Whamcloud - gitweb
LU-7988 hsm: run HSM coordinator once per second at most
[fs/lustre-release.git] / lustre / llite / rw26.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2016, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lustre/lustre/llite/rw26.c
33  *
34  * Lustre Lite I/O page cache routines for the 2.5/2.6 kernel version
35  */
36
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/string.h>
40 #include <linux/stat.h>
41 #include <linux/errno.h>
42 #include <linux/unistd.h>
43 #include <asm/uaccess.h>
44
45 #ifdef HAVE_MIGRATE_H
46 #include <linux/migrate.h>
47 #elif defined(HAVE_MIGRATE_MODE_H)
48 #include <linux/migrate_mode.h>
49 #endif
50 #include <linux/fs.h>
51 #include <linux/buffer_head.h>
52 #include <linux/mpage.h>
53 #include <linux/writeback.h>
54 #include <linux/stat.h>
55 #include <asm/uaccess.h>
56 #include <linux/mm.h>
57 #include <linux/pagemap.h>
58
59 #define DEBUG_SUBSYSTEM S_LLITE
60
61 #include "llite_internal.h"
62 #include <lustre_compat.h>
63
64 /**
65  * Implements Linux VM address_space::invalidatepage() method. This method is
66  * called when the page is truncate from a file, either as a result of
67  * explicit truncate, or when inode is removed from memory (as a result of
68  * final iput(), umount, or memory pressure induced icache shrinking).
69  *
70  * [0, offset] bytes of the page remain valid (this is for a case of not-page
71  * aligned truncate). Lustre leaves partially truncated page in the cache,
72  * relying on struct inode::i_size to limit further accesses.
73  */
74 static void ll_invalidatepage(struct page *vmpage,
75 #ifdef HAVE_INVALIDATE_RANGE
76                                 unsigned int offset, unsigned int length
77 #else
78                                 unsigned long offset
79 #endif
80                              )
81 {
82         struct inode     *inode;
83         struct lu_env    *env;
84         struct cl_page   *page;
85         struct cl_object *obj;
86
87         LASSERT(PageLocked(vmpage));
88         LASSERT(!PageWriteback(vmpage));
89
90         /*
91          * It is safe to not check anything in invalidatepage/releasepage
92          * below because they are run with page locked and all our io is
93          * happening with locked page too
94          */
95 #ifdef HAVE_INVALIDATE_RANGE
96         if (offset == 0 && length == PAGE_SIZE) {
97 #else
98         if (offset == 0) {
99 #endif
100                 /* See the comment in ll_releasepage() */
101                 env = cl_env_percpu_get();
102                 LASSERT(!IS_ERR(env));
103
104                 inode = vmpage->mapping->host;
105                 obj = ll_i2info(inode)->lli_clob;
106                 if (obj != NULL) {
107                         page = cl_vmpage_page(vmpage, obj);
108                         if (page != NULL) {
109                                 cl_page_delete(env, page);
110                                 cl_page_put(env, page);
111                         }
112                 } else
113                         LASSERT(vmpage->private == 0);
114
115                 cl_env_percpu_put(env);
116         }
117 }
118
119 #ifdef HAVE_RELEASEPAGE_WITH_INT
120 #define RELEASEPAGE_ARG_TYPE int
121 #else
122 #define RELEASEPAGE_ARG_TYPE gfp_t
123 #endif
124 static int ll_releasepage(struct page *vmpage, RELEASEPAGE_ARG_TYPE gfp_mask)
125 {
126         struct lu_env           *env;
127         struct cl_object        *obj;
128         struct cl_page          *page;
129         struct address_space    *mapping;
130         int result = 0;
131
132         LASSERT(PageLocked(vmpage));
133         if (PageWriteback(vmpage) || PageDirty(vmpage))
134                 return 0;
135
136         mapping = vmpage->mapping;
137         if (mapping == NULL)
138                 return 1;
139
140         obj = ll_i2info(mapping->host)->lli_clob;
141         if (obj == NULL)
142                 return 1;
143
144         /* 1 for caller, 1 for cl_page and 1 for page cache */
145         if (page_count(vmpage) > 3)
146                 return 0;
147
148         page = cl_vmpage_page(vmpage, obj);
149         if (page == NULL)
150                 return 1;
151
152         env = cl_env_percpu_get();
153         LASSERT(!IS_ERR(env));
154
155         if (!cl_page_in_use(page)) {
156                 result = 1;
157                 cl_page_delete(env, page);
158         }
159
160         /* To use percpu env array, the call path can not be rescheduled;
161          * otherwise percpu array will be messed if ll_releaspage() called
162          * again on the same CPU.
163          *
164          * If this page holds the last refc of cl_object, the following
165          * call path may cause reschedule:
166          *   cl_page_put -> cl_page_free -> cl_object_put ->
167          *     lu_object_put -> lu_object_free -> lov_delete_raid0.
168          *
169          * However, the kernel can't get rid of this inode until all pages have
170          * been cleaned up. Now that we hold page lock here, it's pretty safe
171          * that we won't get into object delete path.
172          */
173         LASSERT(cl_object_refc(obj) > 1);
174         cl_page_put(env, page);
175
176         cl_env_percpu_put(env);
177         return result;
178 }
179
180 #define MAX_DIRECTIO_SIZE 2*1024*1024*1024UL
181
182 ssize_t ll_direct_rw_pages(const struct lu_env *env, struct cl_io *io,
183                            int rw, struct inode *inode,
184                            struct ll_dio_pages *pv)
185 {
186         struct cl_page    *clp;
187         struct cl_2queue  *queue;
188         struct cl_object  *obj = io->ci_obj;
189         int i;
190         ssize_t rc = 0;
191         loff_t file_offset  = pv->ldp_start_offset;
192         size_t size         = pv->ldp_size;
193         int page_count      = pv->ldp_nr;
194         struct page **pages = pv->ldp_pages;
195         size_t page_size    = cl_page_size(obj);
196         bool do_io;
197         int  io_pages       = 0;
198         ENTRY;
199
200         queue = &io->ci_queue;
201         cl_2queue_init(queue);
202         for (i = 0; i < page_count; i++) {
203                 if (pv->ldp_offsets)
204                     file_offset = pv->ldp_offsets[i];
205
206                 LASSERT(!(file_offset & (page_size - 1)));
207                 clp = cl_page_find(env, obj, cl_index(obj, file_offset),
208                                    pv->ldp_pages[i], CPT_TRANSIENT);
209                 if (IS_ERR(clp)) {
210                         rc = PTR_ERR(clp);
211                         break;
212                 }
213
214                 rc = cl_page_own(env, io, clp);
215                 if (rc) {
216                         LASSERT(clp->cp_state == CPS_FREEING);
217                         cl_page_put(env, clp);
218                         break;
219                 }
220
221                 do_io = true;
222
223                 /* check the page type: if the page is a host page, then do
224                  * write directly */
225                 if (clp->cp_type == CPT_CACHEABLE) {
226                         struct page *vmpage = cl_page_vmpage(clp);
227                         struct page *src_page;
228                         struct page *dst_page;
229                         void       *src;
230                         void       *dst;
231
232                         src_page = (rw == WRITE) ? pages[i] : vmpage;
233                         dst_page = (rw == WRITE) ? vmpage : pages[i];
234
235                         src = ll_kmap_atomic(src_page, KM_USER0);
236                         dst = ll_kmap_atomic(dst_page, KM_USER1);
237                         memcpy(dst, src, min(page_size, size));
238                         ll_kunmap_atomic(dst, KM_USER1);
239                         ll_kunmap_atomic(src, KM_USER0);
240
241                         /* make sure page will be added to the transfer by
242                          * cl_io_submit()->...->vvp_page_prep_write(). */
243                         if (rw == WRITE)
244                                 set_page_dirty(vmpage);
245
246                         if (rw == READ) {
247                                 /* do not issue the page for read, since it
248                                  * may reread a ra page which has NOT uptodate
249                                  * bit set. */
250                                 cl_page_disown(env, io, clp);
251                                 do_io = false;
252                         }
253                 }
254
255                 if (likely(do_io)) {
256                         cl_2queue_add(queue, clp);
257
258                         /*
259                          * Set page clip to tell transfer formation engine
260                          * that page has to be sent even if it is beyond KMS.
261                          */
262                         cl_page_clip(env, clp, 0, min(size, page_size));
263
264                         ++io_pages;
265                 }
266
267                 /* drop the reference count for cl_page_find */
268                 cl_page_put(env, clp);
269                 size -= page_size;
270                 file_offset += page_size;
271         }
272
273         if (rc == 0 && io_pages) {
274                 rc = cl_io_submit_sync(env, io,
275                                        rw == READ ? CRT_READ : CRT_WRITE,
276                                        queue, 0);
277         }
278         if (rc == 0)
279                 rc = pv->ldp_size;
280
281         cl_2queue_discard(env, io, queue);
282         cl_2queue_disown(env, io, queue);
283         cl_2queue_fini(env, queue);
284         RETURN(rc);
285 }
286 EXPORT_SYMBOL(ll_direct_rw_pages);
287
288 static ssize_t
289 ll_direct_IO_seg(const struct lu_env *env, struct cl_io *io, int rw,
290                  struct inode *inode, size_t size, loff_t file_offset,
291                  struct page **pages, int page_count)
292 {
293         struct ll_dio_pages pvec = { .ldp_pages         = pages,
294                                      .ldp_nr            = page_count,
295                                      .ldp_size          = size,
296                                      .ldp_offsets       = NULL,
297                                      .ldp_start_offset  = file_offset
298                                    };
299
300         return ll_direct_rw_pages(env, io, rw, inode, &pvec);
301 }
302
303 /*  ll_free_user_pages - tear down page struct array
304  *  @pages: array of page struct pointers underlying target buffer */
305 static void ll_free_user_pages(struct page **pages, int npages, int do_dirty)
306 {
307         int i;
308
309         for (i = 0; i < npages; i++) {
310                 if (pages[i] == NULL)
311                         break;
312                 if (do_dirty)
313                         set_page_dirty_lock(pages[i]);
314                 put_page(pages[i]);
315         }
316
317 #if defined(HAVE_DIRECTIO_ITER) || defined(HAVE_IOV_ITER_RW)
318         kvfree(pages);
319 #else
320         OBD_FREE_LARGE(pages, npages * sizeof(*pages));
321 #endif
322 }
323
324 #ifdef KMALLOC_MAX_SIZE
325 #define MAX_MALLOC KMALLOC_MAX_SIZE
326 #else
327 #define MAX_MALLOC (128 * 1024)
328 #endif
329
330 /* This is the maximum size of a single O_DIRECT request, based on the
331  * kmalloc limit.  We need to fit all of the brw_page structs, each one
332  * representing PAGE_SIZE worth of user data, into a single buffer, and
333  * then truncate this to be a full-sized RPC.  For 4kB PAGE_SIZE this is
334  * up to 22MB for 128kB kmalloc and up to 682MB for 4MB kmalloc. */
335 #define MAX_DIO_SIZE ((MAX_MALLOC / sizeof(struct brw_page) * PAGE_SIZE) & \
336                       ~(DT_MAX_BRW_SIZE - 1))
337
338 #ifndef HAVE_IOV_ITER_RW
339 # define iov_iter_rw(iter)      rw
340 #endif
341
342 #if defined(HAVE_DIRECTIO_ITER) || defined(HAVE_IOV_ITER_RW)
343 static ssize_t
344 ll_direct_IO(
345 # ifndef HAVE_IOV_ITER_RW
346              int rw,
347 # endif
348              struct kiocb *iocb, struct iov_iter *iter
349 # ifndef HAVE_DIRECTIO_2ARGS
350              , loff_t file_offset
351 # endif
352              )
353 {
354 #ifdef HAVE_DIRECTIO_2ARGS
355         loff_t file_offset = iocb->ki_pos;
356 #endif
357         struct ll_cl_context *lcc;
358         const struct lu_env *env;
359         struct cl_io *io;
360         struct file *file = iocb->ki_filp;
361         struct inode *inode = file->f_mapping->host;
362         ssize_t count = iov_iter_count(iter);
363         ssize_t tot_bytes = 0, result = 0;
364         size_t size = MAX_DIO_SIZE;
365
366         /* Check EOF by ourselves */
367         if (iov_iter_rw(iter) == READ && file_offset >= i_size_read(inode))
368                 return 0;
369         /* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */
370         if ((file_offset & ~PAGE_MASK) || (count & ~PAGE_MASK))
371                 return -EINVAL;
372
373         CDEBUG(D_VFSTRACE, "VFS Op:inode="DFID"(%p), size=%zd (max %lu), "
374                "offset=%lld=%llx, pages %zd (max %lu)\n",
375                PFID(ll_inode2fid(inode)), inode, count, MAX_DIO_SIZE,
376                file_offset, file_offset, count >> PAGE_SHIFT,
377                MAX_DIO_SIZE >> PAGE_SHIFT);
378
379         /* Check that all user buffers are aligned as well */
380         if (iov_iter_alignment(iter) & ~PAGE_MASK)
381                 return -EINVAL;
382
383         lcc = ll_cl_find(file);
384         if (lcc == NULL)
385                 RETURN(-EIO);
386
387         env = lcc->lcc_env;
388         LASSERT(!IS_ERR(env));
389         io = lcc->lcc_io;
390         LASSERT(io != NULL);
391
392         /* 0. Need locking between buffered and direct access. and race with
393          *    size changing by concurrent truncates and writes.
394          * 1. Need inode mutex to operate transient pages.
395          */
396         if (iov_iter_rw(iter) == READ)
397                 inode_lock(inode);
398
399         while (iov_iter_count(iter)) {
400                 struct page **pages;
401                 size_t offs;
402
403                 count = min_t(size_t, iov_iter_count(iter), size);
404                 if (iov_iter_rw(iter) == READ) {
405                         if (file_offset >= i_size_read(inode))
406                                 break;
407
408                         if (file_offset + count > i_size_read(inode))
409                                 count = i_size_read(inode) - file_offset;
410                 }
411
412                 result = iov_iter_get_pages_alloc(iter, &pages, count, &offs);
413                 if (likely(result > 0)) {
414                         int n = DIV_ROUND_UP(result + offs, PAGE_SIZE);
415
416                         result = ll_direct_IO_seg(env, io, iov_iter_rw(iter),
417                                                   inode, result, file_offset,
418                                                   pages, n);
419                         ll_free_user_pages(pages, n,
420                                            iov_iter_rw(iter) == READ);
421
422                 }
423                 if (unlikely(result <= 0)) {
424                         /* If we can't allocate a large enough buffer
425                          * for the request, shrink it to a smaller
426                          * PAGE_SIZE multiple and try again.
427                          * We should always be able to kmalloc for a
428                          * page worth of page pointers = 4MB on i386. */
429                         if (result == -ENOMEM &&
430                             size > (PAGE_SIZE / sizeof(*pages)) *
431                                     PAGE_SIZE) {
432                                 size = ((((size / 2) - 1) |
433                                         ~PAGE_MASK) + 1) & PAGE_MASK;
434                                 CDEBUG(D_VFSTRACE, "DIO size now %zu\n",
435                                        size);
436                                 continue;
437                         }
438
439                         GOTO(out, result);
440                 }
441
442                 iov_iter_advance(iter, result);
443                 tot_bytes += result;
444                 file_offset += result;
445         }
446 out:
447         if (iov_iter_rw(iter) == READ)
448                 inode_unlock(inode);
449
450         if (tot_bytes > 0) {
451                 struct vvp_io *vio = vvp_env_io(env);
452
453                 /* no commit async for direct IO */
454                 vio->u.write.vui_written += tot_bytes;
455         }
456
457         return tot_bytes ? : result;
458 }
459 #else /* !HAVE_DIRECTIO_ITER && !HAVE_IOV_ITER_RW */
460
461 static inline int ll_get_user_pages(int rw, unsigned long user_addr,
462                                     size_t size, struct page ***pages,
463                                     int *max_pages)
464 {
465         int result = -ENOMEM;
466
467         /* set an arbitrary limit to prevent arithmetic overflow */
468         if (size > MAX_DIRECTIO_SIZE) {
469                 *pages = NULL;
470                 return -EFBIG;
471         }
472
473         *max_pages = (user_addr + size + PAGE_SIZE - 1) >>
474                       PAGE_SHIFT;
475         *max_pages -= user_addr >> PAGE_SHIFT;
476
477         OBD_ALLOC_LARGE(*pages, *max_pages * sizeof(**pages));
478         if (*pages) {
479                 down_read(&current->mm->mmap_sem);
480                 result = get_user_pages(current, current->mm, user_addr,
481                                         *max_pages, (rw == READ), 0, *pages,
482                                         NULL);
483                 up_read(&current->mm->mmap_sem);
484                 if (unlikely(result <= 0))
485                         OBD_FREE_LARGE(*pages, *max_pages * sizeof(**pages));
486         }
487
488         return result;
489 }
490
491 static ssize_t
492 ll_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
493              loff_t file_offset, unsigned long nr_segs)
494 {
495         struct ll_cl_context *lcc;
496         const struct lu_env *env;
497         struct cl_io *io;
498         struct file *file = iocb->ki_filp;
499         struct inode *inode = file->f_mapping->host;
500         ssize_t count = iov_length(iov, nr_segs);
501         ssize_t tot_bytes = 0, result = 0;
502         unsigned long seg = 0;
503         size_t size = MAX_DIO_SIZE;
504         ENTRY;
505
506         /* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */
507         if ((file_offset & ~PAGE_MASK) || (count & ~PAGE_MASK))
508                 RETURN(-EINVAL);
509
510         CDEBUG(D_VFSTRACE, "VFS Op:inode="DFID"(%p), size=%zd (max %lu), "
511                "offset=%lld=%llx, pages %zd (max %lu)\n",
512                PFID(ll_inode2fid(inode)), inode, count, MAX_DIO_SIZE,
513                file_offset, file_offset, count >> PAGE_SHIFT,
514                MAX_DIO_SIZE >> PAGE_SHIFT);
515
516         /* Check that all user buffers are aligned as well */
517         for (seg = 0; seg < nr_segs; seg++) {
518                 if (((unsigned long)iov[seg].iov_base & ~PAGE_MASK) ||
519                     (iov[seg].iov_len & ~PAGE_MASK))
520                         RETURN(-EINVAL);
521         }
522
523         lcc = ll_cl_find(file);
524         if (lcc == NULL)
525                 RETURN(-EIO);
526
527         env = lcc->lcc_env;
528         LASSERT(!IS_ERR(env));
529         io = lcc->lcc_io;
530         LASSERT(io != NULL);
531
532         for (seg = 0; seg < nr_segs; seg++) {
533                 size_t iov_left = iov[seg].iov_len;
534                 unsigned long user_addr = (unsigned long)iov[seg].iov_base;
535
536                 if (rw == READ) {
537                         if (file_offset >= i_size_read(inode))
538                                 break;
539                         if (file_offset + iov_left > i_size_read(inode))
540                                 iov_left = i_size_read(inode) - file_offset;
541                 }
542
543                 while (iov_left > 0) {
544                         struct page **pages;
545                         int page_count, max_pages = 0;
546                         size_t bytes;
547
548                         bytes = min(size, iov_left);
549                         page_count = ll_get_user_pages(rw, user_addr, bytes,
550                                                        &pages, &max_pages);
551                         if (likely(page_count > 0)) {
552                                 if (unlikely(page_count <  max_pages))
553                                         bytes = page_count << PAGE_SHIFT;
554                                 result = ll_direct_IO_seg(env, io, rw, inode,
555                                                           bytes, file_offset,
556                                                           pages, page_count);
557                                 ll_free_user_pages(pages, max_pages, rw==READ);
558                         } else if (page_count == 0) {
559                                 GOTO(out, result = -EFAULT);
560                         } else {
561                                 result = page_count;
562                         }
563                         if (unlikely(result <= 0)) {
564                                 /* If we can't allocate a large enough buffer
565                                  * for the request, shrink it to a smaller
566                                  * PAGE_SIZE multiple and try again.
567                                  * We should always be able to kmalloc for a
568                                  * page worth of page pointers = 4MB on i386. */
569                                 if (result == -ENOMEM &&
570                                     size > (PAGE_SIZE / sizeof(*pages)) *
571                                            PAGE_SIZE) {
572                                         size = ((((size / 2) - 1) |
573                                                  ~PAGE_MASK) + 1) &
574                                                 PAGE_MASK;
575                                         CDEBUG(D_VFSTRACE, "DIO size now %zu\n",
576                                                size);
577                                         continue;
578                                 }
579
580                                 GOTO(out, result);
581                         }
582
583                         tot_bytes += result;
584                         file_offset += result;
585                         iov_left -= result;
586                         user_addr += result;
587                 }
588         }
589 out:
590         if (tot_bytes > 0) {
591                 struct vvp_io *vio = vvp_env_io(env);
592
593                 /* no commit async for direct IO */
594                 vio->u.write.vui_written += tot_bytes;
595         }
596
597         RETURN(tot_bytes ? tot_bytes : result);
598 }
599 #endif /* HAVE_DIRECTIO_ITER || HAVE_IOV_ITER_RW */
600
601 /**
602  * Prepare partially written-to page for a write.
603  */
604 static int ll_prepare_partial_page(const struct lu_env *env, struct cl_io *io,
605                                    struct cl_page *pg)
606 {
607         struct cl_attr *attr   = vvp_env_thread_attr(env);
608         struct cl_object *obj  = io->ci_obj;
609         struct vvp_page *vpg   = cl_object_page_slice(obj, pg);
610         loff_t          offset = cl_offset(obj, vvp_index(vpg));
611         int             result;
612
613         cl_object_attr_lock(obj);
614         result = cl_object_attr_get(env, obj, attr);
615         cl_object_attr_unlock(obj);
616         if (result == 0) {
617                 /*
618                  * If are writing to a new page, no need to read old data.
619                  * The extent locking will have updated the KMS, and for our
620                  * purposes here we can treat it like i_size.
621                  */
622                 if (attr->cat_kms <= offset) {
623                         char *kaddr = ll_kmap_atomic(vpg->vpg_page, KM_USER0);
624
625                         memset(kaddr, 0, cl_page_size(obj));
626                         ll_kunmap_atomic(kaddr, KM_USER0);
627                 } else if (vpg->vpg_defer_uptodate)
628                         vpg->vpg_ra_used = 1;
629                 else
630                         result = ll_page_sync_io(env, io, pg, CRT_READ);
631         }
632         return result;
633 }
634
635 static int ll_write_begin(struct file *file, struct address_space *mapping,
636                           loff_t pos, unsigned len, unsigned flags,
637                           struct page **pagep, void **fsdata)
638 {
639         struct ll_cl_context *lcc;
640         const struct lu_env  *env = NULL;
641         struct cl_io   *io;
642         struct cl_page *page = NULL;
643
644         struct cl_object *clob = ll_i2info(mapping->host)->lli_clob;
645         pgoff_t index = pos >> PAGE_SHIFT;
646         struct page *vmpage = NULL;
647         unsigned from = pos & (PAGE_SIZE - 1);
648         unsigned to = from + len;
649         int result = 0;
650         ENTRY;
651
652         CDEBUG(D_PAGE, "Writing %lu of %d to %d bytes\n", index, from, len);
653
654         lcc = ll_cl_find(file);
655         if (lcc == NULL) {
656                 io = NULL;
657                 GOTO(out, result = -EIO);
658         }
659
660         env = lcc->lcc_env;
661         io  = lcc->lcc_io;
662
663         /* To avoid deadlock, try to lock page first. */
664         vmpage = grab_cache_page_nowait(mapping, index);
665
666         if (unlikely(vmpage == NULL ||
667                      PageDirty(vmpage) || PageWriteback(vmpage))) {
668                 struct vvp_io *vio = vvp_env_io(env);
669                 struct cl_page_list *plist = &vio->u.write.vui_queue;
670
671                 /* if the page is already in dirty cache, we have to commit
672                  * the pages right now; otherwise, it may cause deadlock
673                  * because it holds page lock of a dirty page and request for
674                  * more grants. It's okay for the dirty page to be the first
675                  * one in commit page list, though. */
676                 if (vmpage != NULL && plist->pl_nr > 0) {
677                         unlock_page(vmpage);
678                         put_page(vmpage);
679                         vmpage = NULL;
680                 }
681
682                 /* commit pages and then wait for page lock */
683                 result = vvp_io_write_commit(env, io);
684                 if (result < 0)
685                         GOTO(out, result);
686
687                 if (vmpage == NULL) {
688                         vmpage = grab_cache_page_write_begin(mapping, index,
689                                                              flags);
690                         if (vmpage == NULL)
691                                 GOTO(out, result = -ENOMEM);
692                 }
693         }
694
695         page = cl_page_find(env, clob, vmpage->index, vmpage, CPT_CACHEABLE);
696         if (IS_ERR(page))
697                 GOTO(out, result = PTR_ERR(page));
698
699         lcc->lcc_page = page;
700         lu_ref_add(&page->cp_reference, "cl_io", io);
701
702         cl_page_assume(env, io, page);
703         if (!PageUptodate(vmpage)) {
704                 /*
705                  * We're completely overwriting an existing page,
706                  * so _don't_ set it up to date until commit_write
707                  */
708                 if (from == 0 && to == PAGE_SIZE) {
709                         CL_PAGE_HEADER(D_PAGE, env, page, "full page write\n");
710                         POISON_PAGE(vmpage, 0x11);
711                 } else {
712                         /* TODO: can be optimized at OSC layer to check if it
713                          * is a lockless IO. In that case, it's not necessary
714                          * to read the data. */
715                         result = ll_prepare_partial_page(env, io, page);
716                         if (result == 0)
717                                 SetPageUptodate(vmpage);
718                 }
719         }
720         if (result < 0)
721                 cl_page_unassume(env, io, page);
722         EXIT;
723 out:
724         if (result < 0) {
725                 if (vmpage != NULL) {
726                         unlock_page(vmpage);
727                         put_page(vmpage);
728                 }
729                 if (!IS_ERR_OR_NULL(page)) {
730                         lu_ref_del(&page->cp_reference, "cl_io", io);
731                         cl_page_put(env, page);
732                 }
733                 if (io)
734                         io->ci_result = result;
735         } else {
736                 *pagep = vmpage;
737                 *fsdata = lcc;
738         }
739         RETURN(result);
740 }
741
742 static int ll_write_end(struct file *file, struct address_space *mapping,
743                         loff_t pos, unsigned len, unsigned copied,
744                         struct page *vmpage, void *fsdata)
745 {
746         struct ll_cl_context *lcc = fsdata;
747         const struct lu_env *env;
748         struct cl_io *io;
749         struct vvp_io *vio;
750         struct cl_page *page;
751         unsigned from = pos & (PAGE_SIZE - 1);
752         bool unplug = false;
753         int result = 0;
754         ENTRY;
755
756         put_page(vmpage);
757
758         LASSERT(lcc != NULL);
759         env  = lcc->lcc_env;
760         page = lcc->lcc_page;
761         io   = lcc->lcc_io;
762         vio  = vvp_env_io(env);
763
764         LASSERT(cl_page_is_owned(page, io));
765         if (copied > 0) {
766                 struct cl_page_list *plist = &vio->u.write.vui_queue;
767
768                 lcc->lcc_page = NULL; /* page will be queued */
769
770                 /* Add it into write queue */
771                 cl_page_list_add(plist, page);
772                 if (plist->pl_nr == 1) /* first page */
773                         vio->u.write.vui_from = from;
774                 else
775                         LASSERT(from == 0);
776                 vio->u.write.vui_to = from + copied;
777
778                 /* To address the deadlock in balance_dirty_pages() where
779                  * this dirty page may be written back in the same thread. */
780                 if (PageDirty(vmpage))
781                         unplug = true;
782
783                 /* We may have one full RPC, commit it soon */
784                 if (plist->pl_nr >= PTLRPC_MAX_BRW_PAGES)
785                         unplug = true;
786
787                 CL_PAGE_DEBUG(D_PAGE, env, page,
788                               "queued page: %d.\n", plist->pl_nr);
789         } else {
790                 cl_page_disown(env, io, page);
791
792                 lcc->lcc_page = NULL;
793                 lu_ref_del(&page->cp_reference, "cl_io", io);
794                 cl_page_put(env, page);
795
796                 /* page list is not contiguous now, commit it now */
797                 unplug = true;
798         }
799         if (unplug ||
800             file->f_flags & O_SYNC || IS_SYNC(file_inode(file)))
801                 result = vvp_io_write_commit(env, io);
802
803         if (result < 0)
804                 io->ci_result = result;
805         RETURN(result >= 0 ? copied : result);
806 }
807
808 #ifdef CONFIG_MIGRATION
809 static int ll_migratepage(struct address_space *mapping,
810                           struct page *newpage, struct page *page
811 #ifdef HAVE_MIGRATEPAGE_4ARGS
812                           , enum migrate_mode mode
813 #endif
814         )
815 {
816         /* Always fail page migration until we have a proper implementation */
817         return -EIO;
818 }
819 #endif
820
821 const struct address_space_operations ll_aops = {
822         .readpage       = ll_readpage,
823         .direct_IO      = ll_direct_IO,
824         .writepage      = ll_writepage,
825         .writepages     = ll_writepages,
826         .set_page_dirty = __set_page_dirty_nobuffers,
827         .write_begin    = ll_write_begin,
828         .write_end      = ll_write_end,
829         .invalidatepage = ll_invalidatepage,
830         .releasepage    = (void *)ll_releasepage,
831 #ifdef CONFIG_MIGRATION
832         .migratepage    = ll_migratepage,
833 #endif
834 };