Whamcloud - gitweb
999fd270a803738fa2e0cad529d08496692180ac
[fs/lustre-release.git] / lustre / llite / rw26.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
30  * Use is subject to license terms.
31  *
32  * Copyright (c) 2011 Whamcloud, Inc.
33  *
34  */
35 /*
36  * This file is part of Lustre, http://www.lustre.org/
37  * Lustre is a trademark of Sun Microsystems, Inc.
38  *
39  * lustre/lustre/llite/rw26.c
40  *
41  * Lustre Lite I/O page cache routines for the 2.5/2.6 kernel version
42  */
43
44 #ifndef AUTOCONF_INCLUDED
45 #include <linux/config.h>
46 #endif
47 #include <linux/kernel.h>
48 #include <linux/mm.h>
49 #include <linux/string.h>
50 #include <linux/stat.h>
51 #include <linux/errno.h>
52 #include <linux/smp_lock.h>
53 #include <linux/unistd.h>
54 #include <linux/version.h>
55 #include <asm/system.h>
56 #include <asm/uaccess.h>
57
58 #include <linux/fs.h>
59 #include <linux/buffer_head.h>
60 #include <linux/writeback.h>
61 #include <linux/stat.h>
62 #include <asm/uaccess.h>
63 #include <linux/mm.h>
64 #include <linux/pagemap.h>
65 #include <linux/smp_lock.h>
66
67 #define DEBUG_SUBSYSTEM S_LLITE
68
69 #include <lustre_lite.h>
70 #include "llite_internal.h"
71 #include <linux/lustre_compat25.h>
72
73 /**
74  * Implements Linux VM address_space::invalidatepage() method. This method is
75  * called when the page is truncate from a file, either as a result of
76  * explicit truncate, or when inode is removed from memory (as a result of
77  * final iput(), umount, or memory pressure induced icache shrinking).
78  *
79  * [0, offset] bytes of the page remain valid (this is for a case of not-page
80  * aligned truncate). Lustre leaves partially truncated page in the cache,
81  * relying on struct inode::i_size to limit further accesses.
82  */
83 static int cl_invalidatepage(struct page *vmpage, unsigned long offset)
84 {
85         struct inode     *inode;
86         struct lu_env    *env;
87         struct cl_page   *page;
88         struct cl_object *obj;
89
90         int result;
91         int refcheck;
92
93         LASSERT(PageLocked(vmpage));
94         LASSERT(!PageWriteback(vmpage));
95
96         /*
97          * It is safe to not check anything in invalidatepage/releasepage
98          * below because they are run with page locked and all our io is
99          * happening with locked page too
100          */
101         result = 0;
102         if (offset == 0) {
103                 env = cl_env_get(&refcheck);
104                 if (!IS_ERR(env)) {
105                         inode = vmpage->mapping->host;
106                         obj = ll_i2info(inode)->lli_clob;
107                         if (obj != NULL) {
108                                 page = cl_vmpage_page(vmpage, obj);
109                                 if (page != NULL) {
110                                         lu_ref_add(&page->cp_reference,
111                                                    "delete", vmpage);
112                                         cl_page_delete(env, page);
113                                         result = 1;
114                                         lu_ref_del(&page->cp_reference,
115                                                    "delete", vmpage);
116                                         cl_page_put(env, page);
117                                 }
118                         } else
119                                 LASSERT(vmpage->private == 0);
120                         cl_env_put(env, &refcheck);
121                 }
122         }
123         return result;
124 }
125
126 #ifdef HAVE_INVALIDATEPAGE_RETURN_INT
127 static int ll_invalidatepage(struct page *page, unsigned long offset)
128 {
129         return cl_invalidatepage(page, offset);
130 }
131 #else /* !HAVE_INVALIDATEPAGE_RETURN_INT */
132 static void ll_invalidatepage(struct page *page, unsigned long offset)
133 {
134         cl_invalidatepage(page, offset);
135 }
136 #endif
137
138 #ifdef HAVE_RELEASEPAGE_WITH_INT
139 #define RELEASEPAGE_ARG_TYPE int
140 #else
141 #define RELEASEPAGE_ARG_TYPE gfp_t
142 #endif
143 static int ll_releasepage(struct page *page, RELEASEPAGE_ARG_TYPE gfp_mask)
144 {
145         void *cookie;
146
147         cookie = cl_env_reenter();
148         ll_invalidatepage(page, 0);
149         cl_env_reexit(cookie);
150         return 1;
151 }
152
153 static int ll_set_page_dirty(struct page *vmpage)
154 {
155 #if 0
156         struct cl_page    *page = vvp_vmpage_page_transient(vmpage);
157         struct vvp_object *obj  = cl_inode2vvp(vmpage->mapping->host);
158         struct vvp_page   *cpg;
159
160         /*
161          * XXX should page method be called here?
162          */
163         LASSERT(&obj->co_cl == page->cp_obj);
164         cpg = cl2vvp_page(cl_page_at(page, &vvp_device_type));
165         /*
166          * XXX cannot do much here, because page is possibly not locked:
167          * sys_munmap()->...
168          *     ->unmap_page_range()->zap_pte_range()->set_page_dirty().
169          */
170         vvp_write_pending(obj, cpg);
171 #endif
172         RETURN(__set_page_dirty_nobuffers(vmpage));
173 }
174
175 #define MAX_DIRECTIO_SIZE 2*1024*1024*1024UL
176
177 static inline int ll_get_user_pages(int rw, unsigned long user_addr,
178                                     size_t size, struct page ***pages,
179                                     int *max_pages)
180 {
181         int result = -ENOMEM;
182
183         /* set an arbitrary limit to prevent arithmetic overflow */
184         if (size > MAX_DIRECTIO_SIZE) {
185                 *pages = NULL;
186                 return -EFBIG;
187         }
188
189         *max_pages = (user_addr + size + CFS_PAGE_SIZE - 1) >> CFS_PAGE_SHIFT;
190         *max_pages -= user_addr >> CFS_PAGE_SHIFT;
191
192         OBD_ALLOC_LARGE(*pages, *max_pages * sizeof(**pages));
193         if (*pages) {
194                 down_read(&current->mm->mmap_sem);
195                 result = get_user_pages(current, current->mm, user_addr,
196                                         *max_pages, (rw == READ), 0, *pages,
197                                         NULL);
198                 up_read(&current->mm->mmap_sem);
199                 if (unlikely(result <= 0))
200                         OBD_FREE_LARGE(*pages, *max_pages * sizeof(**pages));
201         }
202
203         return result;
204 }
205
206 /*  ll_free_user_pages - tear down page struct array
207  *  @pages: array of page struct pointers underlying target buffer */
208 static void ll_free_user_pages(struct page **pages, int npages, int do_dirty)
209 {
210         int i;
211
212         for (i = 0; i < npages; i++) {
213                 if (pages[i] == NULL)
214                         break;
215                 if (do_dirty)
216                         set_page_dirty_lock(pages[i]);
217                 page_cache_release(pages[i]);
218         }
219
220         OBD_FREE_LARGE(pages, npages * sizeof(*pages));
221 }
222
223 ssize_t ll_direct_rw_pages(const struct lu_env *env, struct cl_io *io,
224                            int rw, struct inode *inode,
225                            struct ll_dio_pages *pv)
226 {
227         struct cl_page    *clp;
228         struct cl_2queue  *queue;
229         struct cl_object  *obj = io->ci_obj;
230         int i;
231         ssize_t rc = 0;
232         loff_t file_offset  = pv->ldp_start_offset;
233         long size           = pv->ldp_size;
234         int page_count      = pv->ldp_nr;
235         struct page **pages = pv->ldp_pages;
236         long page_size      = cl_page_size(obj);
237         bool do_io;
238         int  io_pages       = 0;
239         ENTRY;
240
241         queue = &io->ci_queue;
242         cl_2queue_init(queue);
243         for (i = 0; i < page_count; i++) {
244                 if (pv->ldp_offsets)
245                     file_offset = pv->ldp_offsets[i];
246
247                 LASSERT(!(file_offset & (page_size - 1)));
248                 clp = cl_page_find(env, obj, cl_index(obj, file_offset),
249                                    pv->ldp_pages[i], CPT_TRANSIENT);
250                 if (IS_ERR(clp)) {
251                         rc = PTR_ERR(clp);
252                         break;
253                 }
254
255                 rc = cl_page_own(env, io, clp);
256                 if (rc) {
257                         LASSERT(clp->cp_state == CPS_FREEING);
258                         cl_page_put(env, clp);
259                         break;
260                 }
261
262                 do_io = true;
263
264                 /* check the page type: if the page is a host page, then do
265                  * write directly */
266                 if (clp->cp_type == CPT_CACHEABLE) {
267                         cfs_page_t *vmpage = cl_page_vmpage(env, clp);
268                         cfs_page_t *src_page;
269                         cfs_page_t *dst_page;
270                         void       *src;
271                         void       *dst;
272
273                         src_page = (rw == WRITE) ? pages[i] : vmpage;
274                         dst_page = (rw == WRITE) ? vmpage : pages[i];
275
276                         src = kmap_atomic(src_page, KM_USER0);
277                         dst = kmap_atomic(dst_page, KM_USER1);
278                         memcpy(dst, src, min(page_size, size));
279                         kunmap_atomic(dst, KM_USER1);
280                         kunmap_atomic(src, KM_USER0);
281
282                         /* make sure page will be added to the transfer by
283                          * cl_io_submit()->...->vvp_page_prep_write(). */
284                         if (rw == WRITE)
285                                 set_page_dirty(vmpage);
286
287                         if (rw == READ) {
288                                 /* do not issue the page for read, since it
289                                  * may reread a ra page which has NOT uptodate
290                                  * bit set. */
291                                 cl_page_disown(env, io, clp);
292                                 do_io = false;
293                         }
294                 }
295
296                 if (likely(do_io)) {
297                         cl_2queue_add(queue, clp);
298
299                         /*
300                          * Set page clip to tell transfer formation engine
301                          * that page has to be sent even if it is beyond KMS.
302                          */
303                         cl_page_clip(env, clp, 0, min(size, page_size));
304
305                         ++io_pages;
306                 }
307
308                 /* drop the reference count for cl_page_find */
309                 cl_page_put(env, clp);
310                 size -= page_size;
311                 file_offset += page_size;
312         }
313
314         if (rc == 0 && io_pages) {
315                 rc = cl_io_submit_sync(env, io,
316                                        rw == READ ? CRT_READ : CRT_WRITE,
317                                        queue, CRP_NORMAL, 0);
318         }
319         if (rc == 0)
320                 rc = pv->ldp_size;
321
322         cl_2queue_discard(env, io, queue);
323         cl_2queue_disown(env, io, queue);
324         cl_2queue_fini(env, queue);
325         RETURN(rc);
326 }
327 EXPORT_SYMBOL(ll_direct_rw_pages);
328
329 static ssize_t ll_direct_IO_26_seg(const struct lu_env *env, struct cl_io *io,
330                                    int rw, struct inode *inode,
331                                    struct address_space *mapping,
332                                    size_t size, loff_t file_offset,
333                                    struct page **pages, int page_count)
334 {
335     struct ll_dio_pages pvec = { .ldp_pages        = pages,
336                                  .ldp_nr           = page_count,
337                                  .ldp_size         = size,
338                                  .ldp_offsets      = NULL,
339                                  .ldp_start_offset = file_offset
340                                };
341
342     return ll_direct_rw_pages(env, io, rw, inode, &pvec);
343 }
344
345 /* This is the maximum size of a single O_DIRECT request, based on a 128kB
346  * kmalloc limit.  We need to fit all of the brw_page structs, each one
347  * representing PAGE_SIZE worth of user data, into a single buffer, and
348  * then truncate this to be a full-sized RPC.  This is 22MB for 4kB pages. */
349 #define MAX_DIO_SIZE ((128 * 1024 / sizeof(struct brw_page) * CFS_PAGE_SIZE) & \
350                       ~(PTLRPC_MAX_BRW_SIZE - 1))
351 static ssize_t ll_direct_IO_26(int rw, struct kiocb *iocb,
352                                const struct iovec *iov, loff_t file_offset,
353                                unsigned long nr_segs)
354 {
355         struct lu_env *env;
356         struct cl_io *io;
357         struct file *file = iocb->ki_filp;
358         struct inode *inode = file->f_mapping->host;
359         struct ccc_object *obj = cl_inode2ccc(inode);
360         long count = iov_length(iov, nr_segs);
361         long tot_bytes = 0, result = 0;
362         struct ll_inode_info *lli = ll_i2info(inode);
363         struct lov_stripe_md *lsm = lli->lli_smd;
364         unsigned long seg = 0;
365         long size = MAX_DIO_SIZE;
366         int refcheck;
367         ENTRY;
368
369         if (!lli->lli_smd || !lli->lli_smd->lsm_object_id)
370                 RETURN(-EBADF);
371
372         /* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */
373         if ((file_offset & ~CFS_PAGE_MASK) || (count & ~CFS_PAGE_MASK))
374                 RETURN(-EINVAL);
375
376         CDEBUG(D_VFSTRACE, "VFS Op:inode=%lu/%u(%p), size=%lu (max %lu), "
377                "offset=%lld=%llx, pages %lu (max %lu)\n",
378                inode->i_ino, inode->i_generation, inode, count, MAX_DIO_SIZE,
379                file_offset, file_offset, count >> CFS_PAGE_SHIFT,
380                MAX_DIO_SIZE >> CFS_PAGE_SHIFT);
381
382         /* Check that all user buffers are aligned as well */
383         for (seg = 0; seg < nr_segs; seg++) {
384                 if (((unsigned long)iov[seg].iov_base & ~CFS_PAGE_MASK) ||
385                     (iov[seg].iov_len & ~CFS_PAGE_MASK))
386                         RETURN(-EINVAL);
387         }
388
389         env = cl_env_get(&refcheck);
390         LASSERT(!IS_ERR(env));
391         io = ccc_env_io(env)->cui_cl.cis_io;
392         LASSERT(io != NULL);
393
394         /* 0. Need locking between buffered and direct access. and race with
395          *size changing by concurrent truncates and writes.
396          * 1. Need inode sem to operate transient pages. */
397         if (rw == READ)
398                 LOCK_INODE_MUTEX(inode);
399
400         LASSERT(obj->cob_transient_pages == 0);
401         for (seg = 0; seg < nr_segs; seg++) {
402                 long iov_left = iov[seg].iov_len;
403                 unsigned long user_addr = (unsigned long)iov[seg].iov_base;
404
405                 if (rw == READ) {
406                         if (file_offset >= inode->i_size)
407                                 break;
408                         if (file_offset + iov_left > inode->i_size)
409                                 iov_left = inode->i_size - file_offset;
410                 }
411
412                 while (iov_left > 0) {
413                         struct page **pages;
414                         int page_count, max_pages = 0;
415                         long bytes;
416
417                         bytes = min(size,iov_left);
418                         page_count = ll_get_user_pages(rw, user_addr, bytes,
419                                                        &pages, &max_pages);
420                         if (likely(page_count > 0)) {
421                                 if (unlikely(page_count <  max_pages))
422                                         bytes = page_count << CFS_PAGE_SHIFT;
423                                 result = ll_direct_IO_26_seg(env, io, rw, inode,
424                                                              file->f_mapping,
425                                                              bytes,
426                                                              file_offset, pages,
427                                                              page_count);
428                                 ll_free_user_pages(pages, max_pages, rw==READ);
429                         } else if (page_count == 0) {
430                                 GOTO(out, result = -EFAULT);
431                         } else {
432                                 result = page_count;
433                         }
434                         if (unlikely(result <= 0)) {
435                                 /* If we can't allocate a large enough buffer
436                                  * for the request, shrink it to a smaller
437                                  * PAGE_SIZE multiple and try again.
438                                  * We should always be able to kmalloc for a
439                                  * page worth of page pointers = 4MB on i386. */
440                                 if (result == -ENOMEM &&
441                                     size > (CFS_PAGE_SIZE / sizeof(*pages)) *
442                                            CFS_PAGE_SIZE) {
443                                         size = ((((size / 2) - 1) |
444                                                  ~CFS_PAGE_MASK) + 1) &
445                                                 CFS_PAGE_MASK;
446                                         CDEBUG(D_VFSTRACE,"DIO size now %lu\n",
447                                                size);
448                                         continue;
449                                 }
450
451                                 GOTO(out, result);
452                         }
453
454                         tot_bytes += result;
455                         file_offset += result;
456                         iov_left -= result;
457                         user_addr += result;
458                 }
459         }
460 out:
461         LASSERT(obj->cob_transient_pages == 0);
462         if (rw == READ)
463                 UNLOCK_INODE_MUTEX(inode);
464
465         if (tot_bytes > 0) {
466                 if (rw == WRITE) {
467                         lov_stripe_lock(lsm);
468                         obd_adjust_kms(ll_i2dtexp(inode), lsm, file_offset, 0);
469                         lov_stripe_unlock(lsm);
470                 }
471         }
472
473         cl_env_put(env, &refcheck);
474         RETURN(tot_bytes ? : result);
475 }
476
477 #if defined(HAVE_KERNEL_WRITE_BEGIN_END) || defined(MS_HAS_NEW_AOPS)
478 static int ll_write_begin(struct file *file, struct address_space *mapping,
479                          loff_t pos, unsigned len, unsigned flags,
480                          struct page **pagep, void **fsdata)
481 {
482         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
483         struct page *page;
484         int rc;
485         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
486         ENTRY;
487
488         page = grab_cache_page_write_begin(mapping, index, flags);
489         if (!page)
490                 RETURN(-ENOMEM);
491
492         *pagep = page;
493
494         rc = ll_prepare_write(file, page, from, from + len);
495         if (rc) {
496                 unlock_page(page);
497                 page_cache_release(page);
498         }
499         RETURN(rc);
500 }
501
502 static int ll_write_end(struct file *file, struct address_space *mapping,
503                         loff_t pos, unsigned len, unsigned copied,
504                         struct page *page, void *fsdata)
505 {
506         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
507         int rc;
508
509         rc = ll_commit_write(file, page, from, from + copied);
510         unlock_page(page);
511         page_cache_release(page);
512
513         return rc ?: copied;
514 }
515 #endif
516
517 #ifdef CONFIG_MIGRATION
518 int ll_migratepage(struct address_space *mapping,
519                    struct page *newpage, struct page *page)
520 {
521         /* Always fail page migration until we have a proper implementation */
522         return -EIO;
523 }
524 #endif
525
526 #ifndef MS_HAS_NEW_AOPS
527 struct address_space_operations ll_aops = {
528         .readpage       = ll_readpage,
529 //        .readpages      = ll_readpages,
530         .direct_IO      = ll_direct_IO_26,
531         .writepage      = ll_writepage,
532         .writepages     = generic_writepages,
533         .set_page_dirty = ll_set_page_dirty,
534         .sync_page      = NULL,
535 #ifdef HAVE_KERNEL_WRITE_BEGIN_END
536         .write_begin    = ll_write_begin,
537         .write_end      = ll_write_end,
538 #else
539         .prepare_write  = ll_prepare_write,
540         .commit_write   = ll_commit_write,
541 #endif
542         .invalidatepage = ll_invalidatepage,
543         .releasepage    = (void *)ll_releasepage,
544 #ifdef CONFIG_MIGRATION
545         .migratepage    = ll_migratepage,
546 #endif
547         .bmap           = NULL
548 };
549 #else
550 struct address_space_operations_ext ll_aops = {
551         .orig_aops.readpage       = ll_readpage,
552 //        .orig_aops.readpages      = ll_readpages,
553         .orig_aops.direct_IO      = ll_direct_IO_26,
554         .orig_aops.writepage      = ll_writepage,
555         .orig_aops.writepages     = generic_writepages,
556         .orig_aops.set_page_dirty = ll_set_page_dirty,
557         .orig_aops.sync_page      = NULL,
558         .orig_aops.prepare_write  = ll_prepare_write,
559         .orig_aops.commit_write   = ll_commit_write,
560         .orig_aops.invalidatepage = ll_invalidatepage,
561         .orig_aops.releasepage    = ll_releasepage,
562 #ifdef CONFIG_MIGRATION
563         .orig_aops.migratepage    = ll_migratepage,
564 #endif
565         .orig_aops.bmap           = NULL,
566         .write_begin    = ll_write_begin,
567         .write_end      = ll_write_end
568 };
569 #endif