Whamcloud - gitweb
b52d041797e66ab8f6c7a6090269925c1f6f13ba
[fs/lustre-release.git] / libcfs / libcfs / util / nidstrings.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2014, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * libcfs/libcfs/util/nidstrings.c
37  *
38  * Author: Phil Schwan <phil@clusterfs.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_LNET
42
43 #include <assert.h>
44 #include <errno.h>
45 #include <stdio.h>
46 #include <stdbool.h>
47 #include <stdlib.h>
48 #include <string.h>
49
50 #include <libcfs/util/string.h>
51 #include <lnet/types.h>
52 #include <lnet/nidstr.h>
53 #ifdef HAVE_NETDB_H
54 # include <netdb.h>
55 #endif
56
57 /* max value for numeric network address */
58 #define MAX_NUMERIC_VALUE 0xffffffff
59
60 #define IPSTRING_LENGTH 16
61
62 /* CAVEAT VENDITOR! Keep the canonical string representation of nets/nids
63  * consistent in all conversion functions.  Some code fragments are copied
64  * around for the sake of clarity...
65  */
66
67 /* CAVEAT EMPTOR! Racey temporary buffer allocation!
68  * Choose the number of nidstrings to support the MAXIMUM expected number of
69  * concurrent users.  If there are more, the returned string will be volatile.
70  * NB this number must allow for a process to be descheduled for a timeslice
71  * between getting its string and using it.
72  */
73
74 static char      libcfs_nidstrings[LNET_NIDSTR_COUNT][LNET_NIDSTR_SIZE];
75 static int       libcfs_nidstring_idx;
76
77 char *
78 libcfs_next_nidstring(void)
79 {
80         char          *str;
81
82         str = libcfs_nidstrings[libcfs_nidstring_idx++];
83         if (libcfs_nidstring_idx ==
84             sizeof(libcfs_nidstrings)/sizeof(libcfs_nidstrings[0]))
85                 libcfs_nidstring_idx = 0;
86
87         return str;
88 }
89
90 static int
91 libcfs_lo_str2addr(const char *str, int nob, __u32 *addr)
92 {
93         *addr = 0;
94         return 1;
95 }
96
97 static void
98 libcfs_ip_addr2str(__u32 addr, char *str, size_t size)
99 {
100         snprintf(str, size, "%u.%u.%u.%u",
101                  (addr >> 24) & 0xff, (addr >> 16) & 0xff,
102                  (addr >> 8) & 0xff, addr & 0xff);
103 }
104
105 /* CAVEAT EMPTOR XscanfX
106  * I use "%n" at the end of a sscanf format to detect trailing junk.  However
107  * sscanf may return immediately if it sees the terminating '0' in a string, so
108  * I initialise the %n variable to the expected length.  If sscanf sets it;
109  * fine, if it doesn't, then the scan ended at the end of the string, which is
110  * fine too :) */
111 static int
112 libcfs_ip_str2addr(const char *str, int nob, __u32 *addr)
113 {
114         unsigned int    a;
115         unsigned int    b;
116         unsigned int    c;
117         unsigned int    d;
118         int             n = nob; /* XscanfX */
119
120         /* numeric IP? */
121         if (sscanf(str, "%u.%u.%u.%u%n", &a, &b, &c, &d, &n) >= 4 &&
122             n == nob &&
123             (a & ~0xff) == 0 && (b & ~0xff) == 0 &&
124             (c & ~0xff) == 0 && (d & ~0xff) == 0) {
125                 *addr = ((a<<24)|(b<<16)|(c<<8)|d);
126                 return 1;
127         }
128
129 #ifdef HAVE_GETHOSTBYNAME
130         /* known hostname? */
131         if (('a' <= str[0] && str[0] <= 'z') ||
132             ('A' <= str[0] && str[0] <= 'Z')) {
133                 char *tmp;
134
135                 tmp = calloc(1, nob + 1);
136                 if (tmp != NULL) {
137                         struct hostent *he;
138
139                         memcpy(tmp, str, nob);
140                         tmp[nob] = 0;
141
142                         he = gethostbyname(tmp);
143
144                         free(tmp);
145
146                         if (he != NULL) {
147                                 __u32 ip = *(__u32 *)he->h_addr;
148
149                                 *addr = ntohl(ip);
150                                 return 1;
151                         }
152                 }
153         }
154 #endif
155         return 0;
156 }
157
158 int
159 cfs_ip_addr_parse(char *str, int len, struct list_head *list)
160 {
161         struct cfs_expr_list *el;
162         struct cfs_lstr src;
163         int rc;
164         int i;
165
166         src.ls_str = str;
167         src.ls_len = len;
168         i = 0;
169
170         while (src.ls_str != NULL) {
171                 struct cfs_lstr res;
172
173                 if (!cfs_gettok(&src, '.', &res)) {
174                         rc = -EINVAL;
175                         goto out;
176                 }
177
178                 rc = cfs_expr_list_parse(res.ls_str, res.ls_len, 0, 255, &el);
179                 if (rc != 0)
180                         goto out;
181
182                 list_add_tail(&el->el_link, list);
183                 i++;
184         }
185
186         if (i == 4)
187                 return 0;
188
189         rc = -EINVAL;
190 out:
191         cfs_expr_list_free_list(list);
192
193         return rc;
194 }
195
196 static int
197 libcfs_ip_addr_range_print(char *buffer, int count, struct list_head *list)
198 {
199         int i = 0, j = 0;
200         struct cfs_expr_list *el;
201
202         list_for_each_entry(el, list, el_link) {
203                 assert(j++ < 4);
204                 if (i != 0)
205                         i += snprintf(buffer + i, count - i, ".");
206                 i += cfs_expr_list_print(buffer + i, count - i, el);
207         }
208         return i;
209 }
210
211 /**
212  * Matches address (\a addr) against address set encoded in \a list.
213  *
214  * \retval 1 if \a addr matches
215  * \retval 0 otherwise
216  */
217 int
218 cfs_ip_addr_match(__u32 addr, struct list_head *list)
219 {
220         struct cfs_expr_list *el;
221         int i = 0;
222
223         list_for_each_entry_reverse(el, list, el_link) {
224                 if (!cfs_expr_list_match(addr & 0xff, el))
225                         return 0;
226                 addr >>= 8;
227                 i++;
228         }
229
230         return i == 4;
231 }
232
233 static void
234 libcfs_decnum_addr2str(__u32 addr, char *str, size_t size)
235 {
236         snprintf(str, size, "%u", addr);
237 }
238
239 static void
240 libcfs_hexnum_addr2str(__u32 addr, char *str, size_t size)
241 {
242         snprintf(str, size, "0x%x", addr);
243 }
244
245 static int
246 libcfs_num_str2addr(const char *str, int nob, __u32 *addr)
247 {
248         int     n;
249
250         n = nob;
251         if (sscanf(str, "0x%x%n", addr, &n) >= 1 && n == nob)
252                 return 1;
253
254         n = nob;
255         if (sscanf(str, "0X%x%n", addr, &n) >= 1 && n == nob)
256                 return 1;
257
258         n = nob;
259         if (sscanf(str, "%u%n", addr, &n) >= 1 && n == nob)
260                 return 1;
261
262         return 0;
263 }
264
265 /**
266  * Nf_parse_addrlist method for networks using numeric addresses.
267  *
268  * Examples of such networks are gm and elan.
269  *
270  * \retval 0 if \a str parsed to numeric address
271  * \retval errno otherwise
272  */
273 static int
274 libcfs_num_parse(char *str, int len, struct list_head *list)
275 {
276         struct cfs_expr_list *el;
277         int     rc;
278
279         rc = cfs_expr_list_parse(str, len, 0, MAX_NUMERIC_VALUE, &el);
280         if (rc == 0)
281                 list_add_tail(&el->el_link, list);
282
283         return rc;
284 }
285
286 static int
287 libcfs_num_addr_range_print(char *buffer, int count, struct list_head *list)
288 {
289         struct cfs_expr_list *el;
290         int i = 0, j = 0;
291
292         list_for_each_entry(el, list, el_link) {
293                 assert(j++ < 1);
294                 i += cfs_expr_list_print(buffer + i, count - i, el);
295         }
296         return i;
297 }
298
299 /*
300  * Nf_match_addr method for networks using numeric addresses
301  *
302  * \retval 1 on match
303  * \retval 0 otherwise
304  */
305 static int
306 libcfs_num_match(__u32 addr, struct list_head *numaddr)
307 {
308         struct cfs_expr_list *el;
309
310         assert(!list_empty(numaddr));
311         el = list_entry(numaddr->next, struct cfs_expr_list, el_link);
312
313         return cfs_expr_list_match(addr, el);
314 }
315
316 static bool cfs_ip_is_contiguous(struct list_head *nidlist);
317 static void cfs_ip_min_max(struct list_head *nidlist, __u32 *min, __u32 *max);
318 static bool cfs_num_is_contiguous(struct list_head *nidlist);
319 static void cfs_num_min_max(struct list_head *nidlist, __u32 *min, __u32 *max);
320
321 static struct netstrfns  libcfs_netstrfns[] = {
322         {/* .nf_type      */  LOLND,
323          /* .nf_name      */  "lo",
324          /* .nf_modname   */  "klolnd",
325          /* .nf_addr2str  */  libcfs_decnum_addr2str,
326          /* .nf_str2addr  */  libcfs_lo_str2addr,
327          /* .nf_parse_addr*/  libcfs_num_parse,
328          /* .nf_print_addrlist*/  libcfs_num_addr_range_print,
329          /* .nf_match_addr*/      libcfs_num_match,
330          /* .nf_is_contiguous */  cfs_num_is_contiguous,
331          /* .nf_min_max   */      cfs_num_min_max},
332         {/* .nf_type      */  SOCKLND,
333          /* .nf_name      */  "tcp",
334          /* .nf_modname   */  "ksocklnd",
335          /* .nf_addr2str  */  libcfs_ip_addr2str,
336          /* .nf_str2addr  */  libcfs_ip_str2addr,
337          /* .nf_parse_addrlist*/  cfs_ip_addr_parse,
338          /* .nf_print_addrlist*/  libcfs_ip_addr_range_print,
339          /* .nf_match_addr*/      cfs_ip_addr_match,
340          /* .nf_is_contiguous */  cfs_ip_is_contiguous,
341          /* .nf_min_max   */      cfs_ip_min_max},
342         {/* .nf_type      */  O2IBLND,
343          /* .nf_name      */  "o2ib",
344          /* .nf_modname   */  "ko2iblnd",
345          /* .nf_addr2str  */  libcfs_ip_addr2str,
346          /* .nf_str2addr  */  libcfs_ip_str2addr,
347          /* .nf_parse_addrlist*/  cfs_ip_addr_parse,
348          /* .nf_print_addrlist*/  libcfs_ip_addr_range_print,
349          /* .nf_match_addr*/      cfs_ip_addr_match,
350          /* .nf_is_contiguous */  cfs_ip_is_contiguous,
351          /* .nf_min_max   */      cfs_ip_min_max},
352         {/* .nf_type      */  CIBLND,
353          /* .nf_name      */  "cib",
354          /* .nf_modname   */  "kciblnd",
355          /* .nf_addr2str  */  libcfs_ip_addr2str,
356          /* .nf_str2addr  */  libcfs_ip_str2addr,
357          /* .nf_parse_addrlist*/  cfs_ip_addr_parse,
358          /* .nf_print_addrlist*/  libcfs_ip_addr_range_print,
359          /* .nf_match_addr*/      cfs_ip_addr_match,
360          /* .nf_is_contiguous */  cfs_ip_is_contiguous,
361          /* .nf_min_max   */      cfs_ip_min_max},
362         {/* .nf_type      */  OPENIBLND,
363          /* .nf_name      */  "openib",
364          /* .nf_modname   */  "kopeniblnd",
365          /* .nf_addr2str  */  libcfs_ip_addr2str,
366          /* .nf_str2addr  */  libcfs_ip_str2addr,
367          /* .nf_parse_addrlist*/  cfs_ip_addr_parse,
368          /* .nf_print_addrlist*/  libcfs_ip_addr_range_print,
369          /* .nf_match_addr*/      cfs_ip_addr_match,
370          /* .nf_is_contiguous */  cfs_ip_is_contiguous,
371          /* .nf_min_max   */      cfs_ip_min_max},
372         {/* .nf_type      */  IIBLND,
373          /* .nf_name      */  "iib",
374          /* .nf_modname   */  "kiiblnd",
375          /* .nf_addr2str  */  libcfs_ip_addr2str,
376          /* .nf_str2addr  */  libcfs_ip_str2addr,
377          /* .nf_parse_addrlist*/  cfs_ip_addr_parse,
378          /* .nf_print_addrlist*/  libcfs_ip_addr_range_print,
379          /* .nf_match_addr*/      cfs_ip_addr_match,
380          /* .nf_is_contiguous */  cfs_ip_is_contiguous,
381          /* .nf_min_max   */      cfs_ip_min_max},
382         {/* .nf_type      */  VIBLND,
383          /* .nf_name      */  "vib",
384          /* .nf_modname   */  "kviblnd",
385          /* .nf_addr2str  */  libcfs_ip_addr2str,
386          /* .nf_str2addr  */  libcfs_ip_str2addr,
387          /* .nf_parse_addrlist*/  cfs_ip_addr_parse,
388          /* .nf_print_addrlist*/  libcfs_ip_addr_range_print,
389          /* .nf_match_addr*/      cfs_ip_addr_match,
390          /* .nf_is_contiguous */  cfs_ip_is_contiguous,
391          /* .nf_min_max   */      cfs_ip_min_max},
392         {/* .nf_type      */  RALND,
393          /* .nf_name      */  "ra",
394          /* .nf_modname   */  "kralnd",
395          /* .nf_addr2str  */  libcfs_ip_addr2str,
396          /* .nf_str2addr  */  libcfs_ip_str2addr,
397          /* .nf_parse_addrlist*/  cfs_ip_addr_parse,
398          /* .nf_print_addrlist*/  libcfs_ip_addr_range_print,
399          /* .nf_match_addr*/      cfs_ip_addr_match,
400          /* .nf_is_contiguous */  cfs_ip_is_contiguous,
401          /* .nf_min_max   */      cfs_ip_min_max},
402         {/* .nf_type      */      QSWLND,
403          /* .nf_name      */      "elan",
404          /* .nf_modname   */      "kqswlnd",
405          /* .nf_addr2str  */      libcfs_decnum_addr2str,
406          /* .nf_str2addr  */      libcfs_num_str2addr,
407          /* .nf_parse_addrlist*/  libcfs_num_parse,
408          /* .nf_print_addrlist*/  libcfs_num_addr_range_print,
409          /* .nf_match_addr*/      libcfs_num_match,
410          /* .nf_is_contiguous */  cfs_num_is_contiguous,
411          /* .nf_min_max   */      cfs_num_min_max},
412         {/* .nf_type      */      GMLND,
413          /* .nf_name      */      "gm",
414          /* .nf_modname   */      "kgmlnd",
415          /* .nf_addr2str  */      libcfs_hexnum_addr2str,
416          /* .nf_str2addr  */      libcfs_num_str2addr,
417          /* .nf_parse_addrlist*/  libcfs_num_parse,
418          /* .nf_print_addrlist*/  libcfs_num_addr_range_print,
419          /* .nf_match_addr*/      libcfs_num_match,
420          /* .nf_is_contiguous */  cfs_num_is_contiguous,
421          /* .nf_min_max   */      cfs_num_min_max},
422         {/* .nf_type      */      MXLND,
423          /* .nf_name      */      "mx",
424          /* .nf_modname   */      "kmxlnd",
425          /* .nf_addr2str  */      libcfs_ip_addr2str,
426          /* .nf_str2addr  */      libcfs_ip_str2addr,
427          /* .nf_parse_addrlist*/  cfs_ip_addr_parse,
428          /* .nf_print_addrlist*/  libcfs_ip_addr_range_print,
429          /* .nf_match_addr*/      cfs_ip_addr_match,
430          /* .nf_is_contiguous */  cfs_ip_is_contiguous,
431          /* .nf_min_max   */      cfs_ip_min_max},
432         {/* .nf_type      */      PTLLND,
433          /* .nf_name      */      "ptl",
434          /* .nf_modname   */      "kptllnd",
435          /* .nf_addr2str  */      libcfs_decnum_addr2str,
436          /* .nf_str2addr  */      libcfs_num_str2addr,
437          /* .nf_parse_addrlist*/  libcfs_num_parse,
438          /* .nf_print_addrlist*/  libcfs_num_addr_range_print,
439          /* .nf_match_addr*/      libcfs_num_match,
440          /* .nf_is_contiguous */  cfs_num_is_contiguous,
441          /* .nf_min_max   */      cfs_num_min_max},
442         {/* .nf_type      */      GNILND,
443          /* .nf_name      */      "gni",
444          /* .nf_modname   */      "kgnilnd",
445          /* .nf_addr2str  */      libcfs_decnum_addr2str,
446          /* .nf_str2addr  */      libcfs_num_str2addr,
447          /* .nf_parse_addrlist*/  libcfs_num_parse,
448          /* .nf_print_addrlist*/  libcfs_num_addr_range_print,
449          /* .nf_match_addr*/      libcfs_num_match,
450          /* .nf_is_contiguous */  cfs_num_is_contiguous,
451          /* .nf_min_max   */      cfs_num_min_max},
452         {/* .nf_type      */      GNIIPLND,
453          /* .nf_name      */      "gip",
454          /* .nf_modname   */      "kgnilnd",
455          /* .nf_addr2str  */      libcfs_ip_addr2str,
456          /* .nf_str2addr  */      libcfs_ip_str2addr,
457          /* .nf_parse_addrlist*/  cfs_ip_addr_parse,
458          /* .nf_print_addrlist*/  libcfs_ip_addr_range_print,
459          /* .nf_match_addr*/      cfs_ip_addr_match,
460          /* .nf_is_contiguous */  cfs_ip_is_contiguous,
461          /* .nf_min_max   */      cfs_ip_min_max},
462 };
463
464 static const size_t libcfs_nnetstrfns =
465         sizeof(libcfs_netstrfns)/sizeof(libcfs_netstrfns[0]);
466
467 static struct netstrfns *
468 libcfs_lnd2netstrfns(__u32 lnd)
469 {
470         int     i;
471
472         for (i = 0; i < libcfs_nnetstrfns; i++)
473                 if (lnd == libcfs_netstrfns[i].nf_type)
474                         return &libcfs_netstrfns[i];
475
476         return NULL;
477 }
478
479 static struct netstrfns *
480 libcfs_namenum2netstrfns(const char *name)
481 {
482         struct netstrfns *nf;
483         int               i;
484
485         for (i = 0; i < libcfs_nnetstrfns; i++) {
486                 nf = &libcfs_netstrfns[i];
487                 if (!strncmp(name, nf->nf_name, strlen(nf->nf_name)))
488                         return nf;
489         }
490         return NULL;
491 }
492
493 static struct netstrfns *
494 libcfs_name2netstrfns(const char *name)
495 {
496         int    i;
497
498         for (i = 0; i < libcfs_nnetstrfns; i++)
499                 if (!strcmp(libcfs_netstrfns[i].nf_name, name))
500                         return &libcfs_netstrfns[i];
501
502         return NULL;
503 }
504
505 int
506 libcfs_isknown_lnd(__u32 lnd)
507 {
508         return libcfs_lnd2netstrfns(lnd) != NULL;
509 }
510
511 char *
512 libcfs_lnd2modname(__u32 lnd)
513 {
514         struct netstrfns *nf = libcfs_lnd2netstrfns(lnd);
515
516         return (nf == NULL) ? NULL : nf->nf_modname;
517 }
518
519 int
520 libcfs_str2lnd(const char *str)
521 {
522         struct netstrfns *nf = libcfs_name2netstrfns(str);
523
524         if (nf != NULL)
525                 return nf->nf_type;
526
527         return -1;
528 }
529
530 char *
531 libcfs_lnd2str_r(__u32 lnd, char *buf, size_t buf_size)
532 {
533         struct netstrfns *nf;
534
535         nf = libcfs_lnd2netstrfns(lnd);
536         if (nf == NULL)
537                 snprintf(buf, buf_size, "?%u?", lnd);
538         else
539                 snprintf(buf, buf_size, "%s", nf->nf_name);
540
541         return buf;
542 }
543
544 char *
545 libcfs_net2str_r(__u32 net, char *buf, size_t buf_size)
546 {
547         __u32             nnum = LNET_NETNUM(net);
548         __u32             lnd  = LNET_NETTYP(net);
549         struct netstrfns *nf;
550
551         nf = libcfs_lnd2netstrfns(lnd);
552         if (nf == NULL)
553                 snprintf(buf, buf_size, "<%u:%u>", lnd, nnum);
554         else if (nnum == 0)
555                 snprintf(buf, buf_size, "%s", nf->nf_name);
556         else
557                 snprintf(buf, buf_size, "%s%u", nf->nf_name, nnum);
558
559         return buf;
560 }
561
562 char *
563 libcfs_nid2str_r(lnet_nid_t nid, char *buf, size_t buf_size)
564 {
565         __u32             addr = LNET_NIDADDR(nid);
566         __u32             net  = LNET_NIDNET(nid);
567         __u32             nnum = LNET_NETNUM(net);
568         __u32             lnd  = LNET_NETTYP(net);
569         struct netstrfns *nf;
570
571         if (nid == LNET_NID_ANY) {
572                 strncpy(buf, "<?>", buf_size);
573                 buf[buf_size - 1] = '\0';
574                 return buf;
575         }
576
577         nf = libcfs_lnd2netstrfns(lnd);
578         if (nf == NULL) {
579                 snprintf(buf, buf_size, "%x@<%u:%u>", addr, lnd, nnum);
580         } else {
581                 size_t addr_len;
582
583                 nf->nf_addr2str(addr, buf, buf_size);
584                 addr_len = strlen(buf);
585                 if (nnum == 0)
586                         snprintf(buf + addr_len, buf_size - addr_len, "@%s",
587                                  nf->nf_name);
588                 else
589                         snprintf(buf + addr_len, buf_size - addr_len, "@%s%u",
590                                  nf->nf_name, nnum);
591         }
592
593         return buf;
594 }
595
596 static struct netstrfns *
597 libcfs_str2net_internal(const char *str, __u32 *net)
598 {
599         struct netstrfns *nf = NULL;
600         int               nob;
601         unsigned int      netnum;
602         int               i;
603
604         for (i = 0; i < libcfs_nnetstrfns; i++) {
605                 nf = &libcfs_netstrfns[i];
606                 if (!strncmp(str, nf->nf_name, strlen(nf->nf_name)))
607                         break;
608         }
609
610         if (i == libcfs_nnetstrfns)
611                 return NULL;
612
613         nob = strlen(nf->nf_name);
614
615         if (strlen(str) == (unsigned int)nob) {
616                 netnum = 0;
617         } else {
618                 if (nf->nf_type == LOLND) /* net number not allowed */
619                         return NULL;
620
621                 str += nob;
622                 i = strlen(str);
623                 if (sscanf(str, "%u%n", &netnum, &i) < 1 ||
624                     i != (int)strlen(str))
625                         return NULL;
626         }
627
628         *net = LNET_MKNET(nf->nf_type, netnum);
629         return nf;
630 }
631
632 __u32
633 libcfs_str2net(const char *str)
634 {
635         __u32  net;
636
637         if (libcfs_str2net_internal(str, &net) != NULL)
638                 return net;
639
640         return LNET_NIDNET(LNET_NID_ANY);
641 }
642
643 lnet_nid_t
644 libcfs_str2nid(const char *str)
645 {
646         const char       *sep = strchr(str, '@');
647         struct netstrfns *nf;
648         __u32             net;
649         __u32             addr;
650
651         if (sep != NULL) {
652                 nf = libcfs_str2net_internal(sep + 1, &net);
653                 if (nf == NULL)
654                         return LNET_NID_ANY;
655         } else {
656                 sep = str + strlen(str);
657                 net = LNET_MKNET(SOCKLND, 0);
658                 nf = libcfs_lnd2netstrfns(SOCKLND);
659                 assert(nf != NULL);
660         }
661
662         if (!nf->nf_str2addr(str, (int)(sep - str), &addr))
663                 return LNET_NID_ANY;
664
665         return LNET_MKNID(net, addr);
666 }
667
668 char *
669 libcfs_id2str(lnet_process_id_t id)
670 {
671         char *str = libcfs_next_nidstring();
672
673         if (id.pid == LNET_PID_ANY) {
674                 snprintf(str, LNET_NIDSTR_SIZE,
675                          "LNET_PID_ANY-%s", libcfs_nid2str(id.nid));
676                 return str;
677         }
678
679         snprintf(str, LNET_NIDSTR_SIZE, "%s%u-%s",
680                  ((id.pid & LNET_PID_USERFLAG) != 0) ? "U" : "",
681                  (id.pid & ~LNET_PID_USERFLAG), libcfs_nid2str(id.nid));
682         return str;
683 }
684
685 int
686 libcfs_str2anynid(lnet_nid_t *nidp, const char *str)
687 {
688         if (!strcmp(str, "*")) {
689                 *nidp = LNET_NID_ANY;
690                 return 1;
691         }
692
693         *nidp = libcfs_str2nid(str);
694         return *nidp != LNET_NID_ANY;
695 }
696
697 /**
698  * Nid range list syntax.
699  * \verbatim
700  *
701  * <nidlist>         :== <nidrange> [ ' ' <nidrange> ]
702  * <nidrange>        :== <addrrange> '@' <net>
703  * <addrrange>       :== '*' |
704  *                       <ipaddr_range> |
705  *                       <cfs_expr_list>
706  * <ipaddr_range>    :== <cfs_expr_list>.<cfs_expr_list>.<cfs_expr_list>.
707  *                       <cfs_expr_list>
708  * <cfs_expr_list>   :== <number> |
709  *                       <expr_list>
710  * <expr_list>       :== '[' <range_expr> [ ',' <range_expr>] ']'
711  * <range_expr>      :== <number> |
712  *                       <number> '-' <number> |
713  *                       <number> '-' <number> '/' <number>
714  * <net>             :== <netname> | <netname><number>
715  * <netname>         :== "lo" | "tcp" | "o2ib" | "cib" | "openib" | "iib" |
716  *                       "vib" | "ra" | "elan" | "mx" | "ptl"
717  * \endverbatim
718  */
719
720 /**
721  * Structure to represent \<nidrange\> token of the syntax.
722  *
723  * One of this is created for each \<net\> parsed.
724  */
725 struct nidrange {
726         /**
727          * Link to list of this structures which is built on nid range
728          * list parsing.
729          */
730         struct list_head nr_link;
731         /**
732          * List head for addrrange::ar_link.
733          */
734         struct list_head nr_addrranges;
735         /**
736          * Flag indicating that *@<net> is found.
737          */
738         int nr_all;
739         /**
740          * Pointer to corresponding element of libcfs_netstrfns.
741          */
742         struct netstrfns *nr_netstrfns;
743         /**
744          * Number of network. E.g. 5 if \<net\> is "elan5".
745          */
746         int nr_netnum;
747 };
748
749 /**
750  * Structure to represent \<addrrange\> token of the syntax.
751  */
752 struct addrrange {
753         /**
754          * Link to nidrange::nr_addrranges.
755          */
756         struct list_head ar_link;
757         /**
758          * List head for cfs_expr_list::el_list.
759          */
760         struct list_head ar_numaddr_ranges;
761 };
762
763 /**
764  * Parses \<addrrange\> token on the syntax.
765  *
766  * Allocates struct addrrange and links to \a nidrange via
767  * (nidrange::nr_addrranges)
768  *
769  * \retval 0 if \a src parses to '*' | \<ipaddr_range\> | \<cfs_expr_list\>
770  * \retval -errno otherwise
771  */
772 static int
773 parse_addrange(const struct cfs_lstr *src, struct nidrange *nidrange)
774 {
775         struct addrrange *addrrange;
776
777         if (src->ls_len == 1 && src->ls_str[0] == '*') {
778                 nidrange->nr_all = 1;
779                 return 0;
780         }
781
782         addrrange = calloc(1, sizeof(struct addrrange));
783         if (addrrange == NULL)
784                 return -ENOMEM;
785         list_add_tail(&addrrange->ar_link, &nidrange->nr_addrranges);
786         INIT_LIST_HEAD(&addrrange->ar_numaddr_ranges);
787
788         return nidrange->nr_netstrfns->nf_parse_addrlist(src->ls_str,
789                                                 src->ls_len,
790                                                 &addrrange->ar_numaddr_ranges);
791 }
792
793 /**
794  * Finds or creates struct nidrange.
795  *
796  * Checks if \a src is a valid network name, looks for corresponding
797  * nidrange on the ist of nidranges (\a nidlist), creates new struct
798  * nidrange if it is not found.
799  *
800  * \retval pointer to struct nidrange matching network specified via \a src
801  * \retval NULL if \a src does not match any network
802  */
803 static struct nidrange *
804 add_nidrange(const struct cfs_lstr *src,
805              struct list_head *nidlist)
806 {
807         struct netstrfns *nf;
808         struct nidrange *nr;
809         int endlen;
810         unsigned netnum;
811
812         if (src->ls_len >= LNET_NIDSTR_SIZE)
813                 return NULL;
814
815         nf = libcfs_namenum2netstrfns(src->ls_str);
816         if (nf == NULL)
817                 return NULL;
818         endlen = src->ls_len - strlen(nf->nf_name);
819         if (endlen == 0)
820                 /* network name only, e.g. "elan" or "tcp" */
821                 netnum = 0;
822         else {
823                 /* e.g. "elan25" or "tcp23", refuse to parse if
824                  * network name is not appended with decimal or
825                  * hexadecimal number */
826                 if (!cfs_str2num_check(src->ls_str + strlen(nf->nf_name),
827                                        endlen, &netnum, 0, MAX_NUMERIC_VALUE))
828                         return NULL;
829         }
830
831         list_for_each_entry(nr, nidlist, nr_link) {
832                 if (nr->nr_netstrfns != nf)
833                         continue;
834                 if (nr->nr_netnum != netnum)
835                         continue;
836                 return nr;
837         }
838
839         nr = calloc(1, sizeof(struct nidrange));
840         if (nr == NULL)
841                 return NULL;
842         list_add_tail(&nr->nr_link, nidlist);
843         INIT_LIST_HEAD(&nr->nr_addrranges);
844         nr->nr_netstrfns = nf;
845         nr->nr_all = 0;
846         nr->nr_netnum = netnum;
847
848         return nr;
849 }
850
851 /**
852  * Parses \<nidrange\> token of the syntax.
853  *
854  * \retval 1 if \a src parses to \<addrrange\> '@' \<net\>
855  * \retval 0 otherwise
856  */
857 static int
858 parse_nidrange(struct cfs_lstr *src, struct list_head *nidlist)
859 {
860         struct cfs_lstr addrrange;
861         struct cfs_lstr net;
862         struct cfs_lstr tmp;
863         struct nidrange *nr;
864
865         tmp = *src;
866         if (cfs_gettok(src, '@', &addrrange) == 0)
867                 goto failed;
868
869         if (cfs_gettok(src, '@', &net) == 0 || src->ls_str != NULL)
870                 goto failed;
871
872         nr = add_nidrange(&net, nidlist);
873         if (nr == NULL)
874                 goto failed;
875
876         if (parse_addrange(&addrrange, nr) != 0)
877                 goto failed;
878
879         return 1;
880  failed:
881         fprintf(stderr, "can't parse nidrange: \"%.*s\"\n",
882                 tmp.ls_len, tmp.ls_str);
883         return 0;
884 }
885
886 /**
887  * Frees addrrange structures of \a list.
888  *
889  * For each struct addrrange structure found on \a list it frees
890  * cfs_expr_list list attached to it and frees the addrrange itself.
891  *
892  * \retval none
893  */
894 static void
895 free_addrranges(struct list_head *list)
896 {
897         while (!list_empty(list)) {
898                 struct addrrange *ar;
899
900                 ar = list_entry(list->next, struct addrrange, ar_link);
901
902                 cfs_expr_list_free_list(&ar->ar_numaddr_ranges);
903                 list_del(&ar->ar_link);
904                 free(ar);
905         }
906 }
907
908 /**
909  * Frees nidrange strutures of \a list.
910  *
911  * For each struct nidrange structure found on \a list it frees
912  * addrrange list attached to it and frees the nidrange itself.
913  *
914  * \retval none
915  */
916 void
917 cfs_free_nidlist(struct list_head *list)
918 {
919         struct list_head *pos, *next;
920         struct nidrange *nr;
921
922         list_for_each_safe(pos, next, list) {
923                 nr = list_entry(pos, struct nidrange, nr_link);
924                 free_addrranges(&nr->nr_addrranges);
925                 list_del(pos);
926                 free(nr);
927         }
928 }
929
930 /**
931  * Parses nid range list.
932  *
933  * Parses with rigorous syntax and overflow checking \a str into
934  * \<nidrange\> [ ' ' \<nidrange\> ], compiles \a str into set of
935  * structures and links that structure to \a nidlist. The resulting
936  * list can be used to match a NID againts set of NIDS defined by \a
937  * str.
938  * \see cfs_match_nid
939  *
940  * \retval 1 on success
941  * \retval 0 otherwise
942  */
943 int
944 cfs_parse_nidlist(char *str, int len, struct list_head *nidlist)
945 {
946         struct cfs_lstr src;
947         struct cfs_lstr res;
948         int rc;
949
950         src.ls_str = str;
951         src.ls_len = len;
952         INIT_LIST_HEAD(nidlist);
953         while (src.ls_str) {
954                 rc = cfs_gettok(&src, ' ', &res);
955                 if (rc == 0) {
956                         cfs_free_nidlist(nidlist);
957                         return 0;
958                 }
959                 rc = parse_nidrange(&res, nidlist);
960                 if (rc == 0) {
961                         cfs_free_nidlist(nidlist);
962                         return 0;
963                 }
964         }
965         return 1;
966 }
967
968 /**
969  * Matches a nid (\a nid) against the compiled list of nidranges (\a nidlist).
970  *
971  * \see cfs_parse_nidlist()
972  *
973  * \retval 1 on match
974  * \retval 0  otherwises
975  */
976 int cfs_match_nid(lnet_nid_t nid, struct list_head *nidlist)
977 {
978         struct nidrange *nr;
979         struct addrrange *ar;
980
981         list_for_each_entry(nr, nidlist, nr_link) {
982                 if (nr->nr_netstrfns->nf_type != LNET_NETTYP(LNET_NIDNET(nid)))
983                         continue;
984                 if (nr->nr_netnum != LNET_NETNUM(LNET_NIDNET(nid)))
985                         continue;
986                 if (nr->nr_all)
987                         return 1;
988                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link)
989                         if (nr->nr_netstrfns->nf_match_addr(LNET_NIDADDR(nid),
990                                                         &ar->ar_numaddr_ranges))
991                                 return 1;
992         }
993         return 0;
994 }
995
996 /**
997  * Print the network part of the nidrange \a nr into the specified \a buffer.
998  *
999  * \retval number of characters written
1000  */
1001 static int
1002 cfs_print_network(char *buffer, int count, struct nidrange *nr)
1003 {
1004         struct netstrfns *nf = nr->nr_netstrfns;
1005
1006         if (nr->nr_netnum == 0)
1007                 return snprintf(buffer, count, "@%s", nf->nf_name);
1008         else
1009                 return snprintf(buffer, count, "@%s%u",
1010                                     nf->nf_name, nr->nr_netnum);
1011 }
1012
1013
1014 /**
1015  * Print a list of addrrange (\a addrranges) into the specified \a buffer.
1016  * At max \a count characters can be printed into \a buffer.
1017  *
1018  * \retval number of characters written
1019  */
1020 static int
1021 cfs_print_addrranges(char *buffer, int count, struct list_head *addrranges,
1022                      struct nidrange *nr)
1023 {
1024         int i = 0;
1025         struct addrrange *ar;
1026         struct netstrfns *nf = nr->nr_netstrfns;
1027
1028         list_for_each_entry(ar, addrranges, ar_link) {
1029                 if (i != 0)
1030                         i += snprintf(buffer + i, count - i, " ");
1031                 i += nf->nf_print_addrlist(buffer + i, count - i,
1032                                            &ar->ar_numaddr_ranges);
1033                 i += cfs_print_network(buffer + i, count - i, nr);
1034         }
1035         return i;
1036 }
1037
1038 /**
1039  * Print a list of nidranges (\a nidlist) into the specified \a buffer.
1040  * At max \a count characters can be printed into \a buffer.
1041  * Nidranges are separated by a space character.
1042  *
1043  * \retval number of characters written
1044  */
1045 int cfs_print_nidlist(char *buffer, int count, struct list_head *nidlist)
1046 {
1047         int i = 0;
1048         struct nidrange *nr;
1049
1050         if (count <= 0)
1051                 return 0;
1052
1053         list_for_each_entry(nr, nidlist, nr_link) {
1054                 if (i != 0)
1055                         i += snprintf(buffer + i, count - i, " ");
1056
1057                 if (nr->nr_all != 0) {
1058                         assert(list_empty(&nr->nr_addrranges));
1059                         i += snprintf(buffer + i, count - i, "*");
1060                         i += cfs_print_network(buffer + i, count - i, nr);
1061                 } else {
1062                         i += cfs_print_addrranges(buffer + i, count - i,
1063                                                   &nr->nr_addrranges, nr);
1064                 }
1065         }
1066         return i;
1067 }
1068
1069 /**
1070  * Determines minimum and maximum addresses for a single
1071  * numeric address range
1072  *
1073  * \param       ar
1074  * \param       min_nid
1075  * \param       max_nid
1076  */
1077 static void cfs_ip_ar_min_max(struct addrrange *ar, __u32 *min_nid,
1078                               __u32 *max_nid)
1079 {
1080         struct cfs_expr_list    *el;
1081         struct cfs_range_expr   *re;
1082         __u32                   tmp_ip_addr = 0;
1083         unsigned int            min_ip[4] = {0};
1084         unsigned int            max_ip[4] = {0};
1085         int                     re_count = 0;
1086
1087         list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
1088                 list_for_each_entry(re, &el->el_exprs, re_link) {
1089                         min_ip[re_count] = re->re_lo;
1090                         max_ip[re_count] = re->re_hi;
1091                         re_count++;
1092                 }
1093         }
1094
1095         tmp_ip_addr = ((min_ip[0] << 24) | (min_ip[1] << 16) |
1096                        (min_ip[2] << 8) | min_ip[3]);
1097
1098         if (min_nid != NULL)
1099                 *min_nid = tmp_ip_addr;
1100
1101         tmp_ip_addr = ((max_ip[0] << 24) | (max_ip[1] << 16) |
1102                        (max_ip[2] << 8) | max_ip[3]);
1103
1104         if (max_nid != NULL)
1105                 *max_nid = tmp_ip_addr;
1106 }
1107
1108 /**
1109  * Determines minimum and maximum addresses for a single
1110  * numeric address range
1111  *
1112  * \param       ar
1113  * \param       min_nid
1114  * \param       max_nid
1115  */
1116 static void cfs_num_ar_min_max(struct addrrange *ar, __u32 *min_nid,
1117                                __u32 *max_nid)
1118 {
1119         struct cfs_expr_list    *el;
1120         struct cfs_range_expr   *re;
1121         unsigned int            min_addr = 0;
1122         unsigned int            max_addr = 0;
1123
1124         list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
1125                 list_for_each_entry(re, &el->el_exprs, re_link) {
1126                         if (re->re_lo < min_addr || min_addr == 0)
1127                                 min_addr = re->re_lo;
1128                         if (re->re_hi > max_addr)
1129                                 max_addr = re->re_hi;
1130                 }
1131         }
1132
1133         if (min_nid != NULL)
1134                 *min_nid = min_addr;
1135         if (max_nid != NULL)
1136                 *max_nid = max_addr;
1137 }
1138
1139 /**
1140  * Determines whether an expression list in an nidrange contains exactly
1141  * one contiguous address range. Calls the correct netstrfns for the LND
1142  *
1143  * \param       *nidlist
1144  *
1145  * \retval      true if contiguous
1146  * \retval      false if not contiguous
1147  */
1148 bool cfs_nidrange_is_contiguous(struct list_head *nidlist)
1149 {
1150         struct nidrange         *nr;
1151         struct netstrfns        *nf = NULL;
1152         char                    *lndname = NULL;
1153         int                     netnum = -1;
1154
1155         list_for_each_entry(nr, nidlist, nr_link) {
1156                 nf = nr->nr_netstrfns;
1157                 if (lndname == NULL)
1158                         lndname = nf->nf_name;
1159                 if (netnum == -1)
1160                         netnum = nr->nr_netnum;
1161
1162                 if (strcmp(lndname, nf->nf_name) != 0 ||
1163                     netnum != nr->nr_netnum)
1164                         return false;
1165         }
1166
1167         if (nf == NULL)
1168                 return false;
1169
1170         if (!nf->nf_is_contiguous(nidlist))
1171                 return false;
1172
1173         return true;
1174 }
1175
1176 /**
1177  * Determines whether an expression list in an num nidrange contains exactly
1178  * one contiguous address range.
1179  *
1180  * \param       *nidlist
1181  *
1182  * \retval      true if contiguous
1183  * \retval      false if not contiguous
1184  */
1185 static bool cfs_num_is_contiguous(struct list_head *nidlist)
1186 {
1187         struct nidrange         *nr;
1188         struct addrrange        *ar;
1189         struct cfs_expr_list    *el;
1190         struct cfs_range_expr   *re;
1191         int                     last_hi = 0;
1192         __u32                   last_end_nid = 0;
1193         __u32                   current_start_nid = 0;
1194         __u32                   current_end_nid = 0;
1195
1196         list_for_each_entry(nr, nidlist, nr_link) {
1197                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
1198                         cfs_num_ar_min_max(ar, &current_start_nid,
1199                                            &current_end_nid);
1200                         if (last_end_nid != 0 &&
1201                             (current_start_nid - last_end_nid != 1))
1202                                         return false;
1203                         last_end_nid = current_end_nid;
1204                         list_for_each_entry(el, &ar->ar_numaddr_ranges,
1205                                             el_link) {
1206                                 list_for_each_entry(re, &el->el_exprs,
1207                                                     re_link) {
1208                                         if (re->re_stride > 1)
1209                                                 return false;
1210                                         else if (last_hi != 0 &&
1211                                                  re->re_hi - last_hi != 1)
1212                                                 return false;
1213                                         last_hi = re->re_hi;
1214                                 }
1215                         }
1216                 }
1217         }
1218
1219         return true;
1220 }
1221
1222 /**
1223  * Determines whether an expression list in an ip nidrange contains exactly
1224  * one contiguous address range.
1225  *
1226  * \param       *nidlist
1227  *
1228  * \retval      true if contiguous
1229  * \retval      false if not contiguous
1230  */
1231 static bool cfs_ip_is_contiguous(struct list_head *nidlist)
1232 {
1233         struct nidrange         *nr;
1234         struct addrrange        *ar;
1235         struct cfs_expr_list    *el;
1236         struct cfs_range_expr   *re;
1237         int                     expr_count;
1238         int                     last_hi = 255;
1239         int                     last_diff = 0;
1240         __u32                   last_end_nid = 0;
1241         __u32                   current_start_nid = 0;
1242         __u32                   current_end_nid = 0;
1243
1244         list_for_each_entry(nr, nidlist, nr_link) {
1245                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
1246                         last_hi = 255;
1247                         last_diff = 0;
1248                         cfs_ip_ar_min_max(ar, &current_start_nid,
1249                                           &current_end_nid);
1250                         if (last_end_nid != 0 &&
1251                             (current_start_nid - last_end_nid != 1))
1252                                         return false;
1253                         last_end_nid = current_end_nid;
1254                         list_for_each_entry(el,
1255                                             &ar->ar_numaddr_ranges,
1256                                             el_link) {
1257                                 expr_count = 0;
1258                                 list_for_each_entry(re, &el->el_exprs,
1259                                                     re_link) {
1260                                         expr_count++;
1261                                         if (re->re_stride > 1 ||
1262                                             (last_diff > 0 && last_hi != 255) ||
1263                                             (last_diff > 0 && last_hi == 255 &&
1264                                              re->re_lo > 0))
1265                                                 return false;
1266                                         last_hi = re->re_hi;
1267                                         last_diff = re->re_hi - re->re_lo;
1268                                 }
1269                         }
1270                 }
1271         }
1272
1273         return true;
1274 }
1275
1276 /**
1277  * Takes a linked list of nidrange expressions, determines the minimum
1278  * and maximum nid and creates appropriate nid structures
1279  *
1280  * \param       *nidlist
1281  * \param       *min_nid
1282  * \param       *max_nid
1283  */
1284 void cfs_nidrange_find_min_max(struct list_head *nidlist, char *min_nid,
1285                                char *max_nid, size_t nidstr_length)
1286 {
1287         struct nidrange         *nr;
1288         struct netstrfns        *nf = NULL;
1289         int                     netnum = -1;
1290         __u32                   min_addr;
1291         __u32                   max_addr;
1292         char                    *lndname = NULL;
1293         char                    min_addr_str[IPSTRING_LENGTH];
1294         char                    max_addr_str[IPSTRING_LENGTH];
1295
1296         list_for_each_entry(nr, nidlist, nr_link) {
1297                 nf = nr->nr_netstrfns;
1298                 lndname = nf->nf_name;
1299                 if (netnum == -1)
1300                         netnum = nr->nr_netnum;
1301
1302                 nf->nf_min_max(nidlist, &min_addr, &max_addr);
1303         }
1304         nf->nf_addr2str(min_addr, min_addr_str, sizeof(min_addr_str));
1305         nf->nf_addr2str(max_addr, max_addr_str, sizeof(max_addr_str));
1306
1307         snprintf(min_nid, nidstr_length, "%s@%s%d", min_addr_str, lndname,
1308                  netnum);
1309         snprintf(max_nid, nidstr_length, "%s@%s%d", max_addr_str, lndname,
1310                  netnum);
1311 }
1312
1313 /**
1314  * Determines the min and max NID values for num LNDs
1315  *
1316  * \param       *nidlist
1317  * \param       *min_nid
1318  * \param       *max_nid
1319  */
1320 static void cfs_num_min_max(struct list_head *nidlist, __u32 *min_nid,
1321                             __u32 *max_nid)
1322 {
1323         struct nidrange         *nr;
1324         struct addrrange        *ar;
1325         unsigned int            tmp_min_addr = 0;
1326         unsigned int            tmp_max_addr = 0;
1327         unsigned int            min_addr = 0;
1328         unsigned int            max_addr = 0;
1329
1330         list_for_each_entry(nr, nidlist, nr_link) {
1331                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
1332                         cfs_num_ar_min_max(ar, &tmp_min_addr,
1333                                            &tmp_max_addr);
1334                         if (tmp_min_addr < min_addr || min_addr == 0)
1335                                 min_addr = tmp_min_addr;
1336                         if (tmp_max_addr > max_addr)
1337                                 max_addr = tmp_min_addr;
1338                 }
1339         }
1340         *max_nid = max_addr;
1341         *min_nid = min_addr;
1342 }
1343
1344 /**
1345  * Takes an nidlist and determines the minimum and maximum
1346  * ip addresses.
1347  *
1348  * \param       *nidlist
1349  * \param       *min_nid
1350  * \param       *max_nid
1351  */
1352 static void cfs_ip_min_max(struct list_head *nidlist, __u32 *min_nid,
1353                            __u32 *max_nid)
1354 {
1355         struct nidrange         *nr;
1356         struct addrrange        *ar;
1357         __u32                   tmp_min_ip_addr = 0;
1358         __u32                   tmp_max_ip_addr = 0;
1359         __u32                   min_ip_addr = 0;
1360         __u32                   max_ip_addr = 0;
1361
1362         list_for_each_entry(nr, nidlist, nr_link) {
1363                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
1364                         cfs_ip_ar_min_max(ar, &tmp_min_ip_addr,
1365                                           &tmp_max_ip_addr);
1366                         if (tmp_min_ip_addr < min_ip_addr || min_ip_addr == 0)
1367                                 min_ip_addr = tmp_min_ip_addr;
1368                         if (tmp_max_ip_addr > max_ip_addr)
1369                                 max_ip_addr = tmp_max_ip_addr;
1370                 }
1371         }
1372
1373         if (min_nid != NULL)
1374                 *min_nid = min_ip_addr;
1375         if (max_nid != NULL)
1376                 *max_nid = max_ip_addr;
1377 }