Whamcloud - gitweb
67700ddec0c80ea660aee23d3c4875e7072f9ab3
[fs/lustre-release.git] / lustre / lov / lov_lock.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
30  * Use is subject to license terms.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * Implementation of cl_lock for LOV layer.
37  *
38  *   Author: Nikita Danilov <nikita.danilov@sun.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_LOV
42
43 #include "lov_cl_internal.h"
44
45 /** \addtogroup lov lov @{ */
46
47 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
48                                                struct cl_lock *parent);
49
50 /*****************************************************************************
51  *
52  * Lov lock operations.
53  *
54  */
55
56 static struct lov_sublock_env *lov_sublock_env_get(const struct lu_env *env,
57                                                    struct cl_lock *parent,
58                                                    struct lov_lock_sub *lls)
59 {
60         struct lov_sublock_env *subenv;
61         struct lov_io          *lio    = lov_env_io(env);
62         struct cl_io           *io     = lio->lis_cl.cis_io;
63         struct lov_io_sub      *sub;
64
65         subenv = &lov_env_session(env)->ls_subenv;
66
67         /*
68          * FIXME: We tend to use the subio's env & io to call the sublock
69          * lock operations because osc lock sometimes stores some control
70          * variables in thread's IO infomation(Now only lockless information).
71          * However, if the lock's host(object) is different from the object
72          * for current IO, we have no way to get the subenv and subio because
73          * they are not initialized at all. As a temp fix, in this case,
74          * we still borrow the parent's env to call sublock operations.
75          */
76         if (!cl_object_same(io->ci_obj, parent->cll_descr.cld_obj)) {
77                 subenv->lse_env = env;
78                 subenv->lse_io  = io;
79                 subenv->lse_sub = NULL;
80         } else {
81                 LASSERT(io != NULL);
82                 sub = lov_sub_get(env, lio, lls->sub_stripe);
83                 if (!IS_ERR(sub)) {
84                         subenv->lse_env = sub->sub_env;
85                         subenv->lse_io  = sub->sub_io;
86                         subenv->lse_sub = sub;
87                 } else {
88                         subenv = (void*)sub;
89                 }
90         }
91         return subenv;
92 }
93
94 static void lov_sublock_env_put(struct lov_sublock_env *subenv)
95 {
96         if (subenv && subenv->lse_sub)
97                 lov_sub_put(subenv->lse_sub);
98 }
99
100 static void lov_sublock_adopt(const struct lu_env *env, struct lov_lock *lck,
101                               struct cl_lock *sublock, int idx,
102                               struct lov_lock_link *link)
103 {
104         struct lovsub_lock *lsl;
105         struct cl_lock     *parent = lck->lls_cl.cls_lock;
106         int                 rc;
107
108         LASSERT(cl_lock_is_mutexed(parent));
109         LASSERT(cl_lock_is_mutexed(sublock));
110         ENTRY;
111
112         lsl = cl2sub_lock(sublock);
113         /*
114          * check that sub-lock doesn't have lock link to this top-lock.
115          */
116         LASSERT(lov_lock_link_find(env, lck, lsl) == NULL);
117         LASSERT(idx < lck->lls_nr);
118
119         lck->lls_sub[idx].sub_lock = lsl;
120         lck->lls_nr_filled++;
121         LASSERT(lck->lls_nr_filled <= lck->lls_nr);
122         list_add_tail(&link->lll_list, &lsl->lss_parents);
123         link->lll_idx = idx;
124         link->lll_super = lck;
125         cl_lock_get(parent);
126         lu_ref_add(&parent->cll_reference, "lov-child", sublock);
127         lck->lls_sub[idx].sub_flags |= LSF_HELD;
128         cl_lock_user_add(env, sublock);
129
130         rc = lov_sublock_modify(env, lck, lsl, &sublock->cll_descr, idx);
131         LASSERT(rc == 0); /* there is no way this can fail, currently */
132         EXIT;
133 }
134
135 static struct cl_lock *lov_sublock_alloc(const struct lu_env *env,
136                                          const struct cl_io *io,
137                                          struct lov_lock *lck,
138                                          int idx, struct lov_lock_link **out)
139 {
140         struct cl_lock       *sublock;
141         struct cl_lock       *parent;
142         struct lov_lock_link *link;
143
144         LASSERT(idx < lck->lls_nr);
145         ENTRY;
146
147         OBD_SLAB_ALLOC_PTR_GFP(link, lov_lock_link_kmem, CFS_ALLOC_IO);
148         if (link != NULL) {
149                 struct lov_sublock_env *subenv;
150                 struct lov_lock_sub  *lls;
151                 struct cl_lock_descr *descr;
152
153                 parent = lck->lls_cl.cls_lock;
154                 lls    = &lck->lls_sub[idx];
155                 descr  = &lls->sub_descr;
156
157                 subenv = lov_sublock_env_get(env, parent, lls);
158                 if (!IS_ERR(subenv)) {
159                         /* CAVEAT: Don't try to add a field in lov_lock_sub
160                          * to remember the subio. This is because lock is able
161                          * to be cached, but this is not true for IO. This
162                          * further means a sublock might be referenced in
163                          * different io context. -jay */
164
165                         sublock = cl_lock_hold(subenv->lse_env, subenv->lse_io,
166                                                descr, "lov-parent", parent);
167                         lov_sublock_env_put(subenv);
168                 } else {
169                         /* error occurs. */
170                         sublock = (void*)subenv;
171                 }
172
173                 if (!IS_ERR(sublock))
174                         *out = link;
175                 else
176                         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
177         } else
178                 sublock = ERR_PTR(-ENOMEM);
179         RETURN(sublock);
180 }
181
182 static void lov_sublock_unlock(const struct lu_env *env,
183                                struct lovsub_lock *lsl,
184                                struct cl_lock_closure *closure,
185                                struct lov_sublock_env *subenv)
186 {
187         ENTRY;
188         lov_sublock_env_put(subenv);
189         lsl->lss_active = NULL;
190         cl_lock_disclosure(env, closure);
191         EXIT;
192 }
193
194 static int lov_sublock_lock(const struct lu_env *env,
195                             struct lov_lock_sub *lls,
196                             struct cl_lock_closure *closure,
197                             struct lov_sublock_env **lsep)
198 {
199         struct cl_lock *child;
200         int             result = 0;
201         ENTRY;
202
203         LASSERT(list_empty(&closure->clc_list));
204
205         child = lls->sub_lock->lss_cl.cls_lock;
206         result = cl_lock_closure_build(env, child, closure);
207         if (result == 0) {
208                 struct cl_lock *parent = closure->clc_origin;
209
210                 LASSERT(cl_lock_is_mutexed(child));
211                 lls->sub_lock->lss_active = parent;
212
213                 if (lsep) {
214                         struct lov_sublock_env *subenv;
215                         subenv = lov_sublock_env_get(env, parent, lls);
216                         if (IS_ERR(subenv)) {
217                                 lov_sublock_unlock(env, lls->sub_lock,
218                                                    closure, NULL);
219                                 result = PTR_ERR(subenv);
220                         } else {
221                                 *lsep = subenv;
222                         }
223                 }
224         }
225         RETURN(result);
226 }
227
228 /**
229  * Updates the result of a top-lock operation from a result of sub-lock
230  * sub-operations. Top-operations like lov_lock_{enqueue,use,unuse}() iterate
231  * over sub-locks and lov_subresult() is used to calculate return value of a
232  * top-operation. To this end, possible return values of sub-operations are
233  * ordered as
234  *
235  *     - 0                  success
236  *     - CLO_WAIT           wait for event
237  *     - CLO_REPEAT         repeat top-operation
238  *     - -ne                fundamental error
239  *
240  * Top-level return code can only go down through this list. CLO_REPEAT
241  * overwrites CLO_WAIT, because lock mutex was released and sleeping condition
242  * has to be rechecked by the upper layer.
243  */
244 static int lov_subresult(int result, int rc)
245 {
246         int result_rank;
247         int rc_rank;
248
249         LASSERT(result <= 0 || result == CLO_REPEAT || result == CLO_WAIT);
250         LASSERT(rc <= 0 || rc == CLO_REPEAT || rc == CLO_WAIT);
251         CLASSERT(CLO_WAIT < CLO_REPEAT);
252
253         ENTRY;
254
255         /* calculate ranks in the ordering above */
256         result_rank = result < 0 ? 1 + CLO_REPEAT : result;
257         rc_rank = rc < 0 ? 1 + CLO_REPEAT : rc;
258
259         if (result_rank < rc_rank)
260                 result = rc;
261         RETURN(result);
262 }
263
264 /**
265  * Creates sub-locks for a given lov_lock for the first time.
266  *
267  * Goes through all sub-objects of top-object, and creates sub-locks on every
268  * sub-object intersecting with top-lock extent. This is complicated by the
269  * fact that top-lock (that is being created) can be accessed concurrently
270  * through already created sub-locks (possibly shared with other top-locks).
271  */
272 static int lov_lock_sub_init(const struct lu_env *env,
273                              struct lov_lock *lck, const struct cl_io *io)
274 {
275         int result = 0;
276         int i;
277         int j;
278         int nr;
279         int stripe;
280         int start_stripe;
281         obd_off start;
282         obd_off end;
283         obd_off file_start;
284         obd_off file_end;
285
286         struct lov_object       *loo    = cl2lov(lck->lls_cl.cls_obj);
287         struct lov_layout_raid0 *r0     = lov_r0(loo);
288         struct cl_lock          *parent = lck->lls_cl.cls_lock;
289
290         ENTRY;
291
292         lck->lls_orig = parent->cll_descr;
293         file_start = cl_offset(lov2cl(loo), parent->cll_descr.cld_start);
294         file_end   = cl_offset(lov2cl(loo), parent->cll_descr.cld_end + 1) - 1;
295
296         start_stripe = lov_stripe_number(r0->lo_lsm, file_start);
297         for (i = 0, nr = 0; i < r0->lo_nr; i++) {
298                 /*
299                  * XXX for wide striping smarter algorithm is desirable,
300                  * breaking out of the loop, early.
301                  */
302                 stripe = (start_stripe + i) % r0->lo_nr;
303                 if (lov_stripe_intersects(r0->lo_lsm, stripe,
304                                           file_start, file_end, &start, &end))
305                         nr++;
306         }
307         LASSERT(nr > 0);
308         OBD_ALLOC(lck->lls_sub, nr * sizeof lck->lls_sub[0]);
309         if (lck->lls_sub == NULL)
310                 RETURN(-ENOMEM);
311
312         lck->lls_nr = nr;
313         /*
314          * First, fill in sub-lock descriptions in
315          * lck->lls_sub[].sub_descr. They are used by lov_sublock_alloc()
316          * (called below in this function, and by lov_lock_enqueue()) to
317          * create sub-locks. At this moment, no other thread can access
318          * top-lock.
319          */
320         for (j = 0, nr = 0; j < i; ++j) {
321                 stripe = (start_stripe + j) % r0->lo_nr;
322                 if (lov_stripe_intersects(r0->lo_lsm, stripe,
323                                           file_start, file_end, &start, &end)) {
324                         struct cl_lock_descr *descr;
325
326                         descr = &lck->lls_sub[nr].sub_descr;
327
328                         LASSERT(descr->cld_obj == NULL);
329                         descr->cld_obj   = lovsub2cl(r0->lo_sub[stripe]);
330                         descr->cld_start = cl_index(descr->cld_obj, start);
331                         descr->cld_end   = cl_index(descr->cld_obj, end);
332                         descr->cld_mode  = parent->cll_descr.cld_mode;
333                         /* XXX has no effect */
334                         lck->lls_sub[nr].sub_got = *descr;
335                         lck->lls_sub[nr].sub_stripe = stripe;
336                         nr++;
337                 }
338         }
339         LASSERT(nr == lck->lls_nr);
340         /*
341          * Then, create sub-locks. Once at least one sub-lock was created,
342          * top-lock can be reached by other threads.
343          */
344         for (i = 0; i < lck->lls_nr; ++i) {
345                 struct cl_lock       *sublock;
346                 struct lov_lock_link *link;
347
348                 if (lck->lls_sub[i].sub_lock == NULL) {
349                         sublock = lov_sublock_alloc(env, io, lck, i, &link);
350                         if (IS_ERR(sublock)) {
351                                 result = PTR_ERR(sublock);
352                                 break;
353                         }
354                         cl_lock_mutex_get(env, sublock);
355                         cl_lock_mutex_get(env, parent);
356                         /*
357                          * recheck under mutex that sub-lock wasn't created
358                          * concurrently, and that top-lock is still alive.
359                          */
360                         if (lck->lls_sub[i].sub_lock == NULL &&
361                             parent->cll_state < CLS_FREEING) {
362                                 lov_sublock_adopt(env, lck, sublock, i, link);
363                                 cl_lock_mutex_put(env, parent);
364                         } else {
365                                 cl_lock_mutex_put(env, parent);
366                                 cl_lock_unhold(env, sublock,
367                                                "lov-parent", parent);
368                         }
369                         cl_lock_mutex_put(env, sublock);
370                 }
371         }
372         /*
373          * Some sub-locks can be missing at this point. This is not a problem,
374          * because enqueue will create them anyway. Main duty of this function
375          * is to fill in sub-lock descriptions in a race free manner.
376          */
377         RETURN(result);
378 }
379
380 static int lov_sublock_release(const struct lu_env *env, struct lov_lock *lck,
381                                int i, int deluser, int rc)
382 {
383         struct cl_lock *parent = lck->lls_cl.cls_lock;
384
385         LASSERT(cl_lock_is_mutexed(parent));
386         ENTRY;
387
388         if (lck->lls_sub[i].sub_flags & LSF_HELD) {
389                 struct cl_lock    *sublock;
390                 int dying;
391
392                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
393                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
394                 LASSERT(cl_lock_is_mutexed(sublock));
395
396                 lck->lls_sub[i].sub_flags &= ~LSF_HELD;
397                 if (deluser)
398                         cl_lock_user_del(env, sublock);
399                 /*
400                  * If the last hold is released, and cancellation is pending
401                  * for a sub-lock, release parent mutex, to avoid keeping it
402                  * while sub-lock is being paged out.
403                  */
404                 dying = (sublock->cll_descr.cld_mode == CLM_PHANTOM ||
405                          (sublock->cll_flags & (CLF_CANCELPEND|CLF_DOOMED))) &&
406                         sublock->cll_holds == 1;
407                 if (dying)
408                         cl_lock_mutex_put(env, parent);
409                 cl_lock_unhold(env, sublock, "lov-parent", parent);
410                 if (dying) {
411                         cl_lock_mutex_get(env, parent);
412                         rc = lov_subresult(rc, CLO_REPEAT);
413                 }
414                 /*
415                  * From now on lck->lls_sub[i].sub_lock is a "weak" pointer,
416                  * not backed by a reference on a
417                  * sub-lock. lovsub_lock_delete() will clear
418                  * lck->lls_sub[i].sub_lock under semaphores, just before
419                  * sub-lock is destroyed.
420                  */
421         }
422         RETURN(rc);
423 }
424
425 static void lov_sublock_hold(const struct lu_env *env, struct lov_lock *lck,
426                              int i)
427 {
428         struct cl_lock *parent = lck->lls_cl.cls_lock;
429
430         LASSERT(cl_lock_is_mutexed(parent));
431         ENTRY;
432
433         if (!(lck->lls_sub[i].sub_flags & LSF_HELD)) {
434                 struct cl_lock *sublock;
435
436                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
437                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
438                 LASSERT(cl_lock_is_mutexed(sublock));
439                 LASSERT(sublock->cll_state != CLS_FREEING);
440
441                 lck->lls_sub[i].sub_flags |= LSF_HELD;
442
443                 cl_lock_get_trust(sublock);
444                 cl_lock_hold_add(env, sublock, "lov-parent", parent);
445                 cl_lock_user_add(env, sublock);
446                 cl_lock_put(env, sublock);
447         }
448         EXIT;
449 }
450
451 static void lov_lock_fini(const struct lu_env *env,
452                           struct cl_lock_slice *slice)
453 {
454         struct lov_lock *lck;
455         int i;
456
457         ENTRY;
458         lck = cl2lov_lock(slice);
459         LASSERT(lck->lls_nr_filled == 0);
460         if (lck->lls_sub != NULL) {
461                 for (i = 0; i < lck->lls_nr; ++i)
462                         /*
463                          * No sub-locks exists at this point, as sub-lock has
464                          * a reference on its parent.
465                          */
466                         LASSERT(lck->lls_sub[i].sub_lock == NULL);
467                 OBD_FREE(lck->lls_sub, lck->lls_nr * sizeof lck->lls_sub[0]);
468         }
469         OBD_SLAB_FREE_PTR(lck, lov_lock_kmem);
470         EXIT;
471 }
472
473 /**
474  * Tries to advance a state machine of a given sub-lock toward enqueuing of
475  * the top-lock.
476  *
477  * \retval 0 if state-transition can proceed
478  * \retval -ve otherwise.
479  */
480 static int lov_lock_enqueue_one(const struct lu_env *env, struct lov_lock *lck,
481                                 struct cl_lock *sublock,
482                                 struct cl_io *io, __u32 enqflags, int last)
483 {
484         int result;
485         ENTRY;
486
487         /* first, try to enqueue a sub-lock ... */
488         result = cl_enqueue_try(env, sublock, io, enqflags);
489         if (sublock->cll_state == CLS_ENQUEUED)
490                 /* if it is enqueued, try to `wait' on it---maybe it's already
491                  * granted */
492                 result = cl_wait_try(env, sublock);
493         /*
494          * If CEF_ASYNC flag is set, then all sub-locks can be enqueued in
495          * parallel, otherwise---enqueue has to wait until sub-lock is granted
496          * before proceeding to the next one.
497          */
498         if (result == CLO_WAIT && sublock->cll_state <= CLS_HELD &&
499             enqflags & CEF_ASYNC && !last)
500                 result = 0;
501         RETURN(result);
502 }
503
504 /**
505  * Helper function for lov_lock_enqueue() that creates missing sub-lock.
506  */
507 static int lov_sublock_fill(const struct lu_env *env, struct cl_lock *parent,
508                             struct cl_io *io, struct lov_lock *lck, int idx)
509 {
510         struct lov_lock_link *link;
511         struct cl_lock       *sublock;
512         int                   result;
513
514         LASSERT(parent->cll_depth == 1);
515         cl_lock_mutex_put(env, parent);
516         sublock = lov_sublock_alloc(env, io, lck, idx, &link);
517         if (!IS_ERR(sublock))
518                 cl_lock_mutex_get(env, sublock);
519         cl_lock_mutex_get(env, parent);
520
521         if (!IS_ERR(sublock)) {
522                 if (parent->cll_state == CLS_QUEUING &&
523                     lck->lls_sub[idx].sub_lock == NULL)
524                         lov_sublock_adopt(env, lck, sublock, idx, link);
525                 else {
526                         /* other thread allocated sub-lock, or enqueue is no
527                          * longer going on */
528                         cl_lock_mutex_put(env, parent);
529                         cl_lock_unhold(env, sublock, "lov-parent", parent);
530                         cl_lock_mutex_get(env, parent);
531                 }
532                 cl_lock_mutex_put(env, sublock);
533                 result = CLO_REPEAT;
534         } else
535                 result = PTR_ERR(sublock);
536         return result;
537 }
538
539 /**
540  * Implementation of cl_lock_operations::clo_enqueue() for lov layer. This
541  * function is rather subtle, as it enqueues top-lock (i.e., advances top-lock
542  * state machine from CLS_QUEUING to CLS_ENQUEUED states) by juggling sub-lock
543  * state machines in the face of sub-locks sharing (by multiple top-locks),
544  * and concurrent sub-lock cancellations.
545  */
546 static int lov_lock_enqueue(const struct lu_env *env,
547                             const struct cl_lock_slice *slice,
548                             struct cl_io *io, __u32 enqflags)
549 {
550         struct cl_lock         *lock    = slice->cls_lock;
551         struct lov_lock        *lck     = cl2lov_lock(slice);
552         struct cl_lock_closure *closure = lov_closure_get(env, lock);
553         int i;
554         int result;
555         enum cl_lock_state minstate;
556
557         ENTRY;
558
559         for (result = 0, minstate = CLS_FREEING, i = 0; i < lck->lls_nr; ++i) {
560                 int rc;
561                 struct lovsub_lock     *sub;
562                 struct lov_lock_sub    *lls;
563                 struct cl_lock         *sublock;
564                 struct lov_sublock_env *subenv;
565
566                 if (lock->cll_state != CLS_QUEUING) {
567                         /*
568                          * Lock might have left QUEUING state if previous
569                          * iteration released its mutex. Stop enqueing in this
570                          * case and let the upper layer to decide what to do.
571                          */
572                         LASSERT(i > 0 && result != 0);
573                         break;
574                 }
575
576                 lls = &lck->lls_sub[i];
577                 sub = lls->sub_lock;
578                 /*
579                  * Sub-lock might have been canceled, while top-lock was
580                  * cached.
581                  */
582                 if (sub == NULL) {
583                         result = lov_sublock_fill(env, lock, io, lck, i);
584                         /* lov_sublock_fill() released @lock mutex,
585                          * restart. */
586                         break;
587                 }
588                 sublock = sub->lss_cl.cls_lock;
589                 rc = lov_sublock_lock(env, lls, closure, &subenv);
590                 if (rc == 0) {
591                         lov_sublock_hold(env, lck, i);
592                         rc = lov_lock_enqueue_one(subenv->lse_env, lck, sublock,
593                                                   subenv->lse_io, enqflags,
594                                                   i == lck->lls_nr - 1);
595                         minstate = min(minstate, sublock->cll_state);
596                         /*
597                          * Don't hold a sub-lock in CLS_CACHED state, see
598                          * description for lov_lock::lls_sub.
599                          */
600                         if (sublock->cll_state > CLS_HELD)
601                                 rc = lov_sublock_release(env, lck, i, 1, rc);
602                         lov_sublock_unlock(env, sub, closure, subenv);
603                 }
604                 result = lov_subresult(result, rc);
605                 if (result < 0)
606                         break;
607         }
608         cl_lock_closure_fini(closure);
609         RETURN(result ?: minstate >= CLS_ENQUEUED ? 0 : CLO_WAIT);
610 }
611
612 static int lov_lock_unuse(const struct lu_env *env,
613                           const struct cl_lock_slice *slice)
614 {
615         struct lov_lock        *lck     = cl2lov_lock(slice);
616         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
617         int i;
618         int result;
619
620         ENTRY;
621
622         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
623                 int rc;
624                 struct lovsub_lock     *sub;
625                 struct cl_lock         *sublock;
626                 struct lov_lock_sub    *lls;
627                 struct lov_sublock_env *subenv;
628
629                 /* top-lock state cannot change concurrently, because single
630                  * thread (one that released the last hold) carries unlocking
631                  * to the completion. */
632                 LASSERT(slice->cls_lock->cll_state == CLS_UNLOCKING);
633                 lls = &lck->lls_sub[i];
634                 sub = lls->sub_lock;
635                 if (sub == NULL)
636                         continue;
637
638                 sublock = sub->lss_cl.cls_lock;
639                 rc = lov_sublock_lock(env, lls, closure, &subenv);
640                 if (rc == 0) {
641                         if (lck->lls_sub[i].sub_flags & LSF_HELD) {
642                                 LASSERT(sublock->cll_state == CLS_HELD);
643                                 rc = cl_unuse_try(subenv->lse_env, sublock);
644                                 if (rc != CLO_WAIT)
645                                         rc = lov_sublock_release(env, lck,
646                                                                  i, 0, rc);
647                         }
648                         lov_sublock_unlock(env, sub, closure, subenv);
649                 }
650                 result = lov_subresult(result, rc);
651                 if (result < 0)
652                         break;
653         }
654         if (result == 0 && lck->lls_unuse_race) {
655                 lck->lls_unuse_race = 0;
656                 result = -ESTALE;
657         }
658         cl_lock_closure_fini(closure);
659         RETURN(result);
660 }
661
662 static int lov_lock_wait(const struct lu_env *env,
663                          const struct cl_lock_slice *slice)
664 {
665         struct lov_lock        *lck     = cl2lov_lock(slice);
666         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
667         enum cl_lock_state      minstate;
668         int                     result;
669         int                     i;
670
671         ENTRY;
672
673         for (result = 0, minstate = CLS_FREEING, i = 0; i < lck->lls_nr; ++i) {
674                 int rc;
675                 struct lovsub_lock     *sub;
676                 struct cl_lock         *sublock;
677                 struct lov_lock_sub    *lls;
678                 struct lov_sublock_env *subenv;
679
680                 lls = &lck->lls_sub[i];
681                 sub = lls->sub_lock;
682                 LASSERT(sub != NULL);
683                 sublock = sub->lss_cl.cls_lock;
684                 rc = lov_sublock_lock(env, lls, closure, &subenv);
685                 if (rc == 0) {
686                         LASSERT(sublock->cll_state >= CLS_ENQUEUED);
687                         if (sublock->cll_state < CLS_HELD)
688                                 rc = cl_wait_try(env, sublock);
689
690                         minstate = min(minstate, sublock->cll_state);
691                         lov_sublock_unlock(env, sub, closure, subenv);
692                 }
693                 result = lov_subresult(result, rc);
694                 if (result < 0)
695                         break;
696         }
697         cl_lock_closure_fini(closure);
698         RETURN(result ?: minstate >= CLS_HELD ? 0 : CLO_WAIT);
699 }
700
701 static int lov_lock_use(const struct lu_env *env,
702                         const struct cl_lock_slice *slice)
703 {
704         struct lov_lock        *lck     = cl2lov_lock(slice);
705         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
706         int                     result;
707         int                     i;
708
709         LASSERT(slice->cls_lock->cll_state == CLS_CACHED);
710         ENTRY;
711
712         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
713                 int rc;
714                 struct lovsub_lock     *sub;
715                 struct cl_lock         *sublock;
716                 struct lov_lock_sub    *lls;
717                 struct lov_sublock_env *subenv;
718
719                 if (slice->cls_lock->cll_state != CLS_CACHED) {
720                         /* see comment in lov_lock_enqueue(). */
721                         LASSERT(i > 0 && result != 0);
722                         break;
723                 }
724                 /*
725                  * if a sub-lock was destroyed while top-lock was in
726                  * CLS_CACHED state, top-lock would have been moved into
727                  * CLS_NEW state, so all sub-locks have to be in place.
728                  */
729                 lls = &lck->lls_sub[i];
730                 sub = lls->sub_lock;
731                 LASSERT(sub != NULL);
732                 sublock = sub->lss_cl.cls_lock;
733                 rc = lov_sublock_lock(env, lls, closure, &subenv);
734                 if (rc == 0) {
735                         LASSERT(sublock->cll_state != CLS_FREEING);
736                         lov_sublock_hold(env, lck, i);
737                         if (sublock->cll_state == CLS_CACHED) {
738                                 rc = cl_use_try(subenv->lse_env, sublock);
739                                 if (rc != 0)
740                                         rc = lov_sublock_release(env, lck,
741                                                                  i, 1, rc);
742                         } else
743                                 rc = 0;
744                         lov_sublock_unlock(env, sub, closure, subenv);
745                 }
746                 result = lov_subresult(result, rc);
747                 if (result < 0)
748                         break;
749         }
750         cl_lock_closure_fini(closure);
751         RETURN(result);
752 }
753
754 #if 0
755 static int lock_lock_multi_match()
756 {
757         struct cl_lock          *lock    = slice->cls_lock;
758         struct cl_lock_descr    *subneed = &lov_env_info(env)->lti_ldescr;
759         struct lov_object       *loo     = cl2lov(lov->lls_cl.cls_obj);
760         struct lov_layout_raid0 *r0      = lov_r0(loo);
761         struct lov_lock_sub     *sub;
762         struct cl_object        *subobj;
763         obd_off  fstart;
764         obd_off  fend;
765         obd_off  start;
766         obd_off  end;
767         int i;
768
769         fstart = cl_offset(need->cld_obj, need->cld_start);
770         fend   = cl_offset(need->cld_obj, need->cld_end + 1) - 1;
771         subneed->cld_mode = need->cld_mode;
772         cl_lock_mutex_get(env, lock);
773         for (i = 0; i < lov->lls_nr; ++i) {
774                 sub = &lov->lls_sub[i];
775                 if (sub->sub_lock == NULL)
776                         continue;
777                 subobj = sub->sub_descr.cld_obj;
778                 if (!lov_stripe_intersects(r0->lo_lsm, sub->sub_stripe,
779                                            fstart, fend, &start, &end))
780                         continue;
781                 subneed->cld_start = cl_index(subobj, start);
782                 subneed->cld_end   = cl_index(subobj, end);
783                 subneed->cld_obj   = subobj;
784                 if (!cl_lock_ext_match(&sub->sub_got, subneed)) {
785                         result = 0;
786                         break;
787                 }
788         }
789         cl_lock_mutex_put(env, lock);
790 }
791 #endif
792
793 /**
794  * Check if the extent region \a descr is covered by \a child against the
795  * specific \a stripe.
796  */
797 static int lov_lock_stripe_is_matching(const struct lu_env *env,
798                                        struct lov_object *lov, int stripe,
799                                        const struct cl_lock_descr *child,
800                                        const struct cl_lock_descr *descr)
801 {
802         struct lov_stripe_md *lsm = lov_r0(lov)->lo_lsm;
803         obd_off start;
804         obd_off end;
805         int result;
806
807         if (lov_r0(lov)->lo_nr == 1)
808                 return cl_lock_ext_match(child, descr);
809
810         /*
811          * For a multi-stripes object:
812          * - make sure the descr only covers child's stripe, and
813          * - check if extent is matching.
814          */
815         start = cl_offset(&lov->lo_cl, descr->cld_start);
816         end   = cl_offset(&lov->lo_cl, descr->cld_end + 1) - 1;
817         result = end - start <= lsm->lsm_stripe_size &&
818                  stripe == lov_stripe_number(lsm, start) &&
819                  stripe == lov_stripe_number(lsm, end);
820         if (result) {
821                 struct cl_lock_descr *subd = &lov_env_info(env)->lti_ldescr;
822                 obd_off sub_start;
823                 obd_off sub_end;
824
825                 subd->cld_obj  = NULL;   /* don't need sub object at all */
826                 subd->cld_mode = descr->cld_mode;
827                 result = lov_stripe_intersects(lsm, stripe, start, end,
828                                                &sub_start, &sub_end);
829                 LASSERT(result);
830                 subd->cld_start = cl_index(child->cld_obj, sub_start);
831                 subd->cld_end   = cl_index(child->cld_obj, sub_end);
832                 result = cl_lock_ext_match(child, subd);
833         }
834         return result;
835 }
836
837 /**
838  * An implementation of cl_lock_operations::clo_fits_into() method.
839  *
840  * Checks whether a lock (given by \a slice) is suitable for \a
841  * io. Multi-stripe locks can be used only for "quick" io, like truncate, or
842  * O_APPEND write.
843  *
844  * \see ccc_lock_fits_into().
845  */
846 static int lov_lock_fits_into(const struct lu_env *env,
847                               const struct cl_lock_slice *slice,
848                               const struct cl_lock_descr *need,
849                               const struct cl_io *io)
850 {
851         struct lov_lock   *lov = cl2lov_lock(slice);
852         struct lov_object *obj = cl2lov(slice->cls_obj);
853         int result;
854
855         LASSERT(cl_object_same(need->cld_obj, slice->cls_obj));
856         LASSERT(lov->lls_nr > 0);
857
858         ENTRY;
859
860         if (lov->lls_nr == 1) {
861                 struct cl_lock_descr *got = &lov->lls_sub[0].sub_got;
862                 result = lov_lock_stripe_is_matching(env,
863                                                      cl2lov(slice->cls_obj),
864                                                      lov->lls_sub[0].sub_stripe,
865                                                      got, need);
866         } else if (io->ci_type != CIT_TRUNC && io->ci_type != CIT_MISC &&
867                    !cl_io_is_append(io) && need->cld_mode != CLM_PHANTOM)
868                 /*
869                  * Multi-stripe locks are only suitable for `quick' IO and for
870                  * glimpse.
871                  */
872                 result = 0;
873         else
874                 /*
875                  * Most general case: multi-stripe existing lock, and
876                  * (potentially) multi-stripe @need lock. Check that @need is
877                  * covered by @lov's sub-locks.
878                  *
879                  * For now, ignore lock expansions made by the server, and
880                  * match against original lock extent.
881                  */
882                 result = cl_lock_ext_match(&lov->lls_orig, need);
883         CDEBUG(D_DLMTRACE, DDESCR"/"DDESCR" %i %i/%i: %i\n",
884                PDESCR(&lov->lls_orig), PDESCR(&lov->lls_sub[0].sub_got),
885                lov->lls_sub[0].sub_stripe, lov->lls_nr, lov_r0(obj)->lo_nr,
886                result);
887         RETURN(result);
888 }
889
890 void lov_lock_unlink(const struct lu_env *env,
891                      struct lov_lock_link *link, struct lovsub_lock *sub)
892 {
893         struct lov_lock *lck    = link->lll_super;
894         struct cl_lock  *parent = lck->lls_cl.cls_lock;
895
896         LASSERT(cl_lock_is_mutexed(parent));
897         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
898         ENTRY;
899
900         list_del_init(&link->lll_list);
901         LASSERT(lck->lls_sub[link->lll_idx].sub_lock == sub);
902         /* yank this sub-lock from parent's array */
903         lck->lls_sub[link->lll_idx].sub_lock = NULL;
904         LASSERT(lck->lls_nr_filled > 0);
905         lck->lls_nr_filled--;
906         lu_ref_del(&parent->cll_reference, "lov-child", sub->lss_cl.cls_lock);
907         cl_lock_put(env, parent);
908         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
909         EXIT;
910 }
911
912 struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
913                                          struct lov_lock *lck,
914                                          struct lovsub_lock *sub)
915 {
916         struct lov_lock_link *scan;
917
918         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
919         ENTRY;
920
921         list_for_each_entry(scan, &sub->lss_parents, lll_list) {
922                 if (scan->lll_super == lck)
923                         RETURN(scan);
924         }
925         RETURN(NULL);
926 }
927
928 /**
929  * An implementation of cl_lock_operations::clo_delete() method. This is
930  * invoked for "top-to-bottom" delete, when lock destruction starts from the
931  * top-lock, e.g., as a result of inode destruction.
932  *
933  * Unlinks top-lock from all its sub-locks. Sub-locks are not deleted there:
934  * this is done separately elsewhere:
935  *
936  *     - for inode destruction, lov_object_delete() calls cl_object_kill() for
937  *       each sub-object, purging its locks;
938  *
939  *     - in other cases (e.g., a fatal error with a top-lock) sub-locks are
940  *       left in the cache.
941  */
942 static void lov_lock_delete(const struct lu_env *env,
943                             const struct cl_lock_slice *slice)
944 {
945         struct lov_lock        *lck     = cl2lov_lock(slice);
946         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
947         int i;
948
949         LASSERT(slice->cls_lock->cll_state == CLS_FREEING);
950         ENTRY;
951
952         for (i = 0; i < lck->lls_nr; ++i) {
953                 struct lov_lock_sub *lls;
954                 struct lovsub_lock  *lsl;
955                 struct cl_lock      *sublock;
956                 int rc;
957
958                 lls = &lck->lls_sub[i];
959                 lsl = lls->sub_lock;
960                 if (lsl == NULL)
961                         continue;
962
963                 sublock = lsl->lss_cl.cls_lock;
964                 rc = lov_sublock_lock(env, lls, closure, NULL);
965                 if (rc == 0) {
966                         if (lck->lls_sub[i].sub_flags & LSF_HELD)
967                                 lov_sublock_release(env, lck, i, 1, 0);
968                         if (sublock->cll_state < CLS_FREEING) {
969                                 struct lov_lock_link *link;
970
971                                 link = lov_lock_link_find(env, lck, lsl);
972                                 LASSERT(link != NULL);
973                                 lov_lock_unlink(env, link, lsl);
974                                 LASSERT(lck->lls_sub[i].sub_lock == NULL);
975                         }
976                         lov_sublock_unlock(env, lsl, closure, NULL);
977                 } else if (rc == CLO_REPEAT) {
978                         --i; /* repeat with this lock */
979                 } else {
980                         CL_LOCK_DEBUG(D_ERROR, env, sublock,
981                                       "Cannot get sub-lock for delete: %i\n",
982                                       rc);
983                 }
984         }
985         cl_lock_closure_fini(closure);
986         EXIT;
987 }
988
989 static int lov_lock_print(const struct lu_env *env, void *cookie,
990                           lu_printer_t p, const struct cl_lock_slice *slice)
991 {
992         struct lov_lock *lck = cl2lov_lock(slice);
993         int              i;
994
995         (*p)(env, cookie, "%d\n", lck->lls_nr);
996         for (i = 0; i < lck->lls_nr; ++i) {
997                 struct lov_lock_sub *sub;
998
999                 sub = &lck->lls_sub[i];
1000                 (*p)(env, cookie, "    %d %x: ", i, sub->sub_flags);
1001                 if (sub->sub_lock != NULL)
1002                         cl_lock_print(env, cookie, p,
1003                                       sub->sub_lock->lss_cl.cls_lock);
1004                 else
1005                         (*p)(env, cookie, "---\n");
1006         }
1007         return 0;
1008 }
1009
1010 static const struct cl_lock_operations lov_lock_ops = {
1011         .clo_fini      = lov_lock_fini,
1012         .clo_enqueue   = lov_lock_enqueue,
1013         .clo_wait      = lov_lock_wait,
1014         .clo_use       = lov_lock_use,
1015         .clo_unuse     = lov_lock_unuse,
1016         .clo_fits_into = lov_lock_fits_into,
1017         .clo_delete    = lov_lock_delete,
1018         .clo_print     = lov_lock_print
1019 };
1020
1021 int lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
1022                         struct cl_lock *lock, const struct cl_io *io)
1023 {
1024         struct lov_lock *lck;
1025         int result;
1026
1027         ENTRY;
1028         OBD_SLAB_ALLOC_PTR_GFP(lck, lov_lock_kmem, CFS_ALLOC_IO);
1029         if (lck != NULL) {
1030                 cl_lock_slice_add(lock, &lck->lls_cl, obj, &lov_lock_ops);
1031                 result = lov_lock_sub_init(env, lck, io);
1032         } else
1033                 result = -ENOMEM;
1034         RETURN(result);
1035 }
1036
1037 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
1038                                                struct cl_lock *parent)
1039 {
1040         struct cl_lock_closure *closure;
1041
1042         closure = &lov_env_info(env)->lti_closure;
1043         LASSERT(list_empty(&closure->clc_list));
1044         cl_lock_closure_init(env, closure, parent, 1);
1045         return closure;
1046 }
1047
1048
1049 /** @} lov */