Whamcloud - gitweb
00d372dfd7dfd3db3abe9b71687771c1ac8118f8
[fs/lustre-release.git] / lustre / lov / lov_lock.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2013, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * Implementation of cl_lock for LOV layer.
37  *
38  *   Author: Nikita Danilov <nikita.danilov@sun.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_LOV
42
43 #include "lov_cl_internal.h"
44
45 /** \addtogroup lov
46  *  @{
47  */
48
49 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
50                                                struct cl_lock *parent);
51
52 static int lov_lock_unuse(const struct lu_env *env,
53                           const struct cl_lock_slice *slice);
54 /*****************************************************************************
55  *
56  * Lov lock operations.
57  *
58  */
59
60 static struct lov_sublock_env *lov_sublock_env_get(const struct lu_env *env,
61                                                    struct cl_lock *parent,
62                                                    struct lov_lock_sub *lls)
63 {
64         struct lov_sublock_env *subenv;
65         struct lov_io          *lio    = lov_env_io(env);
66         struct cl_io           *io     = lio->lis_cl.cis_io;
67         struct lov_io_sub      *sub;
68
69         subenv = &lov_env_session(env)->ls_subenv;
70
71         /*
72          * FIXME: We tend to use the subio's env & io to call the sublock
73          * lock operations because osc lock sometimes stores some control
74          * variables in thread's IO infomation(Now only lockless information).
75          * However, if the lock's host(object) is different from the object
76          * for current IO, we have no way to get the subenv and subio because
77          * they are not initialized at all. As a temp fix, in this case,
78          * we still borrow the parent's env to call sublock operations.
79          */
80         if (!io || !cl_object_same(io->ci_obj, parent->cll_descr.cld_obj)) {
81                 subenv->lse_env = env;
82                 subenv->lse_io  = io;
83                 subenv->lse_sub = NULL;
84         } else {
85                 sub = lov_sub_get(env, lio, lls->sub_stripe);
86                 if (!IS_ERR(sub)) {
87                         subenv->lse_env = sub->sub_env;
88                         subenv->lse_io  = sub->sub_io;
89                         subenv->lse_sub = sub;
90                 } else {
91                         subenv = (void*)sub;
92                 }
93         }
94         return subenv;
95 }
96
97 static void lov_sublock_env_put(struct lov_sublock_env *subenv)
98 {
99         if (subenv && subenv->lse_sub)
100                 lov_sub_put(subenv->lse_sub);
101 }
102
103 static void lov_sublock_adopt(const struct lu_env *env, struct lov_lock *lck,
104                               struct cl_lock *sublock, int idx,
105                               struct lov_lock_link *link)
106 {
107         struct lovsub_lock *lsl;
108         struct cl_lock     *parent = lck->lls_cl.cls_lock;
109         int                 rc;
110
111         LASSERT(cl_lock_is_mutexed(parent));
112         LASSERT(cl_lock_is_mutexed(sublock));
113         ENTRY;
114
115         lsl = cl2sub_lock(sublock);
116         /*
117          * check that sub-lock doesn't have lock link to this top-lock.
118          */
119         LASSERT(lov_lock_link_find(env, lck, lsl) == NULL);
120         LASSERT(idx < lck->lls_nr);
121
122         lck->lls_sub[idx].sub_lock = lsl;
123         lck->lls_nr_filled++;
124         LASSERT(lck->lls_nr_filled <= lck->lls_nr);
125         cfs_list_add_tail(&link->lll_list, &lsl->lss_parents);
126         link->lll_idx = idx;
127         link->lll_super = lck;
128         cl_lock_get(parent);
129         lu_ref_add(&parent->cll_reference, "lov-child", sublock);
130         lck->lls_sub[idx].sub_flags |= LSF_HELD;
131         cl_lock_user_add(env, sublock);
132
133         rc = lov_sublock_modify(env, lck, lsl, &sublock->cll_descr, idx);
134         LASSERT(rc == 0); /* there is no way this can fail, currently */
135         EXIT;
136 }
137
138 static struct cl_lock *lov_sublock_alloc(const struct lu_env *env,
139                                          const struct cl_io *io,
140                                          struct lov_lock *lck,
141                                          int idx, struct lov_lock_link **out)
142 {
143         struct cl_lock       *sublock;
144         struct cl_lock       *parent;
145         struct lov_lock_link *link;
146
147         LASSERT(idx < lck->lls_nr);
148         ENTRY;
149
150         OBD_SLAB_ALLOC_PTR_GFP(link, lov_lock_link_kmem, GFP_NOFS);
151         if (link != NULL) {
152                 struct lov_sublock_env *subenv;
153                 struct lov_lock_sub  *lls;
154                 struct cl_lock_descr *descr;
155
156                 parent = lck->lls_cl.cls_lock;
157                 lls    = &lck->lls_sub[idx];
158                 descr  = &lls->sub_got;
159
160                 subenv = lov_sublock_env_get(env, parent, lls);
161                 if (!IS_ERR(subenv)) {
162                         /* CAVEAT: Don't try to add a field in lov_lock_sub
163                          * to remember the subio. This is because lock is able
164                          * to be cached, but this is not true for IO. This
165                          * further means a sublock might be referenced in
166                          * different io context. -jay */
167
168                         sublock = cl_lock_hold(subenv->lse_env, subenv->lse_io,
169                                                descr, "lov-parent", parent);
170                         lov_sublock_env_put(subenv);
171                 } else {
172                         /* error occurs. */
173                         sublock = (void *)subenv;
174                 }
175
176                 if (!IS_ERR(sublock))
177                         *out = link;
178                 else
179                         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
180         } else
181                 sublock = ERR_PTR(-ENOMEM);
182         RETURN(sublock);
183 }
184
185 static void lov_sublock_unlock(const struct lu_env *env,
186                                struct lovsub_lock *lsl,
187                                struct cl_lock_closure *closure,
188                                struct lov_sublock_env *subenv)
189 {
190         ENTRY;
191         lov_sublock_env_put(subenv);
192         lsl->lss_active = NULL;
193         cl_lock_disclosure(env, closure);
194         EXIT;
195 }
196
197 static int lov_sublock_lock(const struct lu_env *env,
198                             struct lov_lock *lck,
199                             struct lov_lock_sub *lls,
200                             struct cl_lock_closure *closure,
201                             struct lov_sublock_env **lsep)
202 {
203         struct lovsub_lock *sublock;
204         struct cl_lock     *child;
205         int                 result = 0;
206         ENTRY;
207
208         LASSERT(cfs_list_empty(&closure->clc_list));
209
210         sublock = lls->sub_lock;
211         child = sublock->lss_cl.cls_lock;
212         result = cl_lock_closure_build(env, child, closure);
213         if (result == 0) {
214                 struct cl_lock *parent = closure->clc_origin;
215
216                 LASSERT(cl_lock_is_mutexed(child));
217                 sublock->lss_active = parent;
218
219                 if (unlikely((child->cll_state == CLS_FREEING) ||
220                              (child->cll_flags & CLF_CANCELLED))) {
221                         struct lov_lock_link *link;
222                         /*
223                          * we could race with lock deletion which temporarily
224                          * put the lock in freeing state, bug 19080.
225                          */
226                         LASSERT(!(lls->sub_flags & LSF_HELD));
227
228                         link = lov_lock_link_find(env, lck, sublock);
229                         LASSERT(link != NULL);
230                         lov_lock_unlink(env, link, sublock);
231                         lov_sublock_unlock(env, sublock, closure, NULL);
232                         lck->lls_cancel_race = 1;
233                         result = CLO_REPEAT;
234                 } else if (lsep) {
235                         struct lov_sublock_env *subenv;
236                         subenv = lov_sublock_env_get(env, parent, lls);
237                         if (IS_ERR(subenv)) {
238                                 lov_sublock_unlock(env, sublock,
239                                                    closure, NULL);
240                                 result = PTR_ERR(subenv);
241                         } else {
242                                 *lsep = subenv;
243                         }
244                 }
245         }
246         RETURN(result);
247 }
248
249 /**
250  * Updates the result of a top-lock operation from a result of sub-lock
251  * sub-operations. Top-operations like lov_lock_{enqueue,use,unuse}() iterate
252  * over sub-locks and lov_subresult() is used to calculate return value of a
253  * top-operation. To this end, possible return values of sub-operations are
254  * ordered as
255  *
256  *     - 0                  success
257  *     - CLO_WAIT           wait for event
258  *     - CLO_REPEAT         repeat top-operation
259  *     - -ne                fundamental error
260  *
261  * Top-level return code can only go down through this list. CLO_REPEAT
262  * overwrites CLO_WAIT, because lock mutex was released and sleeping condition
263  * has to be rechecked by the upper layer.
264  */
265 static int lov_subresult(int result, int rc)
266 {
267         int result_rank;
268         int rc_rank;
269
270         ENTRY;
271
272         LASSERTF(result <= 0 || result == CLO_REPEAT || result == CLO_WAIT,
273                  "result = %d", result);
274         LASSERTF(rc <= 0 || rc == CLO_REPEAT || rc == CLO_WAIT,
275                  "rc = %d\n", rc);
276         CLASSERT(CLO_WAIT < CLO_REPEAT);
277
278         /* calculate ranks in the ordering above */
279         result_rank = result < 0 ? 1 + CLO_REPEAT : result;
280         rc_rank = rc < 0 ? 1 + CLO_REPEAT : rc;
281
282         if (result_rank < rc_rank)
283                 result = rc;
284         RETURN(result);
285 }
286
287 /**
288  * Creates sub-locks for a given lov_lock for the first time.
289  *
290  * Goes through all sub-objects of top-object, and creates sub-locks on every
291  * sub-object intersecting with top-lock extent. This is complicated by the
292  * fact that top-lock (that is being created) can be accessed concurrently
293  * through already created sub-locks (possibly shared with other top-locks).
294  */
295 static int lov_lock_sub_init(const struct lu_env *env,
296                              struct lov_lock *lck, const struct cl_io *io)
297 {
298         int result = 0;
299         int i;
300         int nr;
301         obd_off start;
302         obd_off end;
303         obd_off file_start;
304         obd_off file_end;
305
306         struct lov_object       *loo    = cl2lov(lck->lls_cl.cls_obj);
307         struct lov_layout_raid0 *r0     = lov_r0(loo);
308         struct cl_lock          *parent = lck->lls_cl.cls_lock;
309
310         ENTRY;
311
312         lck->lls_orig = parent->cll_descr;
313         file_start = cl_offset(lov2cl(loo), parent->cll_descr.cld_start);
314         file_end   = cl_offset(lov2cl(loo), parent->cll_descr.cld_end + 1) - 1;
315
316         for (i = 0, nr = 0; i < r0->lo_nr; i++) {
317                 /*
318                  * XXX for wide striping smarter algorithm is desirable,
319                  * breaking out of the loop, early.
320                  */
321                 if (lov_stripe_intersects(loo->lo_lsm, i,
322                                           file_start, file_end, &start, &end))
323                         nr++;
324         }
325         LASSERT(nr > 0);
326         OBD_ALLOC_LARGE(lck->lls_sub, nr * sizeof lck->lls_sub[0]);
327         if (lck->lls_sub == NULL)
328                 RETURN(-ENOMEM);
329
330         lck->lls_nr = nr;
331         /*
332          * First, fill in sub-lock descriptions in
333          * lck->lls_sub[].sub_descr. They are used by lov_sublock_alloc()
334          * (called below in this function, and by lov_lock_enqueue()) to
335          * create sub-locks. At this moment, no other thread can access
336          * top-lock.
337          */
338         for (i = 0, nr = 0; i < r0->lo_nr; ++i) {
339                 if (lov_stripe_intersects(loo->lo_lsm, i,
340                                           file_start, file_end, &start, &end)) {
341                         struct cl_lock_descr *descr;
342
343                         descr = &lck->lls_sub[nr].sub_descr;
344
345                         LASSERT(descr->cld_obj == NULL);
346                         descr->cld_obj   = lovsub2cl(r0->lo_sub[i]);
347                         descr->cld_start = cl_index(descr->cld_obj, start);
348                         descr->cld_end   = cl_index(descr->cld_obj, end);
349                         descr->cld_mode  = parent->cll_descr.cld_mode;
350                         descr->cld_gid   = parent->cll_descr.cld_gid;
351                         descr->cld_enq_flags   = parent->cll_descr.cld_enq_flags;
352                         /* XXX has no effect */
353                         lck->lls_sub[nr].sub_got = *descr;
354                         lck->lls_sub[nr].sub_stripe = i;
355                         nr++;
356                 }
357         }
358         LASSERT(nr == lck->lls_nr);
359
360         /*
361          * Some sub-locks can be missing at this point. This is not a problem,
362          * because enqueue will create them anyway. Main duty of this function
363          * is to fill in sub-lock descriptions in a race free manner.
364          */
365         RETURN(result);
366 }
367
368 static int lov_sublock_release(const struct lu_env *env, struct lov_lock *lck,
369                                int i, int deluser, int rc)
370 {
371         struct cl_lock *parent = lck->lls_cl.cls_lock;
372
373         LASSERT(cl_lock_is_mutexed(parent));
374         ENTRY;
375
376         if (lck->lls_sub[i].sub_flags & LSF_HELD) {
377                 struct cl_lock    *sublock;
378                 int dying;
379
380                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
381                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
382                 LASSERT(cl_lock_is_mutexed(sublock));
383
384                 lck->lls_sub[i].sub_flags &= ~LSF_HELD;
385                 if (deluser)
386                         cl_lock_user_del(env, sublock);
387                 /*
388                  * If the last hold is released, and cancellation is pending
389                  * for a sub-lock, release parent mutex, to avoid keeping it
390                  * while sub-lock is being paged out.
391                  */
392                 dying = (sublock->cll_descr.cld_mode == CLM_PHANTOM ||
393                          sublock->cll_descr.cld_mode == CLM_GROUP ||
394                          (sublock->cll_flags & (CLF_CANCELPEND|CLF_DOOMED))) &&
395                         sublock->cll_holds == 1;
396                 if (dying)
397                         cl_lock_mutex_put(env, parent);
398                 cl_lock_unhold(env, sublock, "lov-parent", parent);
399                 if (dying) {
400                         cl_lock_mutex_get(env, parent);
401                         rc = lov_subresult(rc, CLO_REPEAT);
402                 }
403                 /*
404                  * From now on lck->lls_sub[i].sub_lock is a "weak" pointer,
405                  * not backed by a reference on a
406                  * sub-lock. lovsub_lock_delete() will clear
407                  * lck->lls_sub[i].sub_lock under semaphores, just before
408                  * sub-lock is destroyed.
409                  */
410         }
411         RETURN(rc);
412 }
413
414 static void lov_sublock_hold(const struct lu_env *env, struct lov_lock *lck,
415                              int i)
416 {
417         struct cl_lock *parent = lck->lls_cl.cls_lock;
418
419         LASSERT(cl_lock_is_mutexed(parent));
420         ENTRY;
421
422         if (!(lck->lls_sub[i].sub_flags & LSF_HELD)) {
423                 struct cl_lock *sublock;
424
425                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
426                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
427                 LASSERT(cl_lock_is_mutexed(sublock));
428                 LASSERT(sublock->cll_state != CLS_FREEING);
429
430                 lck->lls_sub[i].sub_flags |= LSF_HELD;
431
432                 cl_lock_get_trust(sublock);
433                 cl_lock_hold_add(env, sublock, "lov-parent", parent);
434                 cl_lock_user_add(env, sublock);
435                 cl_lock_put(env, sublock);
436         }
437         EXIT;
438 }
439
440 static void lov_lock_fini(const struct lu_env *env,
441                           struct cl_lock_slice *slice)
442 {
443         struct lov_lock *lck;
444         int i;
445
446         ENTRY;
447         lck = cl2lov_lock(slice);
448         LASSERT(lck->lls_nr_filled == 0);
449         if (lck->lls_sub != NULL) {
450                 for (i = 0; i < lck->lls_nr; ++i)
451                         /*
452                          * No sub-locks exists at this point, as sub-lock has
453                          * a reference on its parent.
454                          */
455                         LASSERT(lck->lls_sub[i].sub_lock == NULL);
456                 OBD_FREE_LARGE(lck->lls_sub,
457                                lck->lls_nr * sizeof lck->lls_sub[0]);
458         }
459         OBD_SLAB_FREE_PTR(lck, lov_lock_kmem);
460         EXIT;
461 }
462
463 static int lov_lock_enqueue_wait(const struct lu_env *env,
464                                  struct lov_lock *lck,
465                                  struct cl_lock *sublock)
466 {
467         struct cl_lock *lock = lck->lls_cl.cls_lock;
468         int             result;
469         ENTRY;
470
471         LASSERT(cl_lock_is_mutexed(lock));
472
473         cl_lock_mutex_put(env, lock);
474         result = cl_lock_enqueue_wait(env, sublock, 0);
475         cl_lock_mutex_get(env, lock);
476         RETURN(result ?: CLO_REPEAT);
477 }
478
479 /**
480  * Tries to advance a state machine of a given sub-lock toward enqueuing of
481  * the top-lock.
482  *
483  * \retval 0 if state-transition can proceed
484  * \retval -ve otherwise.
485  */
486 static int lov_lock_enqueue_one(const struct lu_env *env, struct lov_lock *lck,
487                                 struct cl_lock *sublock,
488                                 struct cl_io *io, __u32 enqflags, int last)
489 {
490         int result;
491         ENTRY;
492
493         /* first, try to enqueue a sub-lock ... */
494         result = cl_enqueue_try(env, sublock, io, enqflags);
495         if ((sublock->cll_state == CLS_ENQUEUED) && !(enqflags & CEF_AGL)) {
496                 /* if it is enqueued, try to `wait' on it---maybe it's already
497                  * granted */
498                 result = cl_wait_try(env, sublock);
499                 if (result == CLO_REENQUEUED)
500                         result = CLO_WAIT;
501         }
502         /*
503          * If CEF_ASYNC flag is set, then all sub-locks can be enqueued in
504          * parallel, otherwise---enqueue has to wait until sub-lock is granted
505          * before proceeding to the next one.
506          */
507         if ((result == CLO_WAIT) && (sublock->cll_state <= CLS_HELD) &&
508             (enqflags & CEF_ASYNC) && (!last || (enqflags & CEF_AGL)))
509                 result = 0;
510         RETURN(result);
511 }
512
513 /**
514  * Helper function for lov_lock_enqueue() that creates missing sub-lock.
515  */
516 static int lov_sublock_fill(const struct lu_env *env, struct cl_lock *parent,
517                             struct cl_io *io, struct lov_lock *lck, int idx)
518 {
519         struct lov_lock_link *link = NULL;
520         struct cl_lock       *sublock;
521         int                   result;
522
523         LASSERT(parent->cll_depth == 1);
524         cl_lock_mutex_put(env, parent);
525         sublock = lov_sublock_alloc(env, io, lck, idx, &link);
526         if (!IS_ERR(sublock))
527                 cl_lock_mutex_get(env, sublock);
528         cl_lock_mutex_get(env, parent);
529
530         if (!IS_ERR(sublock)) {
531                 cl_lock_get_trust(sublock);
532                 if (parent->cll_state == CLS_QUEUING &&
533                     lck->lls_sub[idx].sub_lock == NULL) {
534                         lov_sublock_adopt(env, lck, sublock, idx, link);
535                 } else {
536                         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
537                         /* other thread allocated sub-lock, or enqueue is no
538                          * longer going on */
539                         cl_lock_mutex_put(env, parent);
540                         cl_lock_unhold(env, sublock, "lov-parent", parent);
541                         cl_lock_mutex_get(env, parent);
542                 }
543                 cl_lock_mutex_put(env, sublock);
544                 cl_lock_put(env, sublock);
545                 result = CLO_REPEAT;
546         } else
547                 result = PTR_ERR(sublock);
548         return result;
549 }
550
551 /**
552  * Implementation of cl_lock_operations::clo_enqueue() for lov layer. This
553  * function is rather subtle, as it enqueues top-lock (i.e., advances top-lock
554  * state machine from CLS_QUEUING to CLS_ENQUEUED states) by juggling sub-lock
555  * state machines in the face of sub-locks sharing (by multiple top-locks),
556  * and concurrent sub-lock cancellations.
557  */
558 static int lov_lock_enqueue(const struct lu_env *env,
559                             const struct cl_lock_slice *slice,
560                             struct cl_io *io, __u32 enqflags)
561 {
562         struct cl_lock         *lock    = slice->cls_lock;
563         struct lov_lock        *lck     = cl2lov_lock(slice);
564         struct cl_lock_closure *closure = lov_closure_get(env, lock);
565         int i;
566         int result;
567         enum cl_lock_state minstate;
568
569         ENTRY;
570
571         for (result = 0, minstate = CLS_FREEING, i = 0; i < lck->lls_nr; ++i) {
572                 int rc;
573                 struct lovsub_lock     *sub;
574                 struct lov_lock_sub    *lls;
575                 struct cl_lock         *sublock;
576                 struct lov_sublock_env *subenv;
577
578                 if (lock->cll_state != CLS_QUEUING) {
579                         /*
580                          * Lock might have left QUEUING state if previous
581                          * iteration released its mutex. Stop enqueing in this
582                          * case and let the upper layer to decide what to do.
583                          */
584                         LASSERT(i > 0 && result != 0);
585                         break;
586                 }
587
588                 lls = &lck->lls_sub[i];
589                 sub = lls->sub_lock;
590                 /*
591                  * Sub-lock might have been canceled, while top-lock was
592                  * cached.
593                  */
594                 if (sub == NULL) {
595                         result = lov_sublock_fill(env, lock, io, lck, i);
596                         /* lov_sublock_fill() released @lock mutex,
597                          * restart. */
598                         break;
599                 }
600                 sublock = sub->lss_cl.cls_lock;
601                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
602                 if (rc == 0) {
603                         lov_sublock_hold(env, lck, i);
604                         rc = lov_lock_enqueue_one(subenv->lse_env, lck, sublock,
605                                                   subenv->lse_io, enqflags,
606                                                   i == lck->lls_nr - 1);
607                         minstate = min(minstate, sublock->cll_state);
608                         if (rc == CLO_WAIT) {
609                                 switch (sublock->cll_state) {
610                                 case CLS_QUEUING:
611                                         /* take recursive mutex, the lock is
612                                          * released in lov_lock_enqueue_wait.
613                                          */
614                                         cl_lock_mutex_get(env, sublock);
615                                         lov_sublock_unlock(env, sub, closure,
616                                                            subenv);
617                                         rc = lov_lock_enqueue_wait(env, lck,
618                                                                    sublock);
619                                         break;
620                                 case CLS_CACHED:
621                                         cl_lock_get(sublock);
622                                         /* take recursive mutex of sublock */
623                                         cl_lock_mutex_get(env, sublock);
624                                         /* need to release all locks in closure
625                                          * otherwise it may deadlock. LU-2683.*/
626                                         lov_sublock_unlock(env, sub, closure,
627                                                            subenv);
628                                         /* sublock and parent are held. */
629                                         rc = lov_sublock_release(env, lck, i,
630                                                                  1, rc);
631                                         cl_lock_mutex_put(env, sublock);
632                                         cl_lock_put(env, sublock);
633                                         break;
634                                 default:
635                                         lov_sublock_unlock(env, sub, closure,
636                                                            subenv);
637                                         break;
638                                 }
639                         } else {
640                                 LASSERT(sublock->cll_conflict == NULL);
641                                 lov_sublock_unlock(env, sub, closure, subenv);
642                         }
643                 }
644                 result = lov_subresult(result, rc);
645                 if (result != 0)
646                         break;
647         }
648         cl_lock_closure_fini(closure);
649         RETURN(result ?: minstate >= CLS_ENQUEUED ? 0 : CLO_WAIT);
650 }
651
652 static int lov_lock_unuse(const struct lu_env *env,
653                           const struct cl_lock_slice *slice)
654 {
655         struct lov_lock        *lck     = cl2lov_lock(slice);
656         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
657         int i;
658         int result;
659
660         ENTRY;
661
662         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
663                 int rc;
664                 struct lovsub_lock     *sub;
665                 struct cl_lock         *sublock;
666                 struct lov_lock_sub    *lls;
667                 struct lov_sublock_env *subenv;
668
669                 /* top-lock state cannot change concurrently, because single
670                  * thread (one that released the last hold) carries unlocking
671                  * to the completion. */
672                 LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
673                 lls = &lck->lls_sub[i];
674                 sub = lls->sub_lock;
675                 if (sub == NULL)
676                         continue;
677
678                 sublock = sub->lss_cl.cls_lock;
679                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
680                 if (rc == 0) {
681                         if (!(lls->sub_flags & LSF_HELD)) {
682                                 lov_sublock_unlock(env, sub, closure, subenv);
683                                 continue;
684                         }
685
686                         switch(sublock->cll_state) {
687                         case CLS_HELD:
688                                 rc = cl_unuse_try(subenv->lse_env, sublock);
689                                 lov_sublock_release(env, lck, i, 0, 0);
690                                 break;
691                         default:
692                                 lov_sublock_release(env, lck, i, 1, 0);
693                                 break;
694                         }
695                         lov_sublock_unlock(env, sub, closure, subenv);
696                 }
697                 result = lov_subresult(result, rc);
698         }
699
700         if (result == 0 && lck->lls_cancel_race) {
701                 lck->lls_cancel_race = 0;
702                 result = -ESTALE;
703         }
704         cl_lock_closure_fini(closure);
705         RETURN(result);
706 }
707
708
709 static void lov_lock_cancel(const struct lu_env *env,
710                            const struct cl_lock_slice *slice)
711 {
712         struct lov_lock        *lck     = cl2lov_lock(slice);
713         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
714         int i;
715         int result;
716
717         ENTRY;
718
719         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
720                 int rc;
721                 struct lovsub_lock     *sub;
722                 struct cl_lock         *sublock;
723                 struct lov_lock_sub    *lls;
724                 struct lov_sublock_env *subenv;
725
726                 /* top-lock state cannot change concurrently, because single
727                  * thread (one that released the last hold) carries unlocking
728                  * to the completion. */
729                 lls = &lck->lls_sub[i];
730                 sub = lls->sub_lock;
731                 if (sub == NULL)
732                         continue;
733
734                 sublock = sub->lss_cl.cls_lock;
735                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
736                 if (rc == 0) {
737                         if (!(lls->sub_flags & LSF_HELD)) {
738                                 lov_sublock_unlock(env, sub, closure, subenv);
739                                 continue;
740                         }
741
742                         switch(sublock->cll_state) {
743                         case CLS_HELD:
744                                 rc = cl_unuse_try(subenv->lse_env, sublock);
745                                 lov_sublock_release(env, lck, i, 0, 0);
746                                 break;
747                         default:
748                                 lov_sublock_release(env, lck, i, 1, 0);
749                                 break;
750                         }
751                         lov_sublock_unlock(env, sub, closure, subenv);
752                 }
753
754                 if (rc == CLO_REPEAT) {
755                         --i;
756                         continue;
757                 }
758
759                 result = lov_subresult(result, rc);
760         }
761
762         if (result)
763                 CL_LOCK_DEBUG(D_ERROR, env, slice->cls_lock,
764                               "lov_lock_cancel fails with %d.\n", result);
765
766         cl_lock_closure_fini(closure);
767 }
768
769 static int lov_lock_wait(const struct lu_env *env,
770                          const struct cl_lock_slice *slice)
771 {
772         struct lov_lock        *lck     = cl2lov_lock(slice);
773         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
774         enum cl_lock_state      minstate;
775         int                     reenqueued;
776         int                     result;
777         int                     i;
778
779         ENTRY;
780
781 again:
782         for (result = 0, minstate = CLS_FREEING, i = 0, reenqueued = 0;
783              i < lck->lls_nr; ++i) {
784                 int rc;
785                 struct lovsub_lock     *sub;
786                 struct cl_lock         *sublock;
787                 struct lov_lock_sub    *lls;
788                 struct lov_sublock_env *subenv;
789
790                 lls = &lck->lls_sub[i];
791                 sub = lls->sub_lock;
792                 LASSERT(sub != NULL);
793                 sublock = sub->lss_cl.cls_lock;
794                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
795                 if (rc == 0) {
796                         LASSERT(sublock->cll_state >= CLS_ENQUEUED);
797                         if (sublock->cll_state < CLS_HELD)
798                                 rc = cl_wait_try(env, sublock);
799
800                         minstate = min(minstate, sublock->cll_state);
801                         lov_sublock_unlock(env, sub, closure, subenv);
802                 }
803                 if (rc == CLO_REENQUEUED) {
804                         reenqueued++;
805                         rc = 0;
806                 }
807                 result = lov_subresult(result, rc);
808                 if (result != 0)
809                         break;
810         }
811         /* Each sublock only can be reenqueued once, so will not loop for
812          * ever. */
813         if (result == 0 && reenqueued != 0)
814                 goto again;
815         cl_lock_closure_fini(closure);
816         RETURN(result ?: minstate >= CLS_HELD ? 0 : CLO_WAIT);
817 }
818
819 static int lov_lock_use(const struct lu_env *env,
820                         const struct cl_lock_slice *slice)
821 {
822         struct lov_lock        *lck     = cl2lov_lock(slice);
823         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
824         int                     result;
825         int                     i;
826
827         LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
828         ENTRY;
829
830         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
831                 int rc;
832                 struct lovsub_lock     *sub;
833                 struct cl_lock         *sublock;
834                 struct lov_lock_sub    *lls;
835                 struct lov_sublock_env *subenv;
836
837                 LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
838
839                 lls = &lck->lls_sub[i];
840                 sub = lls->sub_lock;
841                 if (sub == NULL) {
842                         /*
843                          * Sub-lock might have been canceled, while top-lock was
844                          * cached.
845                          */
846                         result = -ESTALE;
847                         break;
848                 }
849
850                 sublock = sub->lss_cl.cls_lock;
851                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
852                 if (rc == 0) {
853                         LASSERT(sublock->cll_state != CLS_FREEING);
854                         lov_sublock_hold(env, lck, i);
855                         if (sublock->cll_state == CLS_CACHED) {
856                                 rc = cl_use_try(subenv->lse_env, sublock, 0);
857                                 if (rc != 0)
858                                         rc = lov_sublock_release(env, lck,
859                                                                  i, 1, rc);
860                         } else if (sublock->cll_state == CLS_NEW) {
861                                 /* Sub-lock might have been canceled, while
862                                  * top-lock was cached. */
863                                 result = -ESTALE;
864                                 lov_sublock_release(env, lck, i, 1, result);
865                         }
866                         lov_sublock_unlock(env, sub, closure, subenv);
867                 }
868                 result = lov_subresult(result, rc);
869                 if (result != 0)
870                         break;
871         }
872
873         if (lck->lls_cancel_race) {
874                 /*
875                  * If there is unlocking happened at the same time, then
876                  * sublock_lock state should be FREEING, and lov_sublock_lock
877                  * should return CLO_REPEAT. In this case, it should return
878                  * ESTALE, and up layer should reset the lock state to be NEW.
879                  */
880                 lck->lls_cancel_race = 0;
881                 LASSERT(result != 0);
882                 result = -ESTALE;
883         }
884         cl_lock_closure_fini(closure);
885         RETURN(result);
886 }
887
888 #if 0
889 static int lock_lock_multi_match()
890 {
891         struct cl_lock          *lock    = slice->cls_lock;
892         struct cl_lock_descr    *subneed = &lov_env_info(env)->lti_ldescr;
893         struct lov_object       *loo     = cl2lov(lov->lls_cl.cls_obj);
894         struct lov_layout_raid0 *r0      = lov_r0(loo);
895         struct lov_lock_sub     *sub;
896         struct cl_object        *subobj;
897         obd_off  fstart;
898         obd_off  fend;
899         obd_off  start;
900         obd_off  end;
901         int i;
902
903         fstart = cl_offset(need->cld_obj, need->cld_start);
904         fend   = cl_offset(need->cld_obj, need->cld_end + 1) - 1;
905         subneed->cld_mode = need->cld_mode;
906         cl_lock_mutex_get(env, lock);
907         for (i = 0; i < lov->lls_nr; ++i) {
908                 sub = &lov->lls_sub[i];
909                 if (sub->sub_lock == NULL)
910                         continue;
911                 subobj = sub->sub_descr.cld_obj;
912                 if (!lov_stripe_intersects(loo->lo_lsm, sub->sub_stripe,
913                                            fstart, fend, &start, &end))
914                         continue;
915                 subneed->cld_start = cl_index(subobj, start);
916                 subneed->cld_end   = cl_index(subobj, end);
917                 subneed->cld_obj   = subobj;
918                 if (!cl_lock_ext_match(&sub->sub_got, subneed)) {
919                         result = 0;
920                         break;
921                 }
922         }
923         cl_lock_mutex_put(env, lock);
924 }
925 #endif
926
927 /**
928  * Check if the extent region \a descr is covered by \a child against the
929  * specific \a stripe.
930  */
931 static int lov_lock_stripe_is_matching(const struct lu_env *env,
932                                        struct lov_object *lov, int stripe,
933                                        const struct cl_lock_descr *child,
934                                        const struct cl_lock_descr *descr)
935 {
936         struct lov_stripe_md *lsm = lov->lo_lsm;
937         obd_off start;
938         obd_off end;
939         int result;
940
941         if (lov_r0(lov)->lo_nr == 1)
942                 return cl_lock_ext_match(child, descr);
943
944         /*
945          * For a multi-stripes object:
946          * - make sure the descr only covers child's stripe, and
947          * - check if extent is matching.
948          */
949         start = cl_offset(&lov->lo_cl, descr->cld_start);
950         end   = cl_offset(&lov->lo_cl, descr->cld_end + 1) - 1;
951         result = end - start <= lsm->lsm_stripe_size &&
952                  stripe == lov_stripe_number(lsm, start) &&
953                  stripe == lov_stripe_number(lsm, end);
954         if (result) {
955                 struct cl_lock_descr *subd = &lov_env_info(env)->lti_ldescr;
956                 obd_off sub_start;
957                 obd_off sub_end;
958
959                 subd->cld_obj  = NULL;   /* don't need sub object at all */
960                 subd->cld_mode = descr->cld_mode;
961                 subd->cld_gid  = descr->cld_gid;
962                 result = lov_stripe_intersects(lsm, stripe, start, end,
963                                                &sub_start, &sub_end);
964                 LASSERT(result);
965                 subd->cld_start = cl_index(child->cld_obj, sub_start);
966                 subd->cld_end   = cl_index(child->cld_obj, sub_end);
967                 result = cl_lock_ext_match(child, subd);
968         }
969         return result;
970 }
971
972 /**
973  * An implementation of cl_lock_operations::clo_fits_into() method.
974  *
975  * Checks whether a lock (given by \a slice) is suitable for \a
976  * io. Multi-stripe locks can be used only for "quick" io, like truncate, or
977  * O_APPEND write.
978  *
979  * \see ccc_lock_fits_into().
980  */
981 static int lov_lock_fits_into(const struct lu_env *env,
982                               const struct cl_lock_slice *slice,
983                               const struct cl_lock_descr *need,
984                               const struct cl_io *io)
985 {
986         struct lov_lock   *lov = cl2lov_lock(slice);
987         struct lov_object *obj = cl2lov(slice->cls_obj);
988         int result;
989
990         LASSERT(cl_object_same(need->cld_obj, slice->cls_obj));
991         LASSERT(lov->lls_nr > 0);
992
993         ENTRY;
994
995         /* for top lock, it's necessary to match enq flags otherwise it will
996          * run into problem if a sublock is missing and reenqueue. */
997         if (need->cld_enq_flags != lov->lls_orig.cld_enq_flags)
998                 return 0;
999
1000         if (lov->lls_ever_canceled)
1001                 return 0;
1002
1003         if (need->cld_mode == CLM_GROUP)
1004                 /*
1005                  * always allow to match group lock.
1006                  */
1007                 result = cl_lock_ext_match(&lov->lls_orig, need);
1008         else if (lov->lls_nr == 1) {
1009                 struct cl_lock_descr *got = &lov->lls_sub[0].sub_got;
1010                 result = lov_lock_stripe_is_matching(env,
1011                                                      cl2lov(slice->cls_obj),
1012                                                      lov->lls_sub[0].sub_stripe,
1013                                                      got, need);
1014         } else if (io->ci_type != CIT_SETATTR && io->ci_type != CIT_MISC &&
1015                    !cl_io_is_append(io) && need->cld_mode != CLM_PHANTOM)
1016                 /*
1017                  * Multi-stripe locks are only suitable for `quick' IO and for
1018                  * glimpse.
1019                  */
1020                 result = 0;
1021         else
1022                 /*
1023                  * Most general case: multi-stripe existing lock, and
1024                  * (potentially) multi-stripe @need lock. Check that @need is
1025                  * covered by @lov's sub-locks.
1026                  *
1027                  * For now, ignore lock expansions made by the server, and
1028                  * match against original lock extent.
1029                  */
1030                 result = cl_lock_ext_match(&lov->lls_orig, need);
1031         CDEBUG(D_DLMTRACE, DDESCR"/"DDESCR" %d %d/%d: %d\n",
1032                PDESCR(&lov->lls_orig), PDESCR(&lov->lls_sub[0].sub_got),
1033                lov->lls_sub[0].sub_stripe, lov->lls_nr, lov_r0(obj)->lo_nr,
1034                result);
1035         RETURN(result);
1036 }
1037
1038 void lov_lock_unlink(const struct lu_env *env,
1039                      struct lov_lock_link *link, struct lovsub_lock *sub)
1040 {
1041         struct lov_lock *lck    = link->lll_super;
1042         struct cl_lock  *parent = lck->lls_cl.cls_lock;
1043
1044         LASSERT(cl_lock_is_mutexed(parent));
1045         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
1046         ENTRY;
1047
1048         cfs_list_del_init(&link->lll_list);
1049         LASSERT(lck->lls_sub[link->lll_idx].sub_lock == sub);
1050         /* yank this sub-lock from parent's array */
1051         lck->lls_sub[link->lll_idx].sub_lock = NULL;
1052         LASSERT(lck->lls_nr_filled > 0);
1053         lck->lls_nr_filled--;
1054         lu_ref_del(&parent->cll_reference, "lov-child", sub->lss_cl.cls_lock);
1055         cl_lock_put(env, parent);
1056         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
1057         EXIT;
1058 }
1059
1060 struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
1061                                          struct lov_lock *lck,
1062                                          struct lovsub_lock *sub)
1063 {
1064         struct lov_lock_link *scan;
1065
1066         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
1067         ENTRY;
1068
1069         cfs_list_for_each_entry(scan, &sub->lss_parents, lll_list) {
1070                 if (scan->lll_super == lck)
1071                         RETURN(scan);
1072         }
1073         RETURN(NULL);
1074 }
1075
1076 /**
1077  * An implementation of cl_lock_operations::clo_delete() method. This is
1078  * invoked for "top-to-bottom" delete, when lock destruction starts from the
1079  * top-lock, e.g., as a result of inode destruction.
1080  *
1081  * Unlinks top-lock from all its sub-locks. Sub-locks are not deleted there:
1082  * this is done separately elsewhere:
1083  *
1084  *     - for inode destruction, lov_object_delete() calls cl_object_kill() for
1085  *       each sub-object, purging its locks;
1086  *
1087  *     - in other cases (e.g., a fatal error with a top-lock) sub-locks are
1088  *       left in the cache.
1089  */
1090 static void lov_lock_delete(const struct lu_env *env,
1091                             const struct cl_lock_slice *slice)
1092 {
1093         struct lov_lock        *lck     = cl2lov_lock(slice);
1094         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
1095         struct lov_lock_link   *link;
1096         int                     rc;
1097         int                     i;
1098
1099         LASSERT(slice->cls_lock->cll_state == CLS_FREEING);
1100         ENTRY;
1101
1102         for (i = 0; i < lck->lls_nr; ++i) {
1103                 struct lov_lock_sub *lls = &lck->lls_sub[i];
1104                 struct lovsub_lock  *lsl = lls->sub_lock;
1105
1106                 if (lsl == NULL) /* already removed */
1107                         continue;
1108
1109                 rc = lov_sublock_lock(env, lck, lls, closure, NULL);
1110                 if (rc == CLO_REPEAT) {
1111                         --i;
1112                         continue;
1113                 }
1114
1115                 LASSERT(rc == 0);
1116                 LASSERT(lsl->lss_cl.cls_lock->cll_state < CLS_FREEING);
1117
1118                 if (lls->sub_flags & LSF_HELD)
1119                         lov_sublock_release(env, lck, i, 1, 0);
1120
1121                 link = lov_lock_link_find(env, lck, lsl);
1122                 LASSERT(link != NULL);
1123                 lov_lock_unlink(env, link, lsl);
1124                 LASSERT(lck->lls_sub[i].sub_lock == NULL);
1125
1126                 lov_sublock_unlock(env, lsl, closure, NULL);
1127         }
1128
1129         cl_lock_closure_fini(closure);
1130         EXIT;
1131 }
1132
1133 static int lov_lock_print(const struct lu_env *env, void *cookie,
1134                           lu_printer_t p, const struct cl_lock_slice *slice)
1135 {
1136         struct lov_lock *lck = cl2lov_lock(slice);
1137         int              i;
1138
1139         (*p)(env, cookie, "%d\n", lck->lls_nr);
1140         for (i = 0; i < lck->lls_nr; ++i) {
1141                 struct lov_lock_sub *sub;
1142
1143                 sub = &lck->lls_sub[i];
1144                 (*p)(env, cookie, "    %d %x: ", i, sub->sub_flags);
1145                 if (sub->sub_lock != NULL)
1146                         cl_lock_print(env, cookie, p,
1147                                       sub->sub_lock->lss_cl.cls_lock);
1148                 else
1149                         (*p)(env, cookie, "---\n");
1150         }
1151         return 0;
1152 }
1153
1154 static const struct cl_lock_operations lov_lock_ops = {
1155         .clo_fini      = lov_lock_fini,
1156         .clo_enqueue   = lov_lock_enqueue,
1157         .clo_wait      = lov_lock_wait,
1158         .clo_use       = lov_lock_use,
1159         .clo_unuse     = lov_lock_unuse,
1160         .clo_cancel    = lov_lock_cancel,
1161         .clo_fits_into = lov_lock_fits_into,
1162         .clo_delete    = lov_lock_delete,
1163         .clo_print     = lov_lock_print
1164 };
1165
1166 int lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
1167                         struct cl_lock *lock, const struct cl_io *io)
1168 {
1169         struct lov_lock *lck;
1170         int result;
1171
1172         ENTRY;
1173         OBD_SLAB_ALLOC_PTR_GFP(lck, lov_lock_kmem, GFP_NOFS);
1174         if (lck != NULL) {
1175                 cl_lock_slice_add(lock, &lck->lls_cl, obj, &lov_lock_ops);
1176                 result = lov_lock_sub_init(env, lck, io);
1177         } else
1178                 result = -ENOMEM;
1179         RETURN(result);
1180 }
1181
1182 static void lov_empty_lock_fini(const struct lu_env *env,
1183                                 struct cl_lock_slice *slice)
1184 {
1185         struct lov_lock *lck = cl2lov_lock(slice);
1186         OBD_SLAB_FREE_PTR(lck, lov_lock_kmem);
1187 }
1188
1189 static int lov_empty_lock_print(const struct lu_env *env, void *cookie,
1190                         lu_printer_t p, const struct cl_lock_slice *slice)
1191 {
1192         (*p)(env, cookie, "empty\n");
1193         return 0;
1194 }
1195
1196 /* XXX: more methods will be added later. */
1197 static const struct cl_lock_operations lov_empty_lock_ops = {
1198         .clo_fini  = lov_empty_lock_fini,
1199         .clo_print = lov_empty_lock_print
1200 };
1201
1202 int lov_lock_init_empty(const struct lu_env *env, struct cl_object *obj,
1203                         struct cl_lock *lock, const struct cl_io *io)
1204 {
1205         struct lov_lock *lck;
1206         int result = -ENOMEM;
1207
1208         ENTRY;
1209         OBD_SLAB_ALLOC_PTR_GFP(lck, lov_lock_kmem, GFP_NOFS);
1210         if (lck != NULL) {
1211                 cl_lock_slice_add(lock, &lck->lls_cl, obj, &lov_empty_lock_ops);
1212                 lck->lls_orig = lock->cll_descr;
1213                 result = 0;
1214         }
1215         RETURN(result);
1216 }
1217
1218 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
1219                                                struct cl_lock *parent)
1220 {
1221         struct cl_lock_closure *closure;
1222
1223         closure = &lov_env_info(env)->lti_closure;
1224         LASSERT(cfs_list_empty(&closure->clc_list));
1225         cl_lock_closure_init(env, closure, parent, 1);
1226         return closure;
1227 }
1228
1229
1230 /** @} lov */