Whamcloud - gitweb
LU-6210 libcfs: Change positional struct initializers to C99
[fs/lustre-release.git] / libcfs / libcfs / util / nidstrings.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2015, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * libcfs/libcfs/util/nidstrings.c
33  *
34  * Author: Phil Schwan <phil@clusterfs.com>
35  */
36
37 #define DEBUG_SUBSYSTEM S_LNET
38
39 #include <assert.h>
40 #include <errno.h>
41 #include <stdio.h>
42 #include <stdbool.h>
43 #include <stdlib.h>
44 #include <string.h>
45
46 #include <libcfs/util/string.h>
47 #include <lnet/types.h>
48 #include <lnet/nidstr.h>
49 #ifdef HAVE_NETDB_H
50 # include <netdb.h>
51 #endif
52
53 /* max value for numeric network address */
54 #define MAX_NUMERIC_VALUE 0xffffffff
55
56 #define IPSTRING_LENGTH 16
57
58 /* CAVEAT VENDITOR! Keep the canonical string representation of nets/nids
59  * consistent in all conversion functions.  Some code fragments are copied
60  * around for the sake of clarity...
61  */
62
63 /* CAVEAT EMPTOR! Racey temporary buffer allocation!
64  * Choose the number of nidstrings to support the MAXIMUM expected number of
65  * concurrent users.  If there are more, the returned string will be volatile.
66  * NB this number must allow for a process to be descheduled for a timeslice
67  * between getting its string and using it.
68  */
69
70 static char      libcfs_nidstrings[LNET_NIDSTR_COUNT][LNET_NIDSTR_SIZE];
71 static int       libcfs_nidstring_idx;
72
73 char *
74 libcfs_next_nidstring(void)
75 {
76         char          *str;
77
78         str = libcfs_nidstrings[libcfs_nidstring_idx++];
79         if (libcfs_nidstring_idx ==
80             sizeof(libcfs_nidstrings)/sizeof(libcfs_nidstrings[0]))
81                 libcfs_nidstring_idx = 0;
82
83         return str;
84 }
85
86 static int
87 libcfs_lo_str2addr(const char *str, int nob, __u32 *addr)
88 {
89         *addr = 0;
90         return 1;
91 }
92
93 static void
94 libcfs_ip_addr2str(__u32 addr, char *str, size_t size)
95 {
96         snprintf(str, size, "%u.%u.%u.%u",
97                  (addr >> 24) & 0xff, (addr >> 16) & 0xff,
98                  (addr >> 8) & 0xff, addr & 0xff);
99 }
100
101 /* CAVEAT EMPTOR XscanfX
102  * I use "%n" at the end of a sscanf format to detect trailing junk.  However
103  * sscanf may return immediately if it sees the terminating '0' in a string, so
104  * I initialise the %n variable to the expected length.  If sscanf sets it;
105  * fine, if it doesn't, then the scan ended at the end of the string, which is
106  * fine too :) */
107 static int
108 libcfs_ip_str2addr(const char *str, int nob, __u32 *addr)
109 {
110         unsigned int    a;
111         unsigned int    b;
112         unsigned int    c;
113         unsigned int    d;
114         int             n = nob; /* XscanfX */
115
116         /* numeric IP? */
117         if (sscanf(str, "%u.%u.%u.%u%n", &a, &b, &c, &d, &n) >= 4 &&
118             n == nob &&
119             (a & ~0xff) == 0 && (b & ~0xff) == 0 &&
120             (c & ~0xff) == 0 && (d & ~0xff) == 0) {
121                 *addr = ((a<<24)|(b<<16)|(c<<8)|d);
122                 return 1;
123         }
124
125 #ifdef HAVE_GETHOSTBYNAME
126         /* known hostname? */
127         if (('a' <= str[0] && str[0] <= 'z') ||
128             ('A' <= str[0] && str[0] <= 'Z')) {
129                 char *tmp;
130
131                 tmp = calloc(1, nob + 1);
132                 if (tmp != NULL) {
133                         struct hostent *he;
134
135                         memcpy(tmp, str, nob);
136                         tmp[nob] = 0;
137
138                         he = gethostbyname(tmp);
139
140                         free(tmp);
141
142                         if (he != NULL) {
143                                 __u32 ip = *(__u32 *)he->h_addr;
144
145                                 *addr = ntohl(ip);
146                                 return 1;
147                         }
148                 }
149         }
150 #endif
151         return 0;
152 }
153
154 int
155 cfs_ip_addr_parse(char *str, int len, struct list_head *list)
156 {
157         struct cfs_expr_list *el;
158         struct cfs_lstr src;
159         int rc;
160         int i;
161
162         src.ls_str = str;
163         src.ls_len = len;
164         i = 0;
165
166         while (src.ls_str != NULL) {
167                 struct cfs_lstr res;
168
169                 if (!cfs_gettok(&src, '.', &res)) {
170                         rc = -EINVAL;
171                         goto out;
172                 }
173
174                 rc = cfs_expr_list_parse(res.ls_str, res.ls_len, 0, 255, &el);
175                 if (rc != 0)
176                         goto out;
177
178                 list_add_tail(&el->el_link, list);
179                 i++;
180         }
181
182         if (i == 4)
183                 return 0;
184
185         rc = -EINVAL;
186 out:
187         cfs_expr_list_free_list(list);
188
189         return rc;
190 }
191
192 static int
193 libcfs_ip_addr_range_print(char *buffer, int count, struct list_head *list)
194 {
195         int i = 0, j = 0;
196         struct cfs_expr_list *el;
197
198         list_for_each_entry(el, list, el_link) {
199                 assert(j++ < 4);
200                 if (i != 0)
201                         i += snprintf(buffer + i, count - i, ".");
202                 i += cfs_expr_list_print(buffer + i, count - i, el);
203         }
204         return i;
205 }
206
207 /**
208  * Matches address (\a addr) against address set encoded in \a list.
209  *
210  * \retval 1 if \a addr matches
211  * \retval 0 otherwise
212  */
213 int
214 cfs_ip_addr_match(__u32 addr, struct list_head *list)
215 {
216         struct cfs_expr_list *el;
217         int i = 0;
218
219         list_for_each_entry_reverse(el, list, el_link) {
220                 if (!cfs_expr_list_match(addr & 0xff, el))
221                         return 0;
222                 addr >>= 8;
223                 i++;
224         }
225
226         return i == 4;
227 }
228
229 static void
230 libcfs_decnum_addr2str(__u32 addr, char *str, size_t size)
231 {
232         snprintf(str, size, "%u", addr);
233 }
234
235 static void
236 libcfs_hexnum_addr2str(__u32 addr, char *str, size_t size)
237 {
238         snprintf(str, size, "0x%x", addr);
239 }
240
241 static int
242 libcfs_num_str2addr(const char *str, int nob, __u32 *addr)
243 {
244         int     n;
245
246         n = nob;
247         if (sscanf(str, "0x%x%n", addr, &n) >= 1 && n == nob)
248                 return 1;
249
250         n = nob;
251         if (sscanf(str, "0X%x%n", addr, &n) >= 1 && n == nob)
252                 return 1;
253
254         n = nob;
255         if (sscanf(str, "%u%n", addr, &n) >= 1 && n == nob)
256                 return 1;
257
258         return 0;
259 }
260
261 /**
262  * Nf_parse_addrlist method for networks using numeric addresses.
263  *
264  * Examples of such networks are gm and elan.
265  *
266  * \retval 0 if \a str parsed to numeric address
267  * \retval errno otherwise
268  */
269 static int
270 libcfs_num_parse(char *str, int len, struct list_head *list)
271 {
272         struct cfs_expr_list *el;
273         int     rc;
274
275         rc = cfs_expr_list_parse(str, len, 0, MAX_NUMERIC_VALUE, &el);
276         if (rc == 0)
277                 list_add_tail(&el->el_link, list);
278
279         return rc;
280 }
281
282 static int
283 libcfs_num_addr_range_print(char *buffer, int count, struct list_head *list)
284 {
285         struct cfs_expr_list *el;
286         int i = 0, j = 0;
287
288         list_for_each_entry(el, list, el_link) {
289                 assert(j++ < 1);
290                 i += cfs_expr_list_print(buffer + i, count - i, el);
291         }
292         return i;
293 }
294
295 /*
296  * Nf_match_addr method for networks using numeric addresses
297  *
298  * \retval 1 on match
299  * \retval 0 otherwise
300  */
301 static int
302 libcfs_num_match(__u32 addr, struct list_head *numaddr)
303 {
304         struct cfs_expr_list *el;
305
306         assert(!list_empty(numaddr));
307         el = list_entry(numaddr->next, struct cfs_expr_list, el_link);
308
309         return cfs_expr_list_match(addr, el);
310 }
311
312 static bool cfs_ip_is_contiguous(struct list_head *nidlist);
313 static void cfs_ip_min_max(struct list_head *nidlist, __u32 *min, __u32 *max);
314 static bool cfs_num_is_contiguous(struct list_head *nidlist);
315 static void cfs_num_min_max(struct list_head *nidlist, __u32 *min, __u32 *max);
316
317 static struct netstrfns libcfs_netstrfns[] = {
318         {
319                 .nf_type                = LOLND,
320                 .nf_name                = "lo",
321                 .nf_modname             = "klolnd",
322                 .nf_addr2str            = libcfs_decnum_addr2str,
323                 .nf_str2addr            = libcfs_lo_str2addr,
324                 .nf_parse_addrlist      = libcfs_num_parse,
325                 .nf_print_addrlist      = libcfs_num_addr_range_print,
326                 .nf_match_addr          = libcfs_num_match,
327                 .nf_is_contiguous       = cfs_num_is_contiguous,
328                 .nf_min_max             = cfs_num_min_max
329         },
330         {
331                 .nf_type                = SOCKLND,
332                 .nf_name                = "tcp",
333                 .nf_modname             = "ksocklnd",
334                 .nf_addr2str            = libcfs_ip_addr2str,
335                 .nf_str2addr            = libcfs_ip_str2addr,
336                 .nf_parse_addrlist      = cfs_ip_addr_parse,
337                 .nf_print_addrlist      = libcfs_ip_addr_range_print,
338                 .nf_match_addr          = cfs_ip_addr_match,
339                 .nf_is_contiguous       = cfs_ip_is_contiguous,
340                 .nf_min_max             = cfs_ip_min_max
341         },
342         {
343                 .nf_type                = O2IBLND,
344                 .nf_name                = "o2ib",
345                 .nf_modname             = "ko2iblnd",
346                 .nf_addr2str            = libcfs_ip_addr2str,
347                 .nf_str2addr            = libcfs_ip_str2addr,
348                 .nf_parse_addrlist      = cfs_ip_addr_parse,
349                 .nf_print_addrlist      = libcfs_ip_addr_range_print,
350                 .nf_match_addr          = cfs_ip_addr_match,
351                 .nf_is_contiguous       = cfs_ip_is_contiguous,
352                 .nf_min_max             = cfs_ip_min_max
353         },
354         {
355                 .nf_type                = CIBLND,
356                 .nf_name                = "cib",
357                 .nf_modname             = "kciblnd",
358                 .nf_addr2str            = libcfs_ip_addr2str,
359                 .nf_str2addr            = libcfs_ip_str2addr,
360                 .nf_parse_addrlist      = cfs_ip_addr_parse,
361                 .nf_print_addrlist      = libcfs_ip_addr_range_print,
362                 .nf_match_addr          = cfs_ip_addr_match,
363                 .nf_is_contiguous       = cfs_ip_is_contiguous,
364                 .nf_min_max             = cfs_ip_min_max
365         },
366         {
367                 .nf_type                = OPENIBLND,
368                 .nf_name                = "openib",
369                 .nf_modname             = "kopeniblnd",
370                 .nf_addr2str            = libcfs_ip_addr2str,
371                 .nf_str2addr            = libcfs_ip_str2addr,
372                 .nf_parse_addrlist      = cfs_ip_addr_parse,
373                 .nf_print_addrlist      = libcfs_ip_addr_range_print,
374                 .nf_match_addr          = cfs_ip_addr_match,
375                 .nf_is_contiguous       = cfs_ip_is_contiguous,
376                 .nf_min_max             = cfs_ip_min_max
377         },
378         {
379                 .nf_type                = IIBLND,
380                 .nf_name                = "iib",
381                 .nf_modname             = "kiiblnd",
382                 .nf_addr2str            = libcfs_ip_addr2str,
383                 .nf_str2addr            = libcfs_ip_str2addr,
384                 .nf_parse_addrlist      = cfs_ip_addr_parse,
385                 .nf_print_addrlist      = libcfs_ip_addr_range_print,
386                 .nf_match_addr          = cfs_ip_addr_match,
387                 .nf_is_contiguous       = cfs_ip_is_contiguous,
388                 .nf_min_max             = cfs_ip_min_max
389         },
390         {
391                 .nf_type                = VIBLND,
392                 .nf_name                = "vib",
393                 .nf_modname             = "kviblnd",
394                 .nf_addr2str            = libcfs_ip_addr2str,
395                 .nf_str2addr            = libcfs_ip_str2addr,
396                 .nf_parse_addrlist      = cfs_ip_addr_parse,
397                 .nf_print_addrlist      = libcfs_ip_addr_range_print,
398                 .nf_match_addr          = cfs_ip_addr_match,
399                 .nf_is_contiguous       = cfs_ip_is_contiguous,
400                 .nf_min_max             = cfs_ip_min_max
401         },
402         {
403                 .nf_type                = RALND,
404                 .nf_name                = "ra",
405                 .nf_modname             = "kralnd",
406                 .nf_addr2str            = libcfs_ip_addr2str,
407                 .nf_str2addr            = libcfs_ip_str2addr,
408                 .nf_parse_addrlist      = cfs_ip_addr_parse,
409                 .nf_print_addrlist      = libcfs_ip_addr_range_print,
410                 .nf_match_addr          = cfs_ip_addr_match,
411                 .nf_is_contiguous       = cfs_ip_is_contiguous,
412                 .nf_min_max             = cfs_ip_min_max
413         },
414         {
415                 .nf_type                = QSWLND,
416                 .nf_name                = "elan",
417                 .nf_modname             = "kqswlnd",
418                 .nf_addr2str            = libcfs_decnum_addr2str,
419                 .nf_str2addr            = libcfs_num_str2addr,
420                 .nf_parse_addrlist      = libcfs_num_parse,
421                 .nf_print_addrlist      = libcfs_num_addr_range_print,
422                 .nf_match_addr          = libcfs_num_match,
423                 .nf_is_contiguous       = cfs_num_is_contiguous,
424                 .nf_min_max             = cfs_num_min_max
425         },
426         {
427                 .nf_type                = GMLND,
428                 .nf_name                = "gm",
429                 .nf_modname             = "kgmlnd",
430                 .nf_addr2str            = libcfs_hexnum_addr2str,
431                 .nf_str2addr            = libcfs_num_str2addr,
432                 .nf_parse_addrlist      = libcfs_num_parse,
433                 .nf_print_addrlist      = libcfs_num_addr_range_print,
434                 .nf_match_addr          = libcfs_num_match,
435                 .nf_is_contiguous       = cfs_num_is_contiguous,
436                 .nf_min_max             = cfs_num_min_max
437         },
438         {
439                 .nf_type                = MXLND,
440                 .nf_name                = "mx",
441                 .nf_modname             = "kmxlnd",
442                 .nf_addr2str            = libcfs_ip_addr2str,
443                 .nf_str2addr            = libcfs_ip_str2addr,
444                 .nf_parse_addrlist      = cfs_ip_addr_parse,
445                 .nf_print_addrlist      = libcfs_ip_addr_range_print,
446                 .nf_match_addr          = cfs_ip_addr_match,
447                 .nf_is_contiguous       = cfs_ip_is_contiguous,
448                 .nf_min_max             = cfs_ip_min_max
449         },
450         {
451                 .nf_type                = PTLLND,
452                 .nf_name                = "ptl",
453                 .nf_modname             = "kptllnd",
454                 .nf_addr2str            = libcfs_decnum_addr2str,
455                 .nf_str2addr            = libcfs_num_str2addr,
456                 .nf_parse_addrlist      = libcfs_num_parse,
457                 .nf_print_addrlist      = libcfs_num_addr_range_print,
458                 .nf_match_addr          = libcfs_num_match,
459                 .nf_is_contiguous       = cfs_num_is_contiguous,
460                 .nf_min_max             = cfs_num_min_max
461         },
462         {
463                 .nf_type                = GNILND,
464                 .nf_name                = "gni",
465                 .nf_modname             = "kgnilnd",
466                 .nf_addr2str            = libcfs_decnum_addr2str,
467                 .nf_str2addr            = libcfs_num_str2addr,
468                 .nf_parse_addrlist      = libcfs_num_parse,
469                 .nf_print_addrlist      = libcfs_num_addr_range_print,
470                 .nf_match_addr          = libcfs_num_match,
471                 .nf_is_contiguous       = cfs_num_is_contiguous,
472                 .nf_min_max             = cfs_num_min_max
473         },
474         {
475                 .nf_type                = GNIIPLND,
476                 .nf_name                = "gip",
477                 .nf_modname             = "kgnilnd",
478                 .nf_addr2str            = libcfs_ip_addr2str,
479                 .nf_str2addr            = libcfs_ip_str2addr,
480                 .nf_parse_addrlist      = cfs_ip_addr_parse,
481                 .nf_print_addrlist      = libcfs_ip_addr_range_print,
482                 .nf_match_addr          = cfs_ip_addr_match,
483                 .nf_is_contiguous       = cfs_ip_is_contiguous,
484                 .nf_min_max             = cfs_ip_min_max
485         }
486 };
487
488 static const size_t libcfs_nnetstrfns =
489         sizeof(libcfs_netstrfns)/sizeof(libcfs_netstrfns[0]);
490
491 static struct netstrfns *
492 libcfs_lnd2netstrfns(__u32 lnd)
493 {
494         int     i;
495
496         for (i = 0; i < libcfs_nnetstrfns; i++)
497                 if (lnd == libcfs_netstrfns[i].nf_type)
498                         return &libcfs_netstrfns[i];
499
500         return NULL;
501 }
502
503 static struct netstrfns *
504 libcfs_namenum2netstrfns(const char *name)
505 {
506         struct netstrfns *nf;
507         int               i;
508
509         for (i = 0; i < libcfs_nnetstrfns; i++) {
510                 nf = &libcfs_netstrfns[i];
511                 if (!strncmp(name, nf->nf_name, strlen(nf->nf_name)))
512                         return nf;
513         }
514         return NULL;
515 }
516
517 static struct netstrfns *
518 libcfs_name2netstrfns(const char *name)
519 {
520         int    i;
521
522         for (i = 0; i < libcfs_nnetstrfns; i++)
523                 if (!strcmp(libcfs_netstrfns[i].nf_name, name))
524                         return &libcfs_netstrfns[i];
525
526         return NULL;
527 }
528
529 int
530 libcfs_isknown_lnd(__u32 lnd)
531 {
532         return libcfs_lnd2netstrfns(lnd) != NULL;
533 }
534
535 char *
536 libcfs_lnd2modname(__u32 lnd)
537 {
538         struct netstrfns *nf = libcfs_lnd2netstrfns(lnd);
539
540         return (nf == NULL) ? NULL : nf->nf_modname;
541 }
542
543 int
544 libcfs_str2lnd(const char *str)
545 {
546         struct netstrfns *nf = libcfs_name2netstrfns(str);
547
548         if (nf != NULL)
549                 return nf->nf_type;
550
551         return -1;
552 }
553
554 char *
555 libcfs_lnd2str_r(__u32 lnd, char *buf, size_t buf_size)
556 {
557         struct netstrfns *nf;
558
559         nf = libcfs_lnd2netstrfns(lnd);
560         if (nf == NULL)
561                 snprintf(buf, buf_size, "?%u?", lnd);
562         else
563                 snprintf(buf, buf_size, "%s", nf->nf_name);
564
565         return buf;
566 }
567
568 char *
569 libcfs_net2str_r(__u32 net, char *buf, size_t buf_size)
570 {
571         __u32             nnum = LNET_NETNUM(net);
572         __u32             lnd  = LNET_NETTYP(net);
573         struct netstrfns *nf;
574
575         nf = libcfs_lnd2netstrfns(lnd);
576         if (nf == NULL)
577                 snprintf(buf, buf_size, "<%u:%u>", lnd, nnum);
578         else if (nnum == 0)
579                 snprintf(buf, buf_size, "%s", nf->nf_name);
580         else
581                 snprintf(buf, buf_size, "%s%u", nf->nf_name, nnum);
582
583         return buf;
584 }
585
586 char *
587 libcfs_nid2str_r(lnet_nid_t nid, char *buf, size_t buf_size)
588 {
589         __u32             addr = LNET_NIDADDR(nid);
590         __u32             net  = LNET_NIDNET(nid);
591         __u32             nnum = LNET_NETNUM(net);
592         __u32             lnd  = LNET_NETTYP(net);
593         struct netstrfns *nf;
594
595         if (nid == LNET_NID_ANY) {
596                 strncpy(buf, "<?>", buf_size);
597                 buf[buf_size - 1] = '\0';
598                 return buf;
599         }
600
601         nf = libcfs_lnd2netstrfns(lnd);
602         if (nf == NULL) {
603                 snprintf(buf, buf_size, "%x@<%u:%u>", addr, lnd, nnum);
604         } else {
605                 size_t addr_len;
606
607                 nf->nf_addr2str(addr, buf, buf_size);
608                 addr_len = strlen(buf);
609                 if (nnum == 0)
610                         snprintf(buf + addr_len, buf_size - addr_len, "@%s",
611                                  nf->nf_name);
612                 else
613                         snprintf(buf + addr_len, buf_size - addr_len, "@%s%u",
614                                  nf->nf_name, nnum);
615         }
616
617         return buf;
618 }
619
620 static struct netstrfns *
621 libcfs_str2net_internal(const char *str, __u32 *net)
622 {
623         struct netstrfns *nf = NULL;
624         int               nob;
625         unsigned int      netnum;
626         int               i;
627
628         for (i = 0; i < libcfs_nnetstrfns; i++) {
629                 nf = &libcfs_netstrfns[i];
630                 if (!strncmp(str, nf->nf_name, strlen(nf->nf_name)))
631                         break;
632         }
633
634         if (i == libcfs_nnetstrfns)
635                 return NULL;
636
637         nob = strlen(nf->nf_name);
638
639         if (strlen(str) == (unsigned int)nob) {
640                 netnum = 0;
641         } else {
642                 if (nf->nf_type == LOLND) /* net number not allowed */
643                         return NULL;
644
645                 str += nob;
646                 i = strlen(str);
647                 if (sscanf(str, "%u%n", &netnum, &i) < 1 ||
648                     i != (int)strlen(str))
649                         return NULL;
650         }
651
652         *net = LNET_MKNET(nf->nf_type, netnum);
653         return nf;
654 }
655
656 __u32
657 libcfs_str2net(const char *str)
658 {
659         __u32  net;
660
661         if (libcfs_str2net_internal(str, &net) != NULL)
662                 return net;
663
664         return LNET_NIDNET(LNET_NID_ANY);
665 }
666
667 lnet_nid_t
668 libcfs_str2nid(const char *str)
669 {
670         const char       *sep = strchr(str, '@');
671         struct netstrfns *nf;
672         __u32             net;
673         __u32             addr;
674
675         if (sep != NULL) {
676                 nf = libcfs_str2net_internal(sep + 1, &net);
677                 if (nf == NULL)
678                         return LNET_NID_ANY;
679         } else {
680                 sep = str + strlen(str);
681                 net = LNET_MKNET(SOCKLND, 0);
682                 nf = libcfs_lnd2netstrfns(SOCKLND);
683                 assert(nf != NULL);
684         }
685
686         if (!nf->nf_str2addr(str, (int)(sep - str), &addr))
687                 return LNET_NID_ANY;
688
689         return LNET_MKNID(net, addr);
690 }
691
692 char *
693 libcfs_id2str(lnet_process_id_t id)
694 {
695         char *str = libcfs_next_nidstring();
696
697         if (id.pid == LNET_PID_ANY) {
698                 snprintf(str, LNET_NIDSTR_SIZE,
699                          "LNET_PID_ANY-%s", libcfs_nid2str(id.nid));
700                 return str;
701         }
702
703         snprintf(str, LNET_NIDSTR_SIZE, "%s%u-%s",
704                  ((id.pid & LNET_PID_USERFLAG) != 0) ? "U" : "",
705                  (id.pid & ~LNET_PID_USERFLAG), libcfs_nid2str(id.nid));
706         return str;
707 }
708
709 int
710 libcfs_str2anynid(lnet_nid_t *nidp, const char *str)
711 {
712         if (!strcmp(str, "*")) {
713                 *nidp = LNET_NID_ANY;
714                 return 1;
715         }
716
717         *nidp = libcfs_str2nid(str);
718         return *nidp != LNET_NID_ANY;
719 }
720
721 /**
722  * Nid range list syntax.
723  * \verbatim
724  *
725  * <nidlist>         :== <nidrange> [ ' ' <nidrange> ]
726  * <nidrange>        :== <addrrange> '@' <net>
727  * <addrrange>       :== '*' |
728  *                       <ipaddr_range> |
729  *                       <cfs_expr_list>
730  * <ipaddr_range>    :== <cfs_expr_list>.<cfs_expr_list>.<cfs_expr_list>.
731  *                       <cfs_expr_list>
732  * <cfs_expr_list>   :== <number> |
733  *                       <expr_list>
734  * <expr_list>       :== '[' <range_expr> [ ',' <range_expr>] ']'
735  * <range_expr>      :== <number> |
736  *                       <number> '-' <number> |
737  *                       <number> '-' <number> '/' <number>
738  * <net>             :== <netname> | <netname><number>
739  * <netname>         :== "lo" | "tcp" | "o2ib" | "cib" | "openib" | "iib" |
740  *                       "vib" | "ra" | "elan" | "mx" | "ptl"
741  * \endverbatim
742  */
743
744 /**
745  * Structure to represent \<nidrange\> token of the syntax.
746  *
747  * One of this is created for each \<net\> parsed.
748  */
749 struct nidrange {
750         /**
751          * Link to list of this structures which is built on nid range
752          * list parsing.
753          */
754         struct list_head nr_link;
755         /**
756          * List head for addrrange::ar_link.
757          */
758         struct list_head nr_addrranges;
759         /**
760          * Flag indicating that *@<net> is found.
761          */
762         int nr_all;
763         /**
764          * Pointer to corresponding element of libcfs_netstrfns.
765          */
766         struct netstrfns *nr_netstrfns;
767         /**
768          * Number of network. E.g. 5 if \<net\> is "elan5".
769          */
770         int nr_netnum;
771 };
772
773 /**
774  * Structure to represent \<addrrange\> token of the syntax.
775  */
776 struct addrrange {
777         /**
778          * Link to nidrange::nr_addrranges.
779          */
780         struct list_head ar_link;
781         /**
782          * List head for cfs_expr_list::el_list.
783          */
784         struct list_head ar_numaddr_ranges;
785 };
786
787 /**
788  * Parses \<addrrange\> token on the syntax.
789  *
790  * Allocates struct addrrange and links to \a nidrange via
791  * (nidrange::nr_addrranges)
792  *
793  * \retval 0 if \a src parses to '*' | \<ipaddr_range\> | \<cfs_expr_list\>
794  * \retval -errno otherwise
795  */
796 static int
797 parse_addrange(const struct cfs_lstr *src, struct nidrange *nidrange)
798 {
799         struct addrrange *addrrange;
800
801         if (src->ls_len == 1 && src->ls_str[0] == '*') {
802                 nidrange->nr_all = 1;
803                 return 0;
804         }
805
806         addrrange = calloc(1, sizeof(struct addrrange));
807         if (addrrange == NULL)
808                 return -ENOMEM;
809         list_add_tail(&addrrange->ar_link, &nidrange->nr_addrranges);
810         INIT_LIST_HEAD(&addrrange->ar_numaddr_ranges);
811
812         return nidrange->nr_netstrfns->nf_parse_addrlist(src->ls_str,
813                                                 src->ls_len,
814                                                 &addrrange->ar_numaddr_ranges);
815 }
816
817 /**
818  * Finds or creates struct nidrange.
819  *
820  * Checks if \a src is a valid network name, looks for corresponding
821  * nidrange on the ist of nidranges (\a nidlist), creates new struct
822  * nidrange if it is not found.
823  *
824  * \retval pointer to struct nidrange matching network specified via \a src
825  * \retval NULL if \a src does not match any network
826  */
827 static struct nidrange *
828 add_nidrange(const struct cfs_lstr *src,
829              struct list_head *nidlist)
830 {
831         struct netstrfns *nf;
832         struct nidrange *nr;
833         int endlen;
834         unsigned netnum;
835
836         if (src->ls_len >= LNET_NIDSTR_SIZE)
837                 return NULL;
838
839         nf = libcfs_namenum2netstrfns(src->ls_str);
840         if (nf == NULL)
841                 return NULL;
842         endlen = src->ls_len - strlen(nf->nf_name);
843         if (endlen == 0)
844                 /* network name only, e.g. "elan" or "tcp" */
845                 netnum = 0;
846         else {
847                 /* e.g. "elan25" or "tcp23", refuse to parse if
848                  * network name is not appended with decimal or
849                  * hexadecimal number */
850                 if (!cfs_str2num_check(src->ls_str + strlen(nf->nf_name),
851                                        endlen, &netnum, 0, MAX_NUMERIC_VALUE))
852                         return NULL;
853         }
854
855         list_for_each_entry(nr, nidlist, nr_link) {
856                 if (nr->nr_netstrfns != nf)
857                         continue;
858                 if (nr->nr_netnum != netnum)
859                         continue;
860                 return nr;
861         }
862
863         nr = calloc(1, sizeof(struct nidrange));
864         if (nr == NULL)
865                 return NULL;
866         list_add_tail(&nr->nr_link, nidlist);
867         INIT_LIST_HEAD(&nr->nr_addrranges);
868         nr->nr_netstrfns = nf;
869         nr->nr_all = 0;
870         nr->nr_netnum = netnum;
871
872         return nr;
873 }
874
875 /**
876  * Parses \<nidrange\> token of the syntax.
877  *
878  * \retval 1 if \a src parses to \<addrrange\> '@' \<net\>
879  * \retval 0 otherwise
880  */
881 static int
882 parse_nidrange(struct cfs_lstr *src, struct list_head *nidlist)
883 {
884         struct cfs_lstr addrrange;
885         struct cfs_lstr net;
886         struct cfs_lstr tmp;
887         struct nidrange *nr;
888
889         tmp = *src;
890         if (cfs_gettok(src, '@', &addrrange) == 0)
891                 goto failed;
892
893         if (cfs_gettok(src, '@', &net) == 0 || src->ls_str != NULL)
894                 goto failed;
895
896         nr = add_nidrange(&net, nidlist);
897         if (nr == NULL)
898                 goto failed;
899
900         if (parse_addrange(&addrrange, nr) != 0)
901                 goto failed;
902
903         return 1;
904  failed:
905         fprintf(stderr, "can't parse nidrange: \"%.*s\"\n",
906                 tmp.ls_len, tmp.ls_str);
907         return 0;
908 }
909
910 /**
911  * Frees addrrange structures of \a list.
912  *
913  * For each struct addrrange structure found on \a list it frees
914  * cfs_expr_list list attached to it and frees the addrrange itself.
915  *
916  * \retval none
917  */
918 static void
919 free_addrranges(struct list_head *list)
920 {
921         while (!list_empty(list)) {
922                 struct addrrange *ar;
923
924                 ar = list_entry(list->next, struct addrrange, ar_link);
925
926                 cfs_expr_list_free_list(&ar->ar_numaddr_ranges);
927                 list_del(&ar->ar_link);
928                 free(ar);
929         }
930 }
931
932 /**
933  * Frees nidrange strutures of \a list.
934  *
935  * For each struct nidrange structure found on \a list it frees
936  * addrrange list attached to it and frees the nidrange itself.
937  *
938  * \retval none
939  */
940 void
941 cfs_free_nidlist(struct list_head *list)
942 {
943         struct list_head *pos, *next;
944         struct nidrange *nr;
945
946         list_for_each_safe(pos, next, list) {
947                 nr = list_entry(pos, struct nidrange, nr_link);
948                 free_addrranges(&nr->nr_addrranges);
949                 list_del(pos);
950                 free(nr);
951         }
952 }
953
954 /**
955  * Parses nid range list.
956  *
957  * Parses with rigorous syntax and overflow checking \a str into
958  * \<nidrange\> [ ' ' \<nidrange\> ], compiles \a str into set of
959  * structures and links that structure to \a nidlist. The resulting
960  * list can be used to match a NID againts set of NIDS defined by \a
961  * str.
962  * \see cfs_match_nid
963  *
964  * \retval 1 on success
965  * \retval 0 otherwise
966  */
967 int
968 cfs_parse_nidlist(char *str, int len, struct list_head *nidlist)
969 {
970         struct cfs_lstr src;
971         struct cfs_lstr res;
972         int rc;
973
974         src.ls_str = str;
975         src.ls_len = len;
976         INIT_LIST_HEAD(nidlist);
977         while (src.ls_str) {
978                 rc = cfs_gettok(&src, ' ', &res);
979                 if (rc == 0) {
980                         cfs_free_nidlist(nidlist);
981                         return 0;
982                 }
983                 rc = parse_nidrange(&res, nidlist);
984                 if (rc == 0) {
985                         cfs_free_nidlist(nidlist);
986                         return 0;
987                 }
988         }
989         return 1;
990 }
991
992 /**
993  * Matches a nid (\a nid) against the compiled list of nidranges (\a nidlist).
994  *
995  * \see cfs_parse_nidlist()
996  *
997  * \retval 1 on match
998  * \retval 0  otherwises
999  */
1000 int cfs_match_nid(lnet_nid_t nid, struct list_head *nidlist)
1001 {
1002         struct nidrange *nr;
1003         struct addrrange *ar;
1004
1005         list_for_each_entry(nr, nidlist, nr_link) {
1006                 if (nr->nr_netstrfns->nf_type != LNET_NETTYP(LNET_NIDNET(nid)))
1007                         continue;
1008                 if (nr->nr_netnum != LNET_NETNUM(LNET_NIDNET(nid)))
1009                         continue;
1010                 if (nr->nr_all)
1011                         return 1;
1012                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link)
1013                         if (nr->nr_netstrfns->nf_match_addr(LNET_NIDADDR(nid),
1014                                                         &ar->ar_numaddr_ranges))
1015                                 return 1;
1016         }
1017         return 0;
1018 }
1019
1020 /**
1021  * Print the network part of the nidrange \a nr into the specified \a buffer.
1022  *
1023  * \retval number of characters written
1024  */
1025 static int
1026 cfs_print_network(char *buffer, int count, struct nidrange *nr)
1027 {
1028         struct netstrfns *nf = nr->nr_netstrfns;
1029
1030         if (nr->nr_netnum == 0)
1031                 return snprintf(buffer, count, "@%s", nf->nf_name);
1032         else
1033                 return snprintf(buffer, count, "@%s%u",
1034                                     nf->nf_name, nr->nr_netnum);
1035 }
1036
1037
1038 /**
1039  * Print a list of addrrange (\a addrranges) into the specified \a buffer.
1040  * At max \a count characters can be printed into \a buffer.
1041  *
1042  * \retval number of characters written
1043  */
1044 static int
1045 cfs_print_addrranges(char *buffer, int count, struct list_head *addrranges,
1046                      struct nidrange *nr)
1047 {
1048         int i = 0;
1049         struct addrrange *ar;
1050         struct netstrfns *nf = nr->nr_netstrfns;
1051
1052         list_for_each_entry(ar, addrranges, ar_link) {
1053                 if (i != 0)
1054                         i += snprintf(buffer + i, count - i, " ");
1055                 i += nf->nf_print_addrlist(buffer + i, count - i,
1056                                            &ar->ar_numaddr_ranges);
1057                 i += cfs_print_network(buffer + i, count - i, nr);
1058         }
1059         return i;
1060 }
1061
1062 /**
1063  * Print a list of nidranges (\a nidlist) into the specified \a buffer.
1064  * At max \a count characters can be printed into \a buffer.
1065  * Nidranges are separated by a space character.
1066  *
1067  * \retval number of characters written
1068  */
1069 int cfs_print_nidlist(char *buffer, int count, struct list_head *nidlist)
1070 {
1071         int i = 0;
1072         struct nidrange *nr;
1073
1074         if (count <= 0)
1075                 return 0;
1076
1077         list_for_each_entry(nr, nidlist, nr_link) {
1078                 if (i != 0)
1079                         i += snprintf(buffer + i, count - i, " ");
1080
1081                 if (nr->nr_all != 0) {
1082                         assert(list_empty(&nr->nr_addrranges));
1083                         i += snprintf(buffer + i, count - i, "*");
1084                         i += cfs_print_network(buffer + i, count - i, nr);
1085                 } else {
1086                         i += cfs_print_addrranges(buffer + i, count - i,
1087                                                   &nr->nr_addrranges, nr);
1088                 }
1089         }
1090         return i;
1091 }
1092
1093 /**
1094  * Determines minimum and maximum addresses for a single
1095  * numeric address range
1096  *
1097  * \param       ar
1098  * \param       min_nid
1099  * \param       max_nid
1100  */
1101 static void cfs_ip_ar_min_max(struct addrrange *ar, __u32 *min_nid,
1102                               __u32 *max_nid)
1103 {
1104         struct cfs_expr_list    *el;
1105         struct cfs_range_expr   *re;
1106         __u32                   tmp_ip_addr = 0;
1107         unsigned int            min_ip[4] = {0};
1108         unsigned int            max_ip[4] = {0};
1109         int                     re_count = 0;
1110
1111         list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
1112                 list_for_each_entry(re, &el->el_exprs, re_link) {
1113                         min_ip[re_count] = re->re_lo;
1114                         max_ip[re_count] = re->re_hi;
1115                         re_count++;
1116                 }
1117         }
1118
1119         tmp_ip_addr = ((min_ip[0] << 24) | (min_ip[1] << 16) |
1120                        (min_ip[2] << 8) | min_ip[3]);
1121
1122         if (min_nid != NULL)
1123                 *min_nid = tmp_ip_addr;
1124
1125         tmp_ip_addr = ((max_ip[0] << 24) | (max_ip[1] << 16) |
1126                        (max_ip[2] << 8) | max_ip[3]);
1127
1128         if (max_nid != NULL)
1129                 *max_nid = tmp_ip_addr;
1130 }
1131
1132 /**
1133  * Determines minimum and maximum addresses for a single
1134  * numeric address range
1135  *
1136  * \param       ar
1137  * \param       min_nid
1138  * \param       max_nid
1139  */
1140 static void cfs_num_ar_min_max(struct addrrange *ar, __u32 *min_nid,
1141                                __u32 *max_nid)
1142 {
1143         struct cfs_expr_list    *el;
1144         struct cfs_range_expr   *re;
1145         unsigned int            min_addr = 0;
1146         unsigned int            max_addr = 0;
1147
1148         list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
1149                 list_for_each_entry(re, &el->el_exprs, re_link) {
1150                         if (re->re_lo < min_addr || min_addr == 0)
1151                                 min_addr = re->re_lo;
1152                         if (re->re_hi > max_addr)
1153                                 max_addr = re->re_hi;
1154                 }
1155         }
1156
1157         if (min_nid != NULL)
1158                 *min_nid = min_addr;
1159         if (max_nid != NULL)
1160                 *max_nid = max_addr;
1161 }
1162
1163 /**
1164  * Determines whether an expression list in an nidrange contains exactly
1165  * one contiguous address range. Calls the correct netstrfns for the LND
1166  *
1167  * \param       *nidlist
1168  *
1169  * \retval      true if contiguous
1170  * \retval      false if not contiguous
1171  */
1172 bool cfs_nidrange_is_contiguous(struct list_head *nidlist)
1173 {
1174         struct nidrange         *nr;
1175         struct netstrfns        *nf = NULL;
1176         char                    *lndname = NULL;
1177         int                     netnum = -1;
1178
1179         list_for_each_entry(nr, nidlist, nr_link) {
1180                 nf = nr->nr_netstrfns;
1181                 if (lndname == NULL)
1182                         lndname = nf->nf_name;
1183                 if (netnum == -1)
1184                         netnum = nr->nr_netnum;
1185
1186                 if (strcmp(lndname, nf->nf_name) != 0 ||
1187                     netnum != nr->nr_netnum)
1188                         return false;
1189         }
1190
1191         if (nf == NULL)
1192                 return false;
1193
1194         if (!nf->nf_is_contiguous(nidlist))
1195                 return false;
1196
1197         return true;
1198 }
1199
1200 /**
1201  * Determines whether an expression list in an num nidrange contains exactly
1202  * one contiguous address range.
1203  *
1204  * \param       *nidlist
1205  *
1206  * \retval      true if contiguous
1207  * \retval      false if not contiguous
1208  */
1209 static bool cfs_num_is_contiguous(struct list_head *nidlist)
1210 {
1211         struct nidrange         *nr;
1212         struct addrrange        *ar;
1213         struct cfs_expr_list    *el;
1214         struct cfs_range_expr   *re;
1215         int                     last_hi = 0;
1216         __u32                   last_end_nid = 0;
1217         __u32                   current_start_nid = 0;
1218         __u32                   current_end_nid = 0;
1219
1220         list_for_each_entry(nr, nidlist, nr_link) {
1221                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
1222                         cfs_num_ar_min_max(ar, &current_start_nid,
1223                                            &current_end_nid);
1224                         if (last_end_nid != 0 &&
1225                             (current_start_nid - last_end_nid != 1))
1226                                         return false;
1227                         last_end_nid = current_end_nid;
1228                         list_for_each_entry(el, &ar->ar_numaddr_ranges,
1229                                             el_link) {
1230                                 list_for_each_entry(re, &el->el_exprs,
1231                                                     re_link) {
1232                                         if (re->re_stride > 1)
1233                                                 return false;
1234                                         else if (last_hi != 0 &&
1235                                                  re->re_hi - last_hi != 1)
1236                                                 return false;
1237                                         last_hi = re->re_hi;
1238                                 }
1239                         }
1240                 }
1241         }
1242
1243         return true;
1244 }
1245
1246 /**
1247  * Determines whether an expression list in an ip nidrange contains exactly
1248  * one contiguous address range.
1249  *
1250  * \param       *nidlist
1251  *
1252  * \retval      true if contiguous
1253  * \retval      false if not contiguous
1254  */
1255 static bool cfs_ip_is_contiguous(struct list_head *nidlist)
1256 {
1257         struct nidrange         *nr;
1258         struct addrrange        *ar;
1259         struct cfs_expr_list    *el;
1260         struct cfs_range_expr   *re;
1261         int                     expr_count;
1262         int                     last_hi = 255;
1263         int                     last_diff = 0;
1264         __u32                   last_end_nid = 0;
1265         __u32                   current_start_nid = 0;
1266         __u32                   current_end_nid = 0;
1267
1268         list_for_each_entry(nr, nidlist, nr_link) {
1269                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
1270                         last_hi = 255;
1271                         last_diff = 0;
1272                         cfs_ip_ar_min_max(ar, &current_start_nid,
1273                                           &current_end_nid);
1274                         if (last_end_nid != 0 &&
1275                             (current_start_nid - last_end_nid != 1))
1276                                         return false;
1277                         last_end_nid = current_end_nid;
1278                         list_for_each_entry(el,
1279                                             &ar->ar_numaddr_ranges,
1280                                             el_link) {
1281                                 expr_count = 0;
1282                                 list_for_each_entry(re, &el->el_exprs,
1283                                                     re_link) {
1284                                         expr_count++;
1285                                         if (re->re_stride > 1 ||
1286                                             (last_diff > 0 && last_hi != 255) ||
1287                                             (last_diff > 0 && last_hi == 255 &&
1288                                              re->re_lo > 0))
1289                                                 return false;
1290                                         last_hi = re->re_hi;
1291                                         last_diff = re->re_hi - re->re_lo;
1292                                 }
1293                         }
1294                 }
1295         }
1296
1297         return true;
1298 }
1299
1300 /**
1301  * Takes a linked list of nidrange expressions, determines the minimum
1302  * and maximum nid and creates appropriate nid structures
1303  *
1304  * \param       *nidlist
1305  * \param       *min_nid
1306  * \param       *max_nid
1307  */
1308 void cfs_nidrange_find_min_max(struct list_head *nidlist, char *min_nid,
1309                                char *max_nid, size_t nidstr_length)
1310 {
1311         struct nidrange         *nr;
1312         struct netstrfns        *nf = NULL;
1313         int                     netnum = -1;
1314         __u32                   min_addr;
1315         __u32                   max_addr;
1316         char                    *lndname = NULL;
1317         char                    min_addr_str[IPSTRING_LENGTH];
1318         char                    max_addr_str[IPSTRING_LENGTH];
1319
1320         list_for_each_entry(nr, nidlist, nr_link) {
1321                 nf = nr->nr_netstrfns;
1322                 lndname = nf->nf_name;
1323                 if (netnum == -1)
1324                         netnum = nr->nr_netnum;
1325
1326                 nf->nf_min_max(nidlist, &min_addr, &max_addr);
1327         }
1328         nf->nf_addr2str(min_addr, min_addr_str, sizeof(min_addr_str));
1329         nf->nf_addr2str(max_addr, max_addr_str, sizeof(max_addr_str));
1330
1331         snprintf(min_nid, nidstr_length, "%s@%s%d", min_addr_str, lndname,
1332                  netnum);
1333         snprintf(max_nid, nidstr_length, "%s@%s%d", max_addr_str, lndname,
1334                  netnum);
1335 }
1336
1337 /**
1338  * Determines the min and max NID values for num LNDs
1339  *
1340  * \param       *nidlist
1341  * \param       *min_nid
1342  * \param       *max_nid
1343  */
1344 static void cfs_num_min_max(struct list_head *nidlist, __u32 *min_nid,
1345                             __u32 *max_nid)
1346 {
1347         struct nidrange         *nr;
1348         struct addrrange        *ar;
1349         unsigned int            tmp_min_addr = 0;
1350         unsigned int            tmp_max_addr = 0;
1351         unsigned int            min_addr = 0;
1352         unsigned int            max_addr = 0;
1353
1354         list_for_each_entry(nr, nidlist, nr_link) {
1355                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
1356                         cfs_num_ar_min_max(ar, &tmp_min_addr,
1357                                            &tmp_max_addr);
1358                         if (tmp_min_addr < min_addr || min_addr == 0)
1359                                 min_addr = tmp_min_addr;
1360                         if (tmp_max_addr > max_addr)
1361                                 max_addr = tmp_min_addr;
1362                 }
1363         }
1364         *max_nid = max_addr;
1365         *min_nid = min_addr;
1366 }
1367
1368 /**
1369  * Takes an nidlist and determines the minimum and maximum
1370  * ip addresses.
1371  *
1372  * \param       *nidlist
1373  * \param       *min_nid
1374  * \param       *max_nid
1375  */
1376 static void cfs_ip_min_max(struct list_head *nidlist, __u32 *min_nid,
1377                            __u32 *max_nid)
1378 {
1379         struct nidrange         *nr;
1380         struct addrrange        *ar;
1381         __u32                   tmp_min_ip_addr = 0;
1382         __u32                   tmp_max_ip_addr = 0;
1383         __u32                   min_ip_addr = 0;
1384         __u32                   max_ip_addr = 0;
1385
1386         list_for_each_entry(nr, nidlist, nr_link) {
1387                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
1388                         cfs_ip_ar_min_max(ar, &tmp_min_ip_addr,
1389                                           &tmp_max_ip_addr);
1390                         if (tmp_min_ip_addr < min_ip_addr || min_ip_addr == 0)
1391                                 min_ip_addr = tmp_min_ip_addr;
1392                         if (tmp_max_ip_addr > max_ip_addr)
1393                                 max_ip_addr = tmp_max_ip_addr;
1394                 }
1395         }
1396
1397         if (min_nid != NULL)
1398                 *min_nid = min_ip_addr;
1399         if (max_nid != NULL)
1400                 *max_nid = max_ip_addr;
1401 }