Whamcloud - gitweb
LU-5700 llite: handle concurrent use of cob_transient_pages
[fs/lustre-release.git] / lustre / llite / rw26.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/lustre/llite/rw26.c
37  *
38  * Lustre Lite I/O page cache routines for the 2.5/2.6 kernel version
39  */
40
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/string.h>
44 #include <linux/stat.h>
45 #include <linux/errno.h>
46 #include <linux/unistd.h>
47 #include <asm/uaccess.h>
48
49 #ifdef HAVE_MIGRATE_H
50 #include <linux/migrate.h>
51 #elif defined(HAVE_MIGRATE_MODE_H)
52 #include <linux/migrate_mode.h>
53 #endif
54 #include <linux/fs.h>
55 #include <linux/buffer_head.h>
56 #include <linux/mpage.h>
57 #include <linux/writeback.h>
58 #include <linux/stat.h>
59 #include <asm/uaccess.h>
60 #include <linux/mm.h>
61 #include <linux/pagemap.h>
62
63 #define DEBUG_SUBSYSTEM S_LLITE
64
65 #include "llite_internal.h"
66 #include <linux/lustre_compat25.h>
67
68 /**
69  * Implements Linux VM address_space::invalidatepage() method. This method is
70  * called when the page is truncate from a file, either as a result of
71  * explicit truncate, or when inode is removed from memory (as a result of
72  * final iput(), umount, or memory pressure induced icache shrinking).
73  *
74  * [0, offset] bytes of the page remain valid (this is for a case of not-page
75  * aligned truncate). Lustre leaves partially truncated page in the cache,
76  * relying on struct inode::i_size to limit further accesses.
77  */
78 static void ll_invalidatepage(struct page *vmpage,
79 #ifdef HAVE_INVALIDATE_RANGE
80                                 unsigned int offset, unsigned int length
81 #else
82                                 unsigned long offset
83 #endif
84                              )
85 {
86         struct inode     *inode;
87         struct lu_env    *env;
88         struct cl_page   *page;
89         struct cl_object *obj;
90
91         int refcheck;
92
93         LASSERT(PageLocked(vmpage));
94         LASSERT(!PageWriteback(vmpage));
95
96         /*
97          * It is safe to not check anything in invalidatepage/releasepage
98          * below because they are run with page locked and all our io is
99          * happening with locked page too
100          */
101 #ifdef HAVE_INVALIDATE_RANGE
102         if (offset == 0 && length == PAGE_CACHE_SIZE) {
103 #else
104         if (offset == 0) {
105 #endif
106                 env = cl_env_get(&refcheck);
107                 if (!IS_ERR(env)) {
108                         inode = vmpage->mapping->host;
109                         obj = ll_i2info(inode)->lli_clob;
110                         if (obj != NULL) {
111                                 page = cl_vmpage_page(vmpage, obj);
112                                 if (page != NULL) {
113                                         cl_page_delete(env, page);
114                                         cl_page_put(env, page);
115                                 }
116                         } else
117                                 LASSERT(vmpage->private == 0);
118                         cl_env_put(env, &refcheck);
119                 }
120         }
121 }
122
123 #ifdef HAVE_RELEASEPAGE_WITH_INT
124 #define RELEASEPAGE_ARG_TYPE int
125 #else
126 #define RELEASEPAGE_ARG_TYPE gfp_t
127 #endif
128 static int ll_releasepage(struct page *vmpage, RELEASEPAGE_ARG_TYPE gfp_mask)
129 {
130         struct lu_env           *env;
131         void                    *cookie;
132         struct cl_object        *obj;
133         struct cl_page          *page;
134         struct address_space    *mapping;
135         int result = 0;
136
137         LASSERT(PageLocked(vmpage));
138         if (PageWriteback(vmpage) || PageDirty(vmpage))
139                 return 0;
140
141         mapping = vmpage->mapping;
142         if (mapping == NULL)
143                 return 1;
144
145         obj = ll_i2info(mapping->host)->lli_clob;
146         if (obj == NULL)
147                 return 1;
148
149         /* 1 for caller, 1 for cl_page and 1 for page cache */
150         if (page_count(vmpage) > 3)
151                 return 0;
152
153         page = cl_vmpage_page(vmpage, obj);
154         if (page == NULL)
155                 return 1;
156
157         cookie = cl_env_reenter();
158         env = cl_env_percpu_get();
159         LASSERT(!IS_ERR(env));
160
161         if (!cl_page_in_use(page)) {
162                 result = 1;
163                 cl_page_delete(env, page);
164         }
165
166         /* To use percpu env array, the call path can not be rescheduled;
167          * otherwise percpu array will be messed if ll_releaspage() called
168          * again on the same CPU.
169          *
170          * If this page holds the last refc of cl_object, the following
171          * call path may cause reschedule:
172          *   cl_page_put -> cl_page_free -> cl_object_put ->
173          *     lu_object_put -> lu_object_free -> lov_delete_raid0 ->
174          *     cl_locks_prune.
175          *
176          * However, the kernel can't get rid of this inode until all pages have
177          * been cleaned up. Now that we hold page lock here, it's pretty safe
178          * that we won't get into object delete path.
179          */
180         LASSERT(cl_object_refc(obj) > 1);
181         cl_page_put(env, page);
182
183         cl_env_percpu_put(env);
184         cl_env_reexit(cookie);
185         return result;
186 }
187
188 #define MAX_DIRECTIO_SIZE 2*1024*1024*1024UL
189
190 static inline int ll_get_user_pages(int rw, unsigned long user_addr,
191                                     size_t size, struct page ***pages,
192                                     int *max_pages)
193 {
194         int result = -ENOMEM;
195
196         /* set an arbitrary limit to prevent arithmetic overflow */
197         if (size > MAX_DIRECTIO_SIZE) {
198                 *pages = NULL;
199                 return -EFBIG;
200         }
201
202         *max_pages = (user_addr + size + PAGE_CACHE_SIZE - 1) >>
203                      PAGE_CACHE_SHIFT;
204         *max_pages -= user_addr >> PAGE_CACHE_SHIFT;
205
206         OBD_ALLOC_LARGE(*pages, *max_pages * sizeof(**pages));
207         if (*pages) {
208                 down_read(&current->mm->mmap_sem);
209                 result = get_user_pages(current, current->mm, user_addr,
210                                         *max_pages, (rw == READ), 0, *pages,
211                                         NULL);
212                 up_read(&current->mm->mmap_sem);
213                 if (unlikely(result <= 0))
214                         OBD_FREE_LARGE(*pages, *max_pages * sizeof(**pages));
215         }
216
217         return result;
218 }
219
220 /*  ll_free_user_pages - tear down page struct array
221  *  @pages: array of page struct pointers underlying target buffer */
222 static void ll_free_user_pages(struct page **pages, int npages, int do_dirty)
223 {
224         int i;
225
226         for (i = 0; i < npages; i++) {
227                 if (pages[i] == NULL)
228                         break;
229                 if (do_dirty)
230                         set_page_dirty_lock(pages[i]);
231                 page_cache_release(pages[i]);
232         }
233
234         OBD_FREE_LARGE(pages, npages * sizeof(*pages));
235 }
236
237 ssize_t ll_direct_rw_pages(const struct lu_env *env, struct cl_io *io,
238                            int rw, struct inode *inode,
239                            struct ll_dio_pages *pv)
240 {
241         struct cl_page    *clp;
242         struct cl_2queue  *queue;
243         struct cl_object  *obj = io->ci_obj;
244         int i;
245         ssize_t rc = 0;
246         loff_t file_offset  = pv->ldp_start_offset;
247         long size           = pv->ldp_size;
248         int page_count      = pv->ldp_nr;
249         struct page **pages = pv->ldp_pages;
250         long page_size      = cl_page_size(obj);
251         bool do_io;
252         int  io_pages       = 0;
253         ENTRY;
254
255         queue = &io->ci_queue;
256         cl_2queue_init(queue);
257         for (i = 0; i < page_count; i++) {
258                 if (pv->ldp_offsets)
259                     file_offset = pv->ldp_offsets[i];
260
261                 LASSERT(!(file_offset & (page_size - 1)));
262                 clp = cl_page_find(env, obj, cl_index(obj, file_offset),
263                                    pv->ldp_pages[i], CPT_TRANSIENT);
264                 if (IS_ERR(clp)) {
265                         rc = PTR_ERR(clp);
266                         break;
267                 }
268
269                 rc = cl_page_own(env, io, clp);
270                 if (rc) {
271                         LASSERT(clp->cp_state == CPS_FREEING);
272                         cl_page_put(env, clp);
273                         break;
274                 }
275
276                 do_io = true;
277
278                 /* check the page type: if the page is a host page, then do
279                  * write directly */
280                 if (clp->cp_type == CPT_CACHEABLE) {
281                         struct page *vmpage = cl_page_vmpage(clp);
282                         struct page *src_page;
283                         struct page *dst_page;
284                         void       *src;
285                         void       *dst;
286
287                         src_page = (rw == WRITE) ? pages[i] : vmpage;
288                         dst_page = (rw == WRITE) ? vmpage : pages[i];
289
290                         src = ll_kmap_atomic(src_page, KM_USER0);
291                         dst = ll_kmap_atomic(dst_page, KM_USER1);
292                         memcpy(dst, src, min(page_size, size));
293                         ll_kunmap_atomic(dst, KM_USER1);
294                         ll_kunmap_atomic(src, KM_USER0);
295
296                         /* make sure page will be added to the transfer by
297                          * cl_io_submit()->...->vvp_page_prep_write(). */
298                         if (rw == WRITE)
299                                 set_page_dirty(vmpage);
300
301                         if (rw == READ) {
302                                 /* do not issue the page for read, since it
303                                  * may reread a ra page which has NOT uptodate
304                                  * bit set. */
305                                 cl_page_disown(env, io, clp);
306                                 do_io = false;
307                         }
308                 }
309
310                 if (likely(do_io)) {
311                         cl_2queue_add(queue, clp);
312
313                         /*
314                          * Set page clip to tell transfer formation engine
315                          * that page has to be sent even if it is beyond KMS.
316                          */
317                         cl_page_clip(env, clp, 0, min(size, page_size));
318
319                         ++io_pages;
320                 }
321
322                 /* drop the reference count for cl_page_find */
323                 cl_page_put(env, clp);
324                 size -= page_size;
325                 file_offset += page_size;
326         }
327
328         if (rc == 0 && io_pages) {
329                 rc = cl_io_submit_sync(env, io,
330                                        rw == READ ? CRT_READ : CRT_WRITE,
331                                        queue, 0);
332         }
333         if (rc == 0)
334                 rc = pv->ldp_size;
335
336         cl_2queue_discard(env, io, queue);
337         cl_2queue_disown(env, io, queue);
338         cl_2queue_fini(env, queue);
339         RETURN(rc);
340 }
341 EXPORT_SYMBOL(ll_direct_rw_pages);
342
343 static ssize_t ll_direct_IO_26_seg(const struct lu_env *env, struct cl_io *io,
344                                    int rw, struct inode *inode,
345                                    struct address_space *mapping,
346                                    size_t size, loff_t file_offset,
347                                    struct page **pages, int page_count)
348 {
349     struct ll_dio_pages pvec = { .ldp_pages        = pages,
350                                  .ldp_nr           = page_count,
351                                  .ldp_size         = size,
352                                  .ldp_offsets      = NULL,
353                                  .ldp_start_offset = file_offset
354                                };
355
356     return ll_direct_rw_pages(env, io, rw, inode, &pvec);
357 }
358
359 #ifdef KMALLOC_MAX_SIZE
360 #define MAX_MALLOC KMALLOC_MAX_SIZE
361 #else
362 #define MAX_MALLOC (128 * 1024)
363 #endif
364
365 /* This is the maximum size of a single O_DIRECT request, based on the
366  * kmalloc limit.  We need to fit all of the brw_page structs, each one
367  * representing PAGE_SIZE worth of user data, into a single buffer, and
368  * then truncate this to be a full-sized RPC.  For 4kB PAGE_SIZE this is
369  * up to 22MB for 128kB kmalloc and up to 682MB for 4MB kmalloc. */
370 #define MAX_DIO_SIZE ((MAX_MALLOC / sizeof(struct brw_page) * PAGE_CACHE_SIZE) & \
371                       ~(DT_MAX_BRW_SIZE - 1))
372 static ssize_t ll_direct_IO_26(int rw, struct kiocb *iocb,
373                                const struct iovec *iov, loff_t file_offset,
374                                unsigned long nr_segs)
375 {
376         struct lu_env *env;
377         struct cl_io *io;
378         struct file *file = iocb->ki_filp;
379         struct inode *inode = file->f_mapping->host;
380         long count = iov_length(iov, nr_segs);
381         long tot_bytes = 0, result = 0;
382         struct ll_inode_info *lli = ll_i2info(inode);
383         unsigned long seg = 0;
384         long size = MAX_DIO_SIZE;
385         int refcheck;
386         ENTRY;
387
388         if (!lli->lli_has_smd)
389                 RETURN(-EBADF);
390
391         /* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */
392         if ((file_offset & ~CFS_PAGE_MASK) || (count & ~CFS_PAGE_MASK))
393                 RETURN(-EINVAL);
394
395         CDEBUG(D_VFSTRACE, "VFS Op:inode="DFID"(%p), size=%lu (max %lu), "
396                "offset=%lld=%llx, pages %lu (max %lu)\n",
397                PFID(ll_inode2fid(inode)), inode, count, MAX_DIO_SIZE,
398                file_offset, file_offset, count >> PAGE_CACHE_SHIFT,
399                MAX_DIO_SIZE >> PAGE_CACHE_SHIFT);
400
401         /* Check that all user buffers are aligned as well */
402         for (seg = 0; seg < nr_segs; seg++) {
403                 if (((unsigned long)iov[seg].iov_base & ~CFS_PAGE_MASK) ||
404                     (iov[seg].iov_len & ~CFS_PAGE_MASK))
405                         RETURN(-EINVAL);
406         }
407
408         env = cl_env_get(&refcheck);
409         LASSERT(!IS_ERR(env));
410         io = ccc_env_io(env)->cui_cl.cis_io;
411         LASSERT(io != NULL);
412
413         for (seg = 0; seg < nr_segs; seg++) {
414                 long iov_left = iov[seg].iov_len;
415                 unsigned long user_addr = (unsigned long)iov[seg].iov_base;
416
417                 if (rw == READ) {
418                         if (file_offset >= i_size_read(inode))
419                                 break;
420                         if (file_offset + iov_left > i_size_read(inode))
421                                 iov_left = i_size_read(inode) - file_offset;
422                 }
423
424                 while (iov_left > 0) {
425                         struct page **pages;
426                         int page_count, max_pages = 0;
427                         long bytes;
428
429                         bytes = min(size, iov_left);
430                         page_count = ll_get_user_pages(rw, user_addr, bytes,
431                                                        &pages, &max_pages);
432                         if (likely(page_count > 0)) {
433                                 if (unlikely(page_count <  max_pages))
434                                         bytes = page_count << PAGE_CACHE_SHIFT;
435                                 result = ll_direct_IO_26_seg(env, io, rw, inode,
436                                                              file->f_mapping,
437                                                              bytes, file_offset,
438                                                              pages, page_count);
439                                 ll_free_user_pages(pages, max_pages, rw==READ);
440                         } else if (page_count == 0) {
441                                 GOTO(out, result = -EFAULT);
442                         } else {
443                                 result = page_count;
444                         }
445                         if (unlikely(result <= 0)) {
446                                 /* If we can't allocate a large enough buffer
447                                  * for the request, shrink it to a smaller
448                                  * PAGE_SIZE multiple and try again.
449                                  * We should always be able to kmalloc for a
450                                  * page worth of page pointers = 4MB on i386. */
451                                 if (result == -ENOMEM &&
452                                     size > (PAGE_CACHE_SIZE / sizeof(*pages)) *
453                                            PAGE_CACHE_SIZE) {
454                                         size = ((((size / 2) - 1) |
455                                                  ~CFS_PAGE_MASK) + 1) &
456                                                 CFS_PAGE_MASK;
457                                         CDEBUG(D_VFSTRACE,"DIO size now %lu\n",
458                                                size);
459                                         continue;
460                                 }
461
462                                 GOTO(out, result);
463                         }
464
465                         tot_bytes += result;
466                         file_offset += result;
467                         iov_left -= result;
468                         user_addr += result;
469                 }
470         }
471 out:
472         if (tot_bytes > 0) {
473                 struct ccc_io *cio = ccc_env_io(env);
474
475                 /* no commit async for direct IO */
476                 cio->u.write.cui_written += tot_bytes;
477         }
478
479         cl_env_put(env, &refcheck);
480         RETURN(tot_bytes ? tot_bytes : result);
481 }
482
483 /**
484  * Prepare partially written-to page for a write.
485  */
486 static int ll_prepare_partial_page(const struct lu_env *env, struct cl_io *io,
487                                    struct cl_page *pg)
488 {
489         struct cl_attr *attr   = ccc_env_thread_attr(env);
490         struct cl_object *obj  = io->ci_obj;
491         struct ccc_page *cp    = cl_object_page_slice(obj, pg);
492         loff_t          offset = cl_offset(obj, ccc_index(cp));
493         int             result;
494
495         cl_object_attr_lock(obj);
496         result = cl_object_attr_get(env, obj, attr);
497         cl_object_attr_unlock(obj);
498         if (result == 0) {
499                 /*
500                  * If are writing to a new page, no need to read old data.
501                  * The extent locking will have updated the KMS, and for our
502                  * purposes here we can treat it like i_size.
503                  */
504                 if (attr->cat_kms <= offset) {
505                         char *kaddr = ll_kmap_atomic(cp->cpg_page, KM_USER0);
506
507                         memset(kaddr, 0, cl_page_size(obj));
508                         ll_kunmap_atomic(kaddr, KM_USER0);
509                 } else if (cp->cpg_defer_uptodate)
510                         cp->cpg_ra_used = 1;
511                 else
512                         result = ll_page_sync_io(env, io, pg, CRT_READ);
513         }
514         return result;
515 }
516
517 static int ll_write_begin(struct file *file, struct address_space *mapping,
518                           loff_t pos, unsigned len, unsigned flags,
519                           struct page **pagep, void **fsdata)
520 {
521         struct ll_cl_context *lcc;
522         const struct lu_env  *env;
523         struct cl_io   *io;
524         struct cl_page *page;
525
526         struct cl_object *clob = ll_i2info(mapping->host)->lli_clob;
527         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
528         struct page *vmpage = NULL;
529         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
530         unsigned to = from + len;
531         int result = 0;
532         ENTRY;
533
534         CDEBUG(D_VFSTRACE, "Writing %lu of %d to %d bytes\n", index, from, len);
535
536         lcc = ll_cl_find(file);
537         if (lcc == NULL)
538                 GOTO(out, result = -EIO);
539
540         env = lcc->lcc_env;
541         io  = lcc->lcc_io;
542
543         /* To avoid deadlock, try to lock page first. */
544         vmpage = grab_cache_page_nowait(mapping, index);
545         if (unlikely(vmpage == NULL ||
546                      PageDirty(vmpage) || PageWriteback(vmpage))) {
547                 struct ccc_io *cio = ccc_env_io(env);
548                 struct cl_page_list *plist = &cio->u.write.cui_queue;
549
550                 /* if the page is already in dirty cache, we have to commit
551                  * the pages right now; otherwise, it may cause deadlock
552                  * because it holds page lock of a dirty page and request for
553                  * more grants. It's okay for the dirty page to be the first
554                  * one in commit page list, though. */
555                 if (vmpage != NULL && plist->pl_nr > 0) {
556                         unlock_page(vmpage);
557                         page_cache_release(vmpage);
558                         vmpage = NULL;
559                 }
560
561                 /* commit pages and then wait for page lock */
562                 result = vvp_io_write_commit(env, io);
563                 if (result < 0)
564                         GOTO(out, result);
565
566                 if (vmpage == NULL) {
567                         vmpage = grab_cache_page_write_begin(mapping, index,
568                                                              flags);
569                         if (vmpage == NULL)
570                                 GOTO(out, result = -ENOMEM);
571                 }
572         }
573
574         page = cl_page_find(env, clob, vmpage->index, vmpage, CPT_CACHEABLE);
575         if (IS_ERR(page))
576                 GOTO(out, result = PTR_ERR(page));
577
578         lcc->lcc_page = page;
579         lu_ref_add(&page->cp_reference, "cl_io", io);
580
581         cl_page_assume(env, io, page);
582         if (!PageUptodate(vmpage)) {
583                 /*
584                  * We're completely overwriting an existing page,
585                  * so _don't_ set it up to date until commit_write
586                  */
587                 if (from == 0 && to == PAGE_SIZE) {
588                         CL_PAGE_HEADER(D_PAGE, env, page, "full page write\n");
589                         POISON_PAGE(vmpage, 0x11);
590                 } else {
591                         /* TODO: can be optimized at OSC layer to check if it
592                          * is a lockless IO. In that case, it's not necessary
593                          * to read the data. */
594                         result = ll_prepare_partial_page(env, io, page);
595                         if (result == 0)
596                                 SetPageUptodate(vmpage);
597                 }
598         }
599         if (result < 0)
600                 cl_page_unassume(env, io, page);
601         EXIT;
602 out:
603         if (result < 0) {
604                 if (vmpage != NULL) {
605                         unlock_page(vmpage);
606                         page_cache_release(vmpage);
607                 }
608         } else {
609                 *pagep = vmpage;
610                 *fsdata = lcc;
611         }
612         RETURN(result);
613 }
614
615 static int ll_write_end(struct file *file, struct address_space *mapping,
616                         loff_t pos, unsigned len, unsigned copied,
617                         struct page *vmpage, void *fsdata)
618 {
619         struct ll_cl_context *lcc = fsdata;
620         const struct lu_env *env;
621         struct cl_io *io;
622         struct ccc_io *cio;
623         struct cl_page *page;
624         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
625         bool unplug = false;
626         int result = 0;
627         ENTRY;
628
629         page_cache_release(vmpage);
630
631         LASSERT(lcc != NULL);
632         env  = lcc->lcc_env;
633         page = lcc->lcc_page;
634         io   = lcc->lcc_io;
635         cio  = ccc_env_io(env);
636
637         LASSERT(cl_page_is_owned(page, io));
638         if (copied > 0) {
639                 struct cl_page_list *plist = &cio->u.write.cui_queue;
640
641                 lcc->lcc_page = NULL; /* page will be queued */
642
643                 /* Add it into write queue */
644                 cl_page_list_add(plist, page);
645                 if (plist->pl_nr == 1) /* first page */
646                         cio->u.write.cui_from = from;
647                 else
648                         LASSERT(from == 0);
649                 cio->u.write.cui_to = from + copied;
650
651                 /* To address the deadlock in balance_dirty_pages() where
652                  * this dirty page may be written back in the same thread. */
653                 if (PageDirty(vmpage))
654                         unplug = true;
655
656                 /* We may have one full RPC, commit it soon */
657                 if (plist->pl_nr >= PTLRPC_MAX_BRW_PAGES)
658                         unplug = true;
659
660                 CL_PAGE_DEBUG(D_VFSTRACE, env, page,
661                               "queued page: %d.\n", plist->pl_nr);
662         } else {
663                 cl_page_disown(env, io, page);
664
665                 lcc->lcc_page = NULL;
666                 lu_ref_del(&page->cp_reference, "cl_io", io);
667                 cl_page_put(env, page);
668
669                 /* page list is not contiguous now, commit it now */
670                 unplug = true;
671         }
672         if (unplug ||
673             file->f_flags & O_SYNC || IS_SYNC(file->f_dentry->d_inode))
674                 result = vvp_io_write_commit(env, io);
675
676         RETURN(result >= 0 ? copied : result);
677 }
678
679 #ifdef CONFIG_MIGRATION
680 static int ll_migratepage(struct address_space *mapping,
681                           struct page *newpage, struct page *page
682 #ifdef HAVE_MIGRATEPAGE_4ARGS
683                           , enum migrate_mode mode
684 #endif
685         )
686 {
687         /* Always fail page migration until we have a proper implementation */
688         return -EIO;
689 }
690 #endif
691
692 #ifndef MS_HAS_NEW_AOPS
693 const struct address_space_operations ll_aops = {
694         .readpage       = ll_readpage,
695         .direct_IO      = ll_direct_IO_26,
696         .writepage      = ll_writepage,
697         .writepages     = ll_writepages,
698         .set_page_dirty = __set_page_dirty_nobuffers,
699         .write_begin    = ll_write_begin,
700         .write_end      = ll_write_end,
701         .invalidatepage = ll_invalidatepage,
702         .releasepage    = (void *)ll_releasepage,
703 #ifdef CONFIG_MIGRATION
704         .migratepage    = ll_migratepage,
705 #endif
706 };
707 #else
708 const struct address_space_operations_ext ll_aops = {
709         .orig_aops.readpage             = ll_readpage,
710         .orig_aops.direct_IO            = ll_direct_IO_26,
711         .orig_aops.writepage            = ll_writepage,
712         .orig_aops.writepages           = ll_writepages,
713         .orig_aops.set_page_dirty       = __set_page_dirty_nobuffers,
714         .orig_aops.invalidatepage       = ll_invalidatepage,
715         .orig_aops.releasepage          = ll_releasepage,
716 #ifdef CONFIG_MIGRATION
717         .orig_aops.migratepage          = ll_migratepage,
718 #endif
719         .write_begin                    = ll_write_begin,
720         .write_end                      = ll_write_end
721 };
722 #endif