Whamcloud - gitweb
846d45485970d5f2d201837f3590aaa4cf1ec0d2
[fs/lustre-release.git] / lustre / lov / lov_object.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * Implementation of cl_object for LOV layer.
33  *
34  *   Author: Nikita Danilov <nikita.danilov@sun.com>
35  *   Author: Jinshan Xiong <jinshan.xiong@whamcloud.com>
36  */
37
38 #define DEBUG_SUBSYSTEM S_LOV
39
40 #include <linux/random.h>
41
42 #include "lov_cl_internal.h"
43
44 static inline struct lov_device *lov_object_dev(struct lov_object *obj)
45 {
46         return lu2lov_dev(obj->lo_cl.co_lu.lo_dev);
47 }
48
49 /** \addtogroup lov
50  *  @{
51  */
52
53 /*****************************************************************************
54  *
55  * Layout operations.
56  *
57  */
58
59 struct lov_layout_operations {
60         int (*llo_init)(const struct lu_env *env, struct lov_device *dev,
61                         struct lov_object *lov, struct lov_stripe_md *lsm,
62                         const struct cl_object_conf *conf,
63                         union lov_layout_state *state);
64         int (*llo_delete)(const struct lu_env *env, struct lov_object *lov,
65                            union lov_layout_state *state);
66         void (*llo_fini)(const struct lu_env *env, struct lov_object *lov,
67                          union lov_layout_state *state);
68         int  (*llo_print)(const struct lu_env *env, void *cookie,
69                           lu_printer_t p, const struct lu_object *o);
70         int  (*llo_page_init)(const struct lu_env *env, struct cl_object *obj,
71                               struct cl_page *page, pgoff_t index);
72         int  (*llo_lock_init)(const struct lu_env *env,
73                               struct cl_object *obj, struct cl_lock *lock,
74                               const struct cl_io *io);
75         int  (*llo_io_init)(const struct lu_env *env,
76                             struct cl_object *obj, struct cl_io *io);
77         int  (*llo_getattr)(const struct lu_env *env, struct cl_object *obj,
78                             struct cl_attr *attr);
79         int  (*llo_flush)(const struct lu_env *env, struct cl_object *obj,
80                           struct ldlm_lock *lock);
81 };
82
83 static int lov_layout_wait(const struct lu_env *env, struct lov_object *lov);
84
85 static void lov_lsm_put(struct lov_stripe_md *lsm)
86 {
87         if (lsm != NULL)
88                 lov_free_memmd(&lsm);
89 }
90
91 /*****************************************************************************
92  *
93  * Lov object layout operations.
94  *
95  */
96
97 static struct cl_object *lov_sub_find(const struct lu_env *env,
98                                       struct cl_device *dev,
99                                       const struct lu_fid *fid,
100                                       const struct cl_object_conf *conf)
101 {
102         struct lu_object *o;
103
104         ENTRY;
105
106         o = lu_object_find_at(env, cl2lu_dev(dev), fid, &conf->coc_lu);
107         LASSERT(ergo(!IS_ERR(o), o->lo_dev->ld_type == &lovsub_device_type));
108         RETURN(lu2cl(o));
109 }
110
111 static int lov_page_slice_fixup(struct lov_object *lov,
112                                 struct cl_object *stripe)
113 {
114         struct cl_object_header *hdr = cl_object_header(&lov->lo_cl);
115         struct cl_object *o;
116
117         if (stripe == NULL)
118                 return hdr->coh_page_bufsize - lov->lo_cl.co_slice_off -
119                        cfs_size_round(sizeof(struct lov_page));
120
121         cl_object_for_each(o, stripe)
122                 o->co_slice_off += hdr->coh_page_bufsize;
123
124         return cl_object_header(stripe)->coh_page_bufsize;
125 }
126
127 static int lov_init_sub(const struct lu_env *env, struct lov_object *lov,
128                         struct cl_object *subobj, struct lov_oinfo *oinfo,
129                         int idx)
130 {
131         struct cl_object_header *hdr;
132         struct cl_object_header *subhdr;
133         struct cl_object_header *parent;
134         int entry = lov_comp_entry(idx);
135         int stripe = lov_comp_stripe(idx);
136         int result;
137
138         if (OBD_FAIL_CHECK(OBD_FAIL_LOV_INIT)) {
139                 /* For sanity:test_206.
140                  * Do not leave the object in cache to avoid accessing
141                  * freed memory. This is because osc_object is referring to
142                  * lov_oinfo of lsm_stripe_data which will be freed due to
143                  * this failure. */
144                 cl_object_kill(env, subobj);
145                 cl_object_put(env, subobj);
146                 return -EIO;
147         }
148
149         hdr = cl_object_header(lov2cl(lov));
150         subhdr = cl_object_header(subobj);
151
152         CDEBUG(D_INODE, DFID"@%p[%d:%d] -> "DFID"@%p: ostid: "DOSTID
153                " ost idx: %d gen: %d\n",
154                PFID(lu_object_fid(&subobj->co_lu)), subhdr, entry, stripe,
155                PFID(lu_object_fid(lov2lu(lov))), hdr, POSTID(&oinfo->loi_oi),
156                oinfo->loi_ost_idx, oinfo->loi_ost_gen);
157
158         /* reuse ->coh_attr_guard to protect coh_parent change */
159         spin_lock(&subhdr->coh_attr_guard);
160         parent = subhdr->coh_parent;
161         if (parent == NULL) {
162                 struct lovsub_object *lso = cl2lovsub(subobj);
163
164                 subhdr->coh_parent = hdr;
165                 spin_unlock(&subhdr->coh_attr_guard);
166                 subhdr->coh_nesting = hdr->coh_nesting + 1;
167                 lu_object_ref_add(&subobj->co_lu, "lov-parent", lov);
168                 lso->lso_super = lov;
169                 lso->lso_index = idx;
170                 result = 0;
171         } else {
172                 struct lu_object  *old_obj;
173                 struct lov_object *old_lov;
174                 unsigned int mask = D_INODE;
175
176                 spin_unlock(&subhdr->coh_attr_guard);
177                 old_obj = lu_object_locate(&parent->coh_lu, &lov_device_type);
178                 LASSERT(old_obj != NULL);
179                 old_lov = cl2lov(lu2cl(old_obj));
180                 if (old_lov->lo_layout_invalid) {
181                         /* the object's layout has already changed but isn't
182                          * refreshed */
183                         lu_object_unhash(env, &subobj->co_lu);
184                         result = -EAGAIN;
185                 } else {
186                         mask = D_ERROR;
187                         result = -EIO;
188                 }
189
190                 LU_OBJECT_DEBUG(mask, env, &subobj->co_lu,
191                                 "stripe %d is already owned.", idx);
192                 LU_OBJECT_DEBUG(mask, env, old_obj, "owned.");
193                 LU_OBJECT_HEADER(mask, env, lov2lu(lov), "try to own.\n");
194                 cl_object_put(env, subobj);
195         }
196         return result;
197 }
198
199 static int lov_init_raid0(const struct lu_env *env, struct lov_device *dev,
200                           struct lov_object *lov, unsigned int index,
201                           const struct cl_object_conf *conf,
202                           struct lov_layout_entry *lle)
203 {
204         struct lov_layout_raid0 *r0 = &lle->lle_raid0;
205         struct lov_thread_info *lti = lov_env_info(env);
206         struct cl_object_conf *subconf = &lti->lti_stripe_conf;
207         struct lu_fid *ofid = &lti->lti_fid;
208         struct cl_object *stripe;
209         struct lov_stripe_md_entry *lse  = lov_lse(lov, index);
210         int result;
211         int psz, sz;
212         int i;
213
214         ENTRY;
215
216         spin_lock_init(&r0->lo_sub_lock);
217         r0->lo_nr = lse->lsme_stripe_count;
218
219         OBD_ALLOC_LARGE(r0->lo_sub, r0->lo_nr * sizeof(r0->lo_sub[0]));
220         if (r0->lo_sub == NULL)
221                 GOTO(out, result = -ENOMEM);
222
223         psz = 0;
224         result = 0;
225         memset(subconf, 0, sizeof(*subconf));
226
227         /*
228          * Create stripe cl_objects.
229          */
230         for (i = 0; i < r0->lo_nr; ++i) {
231                 struct cl_device *subdev;
232                 struct lov_oinfo *oinfo = lse->lsme_oinfo[i];
233                 int ost_idx = oinfo->loi_ost_idx;
234
235                 if (lov_oinfo_is_dummy(oinfo))
236                         continue;
237
238                 result = ostid_to_fid(ofid, &oinfo->loi_oi, oinfo->loi_ost_idx);
239                 if (result != 0)
240                         GOTO(out, result);
241
242                 if (dev->ld_target[ost_idx] == NULL) {
243                         CERROR("%s: OST %04x is not initialized\n",
244                                lov2obd(dev->ld_lov)->obd_name, ost_idx);
245                         GOTO(out, result = -EIO);
246                 }
247
248                 subdev = lovsub2cl_dev(dev->ld_target[ost_idx]);
249                 subconf->u.coc_oinfo = oinfo;
250                 LASSERTF(subdev != NULL, "not init ost %d\n", ost_idx);
251                 /* In the function below, .hs_keycmp resolves to
252                  * lu_obj_hop_keycmp() */
253                 /* coverity[overrun-buffer-val] */
254                 stripe = lov_sub_find(env, subdev, ofid, subconf);
255                 if (IS_ERR(stripe))
256                         GOTO(out, result = PTR_ERR(stripe));
257
258                 result = lov_init_sub(env, lov, stripe, oinfo,
259                                       lov_comp_index(index, i));
260                 if (result == -EAGAIN) { /* try again */
261                         --i;
262                         result = 0;
263                         continue;
264                 }
265
266                 if (result == 0) {
267                         r0->lo_sub[i] = cl2lovsub(stripe);
268
269                         sz = lov_page_slice_fixup(lov, stripe);
270                         LASSERT(ergo(psz > 0, psz == sz));
271                         psz = sz;
272                 }
273         }
274         if (result == 0)
275                 result = psz;
276 out:
277         RETURN(result);
278 }
279
280 static void lov_subobject_kill(const struct lu_env *env, struct lov_object *lov,
281                                struct lov_layout_raid0 *r0,
282                                struct lovsub_object *los, int idx)
283 {
284         struct cl_object        *sub;
285         struct lu_site          *site;
286         wait_queue_head_t *wq;
287         wait_queue_entry_t *waiter;
288
289         LASSERT(r0->lo_sub[idx] == los);
290
291         sub = lovsub2cl(los);
292         site = sub->co_lu.lo_dev->ld_site;
293         wq = lu_site_wq_from_fid(site, &sub->co_lu.lo_header->loh_fid);
294
295         cl_object_kill(env, sub);
296         /* release a reference to the sub-object and ... */
297         lu_object_ref_del(&sub->co_lu, "lov-parent", lov);
298         cl_object_put(env, sub);
299
300         /* ... wait until it is actually destroyed---sub-object clears its
301          * ->lo_sub[] slot in lovsub_object_free() */
302         if (r0->lo_sub[idx] == los) {
303                 waiter = &lov_env_info(env)->lti_waiter;
304                 init_waitqueue_entry(waiter, current);
305                 add_wait_queue(wq, waiter);
306                 set_current_state(TASK_UNINTERRUPTIBLE);
307                 while (1) {
308                         /* this wait-queue is signaled at the end of
309                          * lu_object_free(). */
310                         set_current_state(TASK_UNINTERRUPTIBLE);
311                         spin_lock(&r0->lo_sub_lock);
312                         if (r0->lo_sub[idx] == los) {
313                                 spin_unlock(&r0->lo_sub_lock);
314                                 schedule();
315                         } else {
316                                 spin_unlock(&r0->lo_sub_lock);
317                                 set_current_state(TASK_RUNNING);
318                                 break;
319                         }
320                 }
321                 remove_wait_queue(wq, waiter);
322         }
323         LASSERT(r0->lo_sub[idx] == NULL);
324 }
325
326 static void lov_delete_raid0(const struct lu_env *env, struct lov_object *lov,
327                              struct lov_layout_entry *lle)
328 {
329         struct lov_layout_raid0 *r0 = &lle->lle_raid0;
330
331         ENTRY;
332
333         if (r0->lo_sub != NULL) {
334                 int i;
335
336                 for (i = 0; i < r0->lo_nr; ++i) {
337                         struct lovsub_object *los = r0->lo_sub[i];
338
339                         if (los != NULL) {
340                                 cl_object_prune(env, &los->lso_cl);
341                                 /*
342                                  * If top-level object is to be evicted from
343                                  * the cache, so are its sub-objects.
344                                  */
345                                 lov_subobject_kill(env, lov, r0, los, i);
346                         }
347                 }
348         }
349
350         EXIT;
351 }
352
353 static void lov_fini_raid0(const struct lu_env *env,
354                            struct lov_layout_entry *lle)
355 {
356         struct lov_layout_raid0 *r0 = &lle->lle_raid0;
357
358         if (r0->lo_sub != NULL) {
359                 OBD_FREE_LARGE(r0->lo_sub, r0->lo_nr * sizeof r0->lo_sub[0]);
360                 r0->lo_sub = NULL;
361         }
362 }
363
364 static int lov_print_raid0(const struct lu_env *env, void *cookie,
365                            lu_printer_t p, const struct lov_layout_entry *lle)
366 {
367         const struct lov_layout_raid0 *r0 = &lle->lle_raid0;
368         int i;
369
370         for (i = 0; i < r0->lo_nr; ++i) {
371                 struct lu_object *sub;
372
373                 if (r0->lo_sub[i] != NULL) {
374                         sub = lovsub2lu(r0->lo_sub[i]);
375                         lu_object_print(env, cookie, p, sub);
376                 } else {
377                         (*p)(env, cookie, "sub %d absent\n", i);
378                 }
379         }
380         return 0;
381 }
382
383 static int lov_attr_get_raid0(const struct lu_env *env, struct lov_object *lov,
384                               unsigned int index, struct lov_layout_entry *lle,
385                               struct cl_attr **lov_attr)
386 {
387         struct lov_layout_raid0 *r0 = &lle->lle_raid0;
388         struct lov_stripe_md *lsm = lov->lo_lsm;
389         struct ost_lvb *lvb = &lov_env_info(env)->lti_lvb;
390         struct cl_attr *attr = &r0->lo_attr;
391         __u64 kms = 0;
392         int result = 0;
393
394         if (r0->lo_attr_valid) {
395                 *lov_attr = attr;
396                 return 0;
397         }
398
399         memset(lvb, 0, sizeof(*lvb));
400
401         /* XXX: timestamps can be negative by sanity:test_39m,
402          * how can it be? */
403         lvb->lvb_atime = LLONG_MIN;
404         lvb->lvb_ctime = LLONG_MIN;
405         lvb->lvb_mtime = LLONG_MIN;
406
407         /*
408          * XXX that should be replaced with a loop over sub-objects,
409          * doing cl_object_attr_get() on them. But for now, let's
410          * reuse old lov code.
411          */
412
413         /*
414          * XXX take lsm spin-lock to keep lov_merge_lvb_kms()
415          * happy. It's not needed, because new code uses
416          * ->coh_attr_guard spin-lock to protect consistency of
417          * sub-object attributes.
418          */
419         lov_stripe_lock(lsm);
420         result = lov_merge_lvb_kms(lsm, index, lvb, &kms);
421         lov_stripe_unlock(lsm);
422         if (result == 0) {
423                 cl_lvb2attr(attr, lvb);
424                 attr->cat_kms = kms;
425                 r0->lo_attr_valid = 1;
426                 *lov_attr = attr;
427         }
428
429         return result;
430 }
431
432 static struct lov_comp_layout_entry_ops raid0_ops = {
433         .lco_init      = lov_init_raid0,
434         .lco_fini      = lov_fini_raid0,
435         .lco_getattr   = lov_attr_get_raid0,
436 };
437
438 static int lov_attr_get_dom(const struct lu_env *env, struct lov_object *lov,
439                             unsigned int index, struct lov_layout_entry *lle,
440                             struct cl_attr **lov_attr)
441 {
442         struct lov_layout_dom *dom = &lle->lle_dom;
443         struct lov_oinfo *loi = dom->lo_loi;
444         struct cl_attr *attr = &dom->lo_dom_r0.lo_attr;
445
446         if (dom->lo_dom_r0.lo_attr_valid) {
447                 *lov_attr = attr;
448                 return 0;
449         }
450
451         if (OST_LVB_IS_ERR(loi->loi_lvb.lvb_blocks))
452                 return OST_LVB_GET_ERR(loi->loi_lvb.lvb_blocks);
453
454         cl_lvb2attr(attr, &loi->loi_lvb);
455
456         /* DoM component size can be bigger than stripe size after
457          * client's setattr RPC, so do not count anything beyond
458          * component end. Alternatively, check that limit on server
459          * and do not allow size overflow there. */
460         if (attr->cat_size > lle->lle_extent->e_end)
461                 attr->cat_size = lle->lle_extent->e_end;
462
463         attr->cat_kms = attr->cat_size;
464
465         dom->lo_dom_r0.lo_attr_valid = 1;
466         *lov_attr = attr;
467
468         return 0;
469 }
470
471 /**
472  * Lookup FLD to get MDS index of the given DOM object FID.
473  *
474  * \param[in]  ld       LOV device
475  * \param[in]  fid      FID to lookup
476  * \param[out] nr       index in MDC array to return back
477  *
478  * \retval              0 and \a mds filled with MDS index if successful
479  * \retval              negative value on error
480  */
481 static int lov_fld_lookup(struct lov_device *ld, const struct lu_fid *fid,
482                           __u32 *nr)
483 {
484         __u32 mds_idx;
485         int i, rc;
486
487         ENTRY;
488
489         rc = fld_client_lookup(&ld->ld_lmv->u.lmv.lmv_fld, fid_seq(fid),
490                                &mds_idx, LU_SEQ_RANGE_MDT, NULL);
491         if (rc) {
492                 CERROR("%s: error while looking for mds number. Seq %#llx"
493                        ", err = %d\n", lu_dev_name(cl2lu_dev(&ld->ld_cl)),
494                        fid_seq(fid), rc);
495                 RETURN(rc);
496         }
497
498         CDEBUG(D_INODE, "FLD lookup got mds #%x for fid="DFID"\n",
499                mds_idx, PFID(fid));
500
501         /* find proper MDC device in the array */
502         for (i = 0; i < ld->ld_md_tgts_nr; i++) {
503                 if (ld->ld_md_tgts[i].ldm_mdc != NULL &&
504                     ld->ld_md_tgts[i].ldm_idx == mds_idx)
505                         break;
506         }
507
508         if (i == ld->ld_md_tgts_nr) {
509                 CERROR("%s: cannot find corresponding MDC device for mds #%x "
510                        "for fid="DFID"\n", lu_dev_name(cl2lu_dev(&ld->ld_cl)),
511                        mds_idx, PFID(fid));
512                 rc = -EINVAL;
513         } else {
514                 *nr = i;
515         }
516         RETURN(rc);
517 }
518
519 /**
520  * Implementation of lov_comp_layout_entry_ops::lco_init for DOM object.
521  *
522  * Init the DOM object for the first time. It prepares also RAID0 entry
523  * for it to use in common methods with ordinary RAID0 layout entries.
524  *
525  * \param[in] env       execution environment
526  * \param[in] dev       LOV device
527  * \param[in] lov       LOV object
528  * \param[in] index     Composite layout entry index in LSM
529  * \param[in] lle       Composite LOV layout entry
530  */
531 static int lov_init_dom(const struct lu_env *env, struct lov_device *dev,
532                         struct lov_object *lov, unsigned int index,
533                         const struct cl_object_conf *conf,
534                         struct lov_layout_entry *lle)
535 {
536         struct lov_thread_info *lti = lov_env_info(env);
537         struct lov_stripe_md_entry *lsme = lov_lse(lov, index);
538         struct cl_object *clo;
539         struct lu_object *o = lov2lu(lov);
540         const struct lu_fid *fid = lu_object_fid(o);
541         struct cl_device *mdcdev;
542         struct lov_oinfo *loi = NULL;
543         struct cl_object_conf *sconf = &lti->lti_stripe_conf;
544         int rc;
545         __u32 idx = 0;
546
547         ENTRY;
548
549         /* DOM entry may be not zero index due to FLR but must start from 0 */
550         if (unlikely(lle->lle_extent->e_start != 0)) {
551                 CERROR("%s: DOM entry must be the first stripe in a mirror\n",
552                        lov2obd(dev->ld_lov)->obd_name);
553                 dump_lsm(D_ERROR, lov->lo_lsm);
554                 RETURN(-EINVAL);
555         }
556
557         /* find proper MDS device */
558         rc = lov_fld_lookup(dev, fid, &idx);
559         if (rc)
560                 RETURN(rc);
561
562         LASSERTF(dev->ld_md_tgts[idx].ldm_mdc != NULL,
563                  "LOV md target[%u] is NULL\n", idx);
564
565         /* check lsm is DOM, more checks are needed */
566         LASSERT(lsme->lsme_stripe_count == 0);
567
568         /*
569          * Create lower cl_objects.
570          */
571         mdcdev = dev->ld_md_tgts[idx].ldm_mdc;
572
573         LASSERTF(mdcdev != NULL, "non-initialized mdc subdev\n");
574
575         /* DoM object has no oinfo in LSM entry, create it exclusively */
576         OBD_SLAB_ALLOC_PTR_GFP(loi, lov_oinfo_slab, GFP_NOFS);
577         if (loi == NULL)
578                 RETURN(-ENOMEM);
579
580         fid_to_ostid(lu_object_fid(lov2lu(lov)), &loi->loi_oi);
581
582         sconf->u.coc_oinfo = loi;
583 again:
584         clo = lov_sub_find(env, mdcdev, fid, sconf);
585         if (IS_ERR(clo))
586                 GOTO(out, rc = PTR_ERR(clo));
587
588         rc = lov_init_sub(env, lov, clo, loi, lov_comp_index(index, 0));
589         if (rc == -EAGAIN) /* try again */
590                 goto again;
591         else if (rc != 0)
592                 GOTO(out, rc);
593
594         lle->lle_dom.lo_dom = cl2lovsub(clo);
595         spin_lock_init(&lle->lle_dom.lo_dom_r0.lo_sub_lock);
596         lle->lle_dom.lo_dom_r0.lo_nr = 1;
597         lle->lle_dom.lo_dom_r0.lo_sub = &lle->lle_dom.lo_dom;
598         lle->lle_dom.lo_loi = loi;
599
600         rc = lov_page_slice_fixup(lov, clo);
601         RETURN(rc);
602
603 out:
604         if (loi != NULL)
605                 OBD_SLAB_FREE_PTR(loi, lov_oinfo_slab);
606         return rc;
607 }
608
609 /**
610  * Implementation of lov_layout_operations::llo_fini for DOM object.
611  *
612  * Finish the DOM object and free related memory.
613  *
614  * \param[in] env       execution environment
615  * \param[in] lov       LOV object
616  * \param[in] state     LOV layout state
617  */
618 static void lov_fini_dom(const struct lu_env *env,
619                          struct lov_layout_entry *lle)
620 {
621         if (lle->lle_dom.lo_dom != NULL)
622                 lle->lle_dom.lo_dom = NULL;
623         if (lle->lle_dom.lo_loi != NULL)
624                 OBD_SLAB_FREE_PTR(lle->lle_dom.lo_loi, lov_oinfo_slab);
625 }
626
627 static struct lov_comp_layout_entry_ops dom_ops = {
628         .lco_init = lov_init_dom,
629         .lco_fini = lov_fini_dom,
630         .lco_getattr = lov_attr_get_dom,
631 };
632
633 static int lov_init_composite(const struct lu_env *env, struct lov_device *dev,
634                               struct lov_object *lov, struct lov_stripe_md *lsm,
635                               const struct cl_object_conf *conf,
636                               union lov_layout_state *state)
637 {
638         struct lov_layout_composite *comp = &state->composite;
639         struct lov_layout_entry *lle;
640         struct lov_mirror_entry *lre;
641         unsigned int entry_count;
642         unsigned int psz = 0;
643         unsigned int mirror_count;
644         int flr_state = lsm->lsm_flags & LCM_FL_FLR_MASK;
645         int result = 0;
646         unsigned int seq;
647         int i, j;
648         bool dom_size = 0;
649
650         ENTRY;
651
652         LASSERT(lsm->lsm_entry_count > 0);
653         LASSERT(lov->lo_lsm == NULL);
654         lov->lo_lsm = lsm_addref(lsm);
655         lov->lo_layout_invalid = true;
656
657         dump_lsm(D_INODE, lsm);
658
659         entry_count = lsm->lsm_entry_count;
660
661         spin_lock_init(&comp->lo_write_lock);
662         comp->lo_flags = lsm->lsm_flags;
663         comp->lo_mirror_count = lsm->lsm_mirror_count + 1;
664         comp->lo_entry_count = lsm->lsm_entry_count;
665         comp->lo_preferred_mirror = -1;
666
667         if (equi(flr_state == LCM_FL_NONE, comp->lo_mirror_count > 1))
668                 RETURN(-EINVAL);
669
670         OBD_ALLOC(comp->lo_mirrors,
671                   comp->lo_mirror_count * sizeof(*comp->lo_mirrors));
672         if (comp->lo_mirrors == NULL)
673                 RETURN(-ENOMEM);
674
675         OBD_ALLOC(comp->lo_entries, entry_count * sizeof(*comp->lo_entries));
676         if (comp->lo_entries == NULL)
677                 RETURN(-ENOMEM);
678
679         /* Initiate all entry types and extents data at first */
680         for (i = 0, j = 0, mirror_count = 1; i < entry_count; i++) {
681                 int mirror_id = 0;
682
683                 lle = &comp->lo_entries[i];
684
685                 lle->lle_lsme = lsm->lsm_entries[i];
686                 lle->lle_type = lov_entry_type(lle->lle_lsme);
687                 switch (lle->lle_type) {
688                 case LOV_PATTERN_RAID0:
689                         lle->lle_comp_ops = &raid0_ops;
690                         break;
691                 case LOV_PATTERN_MDT:
692                         /* Allowed to have several DOM stripes in different
693                          * mirrors with the same DoM size.
694                          */
695                         if (!dom_size) {
696                                 dom_size = lle->lle_lsme->lsme_extent.e_end;
697                         } else if (dom_size !=
698                                    lle->lle_lsme->lsme_extent.e_end) {
699                                 CERROR("%s: DOM entries with different sizes\n",
700                                        lov2obd(dev->ld_lov)->obd_name);
701                                 dump_lsm(D_ERROR, lsm);
702                                 RETURN(-EINVAL);
703                         }
704                         lle->lle_comp_ops = &dom_ops;
705                         break;
706                 default:
707                         CERROR("%s: unknown composite layout entry type %i\n",
708                                lov2obd(dev->ld_lov)->obd_name,
709                                lsm->lsm_entries[i]->lsme_pattern);
710                         dump_lsm(D_ERROR, lsm);
711                         RETURN(-EIO);
712                 }
713
714                 lle->lle_extent = &lle->lle_lsme->lsme_extent;
715                 lle->lle_valid = !(lle->lle_lsme->lsme_flags & LCME_FL_STALE);
716
717                 if (flr_state != LCM_FL_NONE)
718                         mirror_id = mirror_id_of(lle->lle_lsme->lsme_id);
719
720                 lre = &comp->lo_mirrors[j];
721                 if (i > 0) {
722                         if (mirror_id == lre->lre_mirror_id) {
723                                 lre->lre_valid |= lle->lle_valid;
724                                 lre->lre_stale |= !lle->lle_valid;
725                                 lre->lre_end = i;
726                                 continue;
727                         }
728
729                         /* new mirror detected, assume that the mirrors
730                          * are shorted in layout */
731                         ++mirror_count;
732                         ++j;
733                         if (j >= comp->lo_mirror_count)
734                                 break;
735
736                         lre = &comp->lo_mirrors[j];
737                 }
738
739                 /* entries must be sorted by mirrors */
740                 lre->lre_mirror_id = mirror_id;
741                 lre->lre_start = lre->lre_end = i;
742                 lre->lre_preferred = !!(lle->lle_lsme->lsme_flags &
743                                         LCME_FL_PREF_RD);
744                 lre->lre_valid = lle->lle_valid;
745                 lre->lre_stale = !lle->lle_valid;
746         }
747
748         /* sanity check for FLR */
749         if (mirror_count != comp->lo_mirror_count) {
750                 CDEBUG(D_INODE, DFID
751                        " doesn't have the # of mirrors it claims, %u/%u\n",
752                        PFID(lu_object_fid(lov2lu(lov))), mirror_count,
753                        comp->lo_mirror_count + 1);
754
755                 GOTO(out, result = -EINVAL);
756         }
757
758         lov_foreach_layout_entry(lov, lle) {
759                 int index = lov_layout_entry_index(lov, lle);
760
761                 /**
762                  * If the component has not been init-ed on MDS side, for
763                  * PFL layout, we'd know that the components beyond this one
764                  * will be dynamically init-ed later on file write/trunc ops.
765                  */
766                 if (!lsme_inited(lle->lle_lsme))
767                         continue;
768
769                 result = lle->lle_comp_ops->lco_init(env, dev, lov, index,
770                                                      conf, lle);
771                 if (result < 0)
772                         break;
773
774                 LASSERT(ergo(psz > 0, psz == result));
775                 psz = result;
776         }
777
778         if (psz > 0)
779                 cl_object_header(&lov->lo_cl)->coh_page_bufsize += psz;
780
781         /* decide the preferred mirror. It uses the hash value of lov_object
782          * so that different clients would use different mirrors for read. */
783         mirror_count = 0;
784         seq = hash_long((unsigned long)lov, 8);
785         for (i = 0; i < comp->lo_mirror_count; i++) {
786                 unsigned int idx = (i + seq) % comp->lo_mirror_count;
787
788                 lre = lov_mirror_entry(lov, idx);
789                 if (lre->lre_stale)
790                         continue;
791
792                 mirror_count++; /* valid mirror */
793
794                 if (lre->lre_preferred || comp->lo_preferred_mirror < 0)
795                         comp->lo_preferred_mirror = idx;
796         }
797         if (!mirror_count) {
798                 CDEBUG(D_INODE, DFID
799                        " doesn't have any valid mirrors\n",
800                        PFID(lu_object_fid(lov2lu(lov))));
801
802                 comp->lo_preferred_mirror = 0;
803         }
804
805         LASSERT(comp->lo_preferred_mirror >= 0);
806
807         EXIT;
808 out:
809         return result > 0 ? 0 : result;
810 }
811
812 static int lov_init_empty(const struct lu_env *env, struct lov_device *dev,
813                           struct lov_object *lov, struct lov_stripe_md *lsm,
814                           const struct cl_object_conf *conf,
815                           union lov_layout_state *state)
816 {
817         return 0;
818 }
819
820 static int lov_init_released(const struct lu_env *env,
821                              struct lov_device *dev, struct lov_object *lov,
822                              struct lov_stripe_md *lsm,
823                              const struct cl_object_conf *conf,
824                              union lov_layout_state *state)
825 {
826         LASSERT(lsm != NULL);
827         LASSERT(lsm->lsm_is_released);
828         LASSERT(lov->lo_lsm == NULL);
829
830         lov->lo_lsm = lsm_addref(lsm);
831         return 0;
832 }
833
834 static int lov_init_foreign(const struct lu_env *env,
835                             struct lov_device *dev, struct lov_object *lov,
836                             struct lov_stripe_md *lsm,
837                             const struct cl_object_conf *conf,
838                             union lov_layout_state *state)
839 {
840         LASSERT(lsm != NULL);
841         LASSERT(lov->lo_type == LLT_FOREIGN);
842         LASSERT(lov->lo_lsm == NULL);
843
844         lov->lo_lsm = lsm_addref(lsm);
845         return 0;
846 }
847
848 static int lov_delete_empty(const struct lu_env *env, struct lov_object *lov,
849                             union lov_layout_state *state)
850 {
851         LASSERT(lov->lo_type == LLT_EMPTY || lov->lo_type == LLT_RELEASED ||
852                 lov->lo_type == LLT_FOREIGN);
853
854         lov_layout_wait(env, lov);
855         return 0;
856 }
857
858 static int lov_delete_composite(const struct lu_env *env,
859                                 struct lov_object *lov,
860                                 union lov_layout_state *state)
861 {
862         struct lov_layout_entry *entry;
863         struct lov_layout_composite *comp = &state->composite;
864
865         ENTRY;
866
867         dump_lsm(D_INODE, lov->lo_lsm);
868
869         lov_layout_wait(env, lov);
870         if (comp->lo_entries)
871                 lov_foreach_layout_entry(lov, entry)
872                         lov_delete_raid0(env, lov, entry);
873
874         RETURN(0);
875 }
876
877 static void lov_fini_empty(const struct lu_env *env, struct lov_object *lov,
878                            union lov_layout_state *state)
879 {
880         LASSERT(lov->lo_type == LLT_EMPTY || lov->lo_type == LLT_RELEASED);
881 }
882
883 static void lov_fini_composite(const struct lu_env *env,
884                                struct lov_object *lov,
885                                union lov_layout_state *state)
886 {
887         struct lov_layout_composite *comp = &state->composite;
888         ENTRY;
889
890         if (comp->lo_entries != NULL) {
891                 struct lov_layout_entry *entry;
892
893                 lov_foreach_layout_entry(lov, entry)
894                         if (entry->lle_comp_ops)
895                                 entry->lle_comp_ops->lco_fini(env, entry);
896
897                 OBD_FREE(comp->lo_entries,
898                          comp->lo_entry_count * sizeof(*comp->lo_entries));
899                 comp->lo_entries = NULL;
900         }
901
902         if (comp->lo_mirrors != NULL) {
903                 OBD_FREE(comp->lo_mirrors,
904                          comp->lo_mirror_count * sizeof(*comp->lo_mirrors));
905                 comp->lo_mirrors = NULL;
906         }
907
908         memset(comp, 0, sizeof(*comp));
909
910         dump_lsm(D_INODE, lov->lo_lsm);
911         lov_free_memmd(&lov->lo_lsm);
912
913         EXIT;
914 }
915
916 static void lov_fini_released(const struct lu_env *env, struct lov_object *lov,
917                                 union lov_layout_state *state)
918 {
919         ENTRY;
920         dump_lsm(D_INODE, lov->lo_lsm);
921         lov_free_memmd(&lov->lo_lsm);
922         EXIT;
923 }
924
925 static int lov_print_empty(const struct lu_env *env, void *cookie,
926                            lu_printer_t p, const struct lu_object *o)
927 {
928         (*p)(env, cookie, "empty %d\n", lu2lov(o)->lo_layout_invalid);
929         return 0;
930 }
931
932 static int lov_print_composite(const struct lu_env *env, void *cookie,
933                                lu_printer_t p, const struct lu_object *o)
934 {
935         struct lov_object *lov = lu2lov(o);
936         struct lov_stripe_md *lsm = lov->lo_lsm;
937         int i;
938
939         (*p)(env, cookie, "entries: %d, %s, lsm{%p 0x%08X %d %u}:\n",
940              lsm->lsm_entry_count,
941              lov->lo_layout_invalid ? "invalid" : "valid", lsm,
942              lsm->lsm_magic, atomic_read(&lsm->lsm_refc),
943              lsm->lsm_layout_gen);
944
945         for (i = 0; i < lsm->lsm_entry_count; i++) {
946                 struct lov_stripe_md_entry *lse = lsm->lsm_entries[i];
947                 struct lov_layout_entry *lle = lov_entry(lov, i);
948
949                 (*p)(env, cookie,
950                      DEXT ": { 0x%08X, %u, %#x, %u, %#x, %u, %u }\n",
951                      PEXT(&lse->lsme_extent), lse->lsme_magic,
952                      lse->lsme_id, lse->lsme_pattern, lse->lsme_layout_gen,
953                      lse->lsme_flags, lse->lsme_stripe_count,
954                      lse->lsme_stripe_size);
955                 lov_print_raid0(env, cookie, p, lle);
956         }
957
958         return 0;
959 }
960
961 static int lov_print_released(const struct lu_env *env, void *cookie,
962                                 lu_printer_t p, const struct lu_object *o)
963 {
964         struct lov_object       *lov = lu2lov(o);
965         struct lov_stripe_md    *lsm = lov->lo_lsm;
966
967         (*p)(env, cookie,
968                 "released: %s, lsm{%p 0x%08X %d %u}:\n",
969                 lov->lo_layout_invalid ? "invalid" : "valid", lsm,
970                 lsm->lsm_magic, atomic_read(&lsm->lsm_refc),
971                 lsm->lsm_layout_gen);
972         return 0;
973 }
974
975 static int lov_print_foreign(const struct lu_env *env, void *cookie,
976                                 lu_printer_t p, const struct lu_object *o)
977 {
978         struct lov_object       *lov = lu2lov(o);
979         struct lov_stripe_md    *lsm = lov->lo_lsm;
980
981         (*p)(env, cookie,
982                 "foreign: %s, lsm{%p 0x%08X %d %u}:\n",
983                 lov->lo_layout_invalid ? "invalid" : "valid", lsm,
984                 lsm->lsm_magic, atomic_read(&lsm->lsm_refc),
985                 lsm->lsm_layout_gen);
986         (*p)(env, cookie,
987                 "raw_ea_content '%.*s'\n",
988                 (int)lsm->lsm_foreign_size, (char *)lsm_foreign(lsm));
989         return 0;
990 }
991
992 /**
993  * Implements cl_object_operations::coo_attr_get() method for an object
994  * without stripes (LLT_EMPTY layout type).
995  *
996  * The only attributes this layer is authoritative in this case is
997  * cl_attr::cat_blocks---it's 0.
998  */
999 static int lov_attr_get_empty(const struct lu_env *env, struct cl_object *obj,
1000                               struct cl_attr *attr)
1001 {
1002         attr->cat_blocks = 0;
1003         return 0;
1004 }
1005
1006 static int lov_attr_get_composite(const struct lu_env *env,
1007                                   struct cl_object *obj,
1008                                   struct cl_attr *attr)
1009 {
1010         struct lov_object       *lov = cl2lov(obj);
1011         struct lov_layout_entry *entry;
1012         int                      result = 0;
1013
1014         ENTRY;
1015
1016         attr->cat_size = 0;
1017         attr->cat_blocks = 0;
1018         lov_foreach_layout_entry(lov, entry) {
1019                 struct cl_attr *lov_attr = NULL;
1020                 int index = lov_layout_entry_index(lov, entry);
1021
1022                 if (!entry->lle_valid)
1023                         continue;
1024
1025                 /* PFL: This component has not been init-ed. */
1026                 if (!lsm_entry_inited(lov->lo_lsm, index))
1027                         continue;
1028
1029                 result = entry->lle_comp_ops->lco_getattr(env, lov, index,
1030                                                           entry, &lov_attr);
1031                 if (result < 0)
1032                         RETURN(result);
1033
1034                 if (lov_attr == NULL)
1035                         continue;
1036
1037                 CDEBUG(D_INODE, "COMP ID #%i: s=%llu m=%llu a=%llu c=%llu "
1038                        "b=%llu\n", index - 1, lov_attr->cat_size,
1039                        lov_attr->cat_mtime, lov_attr->cat_atime,
1040                        lov_attr->cat_ctime, lov_attr->cat_blocks);
1041
1042                 /* merge results */
1043                 attr->cat_blocks += lov_attr->cat_blocks;
1044                 if (attr->cat_size < lov_attr->cat_size)
1045                         attr->cat_size = lov_attr->cat_size;
1046                 if (attr->cat_kms < lov_attr->cat_kms)
1047                         attr->cat_kms = lov_attr->cat_kms;
1048                 if (attr->cat_atime < lov_attr->cat_atime)
1049                         attr->cat_atime = lov_attr->cat_atime;
1050                 if (attr->cat_ctime < lov_attr->cat_ctime)
1051                         attr->cat_ctime = lov_attr->cat_ctime;
1052                 if (attr->cat_mtime < lov_attr->cat_mtime)
1053                         attr->cat_mtime = lov_attr->cat_mtime;
1054         }
1055
1056         RETURN(0);
1057 }
1058
1059 static int lov_flush_composite(const struct lu_env *env,
1060                                struct cl_object *obj,
1061                                struct ldlm_lock *lock)
1062 {
1063         struct lov_object *lov = cl2lov(obj);
1064         struct lov_layout_entry *lle;
1065         int rc = -ENODATA;
1066
1067         ENTRY;
1068
1069         lov_foreach_layout_entry(lov, lle) {
1070                 if (!lsme_is_dom(lle->lle_lsme))
1071                         continue;
1072                 rc = cl_object_flush(env, lovsub2cl(lle->lle_dom.lo_dom), lock);
1073                 break;
1074         }
1075
1076         RETURN(rc);
1077 }
1078
1079 static int lov_flush_empty(const struct lu_env *env, struct cl_object *obj,
1080                            struct ldlm_lock *lock)
1081 {
1082         return 0;
1083 }
1084
1085 const static struct lov_layout_operations lov_dispatch[] = {
1086         [LLT_EMPTY] = {
1087                 .llo_init      = lov_init_empty,
1088                 .llo_delete    = lov_delete_empty,
1089                 .llo_fini      = lov_fini_empty,
1090                 .llo_print     = lov_print_empty,
1091                 .llo_page_init = lov_page_init_empty,
1092                 .llo_lock_init = lov_lock_init_empty,
1093                 .llo_io_init   = lov_io_init_empty,
1094                 .llo_getattr   = lov_attr_get_empty,
1095                 .llo_flush     = lov_flush_empty,
1096         },
1097         [LLT_RELEASED] = {
1098                 .llo_init      = lov_init_released,
1099                 .llo_delete    = lov_delete_empty,
1100                 .llo_fini      = lov_fini_released,
1101                 .llo_print     = lov_print_released,
1102                 .llo_page_init = lov_page_init_empty,
1103                 .llo_lock_init = lov_lock_init_empty,
1104                 .llo_io_init   = lov_io_init_released,
1105                 .llo_getattr   = lov_attr_get_empty,
1106                 .llo_flush     = lov_flush_empty,
1107         },
1108         [LLT_COMP] = {
1109                 .llo_init      = lov_init_composite,
1110                 .llo_delete    = lov_delete_composite,
1111                 .llo_fini      = lov_fini_composite,
1112                 .llo_print     = lov_print_composite,
1113                 .llo_page_init = lov_page_init_composite,
1114                 .llo_lock_init = lov_lock_init_composite,
1115                 .llo_io_init   = lov_io_init_composite,
1116                 .llo_getattr   = lov_attr_get_composite,
1117                 .llo_flush     = lov_flush_composite,
1118         },
1119         [LLT_FOREIGN] = {
1120                 .llo_init      = lov_init_foreign,
1121                 .llo_delete    = lov_delete_empty,
1122                 .llo_fini      = lov_fini_released,
1123                 .llo_print     = lov_print_foreign,
1124                 .llo_page_init = lov_page_init_foreign,
1125                 .llo_lock_init = lov_lock_init_empty,
1126                 .llo_io_init   = lov_io_init_empty,
1127                 .llo_getattr   = lov_attr_get_empty,
1128                 .llo_flush     = lov_flush_empty,
1129         },
1130 };
1131
1132 /**
1133  * Performs a double-dispatch based on the layout type of an object.
1134  */
1135 #define LOV_2DISPATCH_NOLOCK(obj, op, ...)              \
1136 ({                                                      \
1137         struct lov_object *__obj = (obj);               \
1138         enum lov_layout_type __llt;                     \
1139                                                         \
1140         __llt = __obj->lo_type;                         \
1141         LASSERT(__llt < ARRAY_SIZE(lov_dispatch));      \
1142         lov_dispatch[__llt].op(__VA_ARGS__);            \
1143 })
1144
1145 /**
1146  * Return lov_layout_type associated with a given lsm
1147  */
1148 static enum lov_layout_type lov_type(struct lov_stripe_md *lsm)
1149 {
1150         if (lsm == NULL)
1151                 return LLT_EMPTY;
1152
1153         if (lsm->lsm_is_released)
1154                 return LLT_RELEASED;
1155
1156         if (lsm->lsm_magic == LOV_MAGIC_V1 ||
1157             lsm->lsm_magic == LOV_MAGIC_V3 ||
1158             lsm->lsm_magic == LOV_MAGIC_COMP_V1)
1159                 return LLT_COMP;
1160
1161         if (lsm->lsm_magic == LOV_MAGIC_FOREIGN)
1162                 return LLT_FOREIGN;
1163
1164         return LLT_EMPTY;
1165 }
1166
1167 static inline void lov_conf_freeze(struct lov_object *lov)
1168 {
1169         CDEBUG(D_INODE, "To take share lov(%p) owner %p/%p\n",
1170                 lov, lov->lo_owner, current);
1171         if (lov->lo_owner != current)
1172                 down_read(&lov->lo_type_guard);
1173 }
1174
1175 static inline void lov_conf_thaw(struct lov_object *lov)
1176 {
1177         CDEBUG(D_INODE, "To release share lov(%p) owner %p/%p\n",
1178                 lov, lov->lo_owner, current);
1179         if (lov->lo_owner != current)
1180                 up_read(&lov->lo_type_guard);
1181 }
1182
1183 #define LOV_2DISPATCH_MAYLOCK(obj, op, lock, ...)                       \
1184 ({                                                                      \
1185         struct lov_object                      *__obj = (obj);          \
1186         int                                     __lock = !!(lock);      \
1187         typeof(lov_dispatch[0].op(__VA_ARGS__)) __result;               \
1188                                                                         \
1189         if (__lock)                                                     \
1190                 lov_conf_freeze(__obj);                                 \
1191         __result = LOV_2DISPATCH_NOLOCK(obj, op, __VA_ARGS__);          \
1192         if (__lock)                                                     \
1193                 lov_conf_thaw(__obj);                                   \
1194         __result;                                                       \
1195 })
1196
1197 /**
1198  * Performs a locked double-dispatch based on the layout type of an object.
1199  */
1200 #define LOV_2DISPATCH(obj, op, ...)                     \
1201         LOV_2DISPATCH_MAYLOCK(obj, op, 1, __VA_ARGS__)
1202
1203 #define LOV_2DISPATCH_VOID(obj, op, ...)                                \
1204 do {                                                                    \
1205         struct lov_object                      *__obj = (obj);          \
1206         enum lov_layout_type                    __llt;                  \
1207                                                                         \
1208         lov_conf_freeze(__obj);                                         \
1209         __llt = __obj->lo_type;                                         \
1210         LASSERT(__llt < ARRAY_SIZE(lov_dispatch));                      \
1211         lov_dispatch[__llt].op(__VA_ARGS__);                            \
1212         lov_conf_thaw(__obj);                                           \
1213 } while (0)
1214
1215 static void lov_conf_lock(struct lov_object *lov)
1216 {
1217         LASSERT(lov->lo_owner != current);
1218         down_write(&lov->lo_type_guard);
1219         LASSERT(lov->lo_owner == NULL);
1220         lov->lo_owner = current;
1221         CDEBUG(D_INODE, "Took exclusive lov(%p) owner %p\n",
1222                 lov, lov->lo_owner);
1223 }
1224
1225 static void lov_conf_unlock(struct lov_object *lov)
1226 {
1227         CDEBUG(D_INODE, "To release exclusive lov(%p) owner %p\n",
1228                 lov, lov->lo_owner);
1229         lov->lo_owner = NULL;
1230         up_write(&lov->lo_type_guard);
1231 }
1232
1233 static int lov_layout_wait(const struct lu_env *env, struct lov_object *lov)
1234 {
1235         struct l_wait_info lwi = { 0 };
1236         ENTRY;
1237
1238         while (atomic_read(&lov->lo_active_ios) > 0) {
1239                 CDEBUG(D_INODE, "file:"DFID" wait for active IO, now: %d.\n",
1240                         PFID(lu_object_fid(lov2lu(lov))),
1241                         atomic_read(&lov->lo_active_ios));
1242
1243                 l_wait_event(lov->lo_waitq,
1244                              atomic_read(&lov->lo_active_ios) == 0, &lwi);
1245         }
1246         RETURN(0);
1247 }
1248
1249 static int lov_layout_change(const struct lu_env *unused,
1250                              struct lov_object *lov, struct lov_stripe_md *lsm,
1251                              const struct cl_object_conf *conf)
1252 {
1253         enum lov_layout_type llt = lov_type(lsm);
1254         union lov_layout_state *state = &lov->u;
1255         const struct lov_layout_operations *old_ops;
1256         const struct lov_layout_operations *new_ops;
1257         struct lov_device *lov_dev = lov_object_dev(lov);
1258         struct lu_env *env;
1259         __u16 refcheck;
1260         int rc;
1261         ENTRY;
1262
1263         LASSERT(lov->lo_type < ARRAY_SIZE(lov_dispatch));
1264
1265         env = cl_env_get(&refcheck);
1266         if (IS_ERR(env))
1267                 RETURN(PTR_ERR(env));
1268
1269         LASSERT(llt < ARRAY_SIZE(lov_dispatch));
1270
1271         CDEBUG(D_INODE, DFID" from %s to %s\n",
1272                PFID(lu_object_fid(lov2lu(lov))),
1273                llt2str(lov->lo_type), llt2str(llt));
1274
1275         old_ops = &lov_dispatch[lov->lo_type];
1276         new_ops = &lov_dispatch[llt];
1277
1278         rc = cl_object_prune(env, &lov->lo_cl);
1279         if (rc != 0)
1280                 GOTO(out, rc);
1281
1282         rc = old_ops->llo_delete(env, lov, &lov->u);
1283         if (rc != 0)
1284                 GOTO(out, rc);
1285
1286         old_ops->llo_fini(env, lov, &lov->u);
1287
1288         LASSERT(atomic_read(&lov->lo_active_ios) == 0);
1289
1290         CDEBUG(D_INODE, DFID "Apply new layout lov %p, type %d\n",
1291                PFID(lu_object_fid(lov2lu(lov))), lov, llt);
1292
1293         /* page bufsize fixup */
1294         cl_object_header(&lov->lo_cl)->coh_page_bufsize -=
1295                 lov_page_slice_fixup(lov, NULL);
1296
1297         lov->lo_type = llt;
1298         rc = new_ops->llo_init(env, lov_dev, lov, lsm, conf, state);
1299         if (rc != 0) {
1300                 struct obd_device *obd = lov2obd(lov_dev->ld_lov);
1301
1302                 CERROR("%s: cannot apply new layout on "DFID" : rc = %d\n",
1303                        obd->obd_name, PFID(lu_object_fid(lov2lu(lov))), rc);
1304                 new_ops->llo_delete(env, lov, state);
1305                 new_ops->llo_fini(env, lov, state);
1306                 /* this file becomes an EMPTY file. */
1307                 lov->lo_type = LLT_EMPTY;
1308                 GOTO(out, rc);
1309         }
1310
1311 out:
1312         cl_env_put(env, &refcheck);
1313         RETURN(rc);
1314 }
1315
1316 /*****************************************************************************
1317  *
1318  * Lov object operations.
1319  *
1320  */
1321 int lov_object_init(const struct lu_env *env, struct lu_object *obj,
1322                     const struct lu_object_conf *conf)
1323 {
1324         struct lov_object            *lov   = lu2lov(obj);
1325         struct lov_device            *dev   = lov_object_dev(lov);
1326         const struct cl_object_conf  *cconf = lu2cl_conf(conf);
1327         union lov_layout_state       *set   = &lov->u;
1328         const struct lov_layout_operations *ops;
1329         struct lov_stripe_md *lsm = NULL;
1330         int rc;
1331         ENTRY;
1332
1333         init_rwsem(&lov->lo_type_guard);
1334         atomic_set(&lov->lo_active_ios, 0);
1335         init_waitqueue_head(&lov->lo_waitq);
1336         cl_object_page_init(lu2cl(obj), sizeof(struct lov_page));
1337
1338         lov->lo_type = LLT_EMPTY;
1339         if (cconf->u.coc_layout.lb_buf != NULL) {
1340                 lsm = lov_unpackmd(dev->ld_lov,
1341                                    cconf->u.coc_layout.lb_buf,
1342                                    cconf->u.coc_layout.lb_len);
1343                 if (IS_ERR(lsm))
1344                         RETURN(PTR_ERR(lsm));
1345
1346                 dump_lsm(D_INODE, lsm);
1347         }
1348
1349         /* no locking is necessary, as object is being created */
1350         lov->lo_type = lov_type(lsm);
1351         ops = &lov_dispatch[lov->lo_type];
1352         rc = ops->llo_init(env, dev, lov, lsm, cconf, set);
1353         if (rc != 0)
1354                 GOTO(out_lsm, rc);
1355
1356 out_lsm:
1357         lov_lsm_put(lsm);
1358
1359         RETURN(rc);
1360 }
1361
1362 static int lov_conf_set(const struct lu_env *env, struct cl_object *obj,
1363                         const struct cl_object_conf *conf)
1364 {
1365         struct lov_stripe_md    *lsm = NULL;
1366         struct lov_object       *lov = cl2lov(obj);
1367         int                      result = 0;
1368         ENTRY;
1369
1370         if (conf->coc_opc == OBJECT_CONF_SET &&
1371             conf->u.coc_layout.lb_buf != NULL) {
1372                 lsm = lov_unpackmd(lov_object_dev(lov)->ld_lov,
1373                                    conf->u.coc_layout.lb_buf,
1374                                    conf->u.coc_layout.lb_len);
1375                 if (IS_ERR(lsm))
1376                         RETURN(PTR_ERR(lsm));
1377                 dump_lsm(D_INODE, lsm);
1378         }
1379
1380         lov_conf_lock(lov);
1381         if (conf->coc_opc == OBJECT_CONF_INVALIDATE) {
1382                 lov->lo_layout_invalid = true;
1383                 GOTO(out, result = 0);
1384         }
1385
1386         if (conf->coc_opc == OBJECT_CONF_WAIT) {
1387                 if (lov->lo_layout_invalid &&
1388                     atomic_read(&lov->lo_active_ios) > 0) {
1389                         lov_conf_unlock(lov);
1390                         result = lov_layout_wait(env, lov);
1391                         lov_conf_lock(lov);
1392                 }
1393                 GOTO(out, result);
1394         }
1395
1396         LASSERT(conf->coc_opc == OBJECT_CONF_SET);
1397
1398         if ((lsm == NULL && lov->lo_lsm == NULL) ||
1399             ((lsm != NULL && lov->lo_lsm != NULL) &&
1400              (lov->lo_lsm->lsm_layout_gen == lsm->lsm_layout_gen) &&
1401              (lov->lo_lsm->lsm_entries[0]->lsme_pattern ==
1402               lsm->lsm_entries[0]->lsme_pattern))) {
1403                 /* same version of layout */
1404                 lov->lo_layout_invalid = false;
1405                 GOTO(out, result = 0);
1406         }
1407
1408         /* will change layout - check if there still exists active IO. */
1409         if (atomic_read(&lov->lo_active_ios) > 0) {
1410                 lov->lo_layout_invalid = true;
1411                 GOTO(out, result = -EBUSY);
1412         }
1413
1414         result = lov_layout_change(env, lov, lsm, conf);
1415         lov->lo_layout_invalid = result != 0;
1416         EXIT;
1417
1418 out:
1419         lov_conf_unlock(lov);
1420         lov_lsm_put(lsm);
1421         CDEBUG(D_INODE, DFID" lo_layout_invalid=%d\n",
1422                PFID(lu_object_fid(lov2lu(lov))), lov->lo_layout_invalid);
1423         RETURN(result);
1424 }
1425
1426 static void lov_object_delete(const struct lu_env *env, struct lu_object *obj)
1427 {
1428         struct lov_object *lov = lu2lov(obj);
1429
1430         ENTRY;
1431         LOV_2DISPATCH_VOID(lov, llo_delete, env, lov, &lov->u);
1432         EXIT;
1433 }
1434
1435 static void lov_object_free(const struct lu_env *env, struct lu_object *obj)
1436 {
1437         struct lov_object *lov = lu2lov(obj);
1438
1439         ENTRY;
1440         LOV_2DISPATCH_VOID(lov, llo_fini, env, lov, &lov->u);
1441         lu_object_fini(obj);
1442         OBD_SLAB_FREE_PTR(lov, lov_object_kmem);
1443         EXIT;
1444 }
1445
1446 static int lov_object_print(const struct lu_env *env, void *cookie,
1447                             lu_printer_t p, const struct lu_object *o)
1448 {
1449         return LOV_2DISPATCH_NOLOCK(lu2lov(o), llo_print, env, cookie, p, o);
1450 }
1451
1452 int lov_page_init(const struct lu_env *env, struct cl_object *obj,
1453                   struct cl_page *page, pgoff_t index)
1454 {
1455         return LOV_2DISPATCH_NOLOCK(cl2lov(obj), llo_page_init, env, obj, page,
1456                                     index);
1457 }
1458
1459 /**
1460  * Implements cl_object_operations::clo_io_init() method for lov
1461  * layer. Dispatches to the appropriate layout io initialization method.
1462  */
1463 int lov_io_init(const struct lu_env *env, struct cl_object *obj,
1464                 struct cl_io *io)
1465 {
1466         CL_IO_SLICE_CLEAN(lov_env_io(env), lis_preserved);
1467
1468         CDEBUG(D_INODE, DFID "io %p type %d ignore/verify layout %d/%d\n",
1469                PFID(lu_object_fid(&obj->co_lu)), io, io->ci_type,
1470                io->ci_ignore_layout, io->ci_verify_layout);
1471
1472         /* IO type CIT_MISC with ci_ignore_layout set are usually invoked from
1473          * the OSC layer. It shouldn't take lov layout conf lock in that case,
1474          * because as long as the OSC object exists, the layout can't be
1475          * reconfigured. */
1476         return LOV_2DISPATCH_MAYLOCK(cl2lov(obj), llo_io_init,
1477                         !(io->ci_ignore_layout && io->ci_type == CIT_MISC),
1478                         env, obj, io);
1479 }
1480
1481 /**
1482  * An implementation of cl_object_operations::clo_attr_get() method for lov
1483  * layer. For raid0 layout this collects and merges attributes of all
1484  * sub-objects.
1485  */
1486 static int lov_attr_get(const struct lu_env *env, struct cl_object *obj,
1487                         struct cl_attr *attr)
1488 {
1489         /* do not take lock, as this function is called under a
1490          * spin-lock. Layout is protected from changing by ongoing IO. */
1491         return LOV_2DISPATCH_NOLOCK(cl2lov(obj), llo_getattr, env, obj, attr);
1492 }
1493
1494 static int lov_attr_update(const struct lu_env *env, struct cl_object *obj,
1495                            const struct cl_attr *attr, unsigned valid)
1496 {
1497         /*
1498          * No dispatch is required here, as no layout implements this.
1499          */
1500         return 0;
1501 }
1502
1503 int lov_lock_init(const struct lu_env *env, struct cl_object *obj,
1504                   struct cl_lock *lock, const struct cl_io *io)
1505 {
1506         /* No need to lock because we've taken one refcount of layout.  */
1507         return LOV_2DISPATCH_NOLOCK(cl2lov(obj), llo_lock_init, env, obj, lock,
1508                                     io);
1509 }
1510
1511 /**
1512  * We calculate on which OST the mapping will end. If the length of mapping
1513  * is greater than (stripe_size * stripe_count) then the last_stripe will
1514  * will be one just before start_stripe. Else we check if the mapping
1515  * intersects each OST and find last_stripe.
1516  * This function returns the last_stripe and also sets the stripe_count
1517  * over which the mapping is spread
1518  *
1519  * \param lsm [in]              striping information for the file
1520  * \param index [in]            stripe component index
1521  * \param ext [in]              logical extent of mapping
1522  * \param start_stripe [in]     starting stripe of the mapping
1523  * \param stripe_count [out]    the number of stripes across which to map is
1524  *                              returned
1525  *
1526  * \retval last_stripe          return the last stripe of the mapping
1527  */
1528 static int fiemap_calc_last_stripe(struct lov_stripe_md *lsm, int index,
1529                                    struct lu_extent *ext,
1530                                    int start_stripe, int *stripe_count)
1531 {
1532         struct lov_stripe_md_entry *lsme = lsm->lsm_entries[index];
1533         int last_stripe;
1534         u64 obd_start;
1535         u64 obd_end;
1536         int i, j;
1537
1538         if (ext->e_end - ext->e_start >
1539             lsme->lsme_stripe_size * lsme->lsme_stripe_count) {
1540                 last_stripe = (start_stripe < 1 ? lsme->lsme_stripe_count - 1 :
1541                                                   start_stripe - 1);
1542                 *stripe_count = lsme->lsme_stripe_count;
1543         } else {
1544                 for (j = 0, i = start_stripe; j < lsme->lsme_stripe_count;
1545                      i = (i + 1) % lsme->lsme_stripe_count, j++) {
1546                         if ((lov_stripe_intersects(lsm, index,  i, ext,
1547                                                    &obd_start, &obd_end)) == 0)
1548                                 break;
1549                 }
1550                 *stripe_count = j;
1551                 last_stripe = (start_stripe + j - 1) % lsme->lsme_stripe_count;
1552         }
1553
1554         return last_stripe;
1555 }
1556
1557 /**
1558  * Set fe_device and copy extents from local buffer into main return buffer.
1559  *
1560  * \param fiemap [out]          fiemap to hold all extents
1561  * \param lcl_fm_ext [in]       array of fiemap extents get from OSC layer
1562  * \param ost_index [in]        OST index to be written into the fm_device
1563  *                              field for each extent
1564  * \param ext_count [in]        number of extents to be copied
1565  * \param current_extent [in]   where to start copying in the extent array
1566  */
1567 static void fiemap_prepare_and_copy_exts(struct fiemap *fiemap,
1568                                          struct fiemap_extent *lcl_fm_ext,
1569                                          int ost_index, unsigned int ext_count,
1570                                          int current_extent)
1571 {
1572         char            *to;
1573         unsigned int    ext;
1574
1575         for (ext = 0; ext < ext_count; ext++) {
1576                 lcl_fm_ext[ext].fe_device = ost_index;
1577                 lcl_fm_ext[ext].fe_flags |= FIEMAP_EXTENT_NET;
1578         }
1579
1580         /* Copy fm_extent's from fm_local to return buffer */
1581         to = (char *)fiemap + fiemap_count_to_size(current_extent);
1582         memcpy(to, lcl_fm_ext, ext_count * sizeof(struct fiemap_extent));
1583 }
1584
1585 #define FIEMAP_BUFFER_SIZE 4096
1586
1587 /**
1588  * Non-zero fe_logical indicates that this is a continuation FIEMAP
1589  * call. The local end offset and the device are sent in the first
1590  * fm_extent. This function calculates the stripe number from the index.
1591  * This function returns a stripe_no on which mapping is to be restarted.
1592  *
1593  * This function returns fm_end_offset which is the in-OST offset at which
1594  * mapping should be restarted. If fm_end_offset=0 is returned then caller
1595  * will re-calculate proper offset in next stripe.
1596  * Note that the first extent is passed to lov_get_info via the value field.
1597  *
1598  * \param fiemap [in]           fiemap request header
1599  * \param lsm [in]              striping information for the file
1600  * \param index [in]            stripe component index
1601  * \param ext [in]              logical extent of mapping
1602  * \param start_stripe [out]    starting stripe will be returned in this
1603  */
1604 static u64 fiemap_calc_fm_end_offset(struct fiemap *fiemap,
1605                                      struct lov_stripe_md *lsm,
1606                                      int index, struct lu_extent *ext,
1607                                      int *start_stripe)
1608 {
1609         struct lov_stripe_md_entry *lsme = lsm->lsm_entries[index];
1610         u64 local_end = fiemap->fm_extents[0].fe_logical;
1611         u64 lun_start;
1612         u64 lun_end;
1613         u64 fm_end_offset;
1614         int stripe_no = -1;
1615         int i;
1616
1617         if (fiemap->fm_extent_count == 0 ||
1618             fiemap->fm_extents[0].fe_logical == 0)
1619                 return 0;
1620
1621         /* Find out stripe_no from ost_index saved in the fe_device */
1622         for (i = 0; i < lsme->lsme_stripe_count; i++) {
1623                 struct lov_oinfo *oinfo = lsme->lsme_oinfo[i];
1624
1625                 if (lov_oinfo_is_dummy(oinfo))
1626                         continue;
1627
1628                 if (oinfo->loi_ost_idx == fiemap->fm_extents[0].fe_device) {
1629                         stripe_no = i;
1630                         break;
1631                 }
1632         }
1633
1634         if (stripe_no == -1)
1635                 return -EINVAL;
1636
1637         /* If we have finished mapping on previous device, shift logical
1638          * offset to start of next device */
1639         if (lov_stripe_intersects(lsm, index, stripe_no, ext,
1640                                    &lun_start, &lun_end) != 0 &&
1641             local_end < lun_end) {
1642                 fm_end_offset = local_end;
1643                 *start_stripe = stripe_no;
1644         } else {
1645                 /* This is a special value to indicate that caller should
1646                  * calculate offset in next stripe. */
1647                 fm_end_offset = 0;
1648                 *start_stripe = (stripe_no + 1) % lsme->lsme_stripe_count;
1649         }
1650
1651         return fm_end_offset;
1652 }
1653
1654 struct fiemap_state {
1655         struct fiemap           *fs_fm;
1656         struct lu_extent        fs_ext;
1657         u64                     fs_length;
1658         u64                     fs_end_offset;
1659         int                     fs_cur_extent;
1660         int                     fs_cnt_need;
1661         int                     fs_start_stripe;
1662         int                     fs_last_stripe;
1663         bool                    fs_device_done;
1664         bool                    fs_finish_stripe;
1665         bool                    fs_enough;
1666 };
1667
1668 static struct cl_object *lov_find_subobj(const struct lu_env *env,
1669                                          struct lov_object *lov,
1670                                          struct lov_stripe_md *lsm,
1671                                          int index)
1672 {
1673         struct lov_device       *dev = lu2lov_dev(lov2lu(lov)->lo_dev);
1674         struct lov_thread_info  *lti = lov_env_info(env);
1675         struct lu_fid           *ofid = &lti->lti_fid;
1676         struct lov_oinfo        *oinfo;
1677         struct cl_device        *subdev;
1678         int                     entry = lov_comp_entry(index);
1679         int                     stripe = lov_comp_stripe(index);
1680         int                     ost_idx;
1681         int                     rc;
1682         struct cl_object        *result;
1683
1684         if (lov->lo_type != LLT_COMP)
1685                 GOTO(out, result = NULL);
1686
1687         if (entry >= lsm->lsm_entry_count ||
1688             stripe >= lsm->lsm_entries[entry]->lsme_stripe_count)
1689                 GOTO(out, result = NULL);
1690
1691         oinfo = lsm->lsm_entries[entry]->lsme_oinfo[stripe];
1692         ost_idx = oinfo->loi_ost_idx;
1693         rc = ostid_to_fid(ofid, &oinfo->loi_oi, ost_idx);
1694         if (rc != 0)
1695                 GOTO(out, result = NULL);
1696
1697         subdev = lovsub2cl_dev(dev->ld_target[ost_idx]);
1698         result = lov_sub_find(env, subdev, ofid, NULL);
1699 out:
1700         if (result == NULL)
1701                 result = ERR_PTR(-EINVAL);
1702         return result;
1703 }
1704
1705 int fiemap_for_stripe(const struct lu_env *env, struct cl_object *obj,
1706                       struct lov_stripe_md *lsm, struct fiemap *fiemap,
1707                       size_t *buflen, struct ll_fiemap_info_key *fmkey,
1708                       int index, int stripeno, struct fiemap_state *fs)
1709 {
1710         struct lov_stripe_md_entry *lsme = lsm->lsm_entries[index];
1711         struct cl_object *subobj;
1712         struct lov_obd *lov = lu2lov_dev(obj->co_lu.lo_dev)->ld_lov;
1713         struct fiemap_extent *fm_ext = &fs->fs_fm->fm_extents[0];
1714         u64 req_fm_len; /* Stores length of required mapping */
1715         u64 len_mapped_single_call;
1716         u64 lun_start;
1717         u64 lun_end;
1718         u64 obd_object_end;
1719         unsigned int ext_count;
1720         /* EOF for object */
1721         bool ost_eof = false;
1722         /* done with required mapping for this OST? */
1723         bool ost_done = false;
1724         int ost_index;
1725         int rc = 0;
1726
1727         fs->fs_device_done = false;
1728         /* Find out range of mapping on this stripe */
1729         if ((lov_stripe_intersects(lsm, index, stripeno, &fs->fs_ext,
1730                                    &lun_start, &obd_object_end)) == 0)
1731                 return 0;
1732
1733         if (lov_oinfo_is_dummy(lsme->lsme_oinfo[stripeno]))
1734                 return -EIO;
1735
1736         /* If this is a continuation FIEMAP call and we are on
1737          * starting stripe then lun_start needs to be set to
1738          * end_offset */
1739         if (fs->fs_end_offset != 0 && stripeno == fs->fs_start_stripe)
1740                 lun_start = fs->fs_end_offset;
1741         lun_end = lov_size_to_stripe(lsm, index, fs->fs_ext.e_end, stripeno);
1742         if (lun_start == lun_end)
1743                 return 0;
1744
1745         req_fm_len = obd_object_end - lun_start + 1;
1746         fs->fs_fm->fm_length = 0;
1747         len_mapped_single_call = 0;
1748
1749         /* find lobsub object */
1750         subobj = lov_find_subobj(env, cl2lov(obj), lsm,
1751                                  lov_comp_index(index, stripeno));
1752         if (IS_ERR(subobj))
1753                 return PTR_ERR(subobj);
1754         /* If the output buffer is very large and the objects have many
1755          * extents we may need to loop on a single OST repeatedly */
1756         do {
1757                 if (fiemap->fm_extent_count > 0) {
1758                         /* Don't get too many extents. */
1759                         if (fs->fs_cur_extent + fs->fs_cnt_need >
1760                             fiemap->fm_extent_count)
1761                                 fs->fs_cnt_need = fiemap->fm_extent_count -
1762                                                   fs->fs_cur_extent;
1763                 }
1764
1765                 lun_start += len_mapped_single_call;
1766                 fs->fs_fm->fm_length = req_fm_len - len_mapped_single_call;
1767                 req_fm_len = fs->fs_fm->fm_length;
1768                 /**
1769                  * If we've collected enough extent map, we'd request 1 more,
1770                  * to see whether we coincidentally finished all available
1771                  * extent map, so that FIEMAP_EXTENT_LAST would be set.
1772                  */
1773                 fs->fs_fm->fm_extent_count = fs->fs_enough ?
1774                                              1 : fs->fs_cnt_need;
1775                 fs->fs_fm->fm_mapped_extents = 0;
1776                 fs->fs_fm->fm_flags = fiemap->fm_flags;
1777
1778                 ost_index = lsme->lsme_oinfo[stripeno]->loi_ost_idx;
1779
1780                 if (ost_index < 0 || ost_index >= lov->desc.ld_tgt_count)
1781                         GOTO(obj_put, rc = -EINVAL);
1782                 /* If OST is inactive, return extent with UNKNOWN flag. */
1783                 if (!lov->lov_tgts[ost_index]->ltd_active) {
1784                         fs->fs_fm->fm_flags |= FIEMAP_EXTENT_LAST;
1785                         fs->fs_fm->fm_mapped_extents = 1;
1786
1787                         fm_ext[0].fe_logical = lun_start;
1788                         fm_ext[0].fe_length = obd_object_end - lun_start + 1;
1789                         fm_ext[0].fe_flags |= FIEMAP_EXTENT_UNKNOWN;
1790
1791                         goto inactive_tgt;
1792                 }
1793
1794                 fs->fs_fm->fm_start = lun_start;
1795                 fs->fs_fm->fm_flags &= ~FIEMAP_FLAG_DEVICE_ORDER;
1796                 memcpy(&fmkey->lfik_fiemap, fs->fs_fm, sizeof(*fs->fs_fm));
1797                 *buflen = fiemap_count_to_size(fs->fs_fm->fm_extent_count);
1798
1799                 rc = cl_object_fiemap(env, subobj, fmkey, fs->fs_fm, buflen);
1800                 if (rc != 0)
1801                         GOTO(obj_put, rc);
1802 inactive_tgt:
1803                 ext_count = fs->fs_fm->fm_mapped_extents;
1804                 if (ext_count == 0) {
1805                         ost_done = true;
1806                         fs->fs_device_done = true;
1807                         /* If last stripe has hold at the end,
1808                          * we need to return */
1809                         if (stripeno == fs->fs_last_stripe) {
1810                                 fiemap->fm_mapped_extents = 0;
1811                                 fs->fs_finish_stripe = true;
1812                                 GOTO(obj_put, rc);
1813                         }
1814                         break;
1815                 } else if (fs->fs_enough) {
1816                         /*
1817                          * We've collected enough extents and there are
1818                          * more extents after it.
1819                          */
1820                         GOTO(obj_put, rc);
1821                 }
1822
1823                 /* If we just need num of extents, got to next device */
1824                 if (fiemap->fm_extent_count == 0) {
1825                         fs->fs_cur_extent += ext_count;
1826                         break;
1827                 }
1828
1829                 /* prepare to copy retrived map extents */
1830                 len_mapped_single_call = fm_ext[ext_count - 1].fe_logical +
1831                                          fm_ext[ext_count - 1].fe_length -
1832                                          lun_start;
1833
1834                 /* Have we finished mapping on this device? */
1835                 if (req_fm_len <= len_mapped_single_call) {
1836                         ost_done = true;
1837                         fs->fs_device_done = true;
1838                 }
1839
1840                 /* Clear the EXTENT_LAST flag which can be present on
1841                  * the last extent */
1842                 if (fm_ext[ext_count - 1].fe_flags & FIEMAP_EXTENT_LAST)
1843                         fm_ext[ext_count - 1].fe_flags &= ~FIEMAP_EXTENT_LAST;
1844                 if (lov_stripe_size(lsm, index,
1845                                     fm_ext[ext_count - 1].fe_logical +
1846                                     fm_ext[ext_count - 1].fe_length,
1847                                     stripeno) >= fmkey->lfik_oa.o_size) {
1848                         ost_eof = true;
1849                         fs->fs_device_done = true;
1850                 }
1851
1852                 fiemap_prepare_and_copy_exts(fiemap, fm_ext, ost_index,
1853                                              ext_count, fs->fs_cur_extent);
1854                 fs->fs_cur_extent += ext_count;
1855
1856                 /* Ran out of available extents? */
1857                 if (fs->fs_cur_extent >= fiemap->fm_extent_count)
1858                         fs->fs_enough = true;
1859         } while (!ost_done && !ost_eof);
1860
1861         if (stripeno == fs->fs_last_stripe)
1862                 fs->fs_finish_stripe = true;
1863 obj_put:
1864         cl_object_put(env, subobj);
1865
1866         return rc;
1867 }
1868
1869 /**
1870  * Break down the FIEMAP request and send appropriate calls to individual OSTs.
1871  * This also handles the restarting of FIEMAP calls in case mapping overflows
1872  * the available number of extents in single call.
1873  *
1874  * \param env [in]              lustre environment
1875  * \param obj [in]              file object
1876  * \param fmkey [in]            fiemap request header and other info
1877  * \param fiemap [out]          fiemap buffer holding retrived map extents
1878  * \param buflen [in/out]       max buffer length of @fiemap, when iterate
1879  *                              each OST, it is used to limit max map needed
1880  * \retval 0    success
1881  * \retval < 0  error
1882  */
1883 static int lov_object_fiemap(const struct lu_env *env, struct cl_object *obj,
1884                              struct ll_fiemap_info_key *fmkey,
1885                              struct fiemap *fiemap, size_t *buflen)
1886 {
1887         struct lov_stripe_md_entry *lsme;
1888         struct lov_stripe_md *lsm;
1889         struct fiemap *fm_local = NULL;
1890         loff_t whole_start;
1891         loff_t whole_end;
1892         int entry;
1893         int start_entry;
1894         int end_entry;
1895         int cur_stripe = 0;
1896         int stripe_count;
1897         unsigned int buffer_size = FIEMAP_BUFFER_SIZE;
1898         int rc = 0;
1899         struct fiemap_state fs = { 0 };
1900         ENTRY;
1901
1902         lsm = lov_lsm_addref(cl2lov(obj));
1903         if (lsm == NULL) {
1904                 /* no extent: there is no object for mapping */
1905                 fiemap->fm_mapped_extents = 0;
1906                 return 0;
1907         }
1908
1909         if (!(fiemap->fm_flags & FIEMAP_FLAG_DEVICE_ORDER)) {
1910                 /**
1911                  * If the entry count > 1 or stripe_count > 1 and the
1912                  * application does not understand DEVICE_ORDER flag,
1913                  * it cannot interpret the extents correctly.
1914                  */
1915                 if (lsm->lsm_entry_count > 1 ||
1916                     (lsm->lsm_entry_count == 1 &&
1917                      lsm->lsm_entries[0]->lsme_stripe_count > 1))
1918                         GOTO(out_lsm, rc = -ENOTSUPP);
1919         }
1920
1921         /* No support for DOM layout yet. */
1922         if (lsme_is_dom(lsm->lsm_entries[0]))
1923                 GOTO(out_lsm, rc = -ENOTSUPP);
1924
1925         if (lsm->lsm_is_released) {
1926                 if (fiemap->fm_start < fmkey->lfik_oa.o_size) {
1927                         /**
1928                          * released file, return a minimal FIEMAP if
1929                          * request fits in file-size.
1930                          */
1931                         fiemap->fm_mapped_extents = 1;
1932                         fiemap->fm_extents[0].fe_logical = fiemap->fm_start;
1933                         if (fiemap->fm_start + fiemap->fm_length <
1934                             fmkey->lfik_oa.o_size)
1935                                 fiemap->fm_extents[0].fe_length =
1936                                         fiemap->fm_length;
1937                         else
1938                                 fiemap->fm_extents[0].fe_length =
1939                                         fmkey->lfik_oa.o_size -
1940                                         fiemap->fm_start;
1941                         fiemap->fm_extents[0].fe_flags |=
1942                                 FIEMAP_EXTENT_UNKNOWN | FIEMAP_EXTENT_LAST;
1943                 }
1944                 GOTO(out_lsm, rc = 0);
1945         }
1946
1947         /* buffer_size is small to hold fm_extent_count of extents. */
1948         if (fiemap_count_to_size(fiemap->fm_extent_count) < buffer_size)
1949                 buffer_size = fiemap_count_to_size(fiemap->fm_extent_count);
1950
1951         OBD_ALLOC_LARGE(fm_local, buffer_size);
1952         if (fm_local == NULL)
1953                 GOTO(out_lsm, rc = -ENOMEM);
1954
1955         /**
1956          * Requested extent count exceeds the fiemap buffer size, shrink our
1957          * ambition.
1958          */
1959         if (fiemap_count_to_size(fiemap->fm_extent_count) > *buflen)
1960                 fiemap->fm_extent_count = fiemap_size_to_count(*buflen);
1961         if (fiemap->fm_extent_count == 0)
1962                 fs.fs_cnt_need = 0;
1963
1964         fs.fs_enough = false;
1965         fs.fs_cur_extent = 0;
1966         fs.fs_fm = fm_local;
1967         fs.fs_cnt_need = fiemap_size_to_count(buffer_size);
1968
1969         whole_start = fiemap->fm_start;
1970         /* whole_start is beyond the end of the file */
1971         if (whole_start > fmkey->lfik_oa.o_size)
1972                 GOTO(out_fm_local, rc = -EINVAL);
1973         whole_end = (fiemap->fm_length == OBD_OBJECT_EOF) ?
1974                                         fmkey->lfik_oa.o_size :
1975                                         whole_start + fiemap->fm_length - 1;
1976         /**
1977          * If fiemap->fm_length != OBD_OBJECT_EOF but whole_end exceeds file
1978          * size
1979          */
1980         if (whole_end > fmkey->lfik_oa.o_size)
1981                 whole_end = fmkey->lfik_oa.o_size;
1982
1983         start_entry = lov_lsm_entry(lsm, whole_start);
1984         end_entry = lov_lsm_entry(lsm, whole_end);
1985         if (end_entry == -1)
1986                 end_entry = lsm->lsm_entry_count - 1;
1987
1988         if (start_entry == -1 || end_entry == -1)
1989                 GOTO(out_fm_local, rc = -EINVAL);
1990
1991         /* TODO: rewrite it with lov_foreach_io_layout() */
1992         for (entry = start_entry; entry <= end_entry; entry++) {
1993                 lsme = lsm->lsm_entries[entry];
1994
1995                 if (!lsme_inited(lsme))
1996                         break;
1997
1998                 if (entry == start_entry)
1999                         fs.fs_ext.e_start = whole_start;
2000                 else
2001                         fs.fs_ext.e_start = lsme->lsme_extent.e_start;
2002                 if (entry == end_entry)
2003                         fs.fs_ext.e_end = whole_end;
2004                 else
2005                         fs.fs_ext.e_end = lsme->lsme_extent.e_end - 1;
2006                 fs.fs_length = fs.fs_ext.e_end - fs.fs_ext.e_start + 1;
2007
2008                 /* Calculate start stripe, last stripe and length of mapping */
2009                 fs.fs_start_stripe = lov_stripe_number(lsm, entry,
2010                                                        fs.fs_ext.e_start);
2011                 fs.fs_last_stripe = fiemap_calc_last_stripe(lsm, entry,
2012                                         &fs.fs_ext, fs.fs_start_stripe,
2013                                         &stripe_count);
2014                 fs.fs_end_offset = fiemap_calc_fm_end_offset(fiemap, lsm, entry,
2015                                         &fs.fs_ext, &fs.fs_start_stripe);
2016                 /* Check each stripe */
2017                 for (cur_stripe = fs.fs_start_stripe; stripe_count > 0;
2018                      --stripe_count,
2019                      cur_stripe = (cur_stripe + 1) % lsme->lsme_stripe_count) {
2020                         rc = fiemap_for_stripe(env, obj, lsm, fiemap, buflen,
2021                                                fmkey, entry, cur_stripe, &fs);
2022                         if (rc < 0)
2023                                 GOTO(out_fm_local, rc);
2024                         if (fs.fs_enough)
2025                                 GOTO(finish, rc);
2026                         if (fs.fs_finish_stripe)
2027                                 break;
2028                 } /* for each stripe */
2029         } /* for covering layout component */
2030         /*
2031          * We've traversed all components, set @entry to the last component
2032          * entry, it's for the last stripe check.
2033          */
2034         entry--;
2035 finish:
2036         /* Indicate that we are returning device offsets unless file just has
2037          * single stripe */
2038         if (lsm->lsm_entry_count > 1 ||
2039             (lsm->lsm_entry_count == 1 &&
2040              lsm->lsm_entries[0]->lsme_stripe_count > 1))
2041                 fiemap->fm_flags |= FIEMAP_FLAG_DEVICE_ORDER;
2042
2043         if (fiemap->fm_extent_count == 0)
2044                 goto skip_last_device_calc;
2045
2046         /* Check if we have reached the last stripe and whether mapping for that
2047          * stripe is done. */
2048         if ((cur_stripe == fs.fs_last_stripe) && fs.fs_device_done)
2049                 fiemap->fm_extents[fs.fs_cur_extent - 1].fe_flags |=
2050                                                              FIEMAP_EXTENT_LAST;
2051 skip_last_device_calc:
2052         fiemap->fm_mapped_extents = fs.fs_cur_extent;
2053 out_fm_local:
2054         OBD_FREE_LARGE(fm_local, buffer_size);
2055
2056 out_lsm:
2057         lov_lsm_put(lsm);
2058         return rc;
2059 }
2060
2061 static int lov_object_getstripe(const struct lu_env *env, struct cl_object *obj,
2062                                 struct lov_user_md __user *lum, size_t size)
2063 {
2064         struct lov_object       *lov = cl2lov(obj);
2065         struct lov_stripe_md    *lsm;
2066         int                     rc = 0;
2067         ENTRY;
2068
2069         lsm = lov_lsm_addref(lov);
2070         if (lsm == NULL)
2071                 RETURN(-ENODATA);
2072
2073         rc = lov_getstripe(env, cl2lov(obj), lsm, lum, size);
2074         lov_lsm_put(lsm);
2075         RETURN(rc);
2076 }
2077
2078 static int lov_object_layout_get(const struct lu_env *env,
2079                                  struct cl_object *obj,
2080                                  struct cl_layout *cl)
2081 {
2082         struct lov_object *lov = cl2lov(obj);
2083         struct lov_stripe_md *lsm = lov_lsm_addref(lov);
2084         struct lu_buf *buf = &cl->cl_buf;
2085         ssize_t rc;
2086         ENTRY;
2087
2088         if (lsm == NULL) {
2089                 cl->cl_size = 0;
2090                 cl->cl_layout_gen = CL_LAYOUT_GEN_EMPTY;
2091
2092                 RETURN(0);
2093         }
2094
2095         cl->cl_size = lov_comp_md_size(lsm);
2096         cl->cl_layout_gen = lsm->lsm_layout_gen;
2097         cl->cl_is_released = lsm->lsm_is_released;
2098         cl->cl_is_composite = lsm_is_composite(lsm->lsm_magic);
2099
2100         rc = lov_lsm_pack(lsm, buf->lb_buf, buf->lb_len);
2101         lov_lsm_put(lsm);
2102
2103         RETURN(rc < 0 ? rc : 0);
2104 }
2105
2106 static loff_t lov_object_maxbytes(struct cl_object *obj)
2107 {
2108         struct lov_object *lov = cl2lov(obj);
2109         struct lov_stripe_md *lsm = lov_lsm_addref(lov);
2110         loff_t maxbytes;
2111
2112         if (lsm == NULL)
2113                 return LLONG_MAX;
2114
2115         maxbytes = lsm->lsm_maxbytes;
2116
2117         lov_lsm_put(lsm);
2118
2119         return maxbytes;
2120 }
2121
2122 static int lov_object_flush(const struct lu_env *env, struct cl_object *obj,
2123                             struct ldlm_lock *lock)
2124 {
2125         return LOV_2DISPATCH_MAYLOCK(cl2lov(obj), llo_flush, true, env, obj,
2126                                      lock);
2127 }
2128
2129 static const struct cl_object_operations lov_ops = {
2130         .coo_page_init    = lov_page_init,
2131         .coo_lock_init    = lov_lock_init,
2132         .coo_io_init      = lov_io_init,
2133         .coo_attr_get     = lov_attr_get,
2134         .coo_attr_update  = lov_attr_update,
2135         .coo_conf_set     = lov_conf_set,
2136         .coo_getstripe    = lov_object_getstripe,
2137         .coo_layout_get   = lov_object_layout_get,
2138         .coo_maxbytes     = lov_object_maxbytes,
2139         .coo_fiemap       = lov_object_fiemap,
2140         .coo_object_flush = lov_object_flush
2141 };
2142
2143 static const struct lu_object_operations lov_lu_obj_ops = {
2144         .loo_object_init      = lov_object_init,
2145         .loo_object_delete    = lov_object_delete,
2146         .loo_object_release   = NULL,
2147         .loo_object_free      = lov_object_free,
2148         .loo_object_print     = lov_object_print,
2149         .loo_object_invariant = NULL
2150 };
2151
2152 struct lu_object *lov_object_alloc(const struct lu_env *env,
2153                                    const struct lu_object_header *unused,
2154                                    struct lu_device *dev)
2155 {
2156         struct lov_object *lov;
2157         struct lu_object  *obj;
2158
2159         ENTRY;
2160         OBD_SLAB_ALLOC_PTR_GFP(lov, lov_object_kmem, GFP_NOFS);
2161         if (lov != NULL) {
2162                 obj = lov2lu(lov);
2163                 lu_object_init(obj, NULL, dev);
2164                 lov->lo_cl.co_ops = &lov_ops;
2165                 lov->lo_type = -1; /* invalid, to catch uninitialized type */
2166                 /*
2167                  * object io operation vector (cl_object::co_iop) is installed
2168                  * later in lov_object_init(), as different vectors are used
2169                  * for object with different layouts.
2170                  */
2171                 obj->lo_ops = &lov_lu_obj_ops;
2172         } else
2173                 obj = NULL;
2174         RETURN(obj);
2175 }
2176
2177 struct lov_stripe_md *lov_lsm_addref(struct lov_object *lov)
2178 {
2179         struct lov_stripe_md *lsm = NULL;
2180
2181         lov_conf_freeze(lov);
2182         if (lov->lo_lsm != NULL) {
2183                 lsm = lsm_addref(lov->lo_lsm);
2184                 CDEBUG(D_INODE, "lsm %p addref %d/%d by %p.\n",
2185                         lsm, atomic_read(&lsm->lsm_refc),
2186                         lov->lo_layout_invalid, current);
2187         }
2188         lov_conf_thaw(lov);
2189         return lsm;
2190 }
2191
2192 int lov_read_and_clear_async_rc(struct cl_object *clob)
2193 {
2194         struct lu_object *luobj;
2195         int rc = 0;
2196         ENTRY;
2197
2198         luobj = lu_object_locate(&cl_object_header(clob)->coh_lu,
2199                                  &lov_device_type);
2200         if (luobj != NULL) {
2201                 struct lov_object *lov = lu2lov(luobj);
2202
2203                 lov_conf_freeze(lov);
2204                 switch (lov->lo_type) {
2205                 case LLT_COMP: {
2206                         struct lov_stripe_md *lsm;
2207                         int i;
2208
2209                         lsm = lov->lo_lsm;
2210                         LASSERT(lsm != NULL);
2211                         for (i = 0; i < lsm->lsm_entry_count; i++) {
2212                                 struct lov_stripe_md_entry *lse =
2213                                                 lsm->lsm_entries[i];
2214                                 int j;
2215
2216                                 if (!lsme_inited(lse))
2217                                         break;
2218
2219                                 for (j = 0; j < lse->lsme_stripe_count; j++) {
2220                                         struct lov_oinfo *loi =
2221                                                         lse->lsme_oinfo[j];
2222
2223                                         if (lov_oinfo_is_dummy(loi))
2224                                                 continue;
2225
2226                                         if (loi->loi_ar.ar_rc && !rc)
2227                                                 rc = loi->loi_ar.ar_rc;
2228                                         loi->loi_ar.ar_rc = 0;
2229                                 }
2230                         }
2231                 }
2232                 case LLT_RELEASED:
2233                 case LLT_EMPTY:
2234                         /* fall through */
2235                 case LLT_FOREIGN:
2236                         break;
2237                 default:
2238                         LBUG();
2239                 }
2240                 lov_conf_thaw(lov);
2241         }
2242         RETURN(rc);
2243 }
2244 EXPORT_SYMBOL(lov_read_and_clear_async_rc);
2245
2246 /** @} lov */