Whamcloud - gitweb
63054d803baedd34fbc5c785de7ca05b86602781
[fs/lustre-release.git] / lustre / lod / lod_lov.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License version 2 for more details.  A copy is
14  * included in the COPYING file that accompanied this code.
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright  2009 Sun Microsystems, Inc. All rights reserved
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2012, 2015, Intel Corporation.
27  */
28 /*
29  * lustre/lod/lod_lov.c
30  *
31  * A set of helpers to maintain Logical Object Volume (LOV)
32  * Extended Attribute (EA) and known OST targets
33  *
34  * Author: Alex Zhuravlev <alexey.zhuravlev@intel.com>
35  */
36
37 #define DEBUG_SUBSYSTEM S_MDS
38
39 #include <obd_class.h>
40 #include <lustre_lfsck.h>
41 #include <lustre_lmv.h>
42 #include <lustre_swab.h>
43
44 #include "lod_internal.h"
45
46 /**
47  * Increase reference count on the target table.
48  *
49  * Increase reference count on the target table usage to prevent racing with
50  * addition/deletion. Any function that expects the table to remain
51  * stationary must take a ref.
52  *
53  * \param[in] ltd       target table (lod_ost_descs or lod_mdt_descs)
54  */
55 void lod_getref(struct lod_tgt_descs *ltd)
56 {
57         down_read(&ltd->ltd_rw_sem);
58         mutex_lock(&ltd->ltd_mutex);
59         ltd->ltd_refcount++;
60         mutex_unlock(&ltd->ltd_mutex);
61 }
62
63 /**
64  * Decrease reference count on the target table.
65  *
66  * Companion of lod_getref() to release a reference on the target table.
67  * If this is the last reference and the OST entry was scheduled for deletion,
68  * the descriptor is removed from the table.
69  *
70  * \param[in] lod       LOD device from which we release a reference
71  * \param[in] ltd       target table (lod_ost_descs or lod_mdt_descs)
72  */
73 void lod_putref(struct lod_device *lod, struct lod_tgt_descs *ltd)
74 {
75         mutex_lock(&ltd->ltd_mutex);
76         ltd->ltd_refcount--;
77         if (ltd->ltd_refcount == 0 && ltd->ltd_death_row) {
78                 struct lod_tgt_desc *tgt_desc, *tmp;
79                 struct list_head kill;
80                 unsigned int idx;
81
82                 CDEBUG(D_CONFIG, "destroying %d ltd desc\n",
83                        ltd->ltd_death_row);
84
85                 INIT_LIST_HEAD(&kill);
86
87                 cfs_foreach_bit(ltd->ltd_tgt_bitmap, idx) {
88                         tgt_desc = LTD_TGT(ltd, idx);
89                         LASSERT(tgt_desc);
90
91                         if (!tgt_desc->ltd_reap)
92                                 continue;
93
94                         list_add(&tgt_desc->ltd_kill, &kill);
95                         LTD_TGT(ltd, idx) = NULL;
96                         /*FIXME: only support ost pool for now */
97                         if (ltd == &lod->lod_ost_descs) {
98                                 lod_ost_pool_remove(&lod->lod_pool_info, idx);
99                                 if (tgt_desc->ltd_active)
100                                         lod->lod_desc.ld_active_tgt_count--;
101                         }
102                         ltd->ltd_tgtnr--;
103                         cfs_bitmap_clear(ltd->ltd_tgt_bitmap, idx);
104                         ltd->ltd_death_row--;
105                 }
106                 mutex_unlock(&ltd->ltd_mutex);
107                 up_read(&ltd->ltd_rw_sem);
108
109                 list_for_each_entry_safe(tgt_desc, tmp, &kill, ltd_kill) {
110                         int rc;
111                         list_del(&tgt_desc->ltd_kill);
112                         if (ltd == &lod->lod_ost_descs) {
113                                 /* remove from QoS structures */
114                                 rc = qos_del_tgt(lod, tgt_desc);
115                                 if (rc)
116                                         CERROR("%s: qos_del_tgt(%s) failed:"
117                                                "rc = %d\n",
118                                                lod2obd(lod)->obd_name,
119                                               obd_uuid2str(&tgt_desc->ltd_uuid),
120                                                rc);
121                         }
122                         rc = obd_disconnect(tgt_desc->ltd_exp);
123                         if (rc)
124                                 CERROR("%s: failed to disconnect %s: rc = %d\n",
125                                        lod2obd(lod)->obd_name,
126                                        obd_uuid2str(&tgt_desc->ltd_uuid), rc);
127                         OBD_FREE_PTR(tgt_desc);
128                 }
129         } else {
130                 mutex_unlock(&ltd->ltd_mutex);
131                 up_read(&ltd->ltd_rw_sem);
132         }
133 }
134
135 /**
136  * Expand size of target table.
137  *
138  * When the target table is full, we have to extend the table. To do so,
139  * we allocate new memory with some reserve, move data from the old table
140  * to the new one and release memory consumed by the old table.
141  * Notice we take ltd_rw_sem exclusively to ensure atomic switch.
142  *
143  * \param[in] ltd               target table
144  * \param[in] newsize           new size of the table
145  *
146  * \retval                      0 on success
147  * \retval                      -ENOMEM if reallocation failed
148  */
149 static int ltd_bitmap_resize(struct lod_tgt_descs *ltd, __u32 newsize)
150 {
151         cfs_bitmap_t *new_bitmap, *old_bitmap = NULL;
152         int           rc = 0;
153         ENTRY;
154
155         /* grab write reference on the lod. Relocating the array requires
156          * exclusive access */
157
158         down_write(&ltd->ltd_rw_sem);
159         if (newsize <= ltd->ltd_tgts_size)
160                 /* someone else has already resize the array */
161                 GOTO(out, rc = 0);
162
163         /* allocate new bitmap */
164         new_bitmap = CFS_ALLOCATE_BITMAP(newsize);
165         if (!new_bitmap)
166                 GOTO(out, rc = -ENOMEM);
167
168         if (ltd->ltd_tgts_size > 0) {
169                 /* the bitmap already exists, we need
170                  * to copy data from old one */
171                 cfs_bitmap_copy(new_bitmap, ltd->ltd_tgt_bitmap);
172                 old_bitmap = ltd->ltd_tgt_bitmap;
173         }
174
175         ltd->ltd_tgts_size  = newsize;
176         ltd->ltd_tgt_bitmap = new_bitmap;
177
178         if (old_bitmap)
179                 CFS_FREE_BITMAP(old_bitmap);
180
181         CDEBUG(D_CONFIG, "tgt size: %d\n", ltd->ltd_tgts_size);
182
183         EXIT;
184 out:
185         up_write(&ltd->ltd_rw_sem);
186         return rc;
187 }
188
189 /**
190  * Connect LOD to a new OSP and add it to the target table.
191  *
192  * Connect to the OSP device passed, initialize all the internal
193  * structures related to the device and add it to the target table.
194  *
195  * \param[in] env               execution environment for this thread
196  * \param[in] lod               LOD device to be connected to the new OSP
197  * \param[in] osp               name of OSP device name to be added
198  * \param[in] index             index of the new target
199  * \param[in] gen               target's generation number
200  * \param[in] tgt_index         OSP's group
201  * \param[in] type              type of device (mdc or osc)
202  * \param[in] active            state of OSP: 0 - inactive, 1 - active
203  *
204  * \retval                      0 if added successfully
205  * \retval                      negative error number on failure
206  */
207 int lod_add_device(const struct lu_env *env, struct lod_device *lod,
208                    char *osp, unsigned index, unsigned gen, int tgt_index,
209                    char *type, int active)
210 {
211         struct obd_connect_data *data = NULL;
212         struct obd_export       *exp = NULL;
213         struct obd_device       *obd;
214         struct lu_device        *lu_dev;
215         struct dt_device        *dt_dev;
216         int                      rc;
217         struct lod_tgt_desc     *tgt_desc;
218         struct lod_tgt_descs    *ltd;
219         struct lustre_cfg       *lcfg;
220         struct obd_uuid         obd_uuid;
221         bool                    for_ost;
222         bool lock = false;
223         ENTRY;
224
225         CDEBUG(D_CONFIG, "osp:%s idx:%d gen:%d\n", osp, index, gen);
226
227         if (gen <= 0) {
228                 CERROR("request to add OBD %s with invalid generation: %d\n",
229                        osp, gen);
230                 RETURN(-EINVAL);
231         }
232
233         obd_str2uuid(&obd_uuid, osp);
234
235         obd = class_find_client_obd(&obd_uuid, LUSTRE_OSP_NAME,
236                                 &lod->lod_dt_dev.dd_lu_dev.ld_obd->obd_uuid);
237         if (obd == NULL) {
238                 CERROR("can't find %s device\n", osp);
239                 RETURN(-EINVAL);
240         }
241
242         LASSERT(obd->obd_lu_dev != NULL);
243         LASSERT(obd->obd_lu_dev->ld_site == lod->lod_dt_dev.dd_lu_dev.ld_site);
244
245         lu_dev = obd->obd_lu_dev;
246         dt_dev = lu2dt_dev(lu_dev);
247
248         OBD_ALLOC_PTR(data);
249         if (data == NULL)
250                 GOTO(out_cleanup, rc = -ENOMEM);
251
252         data->ocd_connect_flags = OBD_CONNECT_INDEX | OBD_CONNECT_VERSION;
253         data->ocd_version = LUSTRE_VERSION_CODE;
254         data->ocd_index = index;
255
256         if (strcmp(LUSTRE_OSC_NAME, type) == 0) {
257                 for_ost = true;
258                 data->ocd_connect_flags |= OBD_CONNECT_AT |
259                                            OBD_CONNECT_FULL20 |
260                                            OBD_CONNECT_INDEX |
261 #ifdef HAVE_LRU_RESIZE_SUPPORT
262                                            OBD_CONNECT_LRU_RESIZE |
263 #endif
264                                            OBD_CONNECT_MDS |
265                                            OBD_CONNECT_REQPORTAL |
266                                            OBD_CONNECT_SKIP_ORPHAN |
267                                            OBD_CONNECT_FID |
268                                            OBD_CONNECT_LVB_TYPE |
269                                            OBD_CONNECT_VERSION |
270                                            OBD_CONNECT_PINGLESS |
271                                            OBD_CONNECT_LFSCK |
272                                            OBD_CONNECT_BULK_MBITS;
273
274                 data->ocd_group = tgt_index;
275                 ltd = &lod->lod_ost_descs;
276         } else {
277                 struct obd_import *imp = obd->u.cli.cl_import;
278
279                 for_ost = false;
280                 data->ocd_ibits_known = MDS_INODELOCK_UPDATE;
281                 data->ocd_connect_flags |= OBD_CONNECT_ACL |
282                                            OBD_CONNECT_IBITS |
283                                            OBD_CONNECT_MDS_MDS |
284                                            OBD_CONNECT_FID |
285                                            OBD_CONNECT_AT |
286                                            OBD_CONNECT_FULL20 |
287                                            OBD_CONNECT_LFSCK |
288                                            OBD_CONNECT_BULK_MBITS;
289                 spin_lock(&imp->imp_lock);
290                 imp->imp_server_timeout = 1;
291                 spin_unlock(&imp->imp_lock);
292                 imp->imp_client->cli_request_portal = OUT_PORTAL;
293                 CDEBUG(D_OTHER, "%s: Set 'mds' portal and timeout\n",
294                       obd->obd_name);
295                 ltd = &lod->lod_mdt_descs;
296         }
297
298         rc = obd_connect(env, &exp, obd, &obd->obd_uuid, data, NULL);
299         OBD_FREE_PTR(data);
300         if (rc) {
301                 CERROR("%s: cannot connect to next dev %s (%d)\n",
302                        obd->obd_name, osp, rc);
303                 GOTO(out_cleanup, rc);
304         }
305
306         /* Allocate ost descriptor and fill it */
307         OBD_ALLOC_PTR(tgt_desc);
308         if (!tgt_desc)
309                 GOTO(out_conn, rc = -ENOMEM);
310
311         tgt_desc->ltd_tgt    = dt_dev;
312         tgt_desc->ltd_exp    = exp;
313         tgt_desc->ltd_uuid   = obd->u.cli.cl_target_uuid;
314         tgt_desc->ltd_gen    = gen;
315         tgt_desc->ltd_index  = index;
316         tgt_desc->ltd_active = active;
317
318         lod_getref(ltd);
319         if (index >= ltd->ltd_tgts_size) {
320                 /* we have to increase the size of the lod_osts array */
321                 __u32  newsize;
322
323                 newsize = max(ltd->ltd_tgts_size, (__u32)2);
324                 while (newsize < index + 1)
325                         newsize = newsize << 1;
326
327                 /* lod_bitmap_resize() needs lod_rw_sem
328                  * which we hold with th reference */
329                 lod_putref(lod, ltd);
330
331                 rc = ltd_bitmap_resize(ltd, newsize);
332                 if (rc)
333                         GOTO(out_desc, rc);
334
335                 lod_getref(ltd);
336         }
337
338         mutex_lock(&ltd->ltd_mutex);
339         lock = true;
340         if (cfs_bitmap_check(ltd->ltd_tgt_bitmap, index)) {
341                 CERROR("%s: device %d is registered already\n", obd->obd_name,
342                        index);
343                 GOTO(out_mutex, rc = -EEXIST);
344         }
345
346         if (ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK] == NULL) {
347                 OBD_ALLOC_PTR(ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK]);
348                 if (ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK] == NULL) {
349                         CERROR("can't allocate index to add %s\n",
350                                obd->obd_name);
351                         GOTO(out_mutex, rc = -ENOMEM);
352                 }
353         }
354
355         if (for_ost) {
356                 /* pool and qos are not supported for MDS stack yet */
357                 rc = lod_ost_pool_add(&lod->lod_pool_info, index,
358                                       lod->lod_osts_size);
359                 if (rc) {
360                         CERROR("%s: can't set up pool, failed with %d\n",
361                                obd->obd_name, rc);
362                         GOTO(out_mutex, rc);
363                 }
364
365                 rc = qos_add_tgt(lod, tgt_desc);
366                 if (rc) {
367                         CERROR("%s: qos_add_tgt failed with %d\n",
368                                 obd->obd_name, rc);
369                         GOTO(out_pool, rc);
370                 }
371
372                 /* The new OST is now a full citizen */
373                 if (index >= lod->lod_desc.ld_tgt_count)
374                         lod->lod_desc.ld_tgt_count = index + 1;
375                 if (active)
376                         lod->lod_desc.ld_active_tgt_count++;
377         }
378
379         LTD_TGT(ltd, index) = tgt_desc;
380         cfs_bitmap_set(ltd->ltd_tgt_bitmap, index);
381         ltd->ltd_tgtnr++;
382         mutex_unlock(&ltd->ltd_mutex);
383         lod_putref(lod, ltd);
384         lock = false;
385         if (lod->lod_recovery_completed)
386                 lu_dev->ld_ops->ldo_recovery_complete(env, lu_dev);
387
388         if (!for_ost && lod->lod_initialized) {
389                 rc = lod_sub_init_llog(env, lod, tgt_desc->ltd_tgt);
390                 if (rc != 0) {
391                         CERROR("%s: cannot start llog on %s:rc = %d\n",
392                                lod2obd(lod)->obd_name, osp, rc);
393                         GOTO(out_ltd, rc);
394                 }
395         }
396
397         rc = lfsck_add_target(env, lod->lod_child, dt_dev, exp, index, for_ost);
398         if (rc != 0) {
399                 CERROR("Fail to add LFSCK target: name = %s, type = %s, "
400                        "index = %u, rc = %d\n", osp, type, index, rc);
401                 GOTO(out_fini_llog, rc);
402         }
403         RETURN(rc);
404 out_fini_llog:
405         lod_sub_fini_llog(env, tgt_desc->ltd_tgt,
406                           tgt_desc->ltd_recovery_thread);
407 out_ltd:
408         lod_getref(ltd);
409         mutex_lock(&ltd->ltd_mutex);
410         lock = true;
411         if (!for_ost && LTD_TGT(ltd, index)->ltd_recovery_thread != NULL) {
412                 struct ptlrpc_thread *thread;
413
414                 thread = LTD_TGT(ltd, index)->ltd_recovery_thread;
415                 OBD_FREE_PTR(thread);
416         }
417         ltd->ltd_tgtnr--;
418         cfs_bitmap_clear(ltd->ltd_tgt_bitmap, index);
419         LTD_TGT(ltd, index) = NULL;
420 out_pool:
421         lod_ost_pool_remove(&lod->lod_pool_info, index);
422 out_mutex:
423         if (lock) {
424                 mutex_unlock(&ltd->ltd_mutex);
425                 lod_putref(lod, ltd);
426         }
427 out_desc:
428         OBD_FREE_PTR(tgt_desc);
429 out_conn:
430         obd_disconnect(exp);
431 out_cleanup:
432         /* XXX OSP needs us to send down LCFG_CLEANUP because it uses
433          * objects from the MDT stack. See LU-7184. */
434         lcfg = &lod_env_info(env)->lti_lustre_cfg;
435         memset(lcfg, 0, sizeof(*lcfg));
436         lcfg->lcfg_version = LUSTRE_CFG_VERSION;
437         lcfg->lcfg_command = LCFG_CLEANUP;
438         lu_dev->ld_ops->ldo_process_config(env, lu_dev, lcfg);
439
440         return rc;
441 }
442
443 /**
444  * Schedule target removal from the target table.
445  *
446  * Mark the device as dead. The device is not removed here because it may
447  * still be in use. The device will be removed in lod_putref() when the
448  * last reference is released.
449  *
450  * \param[in] env               execution environment for this thread
451  * \param[in] lod               LOD device the target table belongs to
452  * \param[in] ltd               target table
453  * \param[in] idx               index of the target
454  * \param[in] for_ost           type of the target: 0 - MDT, 1 - OST
455  */
456 static void __lod_del_device(const struct lu_env *env, struct lod_device *lod,
457                              struct lod_tgt_descs *ltd, unsigned idx,
458                              bool for_ost)
459 {
460         LASSERT(LTD_TGT(ltd, idx));
461
462         lfsck_del_target(env, lod->lod_child, LTD_TGT(ltd, idx)->ltd_tgt,
463                          idx, for_ost);
464
465         if (!for_ost && LTD_TGT(ltd, idx)->ltd_recovery_thread != NULL) {
466                 struct ptlrpc_thread *thread;
467
468                 thread = LTD_TGT(ltd, idx)->ltd_recovery_thread;
469                 OBD_FREE_PTR(thread);
470         }
471
472         if (LTD_TGT(ltd, idx)->ltd_reap == 0) {
473                 LTD_TGT(ltd, idx)->ltd_reap = 1;
474                 ltd->ltd_death_row++;
475         }
476 }
477
478 /**
479  * Schedule removal of all the targets from the given target table.
480  *
481  * See more details in the description for __lod_del_device()
482  *
483  * \param[in] env               execution environment for this thread
484  * \param[in] lod               LOD device the target table belongs to
485  * \param[in] ltd               target table
486  * \param[in] for_ost           type of the target: MDT or OST
487  *
488  * \retval                      0 always
489  */
490 int lod_fini_tgt(const struct lu_env *env, struct lod_device *lod,
491                  struct lod_tgt_descs *ltd, bool for_ost)
492 {
493         unsigned int idx;
494
495         if (ltd->ltd_tgts_size <= 0)
496                 return 0;
497         lod_getref(ltd);
498         mutex_lock(&ltd->ltd_mutex);
499         cfs_foreach_bit(ltd->ltd_tgt_bitmap, idx)
500                 __lod_del_device(env, lod, ltd, idx, for_ost);
501         mutex_unlock(&ltd->ltd_mutex);
502         lod_putref(lod, ltd);
503         CFS_FREE_BITMAP(ltd->ltd_tgt_bitmap);
504         for (idx = 0; idx < TGT_PTRS; idx++) {
505                 if (ltd->ltd_tgt_idx[idx])
506                         OBD_FREE_PTR(ltd->ltd_tgt_idx[idx]);
507         }
508         ltd->ltd_tgts_size = 0;
509         return 0;
510 }
511
512 /**
513  * Remove device by name.
514  *
515  * Remove a device identified by \a osp from the target table. Given
516  * the device can be in use, the real deletion happens in lod_putref().
517  *
518  * \param[in] env               execution environment for this thread
519  * \param[in] lod               LOD device to be connected to the new OSP
520  * \param[in] ltd               target table
521  * \param[in] osp               name of OSP device to be removed
522  * \param[in] idx               index of the target
523  * \param[in] gen               generation number, not used currently
524  * \param[in] for_ost           type of the target: 0 - MDT, 1 - OST
525  *
526  * \retval                      0 if the device was scheduled for removal
527  * \retval                      -EINVAL if no device was found
528  */
529 int lod_del_device(const struct lu_env *env, struct lod_device *lod,
530                    struct lod_tgt_descs *ltd, char *osp, unsigned idx,
531                    unsigned gen, bool for_ost)
532 {
533         struct obd_device *obd;
534         int                rc = 0;
535         struct obd_uuid    uuid;
536         ENTRY;
537
538         CDEBUG(D_CONFIG, "osp:%s idx:%d gen:%d\n", osp, idx, gen);
539
540         obd_str2uuid(&uuid, osp);
541
542         obd = class_find_client_obd(&uuid, LUSTRE_OSP_NAME,
543                                    &lod->lod_dt_dev.dd_lu_dev.ld_obd->obd_uuid);
544         if (obd == NULL) {
545                 CERROR("can't find %s device\n", osp);
546                 RETURN(-EINVAL);
547         }
548
549         if (gen <= 0) {
550                 CERROR("%s: request to remove OBD %s with invalid generation %d"
551                        "\n", obd->obd_name, osp, gen);
552                 RETURN(-EINVAL);
553         }
554
555         obd_str2uuid(&uuid,  osp);
556
557         lod_getref(ltd);
558         mutex_lock(&ltd->ltd_mutex);
559         /* check that the index is allocated in the bitmap */
560         if (!cfs_bitmap_check(ltd->ltd_tgt_bitmap, idx) ||
561             !LTD_TGT(ltd, idx)) {
562                 CERROR("%s: device %d is not set up\n", obd->obd_name, idx);
563                 GOTO(out, rc = -EINVAL);
564         }
565
566         /* check that the UUID matches */
567         if (!obd_uuid_equals(&uuid, &LTD_TGT(ltd, idx)->ltd_uuid)) {
568                 CERROR("%s: LOD target UUID %s at index %d does not match %s\n",
569                        obd->obd_name, obd_uuid2str(&LTD_TGT(ltd,idx)->ltd_uuid),
570                        idx, osp);
571                 GOTO(out, rc = -EINVAL);
572         }
573
574         __lod_del_device(env, lod, ltd, idx, for_ost);
575         EXIT;
576 out:
577         mutex_unlock(&ltd->ltd_mutex);
578         lod_putref(lod, ltd);
579         return(rc);
580 }
581
582 /**
583  * Resize per-thread storage to hold specified size.
584  *
585  * A helper function to resize per-thread temporary storage. This storage
586  * is used to process LOV/LVM EAs and may be quite large. We do not want to
587  * allocate/release it every time, so instead we put it into the env and
588  * reallocate on demand. The memory is released when the correspondent thread
589  * is finished.
590  *
591  * \param[in] info              LOD-specific storage in the environment
592  * \param[in] size              new size to grow the buffer to
593
594  * \retval                      0 on success, -ENOMEM if reallocation failed
595  */
596 int lod_ea_store_resize(struct lod_thread_info *info, size_t size)
597 {
598         __u32 round = size_roundup_power2(size);
599
600         LASSERT(round <=
601                 lov_mds_md_size(LOV_MAX_STRIPE_COUNT, LOV_MAGIC_V3));
602         if (info->lti_ea_store) {
603                 LASSERT(info->lti_ea_store_size);
604                 LASSERT(info->lti_ea_store_size < round);
605                 CDEBUG(D_INFO, "EA store size %d is not enough, need %d\n",
606                        info->lti_ea_store_size, round);
607                 OBD_FREE_LARGE(info->lti_ea_store, info->lti_ea_store_size);
608                 info->lti_ea_store = NULL;
609                 info->lti_ea_store_size = 0;
610         }
611
612         OBD_ALLOC_LARGE(info->lti_ea_store, round);
613         if (info->lti_ea_store == NULL)
614                 RETURN(-ENOMEM);
615         info->lti_ea_store_size = round;
616         RETURN(0);
617 }
618
619 /**
620  * Make LOV EA for striped object.
621  *
622  * Generate striping information and store it in the LOV EA of the given
623  * object. The caller must ensure nobody else is calling the function
624  * against the object concurrently. The transaction must be started.
625  * FLDB service must be running as well; it's used to map FID to the target,
626  * which is stored in LOV EA.
627  *
628  * \param[in] env               execution environment for this thread
629  * \param[in] lo                LOD object
630  * \param[in] th                transaction handle
631  *
632  * \retval                      0 if LOV EA is stored successfully
633  * \retval                      negative error number on failure
634  */
635 int lod_generate_and_set_lovea(const struct lu_env *env,
636                                struct lod_object *lo, struct thandle *th)
637 {
638         struct lod_thread_info  *info = lod_env_info(env);
639         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
640         const struct lu_fid     *fid  = lu_object_fid(&lo->ldo_obj.do_lu);
641         struct lov_mds_md_v1    *lmm;
642         struct lov_ost_data_v1  *objs;
643         __u32                    magic;
644         int                      i, rc;
645         size_t                   lmm_size;
646         ENTRY;
647
648         LASSERT(lo);
649
650         magic = lo->ldo_pool != NULL ? LOV_MAGIC_V3 : LOV_MAGIC_V1;
651         lmm_size = lov_mds_md_size(lo->ldo_stripenr, magic);
652         if (info->lti_ea_store_size < lmm_size) {
653                 rc = lod_ea_store_resize(info, lmm_size);
654                 if (rc)
655                         RETURN(rc);
656         }
657
658         if (lo->ldo_pattern == 0) /* default striping */
659                 lo->ldo_pattern = LOV_PATTERN_RAID0;
660
661         lmm = info->lti_ea_store;
662
663         lmm->lmm_magic = cpu_to_le32(magic);
664         lmm->lmm_pattern = cpu_to_le32(lo->ldo_pattern);
665         fid_to_lmm_oi(fid, &lmm->lmm_oi);
666         if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_LMMOI))
667                 lmm->lmm_oi.oi.oi_id++;
668         lmm_oi_cpu_to_le(&lmm->lmm_oi, &lmm->lmm_oi);
669         lmm->lmm_stripe_size = cpu_to_le32(lo->ldo_stripe_size);
670         lmm->lmm_stripe_count = cpu_to_le16(lo->ldo_stripenr);
671         if (lo->ldo_pattern & LOV_PATTERN_F_RELEASED)
672                 lmm->lmm_stripe_count = cpu_to_le16(lo->ldo_released_stripenr);
673         lmm->lmm_layout_gen = 0;
674         if (magic == LOV_MAGIC_V1) {
675                 objs = &lmm->lmm_objects[0];
676         } else {
677                 struct lov_mds_md_v3 *v3 = (struct lov_mds_md_v3 *) lmm;
678                 size_t cplen = strlcpy(v3->lmm_pool_name, lo->ldo_pool,
679                                 sizeof(v3->lmm_pool_name));
680                 if (cplen >= sizeof(v3->lmm_pool_name))
681                         RETURN(-E2BIG);
682                 objs = &v3->lmm_objects[0];
683         }
684
685         for (i = 0; i < lo->ldo_stripenr; i++) {
686                 struct lu_fid           *fid    = &info->lti_fid;
687                 struct lod_device       *lod;
688                 __u32                   index;
689                 int                     type    = LU_SEQ_RANGE_OST;
690
691                 lod = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev);
692                 LASSERT(lo->ldo_stripe[i]);
693
694                 *fid = *lu_object_fid(&lo->ldo_stripe[i]->do_lu);
695                 if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_MULTIPLE_REF)) {
696                         if (cfs_fail_val == 0)
697                                 cfs_fail_val = fid->f_oid;
698                         else
699                                 fid->f_oid = cfs_fail_val;
700                 }
701
702                 rc = fid_to_ostid(fid, &info->lti_ostid);
703                 LASSERT(rc == 0);
704
705                 ostid_cpu_to_le(&info->lti_ostid, &objs[i].l_ost_oi);
706                 objs[i].l_ost_gen    = cpu_to_le32(0);
707                 if (OBD_FAIL_CHECK(OBD_FAIL_MDS_FLD_LOOKUP))
708                         rc = -ENOENT;
709                 else
710                         rc = lod_fld_lookup(env, lod, fid,
711                                             &index, &type);
712                 if (rc < 0) {
713                         CERROR("%s: Can not locate "DFID": rc = %d\n",
714                                lod2obd(lod)->obd_name, PFID(fid), rc);
715                         lod_object_free_striping(env, lo);
716                         RETURN(rc);
717                 }
718                 objs[i].l_ost_idx = cpu_to_le32(index);
719         }
720
721         info->lti_buf.lb_buf = lmm;
722         info->lti_buf.lb_len = lmm_size;
723         rc = lod_sub_object_xattr_set(env, next, &info->lti_buf, XATTR_NAME_LOV,
724                                       0, th);
725         if (rc < 0) {
726                 lod_object_free_striping(env, lo);
727                 RETURN(rc);
728         }
729
730         RETURN(rc);
731 }
732
733 /**
734  * Get LOV EA.
735  *
736  * Fill lti_ea_store buffer in the environment with a value for the given
737  * EA. The buffer is reallocated if the value doesn't fit.
738  *
739  * \param[in,out] env           execution environment for this thread
740  *                              .lti_ea_store buffer is filled with EA's value
741  * \param[in] lo                LOD object
742  * \param[in] name              name of the EA
743  *
744  * \retval                      0 if EA is fetched successfully
745  * \retval                      negative error number on failure
746  */
747 int lod_get_ea(const struct lu_env *env, struct lod_object *lo,
748                const char *name)
749 {
750         struct lod_thread_info  *info = lod_env_info(env);
751         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
752         int                     rc;
753         ENTRY;
754
755         LASSERT(info);
756
757         if (unlikely(info->lti_ea_store == NULL)) {
758                 /* just to enter in allocation block below */
759                 rc = -ERANGE;
760         } else {
761 repeat:
762                 info->lti_buf.lb_buf = info->lti_ea_store;
763                 info->lti_buf.lb_len = info->lti_ea_store_size;
764                 rc = dt_xattr_get(env, next, &info->lti_buf, name);
765         }
766
767         /* if object is not striped or inaccessible */
768         if (rc == -ENODATA || rc == -ENOENT)
769                 RETURN(0);
770
771         if (rc == -ERANGE) {
772                 /* EA doesn't fit, reallocate new buffer */
773                 rc = dt_xattr_get(env, next, &LU_BUF_NULL, name);
774                 if (rc == -ENODATA || rc == -ENOENT)
775                         RETURN(0);
776                 else if (rc < 0)
777                         RETURN(rc);
778
779                 LASSERT(rc > 0);
780                 rc = lod_ea_store_resize(info, rc);
781                 if (rc)
782                         RETURN(rc);
783                 goto repeat;
784         }
785
786         RETURN(rc);
787 }
788
789 /**
790  * Verify the target index is present in the current configuration.
791  *
792  * \param[in] md                LOD device where the target table is stored
793  * \param[in] idx               target's index
794  *
795  * \retval                      0 if the index is present
796  * \retval                      -EINVAL if not
797  */
798 static int validate_lod_and_idx(struct lod_device *md, __u32 idx)
799 {
800         if (unlikely(idx >= md->lod_ost_descs.ltd_tgts_size ||
801                      !cfs_bitmap_check(md->lod_ost_bitmap, idx))) {
802                 CERROR("%s: bad idx: %d of %d\n", lod2obd(md)->obd_name, idx,
803                        md->lod_ost_descs.ltd_tgts_size);
804                 return -EINVAL;
805         }
806
807         if (unlikely(OST_TGT(md, idx) == NULL)) {
808                 CERROR("%s: bad lod_tgt_desc for idx: %d\n",
809                        lod2obd(md)->obd_name, idx);
810                 return -EINVAL;
811         }
812
813         if (unlikely(OST_TGT(md, idx)->ltd_ost == NULL)) {
814                 CERROR("%s: invalid lod device, for idx: %d\n",
815                        lod2obd(md)->obd_name , idx);
816                 return -EINVAL;
817         }
818
819         return 0;
820 }
821
822 /**
823  * Instantiate objects for stripes.
824  *
825  * Allocate and initialize LU-objects representing the stripes. The number
826  * of the stripes (ldo_stripenr) must be initialized already. The caller
827  * must ensure nobody else is calling the function on the object at the same
828  * time. FLDB service must be running to be able to map a FID to the targets
829  * and find appropriate device representing that target.
830  *
831  * \param[in] env               execution environment for this thread
832  * \param[in,out] lo            LOD object
833  * \param[in] objs              an array of IDs to creates the objects from
834  *
835  * \retval                      0 if the objects are instantiated successfully
836  * \retval                      negative error number on failure
837  */
838 int lod_initialize_objects(const struct lu_env *env, struct lod_object *lo,
839                            struct lov_ost_data_v1 *objs)
840 {
841         struct lod_thread_info  *info = lod_env_info(env);
842         struct lod_device       *md;
843         struct lu_object        *o, *n;
844         struct lu_device        *nd;
845         struct dt_object       **stripe;
846         int                      stripe_len;
847         int                      i, rc = 0;
848         __u32                   idx;
849         ENTRY;
850
851         LASSERT(lo != NULL);
852         md = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev);
853         LASSERT(lo->ldo_stripe == NULL);
854         LASSERT(lo->ldo_stripenr > 0);
855         LASSERT(lo->ldo_stripe_size > 0);
856
857         stripe_len = lo->ldo_stripenr;
858         OBD_ALLOC(stripe, sizeof(stripe[0]) * stripe_len);
859         if (stripe == NULL)
860                 RETURN(-ENOMEM);
861
862         for (i = 0; i < lo->ldo_stripenr; i++) {
863                 if (unlikely(lovea_slot_is_dummy(&objs[i])))
864                         continue;
865
866                 ostid_le_to_cpu(&objs[i].l_ost_oi, &info->lti_ostid);
867                 idx = le32_to_cpu(objs[i].l_ost_idx);
868                 rc = ostid_to_fid(&info->lti_fid, &info->lti_ostid, idx);
869                 if (rc != 0)
870                         GOTO(out, rc);
871                 LASSERTF(fid_is_sane(&info->lti_fid), ""DFID" insane!\n",
872                          PFID(&info->lti_fid));
873                 lod_getref(&md->lod_ost_descs);
874
875                 rc = validate_lod_and_idx(md, idx);
876                 if (unlikely(rc != 0)) {
877                         lod_putref(md, &md->lod_ost_descs);
878                         GOTO(out, rc);
879                 }
880
881                 nd = &OST_TGT(md,idx)->ltd_ost->dd_lu_dev;
882                 lod_putref(md, &md->lod_ost_descs);
883
884                 /* In the function below, .hs_keycmp resolves to
885                  * u_obj_hop_keycmp() */
886                 /* coverity[overrun-buffer-val] */
887                 o = lu_object_find_at(env, nd, &info->lti_fid, NULL);
888                 if (IS_ERR(o))
889                         GOTO(out, rc = PTR_ERR(o));
890
891                 n = lu_object_locate(o->lo_header, nd->ld_type);
892                 LASSERT(n);
893
894                 stripe[i] = container_of(n, struct dt_object, do_lu);
895         }
896
897 out:
898         if (rc != 0) {
899                 for (i = 0; i < stripe_len; i++)
900                         if (stripe[i] != NULL)
901                                 lu_object_put(env, &stripe[i]->do_lu);
902
903                 OBD_FREE(stripe, sizeof(stripe[0]) * stripe_len);
904                 lo->ldo_stripenr = 0;
905         } else {
906                 lo->ldo_stripe = stripe;
907                 lo->ldo_stripes_allocated = stripe_len;
908         }
909
910         RETURN(rc);
911 }
912
913 /**
914  * Instantiate objects for striping.
915  *
916  * Parse striping information in \a buf and instantiate the objects
917  * representing the stripes.
918  *
919  * \param[in] env               execution environment for this thread
920  * \param[in] lo                LOD object
921  * \param[in] buf               buffer storing LOV EA to parse
922  *
923  * \retval                      0 if parsing and objects creation succeed
924  * \retval                      negative error number on failure
925  */
926 int lod_parse_striping(const struct lu_env *env, struct lod_object *lo,
927                        const struct lu_buf *buf)
928 {
929         struct lov_mds_md_v1    *lmm;
930         struct lov_ost_data_v1  *objs;
931         __u32                    magic;
932         __u32                    pattern;
933         int                      rc = 0;
934         ENTRY;
935
936         LASSERT(buf);
937         LASSERT(buf->lb_buf);
938         LASSERT(buf->lb_len);
939
940         lmm = (struct lov_mds_md_v1 *) buf->lb_buf;
941         magic = le32_to_cpu(lmm->lmm_magic);
942         pattern = le32_to_cpu(lmm->lmm_pattern);
943
944         if (magic != LOV_MAGIC_V1 && magic != LOV_MAGIC_V3)
945                 GOTO(out, rc = -EINVAL);
946         if (lov_pattern(pattern) != LOV_PATTERN_RAID0)
947                 GOTO(out, rc = -EINVAL);
948
949         lo->ldo_pattern = pattern;
950         lo->ldo_stripe_size = le32_to_cpu(lmm->lmm_stripe_size);
951         lo->ldo_layout_gen = le16_to_cpu(lmm->lmm_layout_gen);
952         lo->ldo_stripenr = le16_to_cpu(lmm->lmm_stripe_count);
953         /* released file stripenr fixup. */
954         if (pattern & LOV_PATTERN_F_RELEASED)
955                 lo->ldo_stripenr = 0;
956
957         LASSERT(buf->lb_len >= lov_mds_md_size(lo->ldo_stripenr, magic));
958
959         if (magic == LOV_MAGIC_V3) {
960                 struct lov_mds_md_v3 *v3 = (struct lov_mds_md_v3 *) lmm;
961                 objs = &v3->lmm_objects[0];
962                 lod_object_set_pool(lo, v3->lmm_pool_name);
963         } else {
964                 objs = &lmm->lmm_objects[0];
965         }
966
967         if (lo->ldo_stripenr > 0)
968                 rc = lod_initialize_objects(env, lo, objs);
969
970 out:
971         RETURN(rc);
972 }
973
974 /**
975  * Initialize the object representing the stripes.
976  *
977  * Unless the stripes are initialized already, fetch LOV (for regular
978  * objects) or LMV (for directory objects) EA and call lod_parse_striping()
979  * to instantiate the objects representing the stripes.
980  *
981  * \param[in] env               execution environment for this thread
982  * \param[in,out] lo            LOD object
983  *
984  * \retval                      0 if parsing and object creation succeed
985  * \retval                      negative error number on failure
986  */
987 int lod_load_striping_locked(const struct lu_env *env, struct lod_object *lo)
988 {
989         struct lod_thread_info  *info = lod_env_info(env);
990         struct lu_buf           *buf  = &info->lti_buf;
991         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
992         int                      rc = 0;
993         ENTRY;
994
995         /* already initialized? */
996         if (lo->ldo_stripe != NULL)
997                 GOTO(out, rc = 0);
998
999         if (!dt_object_exists(next))
1000                 GOTO(out, rc = 0);
1001
1002         /* Do not load stripe for slaves of striped dir */
1003         if (lo->ldo_dir_slave_stripe)
1004                 GOTO(out, rc = 0);
1005
1006         if (S_ISREG(lu_object_attr(lod2lu_obj(lo)))) {
1007                 rc = lod_get_lov_ea(env, lo);
1008                 if (rc <= 0)
1009                         GOTO(out, rc);
1010                 /*
1011                  * there is LOV EA (striping information) in this object
1012                  * let's parse it and create in-core objects for the stripes
1013                  */
1014                 buf->lb_buf = info->lti_ea_store;
1015                 buf->lb_len = info->lti_ea_store_size;
1016                 rc = lod_parse_striping(env, lo, buf);
1017         } else if (S_ISDIR(lu_object_attr(lod2lu_obj(lo)))) {
1018                 rc = lod_get_lmv_ea(env, lo);
1019                 if (rc < (typeof(rc))sizeof(struct lmv_mds_md_v1))
1020                         GOTO(out, rc = rc > 0 ? -EINVAL : rc);
1021
1022                 buf->lb_buf = info->lti_ea_store;
1023                 buf->lb_len = info->lti_ea_store_size;
1024                 if (rc == sizeof(struct lmv_mds_md_v1)) {
1025                         rc = lod_load_lmv_shards(env, lo, buf, true);
1026                         if (buf->lb_buf != info->lti_ea_store) {
1027                                 OBD_FREE_LARGE(info->lti_ea_store,
1028                                                info->lti_ea_store_size);
1029                                 info->lti_ea_store = buf->lb_buf;
1030                                 info->lti_ea_store_size = buf->lb_len;
1031                         }
1032
1033                         if (rc < 0)
1034                                 GOTO(out, rc);
1035                 }
1036
1037                 /*
1038                  * there is LOV EA (striping information) in this object
1039                  * let's parse it and create in-core objects for the stripes
1040                  */
1041                 rc = lod_parse_dir_striping(env, lo, buf);
1042         }
1043
1044         if (rc == 0)
1045                 lo->ldo_striping_cached = 1;
1046 out:
1047         RETURN(rc);
1048 }
1049
1050 /**
1051  * A generic function to initialize the stripe objects.
1052  *
1053  * A protected version of lod_load_striping_locked() - load the striping
1054  * information from storage, parse that and instantiate LU objects to
1055  * represent the stripes.  The LOD object \a lo supplies a pointer to the
1056  * next sub-object in the LU stack so we can lock it. Also use \a lo to
1057  * return an array of references to the newly instantiated objects.
1058  *
1059  * \param[in] env               execution environment for this thread
1060  * \param[in,out] lo            LOD object, where striping is stored and
1061  *                              which gets an array of references
1062  *
1063  * \retval                      0 if parsing and object creation succeed
1064  * \retval                      negative error number on failure
1065  **/
1066 int lod_load_striping(const struct lu_env *env, struct lod_object *lo)
1067 {
1068         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
1069         int                     rc = 0;
1070
1071         /* currently this code is supposed to be called from declaration
1072          * phase only, thus the object is not expected to be locked by caller */
1073         dt_write_lock(env, next, 0);
1074         rc = lod_load_striping_locked(env, lo);
1075         dt_write_unlock(env, next);
1076         return rc;
1077 }
1078
1079 /**
1080  * Verify striping.
1081  *
1082  * Check the validity of all fields including the magic, stripe size,
1083  * stripe count, stripe offset and that the pool is present.  Also check
1084  * that each target index points to an existing target. The additional
1085  * \a is_from_disk turns additional checks. In some cases zero fields
1086  * are allowed (like pattern=0).
1087  *
1088  * \param[in] d                 LOD device
1089  * \param[in] buf               buffer with LOV EA to verify
1090  * \param[in] is_from_disk      0 - from user, allow some fields to be 0
1091  *                              1 - from disk, do not allow
1092  *
1093  * \retval                      0 if the striping is valid
1094  * \retval                      -EINVAL if striping is invalid
1095  */
1096 int lod_verify_striping(struct lod_device *d, const struct lu_buf *buf,
1097                         bool is_from_disk)
1098 {
1099         struct lov_user_md_v1   *lum;
1100         struct lov_user_md_v3   *lum3;
1101         struct pool_desc        *pool = NULL;
1102         __u32                    magic;
1103         __u32                    stripe_size;
1104         __u16                    stripe_count;
1105         __u16                    stripe_offset;
1106         size_t                   lum_size;
1107         int                      rc = 0;
1108         ENTRY;
1109
1110         lum = buf->lb_buf;
1111
1112         LASSERT(sizeof(*lum) < sizeof(*lum3));
1113
1114         if (buf->lb_len < sizeof(*lum)) {
1115                 CDEBUG(D_IOCTL, "buf len %zu too small for lov_user_md\n",
1116                        buf->lb_len);
1117                 GOTO(out, rc = -EINVAL);
1118         }
1119
1120         magic = le32_to_cpu(lum->lmm_magic);
1121         if (magic != LOV_USER_MAGIC_V1 &&
1122             magic != LOV_USER_MAGIC_V3 &&
1123             magic != LOV_MAGIC_V1_DEF &&
1124             magic != LOV_MAGIC_V3_DEF) {
1125                 CDEBUG(D_IOCTL, "bad userland LOV MAGIC: %#x\n", magic);
1126                 GOTO(out, rc = -EINVAL);
1127         }
1128
1129         /* the user uses "0" for default stripe pattern normally. */
1130         if (!is_from_disk && lum->lmm_pattern == 0)
1131                 lum->lmm_pattern = cpu_to_le32(LOV_PATTERN_RAID0);
1132
1133         if (le32_to_cpu(lum->lmm_pattern) != LOV_PATTERN_RAID0) {
1134                 CDEBUG(D_IOCTL, "bad userland stripe pattern: %#x\n",
1135                        le32_to_cpu(lum->lmm_pattern));
1136                 GOTO(out, rc = -EINVAL);
1137         }
1138
1139         /* 64kB is the largest common page size we see (ia64), and matches the
1140          * check in lfs */
1141         stripe_size = le32_to_cpu(lum->lmm_stripe_size);
1142         if (stripe_size & (LOV_MIN_STRIPE_SIZE - 1)) {
1143                 CDEBUG(D_IOCTL, "stripe size %u not a multiple of %u\n",
1144                        stripe_size, LOV_MIN_STRIPE_SIZE);
1145                 GOTO(out, rc = -EINVAL);
1146         }
1147
1148         stripe_offset = le16_to_cpu(lum->lmm_stripe_offset);
1149         if (stripe_offset != LOV_OFFSET_DEFAULT) {
1150                 /* if offset is not within valid range [0, osts_size) */
1151                 if (stripe_offset >= d->lod_osts_size) {
1152                         CDEBUG(D_IOCTL, "stripe offset %u >= bitmap size %u\n",
1153                                stripe_offset, d->lod_osts_size);
1154                         GOTO(out, rc = -EINVAL);
1155                 }
1156
1157                 /* if lmm_stripe_offset is *not* in bitmap */
1158                 if (!cfs_bitmap_check(d->lod_ost_bitmap, stripe_offset)) {
1159                         CDEBUG(D_IOCTL, "stripe offset %u not in bitmap\n",
1160                                stripe_offset);
1161                         GOTO(out, rc = -EINVAL);
1162                 }
1163         }
1164
1165         if (magic == LOV_USER_MAGIC_V1 || magic == LOV_MAGIC_V1_DEF)
1166                 lum_size = offsetof(struct lov_user_md_v1,
1167                                     lmm_objects[0]);
1168         else if (magic == LOV_USER_MAGIC_V3 || magic == LOV_MAGIC_V3_DEF)
1169                 lum_size = offsetof(struct lov_user_md_v3,
1170                                     lmm_objects[0]);
1171         else
1172                 GOTO(out, rc = -EINVAL);
1173
1174         stripe_count = le16_to_cpu(lum->lmm_stripe_count);
1175         if (buf->lb_len != lum_size) {
1176                 CDEBUG(D_IOCTL, "invalid buf len %zu for lov_user_md with "
1177                        "magic %#x and stripe_count %u\n",
1178                        buf->lb_len, magic, stripe_count);
1179                 GOTO(out, rc = -EINVAL);
1180         }
1181
1182         if (!(magic == LOV_USER_MAGIC_V3 || magic == LOV_MAGIC_V3_DEF))
1183                 goto out;
1184
1185         lum3 = buf->lb_buf;
1186         if (buf->lb_len < sizeof(*lum3)) {
1187                 CDEBUG(D_IOCTL, "buf len %zu too small for lov_user_md_v3\n",
1188                        buf->lb_len);
1189                 GOTO(out, rc = -EINVAL);
1190         }
1191
1192         /* In the function below, .hs_keycmp resolves to
1193          * pool_hashkey_keycmp() */
1194         /* coverity[overrun-buffer-val] */
1195         pool = lod_find_pool(d, lum3->lmm_pool_name);
1196         if (pool == NULL)
1197                 goto out;
1198
1199         if (stripe_offset != LOV_OFFSET_DEFAULT) {
1200                 rc = lod_check_index_in_pool(stripe_offset, pool);
1201                 if (rc < 0)
1202                         GOTO(out, rc = -EINVAL);
1203         }
1204
1205         if (is_from_disk && stripe_count > pool_tgt_count(pool)) {
1206                 CDEBUG(D_IOCTL,
1207                        "stripe count %u > # OSTs %u in the pool\n",
1208                        stripe_count, pool_tgt_count(pool));
1209                 GOTO(out, rc = -EINVAL);
1210         }
1211
1212 out:
1213         if (pool != NULL)
1214                 lod_pool_putref(pool);
1215
1216         RETURN(rc);
1217 }
1218
1219 void lod_fix_desc_stripe_size(__u64 *val)
1220 {
1221         if (*val < LOV_MIN_STRIPE_SIZE) {
1222                 if (*val != 0)
1223                         LCONSOLE_INFO("Increasing default stripe size to "
1224                                       "minimum value %u\n",
1225                                       LOV_DESC_STRIPE_SIZE_DEFAULT);
1226                 *val = LOV_DESC_STRIPE_SIZE_DEFAULT;
1227         } else if (*val & (LOV_MIN_STRIPE_SIZE - 1)) {
1228                 *val &= ~(LOV_MIN_STRIPE_SIZE - 1);
1229                 LCONSOLE_WARN("Changing default stripe size to "LPU64" (a "
1230                               "multiple of %u)\n",
1231                               *val, LOV_MIN_STRIPE_SIZE);
1232         }
1233 }
1234
1235 void lod_fix_desc_stripe_count(__u32 *val)
1236 {
1237         if (*val == 0)
1238                 *val = 1;
1239 }
1240
1241 void lod_fix_desc_pattern(__u32 *val)
1242 {
1243         /* from lov_setstripe */
1244         if ((*val != 0) && (*val != LOV_PATTERN_RAID0)) {
1245                 LCONSOLE_WARN("Unknown stripe pattern: %#x\n", *val);
1246                 *val = 0;
1247         }
1248 }
1249
1250 void lod_fix_desc_qos_maxage(__u32 *val)
1251 {
1252         /* fix qos_maxage */
1253         if (*val == 0)
1254                 *val = LOV_DESC_QOS_MAXAGE_DEFAULT;
1255 }
1256
1257 /**
1258  * Used to fix insane default striping.
1259  *
1260  * \param[in] desc      striping description
1261  */
1262 void lod_fix_desc(struct lov_desc *desc)
1263 {
1264         lod_fix_desc_stripe_size(&desc->ld_default_stripe_size);
1265         lod_fix_desc_stripe_count(&desc->ld_default_stripe_count);
1266         lod_fix_desc_pattern(&desc->ld_pattern);
1267         lod_fix_desc_qos_maxage(&desc->ld_qos_maxage);
1268 }
1269
1270 /**
1271  * Initialize the structures used to store pools and default striping.
1272  *
1273  * \param[in] lod       LOD device
1274  * \param[in] lcfg      configuration structure storing default striping.
1275  *
1276  * \retval              0 if initialization succeeds
1277  * \retval              negative error number on failure
1278  */
1279 int lod_pools_init(struct lod_device *lod, struct lustre_cfg *lcfg)
1280 {
1281         struct obd_device          *obd;
1282         struct lov_desc            *desc;
1283         int                         rc;
1284         ENTRY;
1285
1286         obd = class_name2obd(lustre_cfg_string(lcfg, 0));
1287         LASSERT(obd != NULL);
1288         obd->obd_lu_dev = &lod->lod_dt_dev.dd_lu_dev;
1289
1290         if (LUSTRE_CFG_BUFLEN(lcfg, 1) < 1) {
1291                 CERROR("LOD setup requires a descriptor\n");
1292                 RETURN(-EINVAL);
1293         }
1294
1295         desc = (struct lov_desc *)lustre_cfg_buf(lcfg, 1);
1296
1297         if (sizeof(*desc) > LUSTRE_CFG_BUFLEN(lcfg, 1)) {
1298                 CERROR("descriptor size wrong: %d > %d\n",
1299                        (int)sizeof(*desc), LUSTRE_CFG_BUFLEN(lcfg, 1));
1300                 RETURN(-EINVAL);
1301         }
1302
1303         if (desc->ld_magic != LOV_DESC_MAGIC) {
1304                 if (desc->ld_magic == __swab32(LOV_DESC_MAGIC)) {
1305                         CDEBUG(D_OTHER, "%s: Swabbing lov desc %p\n",
1306                                obd->obd_name, desc);
1307                         lustre_swab_lov_desc(desc);
1308                 } else {
1309                         CERROR("%s: Bad lov desc magic: %#x\n",
1310                                obd->obd_name, desc->ld_magic);
1311                         RETURN(-EINVAL);
1312                 }
1313         }
1314
1315         lod_fix_desc(desc);
1316
1317         desc->ld_active_tgt_count = 0;
1318         lod->lod_desc = *desc;
1319
1320         lod->lod_sp_me = LUSTRE_SP_CLI;
1321
1322         /* Set up allocation policy (QoS and RR) */
1323         INIT_LIST_HEAD(&lod->lod_qos.lq_oss_list);
1324         init_rwsem(&lod->lod_qos.lq_rw_sem);
1325         lod->lod_qos.lq_dirty = 1;
1326         lod->lod_qos.lq_rr.lqr_dirty = 1;
1327         lod->lod_qos.lq_reset = 1;
1328         /* Default priority is toward free space balance */
1329         lod->lod_qos.lq_prio_free = 232;
1330         /* Default threshold for rr (roughly 17%) */
1331         lod->lod_qos.lq_threshold_rr = 43;
1332
1333         /* Set up OST pool environment */
1334         lod->lod_pools_hash_body = cfs_hash_create("POOLS", HASH_POOLS_CUR_BITS,
1335                                                    HASH_POOLS_MAX_BITS,
1336                                                    HASH_POOLS_BKT_BITS, 0,
1337                                                    CFS_HASH_MIN_THETA,
1338                                                    CFS_HASH_MAX_THETA,
1339                                                    &pool_hash_operations,
1340                                                    CFS_HASH_DEFAULT);
1341         if (lod->lod_pools_hash_body == NULL)
1342                 RETURN(-ENOMEM);
1343
1344         INIT_LIST_HEAD(&lod->lod_pool_list);
1345         lod->lod_pool_count = 0;
1346         rc = lod_ost_pool_init(&lod->lod_pool_info, 0);
1347         if (rc)
1348                 GOTO(out_hash, rc);
1349         lod_qos_rr_init(&lod->lod_qos.lq_rr);
1350         rc = lod_ost_pool_init(&lod->lod_qos.lq_rr.lqr_pool, 0);
1351         if (rc)
1352                 GOTO(out_pool_info, rc);
1353
1354         RETURN(0);
1355
1356 out_pool_info:
1357         lod_ost_pool_free(&lod->lod_pool_info);
1358 out_hash:
1359         cfs_hash_putref(lod->lod_pools_hash_body);
1360
1361         return rc;
1362 }
1363
1364 /**
1365  * Release the structures describing the pools.
1366  *
1367  * \param[in] lod       LOD device from which we release the structures
1368  *
1369  * \retval              0 always
1370  */
1371 int lod_pools_fini(struct lod_device *lod)
1372 {
1373         struct obd_device   *obd = lod2obd(lod);
1374         struct pool_desc    *pool, *tmp;
1375         ENTRY;
1376
1377         list_for_each_entry_safe(pool, tmp, &lod->lod_pool_list, pool_list) {
1378                 /* free pool structs */
1379                 CDEBUG(D_INFO, "delete pool %p\n", pool);
1380                 /* In the function below, .hs_keycmp resolves to
1381                  * pool_hashkey_keycmp() */
1382                 /* coverity[overrun-buffer-val] */
1383                 lod_pool_del(obd, pool->pool_name);
1384         }
1385
1386         cfs_hash_putref(lod->lod_pools_hash_body);
1387         lod_ost_pool_free(&(lod->lod_qos.lq_rr.lqr_pool));
1388         lod_ost_pool_free(&lod->lod_pool_info);
1389
1390         RETURN(0);
1391 }