Whamcloud - gitweb
LU-6086 obdclass: check peer's version for MDT-MDT connection
[fs/lustre-release.git] / lustre / lod / lod_lov.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License version 2 for more details.  A copy is
14  * included in the COPYING file that accompanied this code.
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright  2009 Sun Microsystems, Inc. All rights reserved
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2012, 2014, Intel Corporation.
27  */
28 /*
29  * lustre/lod/lod_lov.c
30  *
31  * A set of helpers to maintain Logical Object Volume (LOV)
32  * Extended Attribute (EA) and known OST targets
33  *
34  * Author: Alex Zhuravlev <alexey.zhuravlev@intel.com>
35  */
36
37 #define DEBUG_SUBSYSTEM S_MDS
38
39 #include <obd_class.h>
40 #include <lustre_lfsck.h>
41 #include <lustre_lmv.h>
42
43 #include "lod_internal.h"
44
45 /**
46  * Increase reference count on the target table.
47  *
48  * Increase reference count on the target table usage to prevent racing with
49  * addition/deletion. Any function that expects the table to remain
50  * stationary must take a ref.
51  *
52  * \param[in] ltd       target table (lod_ost_descs or lod_mdt_descs)
53  */
54 void lod_getref(struct lod_tgt_descs *ltd)
55 {
56         down_read(&ltd->ltd_rw_sem);
57         mutex_lock(&ltd->ltd_mutex);
58         ltd->ltd_refcount++;
59         mutex_unlock(&ltd->ltd_mutex);
60 }
61
62 /**
63  * Decrease reference count on the target table.
64  *
65  * Companion of lod_getref() to release a reference on the target table.
66  * If this is the last reference and the OST entry was scheduled for deletion,
67  * the descriptor is removed from the table.
68  *
69  * \param[in] lod       LOD device from which we release a reference
70  * \param[in] ltd       target table (lod_ost_descs or lod_mdt_descs)
71  */
72 void lod_putref(struct lod_device *lod, struct lod_tgt_descs *ltd)
73 {
74         mutex_lock(&ltd->ltd_mutex);
75         ltd->ltd_refcount--;
76         if (ltd->ltd_refcount == 0 && ltd->ltd_death_row) {
77                 struct lod_tgt_desc *tgt_desc, *tmp;
78                 struct list_head kill;
79                 unsigned int idx;
80
81                 CDEBUG(D_CONFIG, "destroying %d ltd desc\n",
82                        ltd->ltd_death_row);
83
84                 INIT_LIST_HEAD(&kill);
85
86                 cfs_foreach_bit(ltd->ltd_tgt_bitmap, idx) {
87                         tgt_desc = LTD_TGT(ltd, idx);
88                         LASSERT(tgt_desc);
89
90                         if (!tgt_desc->ltd_reap)
91                                 continue;
92
93                         list_add(&tgt_desc->ltd_kill, &kill);
94                         LTD_TGT(ltd, idx) = NULL;
95                         /*FIXME: only support ost pool for now */
96                         if (ltd == &lod->lod_ost_descs) {
97                                 lod_ost_pool_remove(&lod->lod_pool_info, idx);
98                                 if (tgt_desc->ltd_active)
99                                         lod->lod_desc.ld_active_tgt_count--;
100                         }
101                         ltd->ltd_tgtnr--;
102                         cfs_bitmap_clear(ltd->ltd_tgt_bitmap, idx);
103                         ltd->ltd_death_row--;
104                 }
105                 mutex_unlock(&ltd->ltd_mutex);
106                 up_read(&ltd->ltd_rw_sem);
107
108                 list_for_each_entry_safe(tgt_desc, tmp, &kill, ltd_kill) {
109                         int rc;
110                         list_del(&tgt_desc->ltd_kill);
111                         if (ltd == &lod->lod_ost_descs) {
112                                 /* remove from QoS structures */
113                                 rc = qos_del_tgt(lod, tgt_desc);
114                                 if (rc)
115                                         CERROR("%s: qos_del_tgt(%s) failed:"
116                                                "rc = %d\n",
117                                                lod2obd(lod)->obd_name,
118                                               obd_uuid2str(&tgt_desc->ltd_uuid),
119                                                rc);
120                         }
121                         rc = obd_disconnect(tgt_desc->ltd_exp);
122                         if (rc)
123                                 CERROR("%s: failed to disconnect %s: rc = %d\n",
124                                        lod2obd(lod)->obd_name,
125                                        obd_uuid2str(&tgt_desc->ltd_uuid), rc);
126                         OBD_FREE_PTR(tgt_desc);
127                 }
128         } else {
129                 mutex_unlock(&ltd->ltd_mutex);
130                 up_read(&ltd->ltd_rw_sem);
131         }
132 }
133
134 /**
135  * Expand size of target table.
136  *
137  * When the target table is full, we have to extend the table. To do so,
138  * we allocate new memory with some reserve, move data from the old table
139  * to the new one and release memory consumed by the old table.
140  * Notice we take ltd_rw_sem exclusively to ensure atomic switch.
141  *
142  * \param[in] ltd               target table
143  * \param[in] newsize           new size of the table
144  *
145  * \retval                      0 on success
146  * \retval                      -ENOMEM if reallocation failed
147  */
148 static int ltd_bitmap_resize(struct lod_tgt_descs *ltd, __u32 newsize)
149 {
150         cfs_bitmap_t *new_bitmap, *old_bitmap = NULL;
151         int           rc = 0;
152         ENTRY;
153
154         /* grab write reference on the lod. Relocating the array requires
155          * exclusive access */
156
157         down_write(&ltd->ltd_rw_sem);
158         if (newsize <= ltd->ltd_tgts_size)
159                 /* someone else has already resize the array */
160                 GOTO(out, rc = 0);
161
162         /* allocate new bitmap */
163         new_bitmap = CFS_ALLOCATE_BITMAP(newsize);
164         if (!new_bitmap)
165                 GOTO(out, rc = -ENOMEM);
166
167         if (ltd->ltd_tgts_size > 0) {
168                 /* the bitmap already exists, we need
169                  * to copy data from old one */
170                 cfs_bitmap_copy(new_bitmap, ltd->ltd_tgt_bitmap);
171                 old_bitmap = ltd->ltd_tgt_bitmap;
172         }
173
174         ltd->ltd_tgts_size  = newsize;
175         ltd->ltd_tgt_bitmap = new_bitmap;
176
177         if (old_bitmap)
178                 CFS_FREE_BITMAP(old_bitmap);
179
180         CDEBUG(D_CONFIG, "tgt size: %d\n", ltd->ltd_tgts_size);
181
182         EXIT;
183 out:
184         up_write(&ltd->ltd_rw_sem);
185         return rc;
186 }
187
188 /**
189  * Connect LOD to a new OSP and add it to the target table.
190  *
191  * Connect to the OSP device passed, initialize all the internal
192  * structures related to the device and add it to the target table.
193  *
194  * \param[in] env               execution environment for this thread
195  * \param[in] lod               LOD device to be connected to the new OSP
196  * \param[in] osp               name of OSP device name to be added
197  * \param[in] index             index of the new target
198  * \param[in] gen               target's generation number
199  * \param[in] tgt_index         OSP's group
200  * \param[in] type              type of device (mdc or osc)
201  * \param[in] active            state of OSP: 0 - inactive, 1 - active
202  *
203  * \retval                      0 if added successfully
204  * \retval                      negative error number on failure
205  */
206 int lod_add_device(const struct lu_env *env, struct lod_device *lod,
207                    char *osp, unsigned index, unsigned gen, int tgt_index,
208                    char *type, int active)
209 {
210         struct obd_connect_data *data = NULL;
211         struct obd_export       *exp = NULL;
212         struct obd_device       *obd;
213         struct lu_device        *ldev;
214         struct dt_device        *d;
215         int                      rc;
216         struct lod_tgt_desc     *tgt_desc;
217         struct lod_tgt_descs    *ltd;
218         struct obd_uuid         obd_uuid;
219         bool                    for_ost;
220         ENTRY;
221
222         CDEBUG(D_CONFIG, "osp:%s idx:%d gen:%d\n", osp, index, gen);
223
224         if (gen <= 0) {
225                 CERROR("request to add OBD %s with invalid generation: %d\n",
226                        osp, gen);
227                 RETURN(-EINVAL);
228         }
229
230         obd_str2uuid(&obd_uuid, osp);
231
232         obd = class_find_client_obd(&obd_uuid, LUSTRE_OSP_NAME,
233                                 &lod->lod_dt_dev.dd_lu_dev.ld_obd->obd_uuid);
234         if (obd == NULL) {
235                 CERROR("can't find %s device\n", osp);
236                 RETURN(-EINVAL);
237         }
238
239         OBD_ALLOC_PTR(data);
240         if (data == NULL)
241                 RETURN(-ENOMEM);
242
243         data->ocd_connect_flags = OBD_CONNECT_INDEX | OBD_CONNECT_VERSION;
244         data->ocd_version = LUSTRE_VERSION_CODE;
245         data->ocd_index = index;
246
247         if (strcmp(LUSTRE_OSC_NAME, type) == 0) {
248                 for_ost = true;
249                 data->ocd_connect_flags |= OBD_CONNECT_AT |
250                                            OBD_CONNECT_FULL20 |
251                                            OBD_CONNECT_INDEX |
252 #ifdef HAVE_LRU_RESIZE_SUPPORT
253                                            OBD_CONNECT_LRU_RESIZE |
254 #endif
255                                            OBD_CONNECT_MDS |
256                                            OBD_CONNECT_OSS_CAPA |
257                                            OBD_CONNECT_REQPORTAL |
258                                            OBD_CONNECT_SKIP_ORPHAN |
259                                            OBD_CONNECT_FID |
260                                            OBD_CONNECT_LVB_TYPE |
261                                            OBD_CONNECT_VERSION |
262                                            OBD_CONNECT_PINGLESS |
263                                            OBD_CONNECT_LFSCK;
264
265                 data->ocd_group = tgt_index;
266                 ltd = &lod->lod_ost_descs;
267         } else {
268                 struct obd_import *imp = obd->u.cli.cl_import;
269
270                 for_ost = false;
271                 data->ocd_ibits_known = MDS_INODELOCK_UPDATE;
272                 data->ocd_connect_flags |= OBD_CONNECT_ACL |
273                                            OBD_CONNECT_MDS_CAPA |
274                                            OBD_CONNECT_OSS_CAPA |
275                                            OBD_CONNECT_IBITS |
276                                            OBD_CONNECT_MDS_MDS |
277                                            OBD_CONNECT_FID |
278                                            OBD_CONNECT_AT |
279                                            OBD_CONNECT_FULL20 |
280                                            OBD_CONNECT_LFSCK;
281                 spin_lock(&imp->imp_lock);
282                 imp->imp_server_timeout = 1;
283                 spin_unlock(&imp->imp_lock);
284                 imp->imp_client->cli_request_portal = OUT_PORTAL;
285                 CDEBUG(D_OTHER, "%s: Set 'mds' portal and timeout\n",
286                       obd->obd_name);
287                 ltd = &lod->lod_mdt_descs;
288         }
289
290         rc = obd_connect(env, &exp, obd, &obd->obd_uuid, data, NULL);
291         OBD_FREE_PTR(data);
292         if (rc) {
293                 CERROR("%s: cannot connect to next dev %s (%d)\n",
294                        obd->obd_name, osp, rc);
295                 GOTO(out_free, rc);
296         }
297
298         LASSERT(obd->obd_lu_dev);
299         LASSERT(obd->obd_lu_dev->ld_site == lod->lod_dt_dev.dd_lu_dev.ld_site);
300
301         ldev = obd->obd_lu_dev;
302         d = lu2dt_dev(ldev);
303
304         /* Allocate ost descriptor and fill it */
305         OBD_ALLOC_PTR(tgt_desc);
306         if (!tgt_desc)
307                 GOTO(out_conn, rc = -ENOMEM);
308
309         tgt_desc->ltd_tgt    = d;
310         tgt_desc->ltd_exp    = exp;
311         tgt_desc->ltd_uuid   = obd->u.cli.cl_target_uuid;
312         tgt_desc->ltd_gen    = gen;
313         tgt_desc->ltd_index  = index;
314         tgt_desc->ltd_active = active;
315
316         lod_getref(ltd);
317         if (index >= ltd->ltd_tgts_size) {
318                 /* we have to increase the size of the lod_osts array */
319                 __u32  newsize;
320
321                 newsize = max(ltd->ltd_tgts_size, (__u32)2);
322                 while (newsize < index + 1)
323                         newsize = newsize << 1;
324
325                 /* lod_bitmap_resize() needs lod_rw_sem
326                  * which we hold with th reference */
327                 lod_putref(lod, ltd);
328
329                 rc = ltd_bitmap_resize(ltd, newsize);
330                 if (rc)
331                         GOTO(out_desc, rc);
332
333                 lod_getref(ltd);
334         }
335
336         mutex_lock(&ltd->ltd_mutex);
337         if (cfs_bitmap_check(ltd->ltd_tgt_bitmap, index)) {
338                 CERROR("%s: device %d is registered already\n", obd->obd_name,
339                        index);
340                 GOTO(out_mutex, rc = -EEXIST);
341         }
342
343         if (ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK] == NULL) {
344                 OBD_ALLOC_PTR(ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK]);
345                 if (ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK] == NULL) {
346                         CERROR("can't allocate index to add %s\n",
347                                obd->obd_name);
348                         GOTO(out_mutex, rc = -ENOMEM);
349                 }
350         }
351
352         if (!strcmp(LUSTRE_OSC_NAME, type)) {
353                 /* pool and qos are not supported for MDS stack yet */
354                 rc = lod_ost_pool_add(&lod->lod_pool_info, index,
355                                       lod->lod_osts_size);
356                 if (rc) {
357                         CERROR("%s: can't set up pool, failed with %d\n",
358                                obd->obd_name, rc);
359                         GOTO(out_mutex, rc);
360                 }
361
362                 rc = qos_add_tgt(lod, tgt_desc);
363                 if (rc) {
364                         CERROR("%s: qos_add_tgt failed with %d\n",
365                                 obd->obd_name, rc);
366                         GOTO(out_pool, rc);
367                 }
368
369                 /* The new OST is now a full citizen */
370                 if (index >= lod->lod_desc.ld_tgt_count)
371                         lod->lod_desc.ld_tgt_count = index + 1;
372                 if (active)
373                         lod->lod_desc.ld_active_tgt_count++;
374         }
375
376         LTD_TGT(ltd, index) = tgt_desc;
377         cfs_bitmap_set(ltd->ltd_tgt_bitmap, index);
378         ltd->ltd_tgtnr++;
379         mutex_unlock(&ltd->ltd_mutex);
380         lod_putref(lod, ltd);
381         if (lod->lod_recovery_completed)
382                 ldev->ld_ops->ldo_recovery_complete(env, ldev);
383
384         rc = lfsck_add_target(env, lod->lod_child, d, exp, index, for_ost);
385         if (rc != 0)
386                 CERROR("Fail to add LFSCK target: name = %s, type = %s, "
387                        "index = %u, rc = %d\n", osp, type, index, rc);
388
389         RETURN(rc);
390
391 out_pool:
392         lod_ost_pool_remove(&lod->lod_pool_info, index);
393 out_mutex:
394         mutex_unlock(&ltd->ltd_mutex);
395         lod_putref(lod, ltd);
396 out_desc:
397         OBD_FREE_PTR(tgt_desc);
398 out_conn:
399         obd_disconnect(exp);
400 out_free:
401         return rc;
402 }
403
404 /**
405  * Schedule target removal from the target table.
406  *
407  * Mark the device as dead. The device is not removed here because it may
408  * still be in use. The device will be removed in lod_putref() when the
409  * last reference is released.
410  *
411  * \param[in] env               execution environment for this thread
412  * \param[in] lod               LOD device the target table belongs to
413  * \param[in] ltd               target table
414  * \param[in] idx               index of the target
415  * \param[in] for_ost           type of the target: 0 - MDT, 1 - OST
416  */
417 static void __lod_del_device(const struct lu_env *env, struct lod_device *lod,
418                              struct lod_tgt_descs *ltd, unsigned idx,
419                              bool for_ost)
420 {
421         LASSERT(LTD_TGT(ltd, idx));
422
423         lfsck_del_target(env, lod->lod_child, LTD_TGT(ltd, idx)->ltd_tgt,
424                          idx, for_ost);
425
426         if (LTD_TGT(ltd, idx)->ltd_reap == 0) {
427                 LTD_TGT(ltd, idx)->ltd_reap = 1;
428                 ltd->ltd_death_row++;
429         }
430 }
431
432 /**
433  * Schedule removal of all the targets from the given target table.
434  *
435  * See more details in the description for __lod_del_device()
436  *
437  * \param[in] env               execution environment for this thread
438  * \param[in] lod               LOD device the target table belongs to
439  * \param[in] ltd               target table
440  * \param[in] for_ost           type of the target: MDT or OST
441  *
442  * \retval                      0 always
443  */
444 int lod_fini_tgt(const struct lu_env *env, struct lod_device *lod,
445                  struct lod_tgt_descs *ltd, bool for_ost)
446 {
447         unsigned int idx;
448
449         if (ltd->ltd_tgts_size <= 0)
450                 return 0;
451         lod_getref(ltd);
452         mutex_lock(&ltd->ltd_mutex);
453         cfs_foreach_bit(ltd->ltd_tgt_bitmap, idx)
454                 __lod_del_device(env, lod, ltd, idx, for_ost);
455         mutex_unlock(&ltd->ltd_mutex);
456         lod_putref(lod, ltd);
457         CFS_FREE_BITMAP(ltd->ltd_tgt_bitmap);
458         for (idx = 0; idx < TGT_PTRS; idx++) {
459                 if (ltd->ltd_tgt_idx[idx])
460                         OBD_FREE_PTR(ltd->ltd_tgt_idx[idx]);
461         }
462         ltd->ltd_tgts_size = 0;
463         return 0;
464 }
465
466 /**
467  * Remove device by name.
468  *
469  * Remove a device identified by \a osp from the target table. Given
470  * the device can be in use, the real deletion happens in lod_putref().
471  *
472  * \param[in] env               execution environment for this thread
473  * \param[in] lod               LOD device to be connected to the new OSP
474  * \param[in] ltd               target table
475  * \param[in] osp               name of OSP device to be removed
476  * \param[in] idx               index of the target
477  * \param[in] gen               generation number, not used currently
478  * \param[in] for_ost           type of the target: 0 - MDT, 1 - OST
479  *
480  * \retval                      0 if the device was scheduled for removal
481  * \retval                      -EINVAL if no device was found
482  */
483 int lod_del_device(const struct lu_env *env, struct lod_device *lod,
484                    struct lod_tgt_descs *ltd, char *osp, unsigned idx,
485                    unsigned gen, bool for_ost)
486 {
487         struct obd_device *obd;
488         int                rc = 0;
489         struct obd_uuid    uuid;
490         ENTRY;
491
492         CDEBUG(D_CONFIG, "osp:%s idx:%d gen:%d\n", osp, idx, gen);
493
494         obd_str2uuid(&uuid, osp);
495
496         obd = class_find_client_obd(&uuid, LUSTRE_OSP_NAME,
497                                    &lod->lod_dt_dev.dd_lu_dev.ld_obd->obd_uuid);
498         if (obd == NULL) {
499                 CERROR("can't find %s device\n", osp);
500                 RETURN(-EINVAL);
501         }
502
503         if (gen <= 0) {
504                 CERROR("%s: request to remove OBD %s with invalid generation %d"
505                        "\n", obd->obd_name, osp, gen);
506                 RETURN(-EINVAL);
507         }
508
509         obd_str2uuid(&uuid,  osp);
510
511         lod_getref(ltd);
512         mutex_lock(&ltd->ltd_mutex);
513         /* check that the index is allocated in the bitmap */
514         if (!cfs_bitmap_check(ltd->ltd_tgt_bitmap, idx) ||
515             !LTD_TGT(ltd, idx)) {
516                 CERROR("%s: device %d is not set up\n", obd->obd_name, idx);
517                 GOTO(out, rc = -EINVAL);
518         }
519
520         /* check that the UUID matches */
521         if (!obd_uuid_equals(&uuid, &LTD_TGT(ltd, idx)->ltd_uuid)) {
522                 CERROR("%s: LOD target UUID %s at index %d does not match %s\n",
523                        obd->obd_name, obd_uuid2str(&LTD_TGT(ltd,idx)->ltd_uuid),
524                        idx, osp);
525                 GOTO(out, rc = -EINVAL);
526         }
527
528         __lod_del_device(env, lod, ltd, idx, for_ost);
529         EXIT;
530 out:
531         mutex_unlock(&ltd->ltd_mutex);
532         lod_putref(lod, ltd);
533         return(rc);
534 }
535
536 /**
537  * Resize per-thread storage to hold specified size.
538  *
539  * A helper function to resize per-thread temporary storage. This storage
540  * is used to process LOV/LVM EAs and may be quite large. We do not want to
541  * allocate/release it every time, so instead we put it into the env and
542  * reallocate on demand. The memory is released when the correspondent thread
543  * is finished.
544  *
545  * \param[in] info              LOD-specific storage in the environment
546  * \param[in] size              new size to grow the buffer to
547
548  * \retval                      0 on success, -ENOMEM if reallocation failed
549  */
550 int lod_ea_store_resize(struct lod_thread_info *info, size_t size)
551 {
552         __u32 round = size_roundup_power2(size);
553
554         LASSERT(round <=
555                 lov_mds_md_size(LOV_MAX_STRIPE_COUNT, LOV_MAGIC_V3));
556         if (info->lti_ea_store) {
557                 LASSERT(info->lti_ea_store_size);
558                 LASSERT(info->lti_ea_store_size < round);
559                 CDEBUG(D_INFO, "EA store size %d is not enough, need %d\n",
560                        info->lti_ea_store_size, round);
561                 OBD_FREE_LARGE(info->lti_ea_store, info->lti_ea_store_size);
562                 info->lti_ea_store = NULL;
563                 info->lti_ea_store_size = 0;
564         }
565
566         OBD_ALLOC_LARGE(info->lti_ea_store, round);
567         if (info->lti_ea_store == NULL)
568                 RETURN(-ENOMEM);
569         info->lti_ea_store_size = round;
570         RETURN(0);
571 }
572
573 /**
574  * Make LOV EA for striped object.
575  *
576  * Generate striping information and store it in the LOV EA of the given
577  * object. The caller must ensure nobody else is calling the function
578  * against the object concurrently. The transaction must be started.
579  * FLDB service must be running as well; it's used to map FID to the target,
580  * which is stored in LOV EA.
581  *
582  * \param[in] env               execution environment for this thread
583  * \param[in] lo                LOD object
584  * \param[in] th                transaction handle
585  *
586  * \retval                      0 if LOV EA is stored successfully
587  * \retval                      negative error number on failure
588  */
589 int lod_generate_and_set_lovea(const struct lu_env *env,
590                                struct lod_object *lo, struct thandle *th)
591 {
592         struct lod_thread_info  *info = lod_env_info(env);
593         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
594         const struct lu_fid     *fid  = lu_object_fid(&lo->ldo_obj.do_lu);
595         struct lov_mds_md_v1    *lmm;
596         struct lov_ost_data_v1  *objs;
597         __u32                    magic;
598         int                      i, rc;
599         size_t                   lmm_size;
600         ENTRY;
601
602         LASSERT(lo);
603
604         magic = lo->ldo_pool != NULL ? LOV_MAGIC_V3 : LOV_MAGIC_V1;
605         lmm_size = lov_mds_md_size(lo->ldo_stripenr, magic);
606         if (info->lti_ea_store_size < lmm_size) {
607                 rc = lod_ea_store_resize(info, lmm_size);
608                 if (rc)
609                         RETURN(rc);
610         }
611
612         if (lo->ldo_pattern == 0) /* default striping */
613                 lo->ldo_pattern = LOV_PATTERN_RAID0;
614
615         lmm = info->lti_ea_store;
616
617         lmm->lmm_magic = cpu_to_le32(magic);
618         lmm->lmm_pattern = cpu_to_le32(lo->ldo_pattern);
619         fid_to_lmm_oi(fid, &lmm->lmm_oi);
620         if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_LMMOI))
621                 lmm->lmm_oi.oi.oi_id++;
622         lmm_oi_cpu_to_le(&lmm->lmm_oi, &lmm->lmm_oi);
623         lmm->lmm_stripe_size = cpu_to_le32(lo->ldo_stripe_size);
624         lmm->lmm_stripe_count = cpu_to_le16(lo->ldo_stripenr);
625         if (lo->ldo_pattern & LOV_PATTERN_F_RELEASED)
626                 lmm->lmm_stripe_count = cpu_to_le16(lo->ldo_released_stripenr);
627         lmm->lmm_layout_gen = 0;
628         if (magic == LOV_MAGIC_V1) {
629                 objs = &lmm->lmm_objects[0];
630         } else {
631                 struct lov_mds_md_v3 *v3 = (struct lov_mds_md_v3 *) lmm;
632                 size_t cplen = strlcpy(v3->lmm_pool_name, lo->ldo_pool,
633                                 sizeof(v3->lmm_pool_name));
634                 if (cplen >= sizeof(v3->lmm_pool_name))
635                         RETURN(-E2BIG);
636                 objs = &v3->lmm_objects[0];
637         }
638
639         for (i = 0; i < lo->ldo_stripenr; i++) {
640                 struct lu_fid           *fid    = &info->lti_fid;
641                 struct lod_device       *lod;
642                 __u32                   index;
643                 int                     type    = LU_SEQ_RANGE_OST;
644
645                 lod = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev);
646                 LASSERT(lo->ldo_stripe[i]);
647
648                 *fid = *lu_object_fid(&lo->ldo_stripe[i]->do_lu);
649                 if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_MULTIPLE_REF)) {
650                         if (cfs_fail_val == 0)
651                                 cfs_fail_val = fid->f_oid;
652                         else
653                                 fid->f_oid = cfs_fail_val;
654                 }
655
656                 rc = fid_to_ostid(fid, &info->lti_ostid);
657                 LASSERT(rc == 0);
658
659                 ostid_cpu_to_le(&info->lti_ostid, &objs[i].l_ost_oi);
660                 objs[i].l_ost_gen    = cpu_to_le32(0);
661                 rc = lod_fld_lookup(env, lod, fid, &index, &type);
662                 if (rc < 0) {
663                         CERROR("%s: Can not locate "DFID": rc = %d\n",
664                                lod2obd(lod)->obd_name, PFID(fid), rc);
665                         lod_object_free_striping(env, lo);
666                         RETURN(rc);
667                 }
668                 objs[i].l_ost_idx = cpu_to_le32(index);
669         }
670
671         info->lti_buf.lb_buf = lmm;
672         info->lti_buf.lb_len = lmm_size;
673         rc = dt_xattr_set(env, next, &info->lti_buf, XATTR_NAME_LOV, 0,
674                           th, BYPASS_CAPA);
675         if (rc < 0)
676                 lod_object_free_striping(env, lo);
677
678         RETURN(rc);
679 }
680
681 /**
682  * Get LOV EA.
683  *
684  * Fill lti_ea_store buffer in the environment with a value for the given
685  * EA. The buffer is reallocated if the value doesn't fit.
686  *
687  * \param[in,out] env           execution environment for this thread
688  *                              .lti_ea_store buffer is filled with EA's value
689  * \param[in] lo                LOD object
690  * \param[in] name              name of the EA
691  *
692  * \retval                      0 if EA is fetched successfully
693  * \retval                      negative error number on failure
694  */
695 int lod_get_ea(const struct lu_env *env, struct lod_object *lo,
696                const char *name)
697 {
698         struct lod_thread_info  *info = lod_env_info(env);
699         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
700         int                     rc;
701         ENTRY;
702
703         LASSERT(info);
704
705         if (unlikely(info->lti_ea_store == NULL)) {
706                 /* just to enter in allocation block below */
707                 rc = -ERANGE;
708         } else {
709 repeat:
710                 info->lti_buf.lb_buf = info->lti_ea_store;
711                 info->lti_buf.lb_len = info->lti_ea_store_size;
712                 rc = dt_xattr_get(env, next, &info->lti_buf, name, BYPASS_CAPA);
713         }
714
715         /* if object is not striped or inaccessible */
716         if (rc == -ENODATA || rc == -ENOENT)
717                 RETURN(0);
718
719         if (rc == -ERANGE) {
720                 /* EA doesn't fit, reallocate new buffer */
721                 rc = dt_xattr_get(env, next, &LU_BUF_NULL, name,
722                                   BYPASS_CAPA);
723                 if (rc == -ENODATA || rc == -ENOENT)
724                         RETURN(0);
725                 else if (rc < 0)
726                         RETURN(rc);
727
728                 LASSERT(rc > 0);
729                 rc = lod_ea_store_resize(info, rc);
730                 if (rc)
731                         RETURN(rc);
732                 goto repeat;
733         }
734
735         RETURN(rc);
736 }
737
738 /**
739  * Verify the target index is present in the current configuration.
740  *
741  * \param[in] md                LOD device where the target table is stored
742  * \param[in] idx               target's index
743  *
744  * \retval                      0 if the index is present
745  * \retval                      -EINVAL if not
746  */
747 static int validate_lod_and_idx(struct lod_device *md, __u32 idx)
748 {
749         if (unlikely(idx >= md->lod_ost_descs.ltd_tgts_size ||
750                      !cfs_bitmap_check(md->lod_ost_bitmap, idx))) {
751                 CERROR("%s: bad idx: %d of %d\n", lod2obd(md)->obd_name, idx,
752                        md->lod_ost_descs.ltd_tgts_size);
753                 return -EINVAL;
754         }
755
756         if (unlikely(OST_TGT(md, idx) == NULL)) {
757                 CERROR("%s: bad lod_tgt_desc for idx: %d\n",
758                        lod2obd(md)->obd_name, idx);
759                 return -EINVAL;
760         }
761
762         if (unlikely(OST_TGT(md, idx)->ltd_ost == NULL)) {
763                 CERROR("%s: invalid lod device, for idx: %d\n",
764                        lod2obd(md)->obd_name , idx);
765                 return -EINVAL;
766         }
767
768         return 0;
769 }
770
771 /**
772  * Instantiate objects for stripes.
773  *
774  * Allocate and initialize LU-objects representing the stripes. The number
775  * of the stripes (ldo_stripenr) must be initialized already. The caller
776  * must ensure nobody else is calling the function on the object at the same
777  * time. FLDB service must be running to be able to map a FID to the targets
778  * and find appropriate device representing that target.
779  *
780  * \param[in] env               execution environment for this thread
781  * \param[in,out] lo            LOD object
782  * \param[in] objs              an array of IDs to creates the objects from
783  *
784  * \retval                      0 if the objects are instantiated successfully
785  * \retval                      negative error number on failure
786  */
787 int lod_initialize_objects(const struct lu_env *env, struct lod_object *lo,
788                            struct lov_ost_data_v1 *objs)
789 {
790         struct lod_thread_info  *info = lod_env_info(env);
791         struct lod_device       *md;
792         struct lu_object        *o, *n;
793         struct lu_device        *nd;
794         struct dt_object       **stripe;
795         int                      stripe_len;
796         int                      i, rc = 0;
797         __u32                   idx;
798         ENTRY;
799
800         LASSERT(lo != NULL);
801         md = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev);
802         LASSERT(lo->ldo_stripe == NULL);
803         LASSERT(lo->ldo_stripenr > 0);
804         LASSERT(lo->ldo_stripe_size > 0);
805
806         stripe_len = lo->ldo_stripenr;
807         OBD_ALLOC(stripe, sizeof(stripe[0]) * stripe_len);
808         if (stripe == NULL)
809                 RETURN(-ENOMEM);
810
811         for (i = 0; i < lo->ldo_stripenr; i++) {
812                 if (unlikely(lovea_slot_is_dummy(&objs[i])))
813                         continue;
814
815                 ostid_le_to_cpu(&objs[i].l_ost_oi, &info->lti_ostid);
816                 idx = le32_to_cpu(objs[i].l_ost_idx);
817                 rc = ostid_to_fid(&info->lti_fid, &info->lti_ostid, idx);
818                 if (rc != 0)
819                         GOTO(out, rc);
820                 LASSERTF(fid_is_sane(&info->lti_fid), ""DFID" insane!\n",
821                          PFID(&info->lti_fid));
822                 lod_getref(&md->lod_ost_descs);
823
824                 rc = validate_lod_and_idx(md, idx);
825                 if (unlikely(rc != 0)) {
826                         lod_putref(md, &md->lod_ost_descs);
827                         GOTO(out, rc);
828                 }
829
830                 nd = &OST_TGT(md,idx)->ltd_ost->dd_lu_dev;
831                 lod_putref(md, &md->lod_ost_descs);
832
833                 /* In the function below, .hs_keycmp resolves to
834                  * u_obj_hop_keycmp() */
835                 /* coverity[overrun-buffer-val] */
836                 o = lu_object_find_at(env, nd, &info->lti_fid, NULL);
837                 if (IS_ERR(o))
838                         GOTO(out, rc = PTR_ERR(o));
839
840                 n = lu_object_locate(o->lo_header, nd->ld_type);
841                 LASSERT(n);
842
843                 stripe[i] = container_of(n, struct dt_object, do_lu);
844         }
845
846 out:
847         if (rc != 0) {
848                 for (i = 0; i < stripe_len; i++)
849                         if (stripe[i] != NULL)
850                                 lu_object_put(env, &stripe[i]->do_lu);
851
852                 OBD_FREE(stripe, sizeof(stripe[0]) * stripe_len);
853                 lo->ldo_stripenr = 0;
854         } else {
855                 lo->ldo_stripe = stripe;
856                 lo->ldo_stripes_allocated = stripe_len;
857         }
858
859         RETURN(rc);
860 }
861
862 /**
863  * Instantiate objects for striping.
864  *
865  * Parse striping information in \a buf and instantiate the objects
866  * representing the stripes.
867  *
868  * \param[in] env               execution environment for this thread
869  * \param[in] lo                LOD object
870  * \param[in] buf               buffer storing LOV EA to parse
871  *
872  * \retval                      0 if parsing and objects creation succeed
873  * \retval                      negative error number on failure
874  */
875 int lod_parse_striping(const struct lu_env *env, struct lod_object *lo,
876                        const struct lu_buf *buf)
877 {
878         struct lov_mds_md_v1    *lmm;
879         struct lov_ost_data_v1  *objs;
880         __u32                    magic;
881         __u32                    pattern;
882         int                      rc = 0;
883         ENTRY;
884
885         LASSERT(buf);
886         LASSERT(buf->lb_buf);
887         LASSERT(buf->lb_len);
888
889         lmm = (struct lov_mds_md_v1 *) buf->lb_buf;
890         magic = le32_to_cpu(lmm->lmm_magic);
891         pattern = le32_to_cpu(lmm->lmm_pattern);
892
893         if (magic != LOV_MAGIC_V1 && magic != LOV_MAGIC_V3)
894                 GOTO(out, rc = -EINVAL);
895         if (lov_pattern(pattern) != LOV_PATTERN_RAID0)
896                 GOTO(out, rc = -EINVAL);
897
898         lo->ldo_pattern = pattern;
899         lo->ldo_stripe_size = le32_to_cpu(lmm->lmm_stripe_size);
900         lo->ldo_layout_gen = le16_to_cpu(lmm->lmm_layout_gen);
901         lo->ldo_stripenr = le16_to_cpu(lmm->lmm_stripe_count);
902         /* released file stripenr fixup. */
903         if (pattern & LOV_PATTERN_F_RELEASED)
904                 lo->ldo_stripenr = 0;
905
906         LASSERT(buf->lb_len >= lov_mds_md_size(lo->ldo_stripenr, magic));
907
908         if (magic == LOV_MAGIC_V3) {
909                 struct lov_mds_md_v3 *v3 = (struct lov_mds_md_v3 *) lmm;
910                 objs = &v3->lmm_objects[0];
911                 lod_object_set_pool(lo, v3->lmm_pool_name);
912         } else {
913                 objs = &lmm->lmm_objects[0];
914         }
915
916         if (lo->ldo_stripenr > 0)
917                 rc = lod_initialize_objects(env, lo, objs);
918
919 out:
920         RETURN(rc);
921 }
922
923 /**
924  * Initialize the object representing the stripes.
925  *
926  * Unless the stripes are initialized already, fetch LOV (for regular
927  * objects) or LMV (for directory objects) EA and call lod_parse_striping()
928  * to instantiate the objects representing the stripes.
929  *
930  * \param[in] env               execution environment for this thread
931  * \param[in,out] lo            LOD object
932  *
933  * \retval                      0 if parsing and object creation succeed
934  * \retval                      negative error number on failure
935  */
936 int lod_load_striping_locked(const struct lu_env *env, struct lod_object *lo)
937 {
938         struct lod_thread_info  *info = lod_env_info(env);
939         struct lu_buf           *buf  = &info->lti_buf;
940         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
941         int                      rc = 0;
942         ENTRY;
943
944         /* already initialized? */
945         if (lo->ldo_stripe != NULL)
946                 GOTO(out, rc = 0);
947
948         if (!dt_object_exists(next))
949                 GOTO(out, rc = 0);
950
951         /* Do not load stripe for slaves of striped dir */
952         if (lo->ldo_dir_slave_stripe)
953                 GOTO(out, rc = 0);
954
955         if (S_ISREG(lu_object_attr(lod2lu_obj(lo)))) {
956                 rc = lod_get_lov_ea(env, lo);
957                 if (rc <= 0)
958                         GOTO(out, rc);
959                 /*
960                  * there is LOV EA (striping information) in this object
961                  * let's parse it and create in-core objects for the stripes
962                  */
963                 buf->lb_buf = info->lti_ea_store;
964                 buf->lb_len = info->lti_ea_store_size;
965                 rc = lod_parse_striping(env, lo, buf);
966         } else if (S_ISDIR(lu_object_attr(lod2lu_obj(lo)))) {
967                 rc = lod_get_lmv_ea(env, lo);
968                 if (rc < (typeof(rc))sizeof(struct lmv_mds_md_v1))
969                         GOTO(out, rc = rc > 0 ? -EINVAL : rc);
970
971                 buf->lb_buf = info->lti_ea_store;
972                 buf->lb_len = info->lti_ea_store_size;
973                 if (rc == sizeof(struct lmv_mds_md_v1)) {
974                         rc = lod_load_lmv_shards(env, lo, buf, true);
975                         if (buf->lb_buf != info->lti_ea_store) {
976                                 OBD_FREE_LARGE(info->lti_ea_store,
977                                                info->lti_ea_store_size);
978                                 info->lti_ea_store = buf->lb_buf;
979                                 info->lti_ea_store_size = buf->lb_len;
980                         }
981
982                         if (rc < 0)
983                                 GOTO(out, rc);
984                 }
985
986                 /*
987                  * there is LOV EA (striping information) in this object
988                  * let's parse it and create in-core objects for the stripes
989                  */
990                 rc = lod_parse_dir_striping(env, lo, buf);
991         }
992 out:
993         RETURN(rc);
994 }
995
996 /**
997  * A generic function to initialize the stripe objects.
998  *
999  * A protected version of lod_load_striping_locked() - load the striping
1000  * information from storage, parse that and instantiate LU objects to
1001  * represent the stripes.  The LOD object \a lo supplies a pointer to the
1002  * next sub-object in the LU stack so we can lock it. Also use \a lo to
1003  * return an array of references to the newly instantiated objects.
1004  *
1005  * \param[in] env               execution environment for this thread
1006  * \param[in,out] lo            LOD object, where striping is stored and
1007  *                              which gets an array of references
1008  *
1009  * \retval                      0 if parsing and object creation succeed
1010  * \retval                      negative error number on failure
1011  **/
1012 int lod_load_striping(const struct lu_env *env, struct lod_object *lo)
1013 {
1014         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
1015         int                     rc = 0;
1016
1017         /* currently this code is supposed to be called from declaration
1018          * phase only, thus the object is not expected to be locked by caller */
1019         dt_write_lock(env, next, 0);
1020         rc = lod_load_striping_locked(env, lo);
1021         dt_write_unlock(env, next);
1022         return rc;
1023 }
1024
1025 /**
1026  * Verify striping.
1027  *
1028  * Check the validity of all fields including the magic, stripe size,
1029  * stripe count, stripe offset and that the pool is present.  Also check
1030  * that each target index points to an existing target. The additional
1031  * \a is_from_disk turns additional checks. In some cases zero fields
1032  * are allowed (like pattern=0).
1033  *
1034  * \param[in] d                 LOD device
1035  * \param[in] buf               buffer with LOV EA to verify
1036  * \param[in] is_from_disk      0 - from user, allow some fields to be 0
1037  *                              1 - from disk, do not allow
1038  *
1039  * \retval                      0 if the striping is valid
1040  * \retval                      -EINVAL if striping is invalid
1041  */
1042 int lod_verify_striping(struct lod_device *d, const struct lu_buf *buf,
1043                         bool is_from_disk)
1044 {
1045         struct lov_user_md_v1   *lum;
1046         struct lov_user_md_v3   *lum3;
1047         struct pool_desc        *pool = NULL;
1048         __u32                    magic;
1049         __u32                    stripe_size;
1050         __u16                    stripe_count;
1051         __u16                    stripe_offset;
1052         size_t                   lum_size;
1053         int                      rc = 0;
1054         ENTRY;
1055
1056         lum = buf->lb_buf;
1057
1058         LASSERT(sizeof(*lum) < sizeof(*lum3));
1059
1060         if (buf->lb_len < sizeof(*lum)) {
1061                 CDEBUG(D_IOCTL, "buf len %zu too small for lov_user_md\n",
1062                        buf->lb_len);
1063                 GOTO(out, rc = -EINVAL);
1064         }
1065
1066         magic = le32_to_cpu(lum->lmm_magic);
1067         if (magic != LOV_USER_MAGIC_V1 &&
1068             magic != LOV_USER_MAGIC_V3 &&
1069             magic != LOV_MAGIC_V1_DEF &&
1070             magic != LOV_MAGIC_V3_DEF) {
1071                 CDEBUG(D_IOCTL, "bad userland LOV MAGIC: %#x\n", magic);
1072                 GOTO(out, rc = -EINVAL);
1073         }
1074
1075         /* the user uses "0" for default stripe pattern normally. */
1076         if (!is_from_disk && lum->lmm_pattern == 0)
1077                 lum->lmm_pattern = cpu_to_le32(LOV_PATTERN_RAID0);
1078
1079         if (le32_to_cpu(lum->lmm_pattern) != LOV_PATTERN_RAID0) {
1080                 CDEBUG(D_IOCTL, "bad userland stripe pattern: %#x\n",
1081                        le32_to_cpu(lum->lmm_pattern));
1082                 GOTO(out, rc = -EINVAL);
1083         }
1084
1085         /* 64kB is the largest common page size we see (ia64), and matches the
1086          * check in lfs */
1087         stripe_size = le32_to_cpu(lum->lmm_stripe_size);
1088         if (stripe_size & (LOV_MIN_STRIPE_SIZE - 1)) {
1089                 CDEBUG(D_IOCTL, "stripe size %u not a multiple of %u\n",
1090                        stripe_size, LOV_MIN_STRIPE_SIZE);
1091                 GOTO(out, rc = -EINVAL);
1092         }
1093
1094         stripe_offset = le16_to_cpu(lum->lmm_stripe_offset);
1095         if (stripe_offset != LOV_OFFSET_DEFAULT) {
1096                 /* if offset is not within valid range [0, osts_size) */
1097                 if (stripe_offset >= d->lod_osts_size) {
1098                         CDEBUG(D_IOCTL, "stripe offset %u >= bitmap size %u\n",
1099                                stripe_offset, d->lod_osts_size);
1100                         GOTO(out, rc = -EINVAL);
1101                 }
1102
1103                 /* if lmm_stripe_offset is *not* in bitmap */
1104                 if (!cfs_bitmap_check(d->lod_ost_bitmap, stripe_offset)) {
1105                         CDEBUG(D_IOCTL, "stripe offset %u not in bitmap\n",
1106                                stripe_offset);
1107                         GOTO(out, rc = -EINVAL);
1108                 }
1109         }
1110
1111         if (magic == LOV_USER_MAGIC_V1 || magic == LOV_MAGIC_V1_DEF)
1112                 lum_size = offsetof(struct lov_user_md_v1,
1113                                     lmm_objects[0]);
1114         else if (magic == LOV_USER_MAGIC_V3 || magic == LOV_MAGIC_V3_DEF)
1115                 lum_size = offsetof(struct lov_user_md_v3,
1116                                     lmm_objects[0]);
1117         else
1118                 GOTO(out, rc = -EINVAL);
1119
1120         stripe_count = le16_to_cpu(lum->lmm_stripe_count);
1121         if (buf->lb_len != lum_size) {
1122                 CDEBUG(D_IOCTL, "invalid buf len %zu for lov_user_md with "
1123                        "magic %#x and stripe_count %u\n",
1124                        buf->lb_len, magic, stripe_count);
1125                 GOTO(out, rc = -EINVAL);
1126         }
1127
1128         if (!(magic == LOV_USER_MAGIC_V3 || magic == LOV_MAGIC_V3_DEF))
1129                 goto out;
1130
1131         lum3 = buf->lb_buf;
1132         if (buf->lb_len < sizeof(*lum3)) {
1133                 CDEBUG(D_IOCTL, "buf len %zu too small for lov_user_md_v3\n",
1134                        buf->lb_len);
1135                 GOTO(out, rc = -EINVAL);
1136         }
1137
1138         /* In the function below, .hs_keycmp resolves to
1139          * pool_hashkey_keycmp() */
1140         /* coverity[overrun-buffer-val] */
1141         pool = lod_find_pool(d, lum3->lmm_pool_name);
1142         if (pool == NULL)
1143                 goto out;
1144
1145         if (stripe_offset != LOV_OFFSET_DEFAULT) {
1146                 rc = lod_check_index_in_pool(stripe_offset, pool);
1147                 if (rc < 0)
1148                         GOTO(out, rc = -EINVAL);
1149         }
1150
1151         if (is_from_disk && stripe_count > pool_tgt_count(pool)) {
1152                 CDEBUG(D_IOCTL,
1153                        "stripe count %u > # OSTs %u in the pool\n",
1154                        stripe_count, pool_tgt_count(pool));
1155                 GOTO(out, rc = -EINVAL);
1156         }
1157
1158 out:
1159         if (pool != NULL)
1160                 lod_pool_putref(pool);
1161
1162         RETURN(rc);
1163 }
1164
1165 void lod_fix_desc_stripe_size(__u64 *val)
1166 {
1167         if (*val < LOV_MIN_STRIPE_SIZE) {
1168                 if (*val != 0)
1169                         LCONSOLE_INFO("Increasing default stripe size to "
1170                                       "minimum value %u\n",
1171                                       LOV_DESC_STRIPE_SIZE_DEFAULT);
1172                 *val = LOV_DESC_STRIPE_SIZE_DEFAULT;
1173         } else if (*val & (LOV_MIN_STRIPE_SIZE - 1)) {
1174                 *val &= ~(LOV_MIN_STRIPE_SIZE - 1);
1175                 LCONSOLE_WARN("Changing default stripe size to "LPU64" (a "
1176                               "multiple of %u)\n",
1177                               *val, LOV_MIN_STRIPE_SIZE);
1178         }
1179 }
1180
1181 void lod_fix_desc_stripe_count(__u32 *val)
1182 {
1183         if (*val == 0)
1184                 *val = 1;
1185 }
1186
1187 void lod_fix_desc_pattern(__u32 *val)
1188 {
1189         /* from lov_setstripe */
1190         if ((*val != 0) && (*val != LOV_PATTERN_RAID0)) {
1191                 LCONSOLE_WARN("Unknown stripe pattern: %#x\n", *val);
1192                 *val = 0;
1193         }
1194 }
1195
1196 void lod_fix_desc_qos_maxage(__u32 *val)
1197 {
1198         /* fix qos_maxage */
1199         if (*val == 0)
1200                 *val = LOV_DESC_QOS_MAXAGE_DEFAULT;
1201 }
1202
1203 /**
1204  * Used to fix insane default striping.
1205  *
1206  * \param[in] desc      striping description
1207  */
1208 void lod_fix_desc(struct lov_desc *desc)
1209 {
1210         lod_fix_desc_stripe_size(&desc->ld_default_stripe_size);
1211         lod_fix_desc_stripe_count(&desc->ld_default_stripe_count);
1212         lod_fix_desc_pattern(&desc->ld_pattern);
1213         lod_fix_desc_qos_maxage(&desc->ld_qos_maxage);
1214 }
1215
1216 /**
1217  * Initialize the structures used to store pools and default striping.
1218  *
1219  * \param[in] lod       LOD device
1220  * \param[in] lcfg      configuration structure storing default striping.
1221  *
1222  * \retval              0 if initialization succeeds
1223  * \retval              negative error number on failure
1224  */
1225 int lod_pools_init(struct lod_device *lod, struct lustre_cfg *lcfg)
1226 {
1227         struct obd_device          *obd;
1228         struct lov_desc            *desc;
1229         int                         rc;
1230         ENTRY;
1231
1232         obd = class_name2obd(lustre_cfg_string(lcfg, 0));
1233         LASSERT(obd != NULL);
1234         obd->obd_lu_dev = &lod->lod_dt_dev.dd_lu_dev;
1235
1236         if (LUSTRE_CFG_BUFLEN(lcfg, 1) < 1) {
1237                 CERROR("LOD setup requires a descriptor\n");
1238                 RETURN(-EINVAL);
1239         }
1240
1241         desc = (struct lov_desc *)lustre_cfg_buf(lcfg, 1);
1242
1243         if (sizeof(*desc) > LUSTRE_CFG_BUFLEN(lcfg, 1)) {
1244                 CERROR("descriptor size wrong: %d > %d\n",
1245                        (int)sizeof(*desc), LUSTRE_CFG_BUFLEN(lcfg, 1));
1246                 RETURN(-EINVAL);
1247         }
1248
1249         if (desc->ld_magic != LOV_DESC_MAGIC) {
1250                 if (desc->ld_magic == __swab32(LOV_DESC_MAGIC)) {
1251                         CDEBUG(D_OTHER, "%s: Swabbing lov desc %p\n",
1252                                obd->obd_name, desc);
1253                         lustre_swab_lov_desc(desc);
1254                 } else {
1255                         CERROR("%s: Bad lov desc magic: %#x\n",
1256                                obd->obd_name, desc->ld_magic);
1257                         RETURN(-EINVAL);
1258                 }
1259         }
1260
1261         lod_fix_desc(desc);
1262
1263         desc->ld_active_tgt_count = 0;
1264         lod->lod_desc = *desc;
1265
1266         lod->lod_sp_me = LUSTRE_SP_CLI;
1267
1268         /* Set up allocation policy (QoS and RR) */
1269         INIT_LIST_HEAD(&lod->lod_qos.lq_oss_list);
1270         init_rwsem(&lod->lod_qos.lq_rw_sem);
1271         lod->lod_qos.lq_dirty = 1;
1272         lod->lod_qos.lq_rr.lqr_dirty = 1;
1273         lod->lod_qos.lq_reset = 1;
1274         /* Default priority is toward free space balance */
1275         lod->lod_qos.lq_prio_free = 232;
1276         /* Default threshold for rr (roughly 17%) */
1277         lod->lod_qos.lq_threshold_rr = 43;
1278
1279         /* Set up OST pool environment */
1280         lod->lod_pools_hash_body = cfs_hash_create("POOLS", HASH_POOLS_CUR_BITS,
1281                                                    HASH_POOLS_MAX_BITS,
1282                                                    HASH_POOLS_BKT_BITS, 0,
1283                                                    CFS_HASH_MIN_THETA,
1284                                                    CFS_HASH_MAX_THETA,
1285                                                    &pool_hash_operations,
1286                                                    CFS_HASH_DEFAULT);
1287         if (lod->lod_pools_hash_body == NULL)
1288                 RETURN(-ENOMEM);
1289
1290         INIT_LIST_HEAD(&lod->lod_pool_list);
1291         lod->lod_pool_count = 0;
1292         rc = lod_ost_pool_init(&lod->lod_pool_info, 0);
1293         if (rc)
1294                 GOTO(out_hash, rc);
1295         rc = lod_ost_pool_init(&lod->lod_qos.lq_rr.lqr_pool, 0);
1296         if (rc)
1297                 GOTO(out_pool_info, rc);
1298
1299         RETURN(0);
1300
1301 out_pool_info:
1302         lod_ost_pool_free(&lod->lod_pool_info);
1303 out_hash:
1304         cfs_hash_putref(lod->lod_pools_hash_body);
1305
1306         return rc;
1307 }
1308
1309 /**
1310  * Release the structures describing the pools.
1311  *
1312  * \param[in] lod       LOD device from which we release the structures
1313  *
1314  * \retval              0 always
1315  */
1316 int lod_pools_fini(struct lod_device *lod)
1317 {
1318         struct obd_device   *obd = lod2obd(lod);
1319         struct pool_desc    *pool, *tmp;
1320         ENTRY;
1321
1322         list_for_each_entry_safe(pool, tmp, &lod->lod_pool_list, pool_list) {
1323                 /* free pool structs */
1324                 CDEBUG(D_INFO, "delete pool %p\n", pool);
1325                 /* In the function below, .hs_keycmp resolves to
1326                  * pool_hashkey_keycmp() */
1327                 /* coverity[overrun-buffer-val] */
1328                 lod_pool_del(obd, pool->pool_name);
1329         }
1330
1331         cfs_hash_putref(lod->lod_pools_hash_body);
1332         lod_ost_pool_free(&(lod->lod_qos.lq_rr.lqr_pool));
1333         lod_ost_pool_free(&lod->lod_pool_info);
1334
1335         RETURN(0);
1336 }