object_fini(struct lu_object *o)
1245 {
1246         struct lu_device *dev = o->lo_dev;
1247
1248         LASSERT(list_empty(&o->lo_linkage));
1249
1250         if (dev != NULL) {
1251                 lu_ref_del_at(&dev->ld_reference, &o->lo_dev_ref,
1252                               "lu_object", o);
1253                 lu_device_put(dev);
1254                 o->lo_dev = NULL;
1255         }
1256 }
1257 EXPORT_SYMBOL(lu_object_fini);
1258
1259 /**
1260  * Add object \a o as first layer of compound object \a h
1261  *
1262  * This is typically called by the ->ldo_object_alloc() method of top-level
1263  * device.
1264  */
1265 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1266 {
1267         list_move(&o->lo_linkage, &h->loh_layers);
1268 }
1269 EXPORT_SYMBOL(lu_object_add_top);
1270
1271 /**
1272  * Add object \a o as a layer of compound object, going after \a before.
1273  *
1274  * This is typically called by the ->ldo_object_alloc() method of \a
1275  * before->lo_dev.
1276  */
1277 void lu_object_add(struct lu_object *before, struct lu_object *o)
1278 {
1279         list_move(&o->lo_linkage, &before->lo_linkage);
1280 }
1281 EXPORT_SYMBOL(lu_object_add);
1282
1283 /**
1284  * Initialize compound object.
1285  */
1286 int lu_object_header_init(struct lu_object_header *h)
1287 {
1288         memset(h, 0, sizeof *h);
1289         atomic_set(&h->loh_ref, 1);
1290         INIT_HLIST_NODE(&h->loh_hash);
1291         INIT_LIST_HEAD(&h->loh_lru);
1292         INIT_LIST_HEAD(&h->loh_layers);
1293         lu_ref_init(&h->loh_reference);
1294         return 0;
1295 }
1296 EXPORT_SYMBOL(lu_object_header_init);
1297
1298 /**
1299  * Finalize compound object.
1300  */
1301 void lu_object_header_fini(struct lu_object_header *h)
1302 {
1303         LASSERT(list_empty(&h->loh_layers));
1304         LASSERT(list_empty(&h->loh_lru));
1305         LASSERT(hlist_unhashed(&h->loh_hash));
1306         lu_ref_fini(&h->loh_reference);
1307 }
1308 EXPORT_SYMBOL(lu_object_header_fini);
1309
1310 /**
1311  * Given a compound object, find its slice, corresponding to the device type
1312  * \a dtype.
1313  */
1314 struct lu_object *lu_object_locate(struct lu_object_header *h,
1315                                    const struct lu_device_type *dtype)
1316 {
1317         struct lu_object *o;
1318
1319         list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1320                 if (o->lo_dev->ld_type == dtype)
1321                         return o;
1322         }
1323         return NULL;
1324 }
1325 EXPORT_SYMBOL(lu_object_locate);
1326
1327 /**
1328  * Finalize and free devices in the device stack.
1329  *
1330  * Finalize device stack by purging object cache, and calling
1331  * lu_device_type_operations::ldto_device_fini() and
1332  * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1333  */
1334 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1335 {
1336         struct lu_site   *site = top->ld_site;
1337         struct lu_device *scan;
1338         struct lu_device *next;
1339
1340         lu_site_purge(env, site, ~0);
1341         for (scan = top; scan != NULL; scan = next) {
1342                 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1343                 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1344                 lu_device_put(scan);
1345         }
1346
1347         /* purge again. */
1348         lu_site_purge(env, site, ~0);
1349
1350         for (scan = top; scan != NULL; scan = next) {
1351                 const struct lu_device_type *ldt = scan->ld_type;
1352                 struct obd_type             *type;
1353
1354                 next = ldt->ldt_ops->ldto_device_free(env, scan);
1355                 type = ldt->ldt_obd_type;
1356                 if (type != NULL) {
1357                         type->typ_refcnt--;
1358                         class_put_type(type);
1359                 }
1360         }
1361 }
1362
1363 enum {
1364         /**
1365          * Maximal number of tld slots.
1366          */
1367         LU_CONTEXT_KEY_NR = 40
1368 };
1369
1370 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1371
1372 static DEFINE_SPINLOCK(lu_keys_guard);
1373
1374 /**
1375  * Global counter incremented whenever key is registered, unregistered,
1376  * revived or quiesced. This is used to void unnecessary calls to
1377  * lu_context_refill(). No locking is provided, as initialization and shutdown
1378  * are supposed to be externally serialized.
1379  */
1380 static unsigned key_set_version = 0;
1381
1382 /**
1383  * Register new key.
1384  */
1385 int lu_context_key_register(struct lu_context_key *key)
1386 {
1387         int result;
1388         unsigned int i;
1389
1390         LASSERT(key->lct_init != NULL);
1391         LASSERT(key->lct_fini != NULL);
1392         LASSERT(key->lct_tags != 0);
1393         LASSERT(key->lct_owner != NULL);
1394
1395         result = -ENFILE;
1396         spin_lock(&lu_keys_guard);
1397         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1398                 if (lu_keys[i] == NULL) {
1399                         key->lct_index = i;
1400                         atomic_set(&key->lct_used, 1);
1401                         lu_keys[i] = key;
1402                         lu_ref_init(&key->lct_reference);
1403                         result = 0;
1404                         ++key_set_version;
1405                         break;
1406                 }
1407         }
1408         spin_unlock(&lu_keys_guard);
1409         return result;
1410 }
1411 EXPORT_SYMBOL(lu_context_key_register);
1412
1413 static void key_fini(struct lu_context *ctx, int index)
1414 {
1415         if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1416                 struct lu_context_key *key;
1417
1418                 key = lu_keys[index];
1419                 LASSERT(key != NULL);
1420                 LASSERT(key->lct_fini != NULL);
1421                 LASSERT(atomic_read(&key->lct_used) > 1);
1422
1423                 key->lct_fini(ctx, key, ctx->lc_value[index]);
1424                 lu_ref_del(&key->lct_reference, "ctx", ctx);
1425                 atomic_dec(&key->lct_used);
1426
1427                 LASSERT(key->lct_owner != NULL);
1428                 if ((ctx->lc_tags & LCT_NOREF) == 0) {
1429                         LINVRNT(module_refcount(key->lct_owner) > 0);
1430                         module_put(key->lct_owner);
1431                 }
1432                 ctx->lc_value[index] = NULL;
1433         }
1434 }
1435
1436 /**
1437  * Deregister key.
1438  */
1439 void lu_context_key_degister(struct lu_context_key *key)
1440 {
1441         LASSERT(atomic_read(&key->lct_used) >= 1);
1442         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1443
1444         lu_context_key_quiesce(key);
1445
1446         ++key_set_version;
1447         spin_lock(&lu_keys_guard);
1448         key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1449         if (lu_keys[key->lct_index]) {
1450                 lu_keys[key->lct_index] = NULL;
1451                 lu_ref_fini(&key->lct_reference);
1452         }
1453         spin_unlock(&lu_keys_guard);
1454
1455         LASSERTF(atomic_read(&key->lct_used) == 1,
1456                  "key has instances: %d\n",
1457                  atomic_read(&key->lct_used));
1458 }
1459 EXPORT_SYMBOL(lu_context_key_degister);
1460
1461 /**
1462  * Register a number of keys. This has to be called after all keys have been
1463  * initialized by a call to LU_CONTEXT_KEY_INIT().
1464  */
1465 int lu_context_key_register_many(struct lu_context_key *k, ...)
1466 {
1467         struct lu_context_key *key = k;
1468         va_list args;
1469         int result;
1470
1471         va_start(args, k);
1472         do {
1473                 result = lu_context_key_register(key);
1474                 if (result)
1475                         break;
1476                 key = va_arg(args, struct lu_context_key *);
1477         } while (key != NULL);
1478         va_end(args);
1479
1480         if (result != 0) {
1481                 va_start(args, k);
1482                 while (k != key) {
1483                         lu_context_key_degister(k);
1484                         k = va_arg(args, struct lu_context_key *);
1485                 }
1486                 va_end(args);
1487         }
1488
1489         return result;
1490 }
1491 EXPORT_SYMBOL(lu_context_key_register_many);
1492
1493 /**
1494  * De-register a number of keys. This is a dual to
1495  * lu_context_key_register_many().
1496  */
1497 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1498 {
1499         va_list args;
1500
1501         va_start(args, k);
1502         do {
1503                 lu_context_key_degister(k);
1504                 k = va_arg(args, struct lu_context_key*);
1505         } while (k != NULL);
1506         va_end(args);
1507 }
1508 EXPORT_SYMBOL(lu_context_key_degister_many);
1509
1510 /**
1511  * Revive a number of keys.
1512  */
1513 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1514 {
1515         va_list args;
1516
1517         va_start(args, k);
1518         do {
1519                 lu_context_key_revive(k);
1520                 k = va_arg(args, struct lu_context_key*);
1521         } while (k != NULL);
1522         va_end(args);
1523 }
1524 EXPORT_SYMBOL(lu_context_key_revive_many);
1525
1526 /**
1527  * Quiescent a number of keys.
1528  */
1529 void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1530 {
1531         va_list args;
1532
1533         va_start(args, k);
1534         do {
1535                 lu_context_key_quiesce(k);
1536                 k = va_arg(args, struct lu_context_key*);
1537         } while (k != NULL);
1538         va_end(args);
1539 }
1540 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1541
1542 /**
1543  * Return value associated with key \a key in context \a ctx.
1544  */
1545 void *lu_context_key_get(const struct lu_context *ctx,
1546                          const struct lu_context_key *key)
1547 {
1548         LINVRNT(ctx->lc_state == LCS_ENTERED);
1549         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1550         LASSERT(lu_keys[key->lct_index] == key);
1551         return ctx->lc_value[key->lct_index];
1552 }
1553 EXPORT_SYMBOL(lu_context_key_get);
1554
1555 /**
1556  * List of remembered contexts. XXX document me.
1557  */
1558 static struct list_head lu_context_remembered;
1559
1560 /**
1561  * Destroy \a key in all remembered contexts. This is used to destroy key
1562  * values in "shared" contexts (like service threads), when a module owning
1563  * the key is about to be unloaded.
1564  */
1565 void lu_context_key_quiesce(struct lu_context_key *key)
1566 {
1567         struct lu_context *ctx;
1568         extern unsigned cl_env_cache_purge(unsigned nr);
1569
1570         if (!(key->lct_tags & LCT_QUIESCENT)) {
1571                 /*
1572                  * XXX layering violation.
1573                  */
1574                 cl_env_cache_purge(~0);
1575                 key->lct_tags |= LCT_QUIESCENT;
1576                 /*
1577                  * XXX memory barrier has to go here.
1578                  */
1579                 spin_lock(&lu_keys_guard);
1580                 list_for_each_entry(ctx, &lu_context_remembered,
1581                                     lc_remember)
1582                         key_fini(ctx, key->lct_index);
1583                 spin_unlock(&lu_keys_guard);
1584                 ++key_set_version;
1585         }
1586 }
1587
1588 void lu_context_key_revive(struct lu_context_key *key)
1589 {
1590         key->lct_tags &= ~LCT_QUIESCENT;
1591         ++key_set_version;
1592 }
1593
1594 static void keys_fini(struct lu_context *ctx)
1595 {
1596         unsigned int i;
1597
1598         if (ctx->lc_value == NULL)
1599                 return;
1600
1601         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1602                 key_fini(ctx, i);
1603
1604         OBD_FREE(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1605         ctx->lc_value = NULL;
1606 }
1607
1608 static int keys_fill(struct lu_context *ctx)
1609 {
1610         unsigned int i;
1611
1612         LINVRNT(ctx->lc_value != NULL);
1613         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1614                 struct lu_context_key *key;
1615
1616                 key = lu_keys[i];
1617                 if (ctx->lc_value[i] == NULL && key != NULL &&
1618                     (key->lct_tags & ctx->lc_tags) &&
1619                     /*
1620                      * Don't create values for a LCT_QUIESCENT key, as this
1621                      * will pin module owning a key.
1622                      */
1623                     !(key->lct_tags & LCT_QUIESCENT)) {
1624                         void *value;
1625
1626                         LINVRNT(key->lct_init != NULL);
1627                         LINVRNT(key->lct_index == i);
1628
1629                         value = key->lct_init(ctx, key);
1630                         if (unlikely(IS_ERR(value)))
1631                                 return PTR_ERR(value);
1632
1633                         LASSERT(key->lct_owner != NULL);
1634                         if (!(ctx->lc_tags & LCT_NOREF))
1635                                 try_module_get(key->lct_owner);
1636                         lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1637                         atomic_inc(&key->lct_used);
1638                         /*
1639                          * This is the only place in the code, where an
1640                          * element of ctx->lc_value[] array is set to non-NULL
1641                          * value.
1642                          */
1643                         ctx->lc_value[i] = value;
1644                         if (key->lct_exit != NULL)
1645                                 ctx->lc_tags |= LCT_HAS_EXIT;
1646                 }
1647                 ctx->lc_version = key_set_version;
1648         }
1649         return 0;
1650 }
1651
1652 static int keys_init(struct lu_context *ctx)
1653 {
1654         OBD_ALLOC(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1655         if (likely(ctx->lc_value != NULL))
1656                 return keys_fill(ctx);
1657
1658         return -ENOMEM;
1659 }
1660
1661 /**
1662  * Initialize context data-structure. Create values for all keys.
1663  */
1664 int lu_context_init(struct lu_context *ctx, __u32 tags)
1665 {
1666         int     rc;
1667
1668         memset(ctx, 0, sizeof *ctx);
1669         ctx->lc_state = LCS_INITIALIZED;
1670         ctx->lc_tags = tags;
1671         if (tags & LCT_REMEMBER) {
1672                 spin_lock(&lu_keys_guard);
1673                 list_add(&ctx->lc_remember, &lu_context_remembered);
1674                 spin_unlock(&lu_keys_guard);
1675         } else {
1676                 INIT_LIST_HEAD(&ctx->lc_remember);
1677         }
1678
1679         rc = keys_init(ctx);
1680         if (rc != 0)
1681                 lu_context_fini(ctx);
1682
1683         return rc;
1684 }
1685 EXPORT_SYMBOL(lu_context_init);
1686
1687 /**
1688  * Finalize context data-structure. Destroy key values.
1689  */
1690 void lu_context_fini(struct lu_context *ctx)
1691 {
1692         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1693         ctx->lc_state = LCS_FINALIZED;
1694
1695         if ((ctx->lc_tags & LCT_REMEMBER) == 0) {
1696                 LASSERT(list_empty(&ctx->lc_remember));
1697                 keys_fini(ctx);
1698
1699         } else { /* could race with key degister */
1700                 spin_lock(&lu_keys_guard);
1701                 keys_fini(ctx);
1702                 list_del_init(&ctx->lc_remember);
1703                 spin_unlock(&lu_keys_guard);
1704         }
1705 }
1706 EXPORT_SYMBOL(lu_context_fini);
1707
1708 /**
1709  * Called before entering context.
1710  */
1711 void lu_context_enter(struct lu_context *ctx)
1712 {
1713         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1714         ctx->lc_state = LCS_ENTERED;
1715 }
1716 EXPORT_SYMBOL(lu_context_enter);
1717
1718 /**
1719  * Called after exiting from \a ctx
1720  */
1721 void lu_context_exit(struct lu_context *ctx)
1722 {
1723         unsigned int i;
1724
1725         LINVRNT(ctx->lc_state == LCS_ENTERED);
1726         ctx->lc_state = LCS_LEFT;
1727         if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value != NULL) {
1728                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1729                         if (ctx->lc_value[i] != NULL) {
1730                                 struct lu_context_key *key;
1731
1732                                 key = lu_keys[i];
1733                                 LASSERT(key != NULL);
1734                                 if (key->lct_exit != NULL)
1735                                         key->lct_exit(ctx,
1736                                                       key, ctx->lc_value[i]);
1737                         }
1738                 }
1739         }
1740 }
1741 EXPORT_SYMBOL(lu_context_exit);
1742
1743 /**
1744  * Allocate for context all missing keys that were registered after context
1745  * creation. key_set_version is only changed in rare cases when modules
1746  * are loaded and removed.
1747  */
1748 int lu_context_refill(struct lu_context *ctx)
1749 {
1750         return likely(ctx->lc_version == key_set_version) ? 0 : keys_fill(ctx);
1751 }
1752
1753 /**
1754  * lu_ctx_tags/lu_ses_tags will be updated if there are new types of
1755  * obd being added. Currently, this is only used on client side, specifically
1756  * for echo device client, for other stack (like ptlrpc threads), context are
1757  * predefined when the lu_device type are registered, during the module probe
1758  * phase.
1759  */
1760 __u32 lu_context_tags_default = 0;
1761 __u32 lu_session_tags_default = 0;
1762
1763 void lu_context_tags_update(__u32 tags)
1764 {
1765         spin_lock(&lu_keys_guard);
1766         lu_context_tags_default |= tags;
1767         key_set_version++;
1768         spin_unlock(&lu_keys_guard);
1769 }
1770 EXPORT_SYMBOL(lu_context_tags_update);
1771
1772 void lu_context_tags_clear(__u32 tags)
1773 {
1774         spin_lock(&lu_keys_guard);
1775         lu_context_tags_default &= ~tags;
1776         key_set_version++;
1777         spin_unlock(&lu_keys_guard);
1778 }
1779 EXPORT_SYMBOL(lu_context_tags_clear);
1780
1781 void lu_session_tags_update(__u32 tags)
1782 {
1783         spin_lock(&lu_keys_guard);
1784         lu_session_tags_default |= tags;
1785         key_set_version++;
1786         spin_unlock(&lu_keys_guard);
1787 }
1788 EXPORT_SYMBOL(lu_session_tags_update);
1789
1790 void lu_session_tags_clear(__u32 tags)
1791 {
1792         spin_lock(&lu_keys_guard);
1793         lu_session_tags_default &= ~tags;
1794         key_set_version++;
1795         spin_unlock(&lu_keys_guard);
1796 }
1797 EXPORT_SYMBOL(lu_session_tags_clear);
1798
1799 int lu_env_init(struct lu_env *env, __u32 tags)
1800 {
1801         int result;
1802
1803         env->le_ses = NULL;
1804         result = lu_context_init(&env->le_ctx, tags);
1805         if (likely(result == 0))
1806                 lu_context_enter(&env->le_ctx);
1807         return result;
1808 }
1809 EXPORT_SYMBOL(lu_env_init);
1810
1811 void lu_env_fini(struct lu_env *env)
1812 {
1813         lu_context_exit(&env->le_ctx);
1814         lu_context_fini(&env->le_ctx);
1815         env->le_ses = NULL;
1816 }
1817 EXPORT_SYMBOL(lu_env_fini);
1818
1819 int lu_env_refill(struct lu_env *env)
1820 {
1821         int result;
1822
1823         result = lu_context_refill(&env->le_ctx);
1824         if (result == 0 && env->le_ses != NULL)
1825                 result = lu_context_refill(env->le_ses);
1826         return result;
1827 }
1828 EXPORT_SYMBOL(lu_env_refill);
1829
1830 /**
1831  * Currently, this API will only be used by echo client.
1832  * Because echo client and normal lustre client will share
1833  * same cl_env cache. So echo client needs to refresh
1834  * the env context after it get one from the cache, especially
1835  * when normal client and echo client co-exist in the same client.
1836  */
1837 int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags,
1838                           __u32 stags)
1839 {
1840         int    result;
1841
1842         if ((env->le_ctx.lc_tags & ctags) != ctags) {
1843                 env->le_ctx.lc_version = 0;
1844                 env->le_ctx.lc_tags |= ctags;
1845         }
1846
1847         if (env->le_ses && (env->le_ses->lc_tags & stags) != stags) {
1848                 env->le_ses->lc_version = 0;
1849                 env->le_ses->lc_tags |= stags;
1850         }
1851
1852         result = lu_env_refill(env);
1853
1854         return result;
1855 }
1856 EXPORT_SYMBOL(lu_env_refill_by_tags);
1857
1858 static struct shrinker *lu_site_shrinker;
1859
1860 typedef struct lu_site_stats{
1861         unsigned        lss_populated;
1862         unsigned        lss_max_search;
1863         unsigned        lss_total;
1864         unsigned        lss_busy;
1865 } lu_site_stats_t;
1866
1867 static void lu_site_stats_get(cfs_hash_t *hs,
1868                               lu_site_stats_t *stats, int populated)
1869 {
1870         cfs_hash_bd_t bd;
1871         unsigned int  i;
1872
1873         cfs_hash_for_each_bucket(hs, &bd, i) {
1874                 struct lu_site_bkt_data *bkt = cfs_hash_bd_extra_get(hs, &bd);
1875                 struct hlist_head       *hhead;
1876
1877                 cfs_hash_bd_lock(hs, &bd, 1);
1878                 stats->lss_busy  += bkt->lsb_busy;
1879                 stats->lss_total += cfs_hash_bd_count_get(&bd);
1880                 stats->lss_max_search = max((int)stats->lss_max_search,
1881                                             cfs_hash_bd_depmax_get(&bd));
1882                 if (!populated) {
1883                         cfs_hash_bd_unlock(hs, &bd, 1);
1884                         continue;
1885                 }
1886
1887                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1888                         if (!hlist_empty(hhead))
1889                                 stats->lss_populated++;
1890                 }
1891                 cfs_hash_bd_unlock(hs, &bd, 1);
1892         }
1893 }
1894
1895
1896 static unsigned long lu_cache_shrink_count(struct shrinker *sk,
1897                                            struct shrink_control *sc)
1898 {
1899         lu_site_stats_t stats;
1900         struct lu_site *s;
1901         struct lu_site *tmp;
1902         unsigned long cached = 0;
1903
1904         if (!(sc->gfp_mask & __GFP_FS))
1905                 return 0;
1906
1907         mutex_lock(&lu_sites_guard);
1908         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1909                 memset(&stats, 0, sizeof(stats));
1910                 lu_site_stats_get(s->ls_obj_hash, &stats, 0);
1911                 cached += stats.lss_total - stats.lss_busy;
1912         }
1913         mutex_unlock(&lu_sites_guard);
1914
1915         cached = (cached / 100) * sysctl_vfs_cache_pressure;
1916         CDEBUG(D_INODE, "%ld objects cached\n", cached);
1917         return cached;
1918 }
1919
1920 static unsigned long lu_cache_shrink_scan(struct shrinker *sk,
1921                                           struct shrink_control *sc)
1922 {
1923         struct lu_site *s;
1924         struct lu_site *tmp;
1925         unsigned long remain = sc->nr_to_scan;
1926         LIST_HEAD(splice);
1927
1928         if (!(sc->gfp_mask & __GFP_FS))
1929                 /* We must not take the lu_sites_guard lock when
1930                  * __GFP_FS is *not* set because of the deadlock
1931                  * possibility detailed above. Additionally,
1932                  * since we cannot determine the number of
1933                  * objects in the cache without taking this
1934                  * lock, we're in a particularly tough spot. As
1935                  * a result, we'll just lie and say our cache is
1936                  * empty. This _should_ be ok, as we can't
1937                  * reclaim objects when __GFP_FS is *not* set
1938                  * anyways.
1939                  */
1940                 return SHRINK_STOP;
1941
1942         mutex_lock(&lu_sites_guard);
1943         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1944                 remain = lu_site_purge(&lu_shrink_env, s, remain);
1945                 /*
1946                  * Move just shrunk site to the tail of site list to
1947                  * assure shrinking fairness.
1948                  */
1949                 list_move_tail(&s->ls_linkage, &splice);
1950         }
1951         list_splice(&splice, lu_sites.prev);
1952         mutex_unlock(&lu_sites_guard);
1953
1954         return sc->nr_to_scan - remain;
1955 }
1956
1957 #ifndef HAVE_SHRINKER_COUNT
1958 /*
1959  * There exists a potential lock inversion deadlock scenario when using
1960  * Lustre on top of ZFS. This occurs between one of ZFS's
1961  * buf_hash_table.ht_lock's, and Lustre's lu_sites_guard lock. Essentially,
1962  * thread A will take the lu_sites_guard lock and sleep on the ht_lock,
1963  * while thread B will take the ht_lock and sleep on the lu_sites_guard
1964  * lock. Obviously neither thread will wake and drop their respective hold
1965  * on their lock.
1966  *
1967  * To prevent this from happening we must ensure the lu_sites_guard lock is
1968  * not taken while down this code path. ZFS reliably does not set the
1969  * __GFP_FS bit in its code paths, so this can be used to determine if it
1970  * is safe to take the lu_sites_guard lock.
1971  *
1972  * Ideally we should accurately return the remaining number of cached
1973  * objects without taking the  lu_sites_guard lock, but this is not
1974  * possible in the current implementation.
1975  */
1976 static int lu_cache_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1977 {
1978         int cached = 0;
1979         struct shrink_control scv = {
1980                  .nr_to_scan = shrink_param(sc, nr_to_scan),
1981                  .gfp_mask   = shrink_param(sc, gfp_mask)
1982         };
1983 #if !defined(HAVE_SHRINKER_WANT_SHRINK_PTR) && !defined(HAVE_SHRINK_CONTROL)
1984         struct shrinker* shrinker = NULL;
1985 #endif
1986
1987
1988         CDEBUG(D_INODE, "Shrink %lu objects\n", scv.nr_to_scan);
1989
1990         lu_cache_shrink_scan(shrinker, &scv);
1991
1992         cached = lu_cache_shrink_count(shrinker, &scv);
1993         if (scv.nr_to_scan == 0)
1994                 CDEBUG(D_INODE, "%d objects cached\n", cached);
1995         return cached;
1996 }
1997
1998 #endif /* HAVE_SHRINKER_COUNT */
1999
2000
2001 /*
2002  * Debugging stuff.
2003  */
2004
2005 /**
2006  * Environment to be used in debugger, contains all tags.
2007  */
2008 static struct lu_env lu_debugging_env;
2009
2010 /**
2011  * Debugging printer function using printk().
2012  */
2013 int lu_printk_printer(const struct lu_env *env,
2014                       void *unused, const char *format, ...)
2015 {
2016         va_list args;
2017
2018         va_start(args, format);
2019         vprintk(format, args);
2020         va_end(args);
2021         return 0;
2022 }
2023
2024 int lu_debugging_setup(void)
2025 {
2026         return lu_env_init(&lu_debugging_env, ~0);
2027 }
2028
2029 void lu_context_keys_dump(void)
2030 {
2031         unsigned int i;
2032
2033         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
2034                 struct lu_context_key *key;
2035
2036                 key = lu_keys[i];
2037                 if (key != NULL) {
2038                         CERROR("[%d]: %p %x (%p,%p,%p) %d %d \"%s\"@%p\n",
2039                                i, key, key->lct_tags,
2040                                key->lct_init, key->lct_fini, key->lct_exit,
2041                                key->lct_index, atomic_read(&key->lct_used),
2042                                key->lct_owner ? key->lct_owner->name : "",
2043                                key->lct_owner);
2044                         lu_ref_print(&key->lct_reference);
2045                 }
2046         }
2047 }
2048
2049 /**
2050  * Initialization of global lu_* data.
2051  */
2052 int lu_global_init(void)
2053 {
2054         int result;
2055         DEF_SHRINKER_VAR(shvar, lu_cache_shrink,
2056                          lu_cache_shrink_count, lu_cache_shrink_scan);
2057
2058         CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
2059
2060         INIT_LIST_HEAD(&lu_device_types);
2061         INIT_LIST_HEAD(&lu_context_remembered);
2062         INIT_LIST_HEAD(&lu_sites);
2063
2064         result = lu_ref_global_init();
2065         if (result != 0)
2066                 return result;
2067
2068         LU_CONTEXT_KEY_INIT(&lu_global_key);
2069         result = lu_context_key_register(&lu_global_key);
2070         if (result != 0)
2071                 return result;
2072
2073         /*
2074          * At this level, we don't know what tags are needed, so allocate them
2075          * conservatively. This should not be too bad, because this
2076          * environment is global.
2077          */
2078         mutex_lock(&lu_sites_guard);
2079         result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
2080         mutex_unlock(&lu_sites_guard);
2081         if (result != 0)
2082                 return result;
2083
2084         /*
2085          * seeks estimation: 3 seeks to read a record from oi, one to read
2086          * inode, one for ea. Unfortunately setting this high value results in
2087          * lu_object/inode cache consuming all the memory.
2088          */
2089         lu_site_shrinker = set_shrinker(DEFAULT_SEEKS, &shvar);
2090         if (lu_site_shrinker == NULL)
2091                 return -ENOMEM;
2092
2093         return result;
2094 }
2095
2096 /**
2097  * Dual to lu_global_init().
2098  */
2099 void lu_global_fini(void)
2100 {
2101         if (lu_site_shrinker != NULL) {
2102                 remove_shrinker(lu_site_shrinker);
2103                 lu_site_shrinker = NULL;
2104         }
2105
2106         lu_context_key_degister(&lu_global_key);
2107
2108         /*
2109          * Tear shrinker environment down _after_ de-registering
2110          * lu_global_key, because the latter has a value in the former.
2111          */
2112         mutex_lock(&lu_sites_guard);
2113         lu_env_fini(&lu_shrink_env);
2114         mutex_unlock(&lu_sites_guard);
2115
2116         lu_ref_global_fini();
2117 }
2118
2119 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
2120 {
2121 #ifdef CONFIG_PROC_FS
2122         struct lprocfs_counter ret;
2123
2124         lprocfs_stats_collect(stats, idx, &ret);
2125         return (__u32)ret.lc_count;
2126 #else
2127         return 0;
2128 #endif
2129 }
2130
2131 /**
2132  * Output site statistical counters into a buffer. Suitable for
2133  * lprocfs_rd_*()-style functions.
2134  */
2135 int lu_site_stats_seq_print(const struct lu_site *s, struct seq_file *m)
2136 {
2137         lu_site_stats_t stats;
2138
2139         memset(&stats, 0, sizeof(stats));
2140         lu_site_stats_get(s->ls_obj_hash, &stats, 1);
2141
2142         return seq_printf(m, "%d/%d %d/%d %d %d %d %d %d %d %d\n",
2143                           stats.lss_busy,
2144                           stats.lss_total,
2145                           stats.lss_populated,
2146                           CFS_HASH_NHLIST(s->ls_obj_hash),
2147                           stats.lss_max_search,
2148                           ls_stats_read(s->ls_stats, LU_SS_CREATED),
2149                           ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
2150                           ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
2151                           ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
2152                           ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
2153                           ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
2154 }
2155 EXPORT_SYMBOL(lu_site_stats_seq_print);
2156
2157 int lu_site_stats_print(const struct lu_site *s, char *page, int count)
2158 {
2159         lu_site_stats_t stats;
2160
2161         memset(&stats, 0, sizeof(stats));
2162         lu_site_stats_get(s->ls_obj_hash, &stats, 1);
2163
2164         return snprintf(page, count, "%d/%d %d/%d %d %d %d %d %d %d %d\n",
2165                         stats.lss_busy,
2166                         stats.lss_total,
2167                         stats.lss_populated,
2168                         CFS_HASH_NHLIST(s->ls_obj_hash),
2169                         stats.lss_max_search,
2170                         ls_stats_read(s->ls_stats, LU_SS_CREATED),
2171                         ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
2172                         ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
2173                         ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
2174                         ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
2175                         ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
2176 }
2177
2178 /**
2179  * Helper function to initialize a number of kmem slab caches at once.
2180  */
2181 int lu_kmem_init(struct lu_kmem_descr *caches)
2182 {
2183         int result;
2184         struct lu_kmem_descr *iter = caches;
2185
2186         for (result = 0; iter->ckd_cache != NULL; ++iter) {
2187                 *iter->ckd_cache = kmem_cache_create(iter->ckd_name,
2188                                                      iter->ckd_size,
2189                                                      0, 0, NULL);
2190                 if (*iter->ckd_cache == NULL) {
2191                         result = -ENOMEM;
2192                         /* free all previously allocated caches */
2193                         lu_kmem_fini(caches);
2194                         break;
2195                 }
2196         }
2197         return result;
2198 }
2199 EXPORT_SYMBOL(lu_kmem_init);
2200
2201 /**
2202  * Helper function to finalize a number of kmem slab cached at once. Dual to
2203  * lu_kmem_init().
2204  */
2205 void lu_kmem_fini(struct lu_kmem_descr *caches)
2206 {
2207         for (; caches->ckd_cache != NULL; ++caches) {
2208                 if (*caches->ckd_cache != NULL) {
2209                         kmem_cache_destroy(*caches->ckd_cache);
2210                         *caches->ckd_cache = NULL;
2211                 }
2212         }
2213 }
2214 EXPORT_SYMBOL(lu_kmem_fini);
2215
2216 /**
2217  * Temporary solution to be able to assign fid in ->do_create()
2218  * till we have fully-functional OST fids
2219  */
2220 void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
2221                           const struct lu_fid *fid)
2222 {
2223         struct lu_site          *s = o->lo_dev->ld_site;
2224         struct lu_fid           *old = &o->lo_header->loh_fid;
2225         struct lu_site_bkt_data *bkt;
2226         struct lu_object        *shadow;
2227         wait_queue_t             waiter;
2228         cfs_hash_t              *hs;
2229         cfs_hash_bd_t            bd;
2230         __u64                    version = 0;
2231
2232         LASSERT(fid_is_zero(old));
2233
2234         hs = s->ls_obj_hash;
2235         cfs_hash_bd_get_and_lock(hs, (void *)fid, &bd, 1);
2236         shadow = htable_lookup(s, &bd, fid, &waiter, &version);
2237         /* supposed to be unique */
2238         LASSERT(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT);
2239         *old = *fid;
2240         bkt = cfs_hash_bd_extra_get(hs, &bd);
2241         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
2242         bkt->lsb_busy++;
2243         cfs_hash_bd_unlock(hs, &bd, 1);
2244 }
2245 EXPORT_SYMBOL(lu_object_assign_fid);
2246
2247 /**
2248  * allocates object with 0 (non-assiged) fid
2249  * XXX: temporary solution to be able to assign fid in ->do_create()
2250  *      till we have fully-functional OST fids
2251  */
2252 struct lu_object *lu_object_anon(const struct lu_env *env,
2253                                  struct lu_device *dev,
2254                                  const struct lu_object_conf *conf)
2255 {
2256         struct lu_fid     fid;
2257         struct lu_object *o;
2258
2259         fid_zero(&fid);
2260         o = lu_object_alloc(env, dev, &fid, conf);
2261
2262         return o;
2263 }
2264 EXPORT_SYMBOL(lu_object_anon);
2265
2266 struct lu_buf LU_BUF_NULL = {
2267         .lb_buf = NULL,
2268         .lb_len = 0
2269 };
2270 EXPORT_SYMBOL(LU_BUF_NULL);
2271
2272 void lu_buf_free(struct lu_buf *buf)
2273 {
2274         LASSERT(buf);
2275         if (buf->lb_buf) {
2276                 LASSERT(buf->lb_len > 0);
2277                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2278                 buf->lb_buf = NULL;
2279                 buf->lb_len = 0;
2280         }
2281 }
2282 EXPORT_SYMBOL(lu_buf_free);
2283
2284 void lu_buf_alloc(struct lu_buf *buf, size_t size)
2285 {
2286         LASSERT(buf);
2287         LASSERT(buf->lb_buf == NULL);
2288         LASSERT(buf->lb_len == 0);
2289         OBD_ALLOC_LARGE(buf->lb_buf, size);
2290         if (likely(buf->lb_buf))
2291                 buf->lb_len = size;
2292 }
2293 EXPORT_SYMBOL(lu_buf_alloc);
2294
2295 void lu_buf_realloc(struct lu_buf *buf, size_t size)
2296 {
2297         lu_buf_free(buf);
2298         lu_buf_alloc(buf, size);
2299 }
2300 EXPORT_SYMBOL(lu_buf_realloc);
2301
2302 struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, size_t len)
2303 {
2304         if (buf->lb_buf == NULL && buf->lb_len == 0)
2305                 lu_buf_alloc(buf, len);
2306
2307         if ((len > buf->lb_len) && (buf->lb_buf != NULL))
2308                 lu_buf_realloc(buf, len);
2309
2310         return buf;
2311 }
2312 EXPORT_SYMBOL(lu_buf_check_and_alloc);
2313
2314 /**
2315  * Increase the size of the \a buf.
2316  * preserves old data in buffer
2317  * old buffer remains unchanged on error
2318  * \retval 0 or -ENOMEM
2319  */
2320 int lu_buf_check_and_grow(struct lu_buf *buf, size_t len)
2321 {
2322         char *ptr;
2323
2324         if (len <= buf->lb_len)
2325                 return 0;
2326
2327         OBD_ALLOC_LARGE(ptr, len);
2328         if (ptr == NULL)
2329                 return -ENOMEM;
2330
2331         /* Free the old buf */
2332         if (buf->lb_buf != NULL) {
2333                 memcpy(ptr, buf->lb_buf, buf->lb_len);
2334                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2335         }
2336
2337         buf->lb_buf = ptr;
2338         buf->lb_len = len;
2339         return 0;
2340 }