Whamcloud - gitweb
LU-1146 build: batch update copyright messages
[fs/lustre-release.git] / lustre / llite / rw26.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
30  * Use is subject to license terms.
31  *
32  * Copyright (c) 2011, 2012, Whamcloud, Inc.
33  */
34 /*
35  * This file is part of Lustre, http://www.lustre.org/
36  * Lustre is a trademark of Sun Microsystems, Inc.
37  *
38  * lustre/lustre/llite/rw26.c
39  *
40  * Lustre Lite I/O page cache routines for the 2.5/2.6 kernel version
41  */
42
43 #ifndef AUTOCONF_INCLUDED
44 #include <linux/config.h>
45 #endif
46 #include <linux/kernel.h>
47 #include <linux/mm.h>
48 #include <linux/string.h>
49 #include <linux/stat.h>
50 #include <linux/errno.h>
51 #include <linux/smp_lock.h>
52 #include <linux/unistd.h>
53 #include <linux/version.h>
54 #include <asm/system.h>
55 #include <asm/uaccess.h>
56
57 #include <linux/fs.h>
58 #include <linux/buffer_head.h>
59 #include <linux/writeback.h>
60 #include <linux/stat.h>
61 #include <asm/uaccess.h>
62 #include <linux/mm.h>
63 #include <linux/pagemap.h>
64 #include <linux/smp_lock.h>
65
66 #define DEBUG_SUBSYSTEM S_LLITE
67
68 #include <lustre_lite.h>
69 #include "llite_internal.h"
70 #include <linux/lustre_compat25.h>
71
72 /**
73  * Implements Linux VM address_space::invalidatepage() method. This method is
74  * called when the page is truncate from a file, either as a result of
75  * explicit truncate, or when inode is removed from memory (as a result of
76  * final iput(), umount, or memory pressure induced icache shrinking).
77  *
78  * [0, offset] bytes of the page remain valid (this is for a case of not-page
79  * aligned truncate). Lustre leaves partially truncated page in the cache,
80  * relying on struct inode::i_size to limit further accesses.
81  */
82 static int cl_invalidatepage(struct page *vmpage, unsigned long offset)
83 {
84         struct inode     *inode;
85         struct lu_env    *env;
86         struct cl_page   *page;
87         struct cl_object *obj;
88
89         int result;
90         int refcheck;
91
92         LASSERT(PageLocked(vmpage));
93         LASSERT(!PageWriteback(vmpage));
94
95         /*
96          * It is safe to not check anything in invalidatepage/releasepage
97          * below because they are run with page locked and all our io is
98          * happening with locked page too
99          */
100         result = 0;
101         if (offset == 0) {
102                 env = cl_env_get(&refcheck);
103                 if (!IS_ERR(env)) {
104                         inode = vmpage->mapping->host;
105                         obj = ll_i2info(inode)->lli_clob;
106                         if (obj != NULL) {
107                                 page = cl_vmpage_page(vmpage, obj);
108                                 if (page != NULL) {
109                                         lu_ref_add(&page->cp_reference,
110                                                    "delete", vmpage);
111                                         cl_page_delete(env, page);
112                                         result = 1;
113                                         lu_ref_del(&page->cp_reference,
114                                                    "delete", vmpage);
115                                         cl_page_put(env, page);
116                                 }
117                         } else
118                                 LASSERT(vmpage->private == 0);
119                         cl_env_put(env, &refcheck);
120                 }
121         }
122         return result;
123 }
124
125 #ifdef HAVE_INVALIDATEPAGE_RETURN_INT
126 static int ll_invalidatepage(struct page *page, unsigned long offset)
127 {
128         return cl_invalidatepage(page, offset);
129 }
130 #else /* !HAVE_INVALIDATEPAGE_RETURN_INT */
131 static void ll_invalidatepage(struct page *page, unsigned long offset)
132 {
133         cl_invalidatepage(page, offset);
134 }
135 #endif
136
137 #ifdef HAVE_RELEASEPAGE_WITH_INT
138 #define RELEASEPAGE_ARG_TYPE int
139 #else
140 #define RELEASEPAGE_ARG_TYPE gfp_t
141 #endif
142 static int ll_releasepage(struct page *page, RELEASEPAGE_ARG_TYPE gfp_mask)
143 {
144         void *cookie;
145
146         cookie = cl_env_reenter();
147         ll_invalidatepage(page, 0);
148         cl_env_reexit(cookie);
149         return 1;
150 }
151
152 static int ll_set_page_dirty(struct page *vmpage)
153 {
154 #if 0
155         struct cl_page    *page = vvp_vmpage_page_transient(vmpage);
156         struct vvp_object *obj  = cl_inode2vvp(vmpage->mapping->host);
157         struct vvp_page   *cpg;
158
159         /*
160          * XXX should page method be called here?
161          */
162         LASSERT(&obj->co_cl == page->cp_obj);
163         cpg = cl2vvp_page(cl_page_at(page, &vvp_device_type));
164         /*
165          * XXX cannot do much here, because page is possibly not locked:
166          * sys_munmap()->...
167          *     ->unmap_page_range()->zap_pte_range()->set_page_dirty().
168          */
169         vvp_write_pending(obj, cpg);
170 #endif
171         RETURN(__set_page_dirty_nobuffers(vmpage));
172 }
173
174 #define MAX_DIRECTIO_SIZE 2*1024*1024*1024UL
175
176 static inline int ll_get_user_pages(int rw, unsigned long user_addr,
177                                     size_t size, struct page ***pages,
178                                     int *max_pages)
179 {
180         int result = -ENOMEM;
181
182         /* set an arbitrary limit to prevent arithmetic overflow */
183         if (size > MAX_DIRECTIO_SIZE) {
184                 *pages = NULL;
185                 return -EFBIG;
186         }
187
188         *max_pages = (user_addr + size + CFS_PAGE_SIZE - 1) >> CFS_PAGE_SHIFT;
189         *max_pages -= user_addr >> CFS_PAGE_SHIFT;
190
191         OBD_ALLOC_LARGE(*pages, *max_pages * sizeof(**pages));
192         if (*pages) {
193                 down_read(&current->mm->mmap_sem);
194                 result = get_user_pages(current, current->mm, user_addr,
195                                         *max_pages, (rw == READ), 0, *pages,
196                                         NULL);
197                 up_read(&current->mm->mmap_sem);
198                 if (unlikely(result <= 0))
199                         OBD_FREE_LARGE(*pages, *max_pages * sizeof(**pages));
200         }
201
202         return result;
203 }
204
205 /*  ll_free_user_pages - tear down page struct array
206  *  @pages: array of page struct pointers underlying target buffer */
207 static void ll_free_user_pages(struct page **pages, int npages, int do_dirty)
208 {
209         int i;
210
211         for (i = 0; i < npages; i++) {
212                 if (pages[i] == NULL)
213                         break;
214                 if (do_dirty)
215                         set_page_dirty_lock(pages[i]);
216                 page_cache_release(pages[i]);
217         }
218
219         OBD_FREE_LARGE(pages, npages * sizeof(*pages));
220 }
221
222 ssize_t ll_direct_rw_pages(const struct lu_env *env, struct cl_io *io,
223                            int rw, struct inode *inode,
224                            struct ll_dio_pages *pv)
225 {
226         struct cl_page    *clp;
227         struct cl_2queue  *queue;
228         struct cl_object  *obj = io->ci_obj;
229         int i;
230         ssize_t rc = 0;
231         loff_t file_offset  = pv->ldp_start_offset;
232         long size           = pv->ldp_size;
233         int page_count      = pv->ldp_nr;
234         struct page **pages = pv->ldp_pages;
235         long page_size      = cl_page_size(obj);
236         bool do_io;
237         int  io_pages       = 0;
238         ENTRY;
239
240         queue = &io->ci_queue;
241         cl_2queue_init(queue);
242         for (i = 0; i < page_count; i++) {
243                 if (pv->ldp_offsets)
244                     file_offset = pv->ldp_offsets[i];
245
246                 LASSERT(!(file_offset & (page_size - 1)));
247                 clp = cl_page_find(env, obj, cl_index(obj, file_offset),
248                                    pv->ldp_pages[i], CPT_TRANSIENT);
249                 if (IS_ERR(clp)) {
250                         rc = PTR_ERR(clp);
251                         break;
252                 }
253
254                 rc = cl_page_own(env, io, clp);
255                 if (rc) {
256                         LASSERT(clp->cp_state == CPS_FREEING);
257                         cl_page_put(env, clp);
258                         break;
259                 }
260
261                 do_io = true;
262
263                 /* check the page type: if the page is a host page, then do
264                  * write directly */
265                 if (clp->cp_type == CPT_CACHEABLE) {
266                         cfs_page_t *vmpage = cl_page_vmpage(env, clp);
267                         cfs_page_t *src_page;
268                         cfs_page_t *dst_page;
269                         void       *src;
270                         void       *dst;
271
272                         src_page = (rw == WRITE) ? pages[i] : vmpage;
273                         dst_page = (rw == WRITE) ? vmpage : pages[i];
274
275                         src = kmap_atomic(src_page, KM_USER0);
276                         dst = kmap_atomic(dst_page, KM_USER1);
277                         memcpy(dst, src, min(page_size, size));
278                         kunmap_atomic(dst, KM_USER1);
279                         kunmap_atomic(src, KM_USER0);
280
281                         /* make sure page will be added to the transfer by
282                          * cl_io_submit()->...->vvp_page_prep_write(). */
283                         if (rw == WRITE)
284                                 set_page_dirty(vmpage);
285
286                         if (rw == READ) {
287                                 /* do not issue the page for read, since it
288                                  * may reread a ra page which has NOT uptodate
289                                  * bit set. */
290                                 cl_page_disown(env, io, clp);
291                                 do_io = false;
292                         }
293                 }
294
295                 if (likely(do_io)) {
296                         cl_2queue_add(queue, clp);
297
298                         /*
299                          * Set page clip to tell transfer formation engine
300                          * that page has to be sent even if it is beyond KMS.
301                          */
302                         cl_page_clip(env, clp, 0, min(size, page_size));
303
304                         ++io_pages;
305                 }
306
307                 /* drop the reference count for cl_page_find */
308                 cl_page_put(env, clp);
309                 size -= page_size;
310                 file_offset += page_size;
311         }
312
313         if (rc == 0 && io_pages) {
314                 rc = cl_io_submit_sync(env, io,
315                                        rw == READ ? CRT_READ : CRT_WRITE,
316                                        queue, CRP_NORMAL, 0);
317         }
318         if (rc == 0)
319                 rc = pv->ldp_size;
320
321         cl_2queue_discard(env, io, queue);
322         cl_2queue_disown(env, io, queue);
323         cl_2queue_fini(env, queue);
324         RETURN(rc);
325 }
326 EXPORT_SYMBOL(ll_direct_rw_pages);
327
328 static ssize_t ll_direct_IO_26_seg(const struct lu_env *env, struct cl_io *io,
329                                    int rw, struct inode *inode,
330                                    struct address_space *mapping,
331                                    size_t size, loff_t file_offset,
332                                    struct page **pages, int page_count)
333 {
334     struct ll_dio_pages pvec = { .ldp_pages        = pages,
335                                  .ldp_nr           = page_count,
336                                  .ldp_size         = size,
337                                  .ldp_offsets      = NULL,
338                                  .ldp_start_offset = file_offset
339                                };
340
341     return ll_direct_rw_pages(env, io, rw, inode, &pvec);
342 }
343
344 #ifdef KMALLOC_MAX_SIZE
345 #define MAX_MALLOC KMALLOC_MAX_SIZE
346 #else
347 #define MAX_MALLOC (128 * 1024)
348 #endif
349
350 /* This is the maximum size of a single O_DIRECT request, based on the
351  * kmalloc limit.  We need to fit all of the brw_page structs, each one
352  * representing PAGE_SIZE worth of user data, into a single buffer, and
353  * then truncate this to be a full-sized RPC.  For 4kB PAGE_SIZE this is
354  * up to 22MB for 128kB kmalloc and up to 682MB for 4MB kmalloc. */
355 #define MAX_DIO_SIZE ((MAX_MALLOC / sizeof(struct brw_page) * CFS_PAGE_SIZE) & \
356                       ~(PTLRPC_MAX_BRW_SIZE - 1))
357 static ssize_t ll_direct_IO_26(int rw, struct kiocb *iocb,
358                                const struct iovec *iov, loff_t file_offset,
359                                unsigned long nr_segs)
360 {
361         struct lu_env *env;
362         struct cl_io *io;
363         struct file *file = iocb->ki_filp;
364         struct inode *inode = file->f_mapping->host;
365         struct ccc_object *obj = cl_inode2ccc(inode);
366         long count = iov_length(iov, nr_segs);
367         long tot_bytes = 0, result = 0;
368         struct ll_inode_info *lli = ll_i2info(inode);
369         struct lov_stripe_md *lsm = lli->lli_smd;
370         unsigned long seg = 0;
371         long size = MAX_DIO_SIZE;
372         int refcheck;
373         ENTRY;
374
375         if (!lli->lli_smd || !lli->lli_smd->lsm_object_id)
376                 RETURN(-EBADF);
377
378         /* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */
379         if ((file_offset & ~CFS_PAGE_MASK) || (count & ~CFS_PAGE_MASK))
380                 RETURN(-EINVAL);
381
382         CDEBUG(D_VFSTRACE, "VFS Op:inode=%lu/%u(%p), size=%lu (max %lu), "
383                "offset=%lld=%llx, pages %lu (max %lu)\n",
384                inode->i_ino, inode->i_generation, inode, count, MAX_DIO_SIZE,
385                file_offset, file_offset, count >> CFS_PAGE_SHIFT,
386                MAX_DIO_SIZE >> CFS_PAGE_SHIFT);
387
388         /* Check that all user buffers are aligned as well */
389         for (seg = 0; seg < nr_segs; seg++) {
390                 if (((unsigned long)iov[seg].iov_base & ~CFS_PAGE_MASK) ||
391                     (iov[seg].iov_len & ~CFS_PAGE_MASK))
392                         RETURN(-EINVAL);
393         }
394
395         env = cl_env_get(&refcheck);
396         LASSERT(!IS_ERR(env));
397         io = ccc_env_io(env)->cui_cl.cis_io;
398         LASSERT(io != NULL);
399
400         /* 0. Need locking between buffered and direct access. and race with
401          *    size changing by concurrent truncates and writes.
402          * 1. Need inode sem to operate transient pages. */
403         if (rw == READ)
404                 LOCK_INODE_MUTEX(inode);
405
406         LASSERT(obj->cob_transient_pages == 0);
407         for (seg = 0; seg < nr_segs; seg++) {
408                 long iov_left = iov[seg].iov_len;
409                 unsigned long user_addr = (unsigned long)iov[seg].iov_base;
410
411                 if (rw == READ) {
412                         if (file_offset >= i_size_read(inode))
413                                 break;
414                         if (file_offset + iov_left > i_size_read(inode))
415                                 iov_left = i_size_read(inode) - file_offset;
416                 }
417
418                 while (iov_left > 0) {
419                         struct page **pages;
420                         int page_count, max_pages = 0;
421                         long bytes;
422
423                         bytes = min(size, iov_left);
424                         page_count = ll_get_user_pages(rw, user_addr, bytes,
425                                                        &pages, &max_pages);
426                         if (likely(page_count > 0)) {
427                                 if (unlikely(page_count <  max_pages))
428                                         bytes = page_count << CFS_PAGE_SHIFT;
429                                 result = ll_direct_IO_26_seg(env, io, rw, inode,
430                                                              file->f_mapping,
431                                                              bytes, file_offset,
432                                                              pages, page_count);
433                                 ll_free_user_pages(pages, max_pages, rw==READ);
434                         } else if (page_count == 0) {
435                                 GOTO(out, result = -EFAULT);
436                         } else {
437                                 result = page_count;
438                         }
439                         if (unlikely(result <= 0)) {
440                                 /* If we can't allocate a large enough buffer
441                                  * for the request, shrink it to a smaller
442                                  * PAGE_SIZE multiple and try again.
443                                  * We should always be able to kmalloc for a
444                                  * page worth of page pointers = 4MB on i386. */
445                                 if (result == -ENOMEM &&
446                                     size > (CFS_PAGE_SIZE / sizeof(*pages)) *
447                                            CFS_PAGE_SIZE) {
448                                         size = ((((size / 2) - 1) |
449                                                  ~CFS_PAGE_MASK) + 1) &
450                                                 CFS_PAGE_MASK;
451                                         CDEBUG(D_VFSTRACE,"DIO size now %lu\n",
452                                                size);
453                                         continue;
454                                 }
455
456                                 GOTO(out, result);
457                         }
458
459                         tot_bytes += result;
460                         file_offset += result;
461                         iov_left -= result;
462                         user_addr += result;
463                 }
464         }
465 out:
466         LASSERT(obj->cob_transient_pages == 0);
467         if (rw == READ)
468                 UNLOCK_INODE_MUTEX(inode);
469
470         if (tot_bytes > 0) {
471                 if (rw == WRITE) {
472                         lov_stripe_lock(lsm);
473                         obd_adjust_kms(ll_i2dtexp(inode), lsm, file_offset, 0);
474                         lov_stripe_unlock(lsm);
475                 }
476         }
477
478         cl_env_put(env, &refcheck);
479         RETURN(tot_bytes ? : result);
480 }
481
482 #if defined(HAVE_KERNEL_WRITE_BEGIN_END) || defined(MS_HAS_NEW_AOPS)
483 static int ll_write_begin(struct file *file, struct address_space *mapping,
484                          loff_t pos, unsigned len, unsigned flags,
485                          struct page **pagep, void **fsdata)
486 {
487         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
488         struct page *page;
489         int rc;
490         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
491         ENTRY;
492
493         page = grab_cache_page_write_begin(mapping, index, flags);
494         if (!page)
495                 RETURN(-ENOMEM);
496
497         *pagep = page;
498
499         rc = ll_prepare_write(file, page, from, from + len);
500         if (rc) {
501                 unlock_page(page);
502                 page_cache_release(page);
503         }
504         RETURN(rc);
505 }
506
507 static int ll_write_end(struct file *file, struct address_space *mapping,
508                         loff_t pos, unsigned len, unsigned copied,
509                         struct page *page, void *fsdata)
510 {
511         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
512         int rc;
513
514         rc = ll_commit_write(file, page, from, from + copied);
515         unlock_page(page);
516         page_cache_release(page);
517
518         return rc ?: copied;
519 }
520 #endif
521
522 #ifdef CONFIG_MIGRATION
523 int ll_migratepage(struct address_space *mapping,
524                    struct page *newpage, struct page *page)
525 {
526         /* Always fail page migration until we have a proper implementation */
527         return -EIO;
528 }
529 #endif
530
531 #ifndef MS_HAS_NEW_AOPS
532 struct address_space_operations ll_aops = {
533         .readpage       = ll_readpage,
534 //        .readpages      = ll_readpages,
535         .direct_IO      = ll_direct_IO_26,
536         .writepage      = ll_writepage,
537         .writepages     = generic_writepages,
538         .set_page_dirty = ll_set_page_dirty,
539         .sync_page      = NULL,
540 #ifdef HAVE_KERNEL_WRITE_BEGIN_END
541         .write_begin    = ll_write_begin,
542         .write_end      = ll_write_end,
543 #else
544         .prepare_write  = ll_prepare_write,
545         .commit_write   = ll_commit_write,
546 #endif
547         .invalidatepage = ll_invalidatepage,
548         .releasepage    = (void *)ll_releasepage,
549 #ifdef CONFIG_MIGRATION
550         .migratepage    = ll_migratepage,
551 #endif
552         .bmap           = NULL
553 };
554 #else
555 struct address_space_operations_ext ll_aops = {
556         .orig_aops.readpage       = ll_readpage,
557 //        .orig_aops.readpages      = ll_readpages,
558         .orig_aops.direct_IO      = ll_direct_IO_26,
559         .orig_aops.writepage      = ll_writepage,
560         .orig_aops.writepages     = generic_writepages,
561         .orig_aops.set_page_dirty = ll_set_page_dirty,
562         .orig_aops.sync_page      = NULL,
563         .orig_aops.prepare_write  = ll_prepare_write,
564         .orig_aops.commit_write   = ll_commit_write,
565         .orig_aops.invalidatepage = ll_invalidatepage,
566         .orig_aops.releasepage    = ll_releasepage,
567 #ifdef CONFIG_MIGRATION
568         .orig_aops.migratepage    = ll_migratepage,
569 #endif
570         .orig_aops.bmap           = NULL,
571         .write_begin    = ll_write_begin,
572         .write_end      = ll_write_end
573 };
574 #endif