Whamcloud - gitweb
LU-1337 build: fix build on powerpc64
[fs/lustre-release.git] / doc / osd-api.txt
1 Overview of the Lustre Object Storage Device API
2
3 Original Authors: 
4 Johann Lombardi (johann.lombardi@intel.com)\r
5 Alex Zhuravlev (alexey.zhuravlev@intel.com)
6 Li Wei (wei.g.li@intel.com)
7 Andreas Dilger (andreas.dilger@intel.com)
8 Niu Yawei (yawei.niu@intel.com)
9
10 Last Updated: September 28, 2012\r
11
12 Copyright © 2012 Intel, Corp.
13
14 This file is released under the GPLv2.
15 \r
16 \r
17 Introduction
18 =============\r
19 \r
20 What OSD API is
21 ---------------\r
22 OSD API is the interface to access and modify data that is supposed to be stored persistently.  This API layer is the interface to code that bridges individual file systems such as ext4 or ZFS to Lustre.  The API is a generic interface to transaction and journaling based file systems so many backend file systems can be supported in a Lustre implementation.  Data can be cached within the OSD or backend target and could be destroyed before hitting storage, but in general the final target is a persistent storage.   This API creates many possibilities, including using object-storage devices or other new persistent storage technologies.\r
23 \r
24 What OSD API is Not
25 -------------------\r
26 OSD API should not be used to control in-core-only state (like ldlm locking), configuration, etc.  The upper layers of the IO/metadata stack should not be involved with the underlying layout or allocation in the OSD storage.\r
27 \r
28 Audience/Goal
29 -------------\r
30 The goal of this document is to provide the reader with the information necessary to accurately construct a new Object Storage Device (OSD) module interface layer for Lustre in order to use a new backend file system with Lustre 2.4 and greater.
31 \r
32 Guidance for New OSD Implementers
33 =================================\r
34 \r
35 LU Infrastructure Overview\r
36 --------------------------\r
37 Lustre is composed of different kernel modules, each implementing different layers in the software stack in an object oriented approach. Generally, each layer builds (or stacks) upon another, and each object is a child of the generic LU object class. Hence the term "LU stack" is often used to reference this hierarchy of Lustre modules and objects. Each layer (i.e. mdt/mdd/lod/osp/ofd/osd) defines its own generic item (lu_object/lu_device) which are thus gathered in a compound item (lu_site/lu_object_layer) representing the multi-layered stacks.\r
38 Different classes of operations can then be implemented by each layer, depending on its natures. There are currently 3 classes of devices:\r
39 - LU_DEVICE_DT: data device (e.g. lod, osp, osd, ofd), see dt_device_operations\r
40 - LU_DEVICE_MD: metadata device (e.g. mdt, mdd), see md_device_operations\r
41 - LU_DEVICE_CL: client I/O device (e.g. vvp, lov, lovsub, osc), see cl_device_operations\r
42 \r
43 \r
44 As a member of the LU stack, the OSD should define its own object and device structures as well as methods associated. It is up to the OSD layer to host the lu_site instance. This latter is usually defined in the osd_device structure.\r
45 \r
46 \r
47 The first thing to do when developing a new OSD is to define a lu_device_type structure to define and register the new OSD type. The following fields of the lu_device_type needs to be filled appropriately:\r
48 - ldt_tags: is the type of device, typically data, metadata or client (see lu_device_tag). An OSD device is of data type and should always registers as such by setting this field to LU_DEVICE_DT.\r
49 - ldt_name: is the name associated with the new OSD type. See LUSTRE_OSD_{LDISKFS,ZFS}_NAME for reference.\r
50 - ldt_ops: is the vector of lu_device_type operations, please see below for further details\r
51 - ldt_ctxt_type: is the lu_context_tag to be used for operations. This should be set to LCT_LOCAL for OSDs.\r
52 \r
53 \r
54 In the original 2.0 MDS stack the devices were built from the top down and OSD was the final device to setup. This schema does not work very well when you have to access on-disk data early and when you have OSD shared among few services (e.g. MDS + MGS on a same storage). So the schema has changed to a reverse one: mount procedure sets up correct OSD, then the stack is built from the bottom up. And instead of introducing another set of methods we decided to use existing obd_connect() and obd_disconnect() given that many existing devices have been already configured this way by the configuration component. Notice also that configuration profiles are organized in this order (LOV/LOD go first, then MDT). Given that device “below” is ready at every step, there is no point in calling separate init method. \r
55 \r
56 Due to complexity in other modules, when the device itself can be referenced by number of entities like exports, RPCs, transactions, callbacks, access via procfs, the notion of precleanup was introduced to be able all the activity safely before the actual cleanup takes place. Similarly ->ldto_device_fini() and ->ldto_device_free() were introduced. So, the former should be used to break any interaction with the outside, the latter - to actually free the device.\r
57 \r
58 So, the configuration component meets SETUP command in the configuration profile (see Appendix), finds appropriate device and calls ->ldto_device_alloc() to set up it as an LU device.\r
59 \r
60 The osd_device_type_ops defines methods that will be called in order to create/destroy a new OSD instance:\r
61 ->ldto_device_alloc(): is called to allocate a new device instance. A pointer to the lustre configuration buffer[c] is supplied to identify the backend device to be configured. More details about configuration buffers can be found in the Appendix XX.\r
62 \r
63 ->ldto_device_init(): is used to perform additional device initialization with the next device in the stack passed as a parameter. Not used on the servers since Orion[d], see the explanation below[e].\r
64 \r
65 ->ldto_device_fini(): is the companion of ->ldto_device_init and is used to finalize the device before freeing it.\r
66 ->ldto_device_free(): is the companion of ->ldto_device_alloc and is in charge of releasing the osd device. It’s called when the last reference to device has gone. \r
67 \r
68 Now that the osd device can be set up, we need to export methods to handle device-level operation. All those methods are documented in the lu_device_operations structure, this includes:\r
69 \r
70 ->ldo_object_alloc(): this is called to allocate an osd_object for the given osd device.  Allocates memory, semaphores etc associated with the osd object.\r
71 \r
72 ->ldo_process_config(): is invoked to process lustre configuration log specific to this device[g]. it’s usually called by the configuration component of Lustre to notify device about changes in configuration, change tunables.\r
73 \r
74 ->ldo_start[h](): is called once all the layers of the stack have been successfully initialized (after LCFG_SETUP stage) and before serving any client requests. This method is required as the stack is built from number of devices (i.e. MDT->MDD->LOD->OSD + number of OSPs). While MDT is the top device, it’s completeness is not enough and OSPs devices are setup later (see example in the Appendix). So, we need an additional method to notify the stack when the full configuration is over and stack is complete.\r
75 \r
76 ->ldo_recovery_complete(): is used to notify all layers in the stack that recovery is completed and new requests are going to be served. The recovery process is driven by the top service (like MDT). Once MDT recovery is over (the clients have reconnected/replayed their requests, locks are recovered, etc), MDT tells others and then additional processes starts. For example, in order to improve create rate OSP (OSC in 1.8, 2.[0123] pre-Orion era[i]) pre-creates objects on OST and then MDS can consume them in non-blocking (RPC-free) manner most of time. But this can lead to leaked objects (so called OST orphans) when MDS crashes. To prevent this OSP tracks all objects being used and once MDT recovery is over, it destroys all pre-created but unused OST objects (so called orphan cleanup procedure). Similarly, MDD tracks all open files and when MDT recovery is over, MDD can find all unlinked but not-destroyed files and remove them (usually result of missing clients).\r
77 Object Lifecycle\r
78 \r
79 When the user wants to access some object, she calls lu_object_find() with already known FID. This generic function lookup object in the site (collection of objects associated with specific OSD and the stack above) and if the object is not found, then lu_object_alloc() is called. Now the top layer for this object is called first (usually top service like MDT or OFD), few ->loo_object_alloc() and ->loo_object_init() are called filling layer by layer to prepare a full representation (see the picture above).\r
80 \r
81 Every object being accessed is supposed to be represented with an in-core structure(s) in the site, indexed by FID. Given FID is known before actual creation we need in-core representation to serialize creation and make sure no more than 1 objects with this FID is created.\r
82 \r
83  ->loo_object_init(): initializes structure specific to this OSD layer. As part of the initialization OSD is supposed to search on-disk representation for object with it’s FID (zfs-osd and ldiskfs-osd use internal Object Index to map FID to dnode/inode). If such an object exists then LOHA_FLAG in loh_flags (struct lu_object_header) is set. The additional struct lu_object_conf can be passed to the method. Currently it’s used to tell OSD that object is known to be non-existing and there is no need to search on a disk. \r
84 \r
85  ->loo_object_delete(): called before lu_object_operations::loo_object_free() to signal that object is being destroyed. Dual to lu_object_operations::loo_object_init().\r
86 \r
87 \r
88  ->loo_object_free[j](): called to release memory\r
89 \r
90 \r
91  ->loo_object_release(): called when last active reference to the object is released (and object returns to the cache). This method is optional.\r
92 \r
93 OBD Methods
94 -----------\r
95 \r
96 Although the lu infrastructure aims at replacing the storage operations of the legacy OBD API (see struct obd_ops in lustre/include/obd.h).  The OBD API is used [k]in several places for device configuration and on the Lustre client (e.g. it’s still used on the client for LDLM locking).  The OBD API storage operations are not needed for server components, and should be ignored. As far as the OSD layer is concerned, upper layers still connect/disconnect to/from the OSD instance via obd_ops::o_connect/disconnect. As a result, each OSD should implement those two operations[l]:\r
97 - obd_ops::o_connect should just call class_connect() and return a struct obd_export via class_conn2export(), see osd_obd_connect(). The structure holds a reference on the device, preventing it from early release.\r
98 - obd_ops::o_disconnect() should just invoke class_disconnect() and then call class_manual_cleanup() when the last export has disconnected, see osd_obd_disconnect(). class_manual_cleanup() schedules the device for a final cleanup.\r
99 \r
100 \r
101 Transaction Overview\r
102 --------------------\r
103 \r
104 The transaction methods specified by the OSD API must be mapped to transaction methods of the underlying OSD persistent storage.  All updates to the underlying storage will be done in the context of a transaction.  It is required that all updates in a single transaction are atomic (either all updates committed to stable storage as one group, or all discarded in case of a fatal system error).  Lustre does not require that transactions be rolled back, though this may happen as a consequence of the server or storage on which the OSD is running suffering a catastrophic failure.  It is also not required that each transaction be committed individually to storage.  It is possible to aggregate multiple transaction requests at the OSD layer to a single larger transaction at the storage layer for improved efficiency and reduced overhead.\r
105 \r
106 Transactions are identified in the OSD API by an opaque transaction handle, which is a pointer to an OSD-private data structure that it can use to track (and optionally verify) the updates done within that transaction.  This handle is returned by the OSD to the caller when the transaction is first created.  Any potential updates (modifications to the underlying storage) must be declared as part of a transaction, after the transaction has been created, and before the transaction is started. The transaction handle is passed when declaring all updates.  If any part of the declaration should fail, the transaction is aborted without having modified the storage.\r
107 \r
108 After all updates have been declared, and have completed successfully, the handle is passed to the transaction start.  After the transaction has started, the handle will be passed to every update that is done as part of that transaction.  All updates done under the transaction must previously have been declared. Once the transaction has started, it is not permitted to add new updates to the transaction, nor is it possible to roll back the transaction after this point.  Should some update to the storage fail, the caller will try to undo the previous updates within the context of the transaction itself, to ensure that the resulting OSD state is correct.\r
109 \r
110 Any update that was not previously declared is an implementation error in the caller.  Not all declared updates need to be executed, as they form a worst-case superset of the possible updates that may be required in order to complete the desired operation in a consistent manner.\r
111 \r
112 Upper layers of the stack may register callback(s) for any open transaction.  These callbacks are to be called after the transaction has committed to stable storage.  The purpose of this callback is so the upper layers can do cleanup or other tasks when the transaction has safely committed to stable storage, and also notify the Lustre client that the request which generated this transaction does not need to replayed and can be discarded from its cache.  In the case of catastrophic failure of the OSD, the Lustre client will replay any transactions that were completed by the OSD, but which had not yet committed to persistent storage, in the order that they were originally performed by the OSD.  By using an asynchronous request and notification method for modifying operations, the Lustre client/server can avoid waiting for synchronous operations to complete.  Supporting commit callbacks is a requirement of any storage used with the OSD API.\r
113 Once all of the actual updates in that transaction are complete, the transaction is stopped.  After this point, no more updates can be done using this transaction handle.  It is possible to mark a transaction handle to be completed synchronously.  In this case, when the transaction is stopped, the dt_trans_stop() method should not return until all of the updates have committed to stable storage.  If there is an error committing the updates to storage, the OSD must abort all operations and discard any in-flight transactions, returning to a consistent transaction state. For some backends this can be non-trivial to roll back, thus they can go to read-only mode to prevent further corruptions. Then the problem should be solved with help from an administrator. \r
114 To let the users to register per-transaction callback OSD should export method ->dt_trans_cb_add() with the following descriptor:\r
115 \r
116 \r
117 struct dt_txn_commit_cb {\r
118         cfs_list_t        dcb_linkage;                /* used internally */\r
119         dt_cb_t                dcb_func;                /* user’s function to be called upon commit */\r
120         __u32                dcb_magic;                /* used internally */\r
121         char                dcb_name[MAX_COMMIT_CB_STR_LEN];\r
122 };\r
123 \r
124 \r
125 Another set of callback can be register on per-device basis with dt_txn_callback_add() using the following description:\r
126 \r
127 \r
128 struct dt_txn_callback {\r
129         int (*dtc_txn_start)(const struct lu_env *env, struct thandle *txn, void *cookie);\r
130         int (*dtc_txn_stop)(const struct lu_env *env, struct thandle *txn, void *cookie);\r
131         void (*dtc_txn_commit)(struct thandle *txn, void *cookie);\r
132         void                *dtc_cookie;\r
133         __u32                dtc_tag;\r
134         cfs_list_t           dtc_linkage;\r
135 };\r
136 \r
137 \r
138 These callback let layers not commanding transactions be involved. For example, MDT registers its set and now every transaction happening on corresponded OSD will be seen by MDT, which adds recovery information to the transactions: generate transaction number, puts it into a special file -- all this happen within the context of the transaction, so atomically. Similarly VBR functionality in MDT updates objects versions.\r
139 \r
140 \r
141 Transactions, or groups of transactions, should be committed sequentially. If transaction T1 starts before transaction T2 starts, then the commit of T2 means that T1 is committed at the same time or earlier. Notice that the creation of a transaction does not imply the immediate start of the updates on storage. \r
142 The declaration stage is used in order to calculate credits needed by the underlying filesystem in order to perform the specified updates in an atomic manner.  For example, for a write operation the amount of space required can be calculated at the declaration stage, thus allowing the file system to ensure that enough space is reserved to complete the transaction atomically without failure once it has started.\r
143 \r
144 \r
145 Every transaction is done in few steps:\r
146 1) creation of transaction handle -- ->dt_trans_create()\r
147 2) declaration of one or more updates that move the file system from one consistent state to another\r
148 -  This will make sure you will have enough resource to commit the requested changes atomically.\r
149 3) transaction start -- ->dt_trans_start()\r
150 4) execute steps \r
151 - perform all the operations declared in the declaration stage 2).\r
152 - fewer operations may be performed at this stage than were declared in 2),\r
153 - additional operations than were not declared in 2) may not be executed.  \r
154 5) transaction stop -- ->dt_trans_stop()\r
155 \r
156 \r
157 thandle::th_sync set to 1 requests commands ->dt_trans_stop() to commit the transaction to a persistent storage as soon as possible, the caller gets control back not sooner than the transaction is committed.\r
158 OSD should provide a caller a way to start committing as soon as possible and don’t be block on this: ->dt_commit_async().\r
159 \r
160 \r
161 Transaction handle is created by ->dt_trans_create() and usually destroyed upon commit (as it holds list of callbacks and their private data). The only exception is that ->dt_trans_start() can’t actually start transaction due to problems with the file system or lack of resources.\r
162 \r
163 \r
164 The maximum number of updates that make up a single transaction is OSD-specific, but is expected to be at least in the tens of updates to multiple objects in the OSD (extending writes of multiple MB of data, modifying or adding attributes, extended attributes, references, etc).     For example, in ext4, each update to the filesystem will modify one or more blocks of storage.  Since one transaction is limited to one quarter of the journal size, if the caller declares a series of updates that modify more than this number of blocks, the declaration must fail or it could not be committed atomically. In general, every constraint must be checked here to ensure that all changes that must commit atomically can complete successfully.\r
165 \r
166 \r
167 Objects Overview\r
168 ----------------\r
169 \r
170 Lustre identifies objects in the underlying OSD storage by a unique 128-bit File IDentifier (FID) that is specified by Lustre and is the only identifier that Lustre is aware of for this object.  The FID is known to Lustre before any access to the object is done (even before it is created), using lu_object_find(). Since Lustre only uses the FID to identify an object, if the underlying OSD storage cannot directly use the Lustre-specified FID to retrieve the object at a later time, it must create a table or index object (normally called the Object Index (OI)) to map Lustre FIDs to an internal object identifier.  Lustre does not need to understand the format or value of the internal object identifier at any time outside of the OSD.\r
171 \r
172 \r
173 The FID itself is composed of 3 members:\r
174 \r
175 \r
176 struct lu_fid {\r
177                 __u64        f_seq;\r
178         __u32        f_oid;\r
179                 __u32        f_ver;\r
180 };\r
181 \r
182 \r
183 While the OSD itself should typically not interpret the FID, it may be possible to optimize the OSD performance by understanding the properties of a FID.  The f_seq (sequence) component is allocated in piecewise (though not contiguous) manner to different nodes, and each sequence forms a “group” of related objects.  The sequence number may be any value in the range [1, 263], but there are typically not a huge number of sequences in use at one time (typically less than one million at the maximum). Within a single sequence, it is likely that tens to thousands (and less commonly millions) of mostly-sequential f_oid values will be allocated. In order to efficiently map FIDs into objects, it is desirable to also be able to associate the OSD-internal index with key-value pairs.\r
184 \r
185 \r
186 There are two major types of the objects:\r
187 1) regular, storing unstructured data (e.g. flat files, OST objects, llog objects)\r
188 2) index, storing key=value pairs (e.g. directories, quota indexes, FLDB)\r
189 \r
190 \r
191 There are 3 sets of methods that should be implemented by the OSD layer:\r
192 1. core methods (i.e. dt_object_operations) used to create/destroy/manipulate attributes of objects\r
193 \r
194 2. data methods (i.e. dt_body_operations) used to access the object body as a flat address space (read/write/truncate/punch) for regular objects\r
195 \r
196 3. index operations (i.e. dt_index_operations) to access index objects as a key-value association\r
197 \r
198 == common methods (dt_object_operations) ==\r
199 \r
200 These methods must exist in the OSD and mapped to the appropriate function in the backend file system.\r
201 \r
202 \r
203 ** Preconditions (locking requirements), mandatory parameters, parameter ranges, pre-calls, post-calls, error codes to be returned, etc.\r
204 \r
205 \r
206  ->do_ah_init(): is an object init allocation hint using parent and child objects. OSD can fill struct dt_allocation_hint with information helping to allocate objects in optimal way. OSD can also transfer additional information into a child object which will be created soon.\r
207 \r
208  ->do_declare_create(): is called to reserve resources (on-disk, in-memory) to create the object, including all internal resources like OI, accounting, etc. The object shouldn’t exist already (i.e. dt_object_exist() should return false)\r
209 \r
210 ->do_create(): is called to perform the actual object creation, including OI update[m], accounting, if necessary. Along with allocation hint (see ->do_ah_init()) the method take struct dt_object_format which can specify format of index (dt_object_format.u.dof_idx). \r
211 \r
212 ->do_declare_destroy(): is called to reserve resource for object deletion. Semantically it’s dual to object creation and does not care about on-disk reference to the object (in contrast with POSIX unlink operation).\r
213 \r
214 ->do_destroy(): is used to execute the object destruction, including OI update. The object must exist (i.e. dt_object_exist() must return true)\r
215 \r
216 ->do_attr_get(): is called to fetch the regular attribute (i.e. lu_attr structure) associated with an object. The lu_attr fields maps the usual unix file attributes, like ownership or size. The object must exist.\r
217 \r
218 ->do_declare_attr_set(): is used to reserve resource in transaction in order to modify some attributes. Can be called on an non-existing object.\r
219 \r
220 ->do_attr_set(): is called to perform the actual attribute changes. The object must exist.\r
221 \r
222 ->do_xattr_get(): is called to fetch the extended attribute of an object with a certain name.  If the struct lu_buf argument has a null lb_buf, the size of the extended attribute should be returned. If the requested extended attribute does not exist, -ENODATA should be returned.  The object must exist. If buffer space (specified in lu_buf.lb_len) is not enough to fit the value, then return -ERANGE. \r
223 \r
224 ->do_declare_xattr_set(): is called to reserve resources in a transaction in order to set an extended attribute of an object. Can be called on an non-existing object.\r
225 \r
226 ->do_xattr_set(): is called to create or update an extended attribute of an object.  If the fl argument has LU_XATTR_CREATE, the extended argument must not exist, otherwise -EEXIST should be returned.  If the fl argument has LU_XATTR_REPLACE, the extended argument must exist, otherwise -ENODATA should be returned.  The object must exist. The maximum size of extended attribute supported by OSD should be present in struct dt_device_param the caller can get with ->dt_conf_get() method.\r
227 \r
228 ->do_declare_xattr_del(): is called to reserve resources in the transaction in order to delete an extended attribute of an object.\r
229 \r
230 ->do_xattr_del(): is called to delete an extended attribute of an object.  Deleting an nonexistent extended attribute is allowed.  The object must exist. The method called on a non-existing attribute returns 0.\r
231 \r
232 ->do_xattr_list(): is called to get a list of the names of existing extended attributes.  The size of the list is returned, including the string terminator.  If the lu_buf argument has a null lb_buf, how many bytes the list would require is returned to help the caller to allocate a buffer of an appropriate size.  The object must exist.\r
233 \r
234 ->do_declare_ref_add(): is called to reserve resources in a transaction in order to increment the object’s nlink.\r
235 \r
236 ->do_ref_add(): is called to increment the nlink of an object. This is typically done on an object when a record referring to it is added to an index object.  The object must exist.\r
237 \r
238 ->do_declare_ref_del(): is called to reserve credits in a transaction in order to decrement the object’s nlink.\r
239 \r
240 ->do_ref_del():  is called to decrement the nlink of an object.  This is typically done on an object when a record referring to it is deleted from an index object.  The object must exist.\r
241 \r
242 == data methods (dt_body_operations) ==\r
243 \r
244 Set of methods described in struct dt_body_operations which should be used with regular objects storing unstructured data.\r
245 \r
246 ->dbo_read(): is called to read data from an object.\r
247 \r
248 ->dbo_declare_write(): is called to reserve resources in a transaction in order to write data into an object.\r
249 \r
250 ->dbo_write(): is called to write data into an object.  This is mostly used to update symbolic links and objects used for internal purposes by Lustre.  Data written with this method is subject to regular transactional rules: commit with other changes in the transaction or discarded together.\r
251 \r
252 ->dbo_bufs_get[n](): is called to get array of buffers for the range described by (offset, length). Each buffer contains a pointer to Linux page, offset within this page and size:\r
253 \r
254 struct niobuf_local {\r
255         /* fields filled by OSD */\r
256 __u64                lnb_file_offset;                /* offset within object */\r
257         __u32                lnb_page_offset;        /* offset within page */\r
258 __u32                len;                        /* actual data stored in this buffer */\r
259 cfs_page_t        *page;\r
260 cfs_dentry_t        *dentry;\r
261 \r
262 \r
263 /* internal fields used by obdfilter/ofd */\r
264 __u32                flags;\r
265 int                lnb_grant_used;\r
266 int                rc;\r
267 };\r
268 \r
269 \r
270 The size of the array should be PTLRPC_MAX_BRW_PAGES.\r
271 \r
272 ->dbo_bufs_put(): is called to release buffers obtained by ->dbo_bufs_get(). Methods operating with struct niobuf_loca (buffers) are used to implement zero-copy IO.\r
273 \r
274 ->dbo_write_prep(): is called before doing bulk transfer from the network to the buffers.  The purpose of the method is to let OSD fill partial buffers with actual data. if the whole buffer is supposed to be overwritten, then OSD can skip this buffer.\r
275 \r
276 \r
277 ->dbo_declare_write_commit(): is called to reserve resources in a transaction in order to write data described by the array of buffers into an object with ->dbo_write_commit(). The transactional rules for \r
278 \r
279 \r
280 ->dbo_write_commit(): is called to write out the data in the buffers.  The transactional rules are the same: by the time the transaction is reported committed all the data written with the method should be stored persistently as well.\r
281 \r
282 \r
283 ->dbo_read_prep(): is called to fetch data into the buffers prepared by ->dbo_bufs_get()\r
284 \r
285 \r
286 ->dbo_fiemap_get(): is called to get logical -> physical mapping information for given range in the object:\r
287 \r
288 \r
289 \r
290 \r
291 struct ll_user_fiemap {\r
292         __u64        fm_start;        /* logical offset (inclusive) */\r
293         __u64        fm_length;        /* logical length the range */\r
294         __u32        fm_flags;  /* FIEMAP_FLAG_* flags for request (in/out) */\r
295         __u32        fm_mapped_extents;/* number of extents that were mapped (out) */\r
296         __u32        fm_extent_count;  /* size of fm_extents array (in) */\r
297         __u32        fm_reserved;\r
298         struct ll_fiemap_extent fm_extents[0]; /* array of mapped extents (out) */\r
299 };\r
300 \r
301 \r
302 ->do_declare_punch(): is called to reserve resources in a transaction in order to release (deallocate) specified range of data in an object.\r
303 \r
304 \r
305 ->do_punch(): is called to release (deallocate) specified range of data in an object. Currently used only in form of truncate where the range is [offset; EOF].\r
306 \r
307 \r
308 == index methods (dt_index_operations) ==\r
309 \r
310 \r
311 To be used with index objects storing key=value pairs\r
312 \r
313 \r
314  ->do_index_try(): Announce that an object is going to be used as an index. This operations checks that the object support indexing operations and supports features described in passed struct dt_index_feature.\r
315 \r
316 \r
317 struct dt_index_features {\r
318         __u32        dif_flags;                /** required feature flags from enum dt_index_flags */\r
319         size_t        dif_keysize_min;        /** minimal required key size */\r
320         size_t        dif_keysize_max;        /** maximal required key size, 0 if no limit */\r
321         size_t        dif_recsize_min;                /** minimal required record size */\r
322         size_t        dif_recsize_max;        /** maximal required record size, 0 if no limit */\r
323         size_t        dif_ptrsize;                /** pointer size for record */\r
324 };\r
325 \r
326 \r
327 enum dt_index_flags {\r
328         DT_IND_VARKEY = 1 << 0,        /** index supports variable sized keys */\r
329         DT_IND_VARREC = 1 << 1,        /** index supports variable sized records */\r
330         DT_IND_UPDATE = 1 << 2,        /** index can be modified */\r
331         DT_IND_NONUNQ = 1 << 3,        /** index supports records with non-unique (duplicate) keys */\r
332         /**\r
333          * index support fixed-size keys sorted with natural numerical way\r
334          * and is able to return left-side value if no exact value found\r
335          */\r
336         DT_IND_RANGE = 1 << 4,\r
337 };\r
338 \r
339 \r
340  ->dio_lookup(): look up a record associated with a key in a given index object. \r
341 \r
342 \r
343  ->dio_declare_insert(): reserve resources for inserting a key/record pair in an index object\r
344 \r
345 \r
346  ->dio_insert(): insert key/record pair in an index object\r
347 \r
348 \r
349  ->dio_declare_delete(): reserve resources for deleting of a key/record pair in an index object\r
350 \r
351 \r
352  ->dio_delete(): delete a key/record pair in an index object\r
353 \r
354 \r
355 To let users to fetch all or a subset of key/record pairs OSD should provide with iterator methods:\r
356 \r
357 \r
358 1. ->init(): allocate and initializes the iterator (defined within OSD implementation)\r
359 1. ->fini(): release the iterator returned by ->init()\r
360 2. ->get(): tries to set the iterator to the closest position which <= the key \r
361 3. ->next(): move the iterator by one record\r
362 4. ->key(): return a pointer to the key the iterator at currently\r
363 5. ->key_size(): return the size of the key the iterator at currently\r
364 6. ->rec(): return a pointer to the buffer holding the record the iterator at currently\r
365 7. ->store(): return the current position of the iterator\r
366 8. ->load(): set the iterator to the position with hash equal specified\r
367 \r
368 \r
369 ** Add iterator example here\r
370 \r
371 \r
372 Special objects\r
373 \r
374 \r
375 A special object with fid [ FID_SEQ_LOCAL_FILE; OTABLE_OT_OID, 0 ] should be accessible via OSD: this is an index object providing list of all existing objects on this storage. The key is an opaque string and the record  is FID. This object is used by high-level components like LFSCK to iterate over objects.\r
376 \r
377 \r
378 Locking Description\r
379 \r
380 \r
381 Internal object consistency is maintained by OSD implementation and/or the backend. This allow OSD implementation to define how fine the locking will be. The API does not define result of conflicting updates.\r
382 \r
383 locking provided by OSD[o] is used to support atomic in-core changes, so that the state visible by other threads accessing the OSD concurrently is consistent.\r
384 \r
385 \r
386 OSD provides with methods to lock/unlock objects in shared and exclusive modes. This locking is not used by OSD internally, rather they are means to let the user group and serialize accesses/updates. OSD API puts no constraints on the locking order, it’s up to the caller.\r
387 \r
388 \r
389 Methods to lock/unlock object\r
390 \r
391 \r
392  * ->do_read_lock() - used to get shared lock on the object\r
393 \r
394 \r
395  * ->do_read_unlock() - used to release shared lock on the object\r
396 \r
397 \r
398  * ->do_write_lock() - used to get exclusive lock on the object\r
399 \r
400 \r
401  * ->do_write_unlock() - used to release exclusive lock on the object\r
402 \r
403 \r
404 Quota Management\r
405 \r
406 \r
407 The OSD layer is in charge of setting up a Quota Slave Device (aka QSD) to manage quota enforcement for a specific OSD device. The QSD instance is in charge of:\r
408 - completing the reintegration procedure [p]with the quota master (aka QMT, see qmt_dev.c) to retrieve the latest quota settings and space distribution.\r
409 - managing quota locks in order to be notified of configuration changes.\r
410 - acquiring space from the QMT when quota space for a given user/group is close to exhaustion.\r
411 - allocating quota space to service thread for local request processing.\r
412 \r
413 \r
414 The QSD API is the following: \r
415 - qsd_init()\r
416 Initialize the quota slave instance, it should be called when starting the osd device: osd_start().\r
417 - qsd_fini()\r
418 Finalize the quota slave instance, it should be called when shuting down the osd device: osd_shutdown().\r
419 - qsd_start()\r
420 Mark the qsd slave instance as 'started' and trigger the 3rd step of quota reintegration: acquire/release quota up/down to usage or acquire per-ID lock if necessary[q]. This function should be called after the osd device has completed recovery: osd_recovery_complete().\r
421 - qsd_op_begin()\r
422 This function is used to enforce quota, and should be called in the declaration of each operation subject to quota enforcement:\r
423 * osd_declare_attr_set()\r
424 * osd_declare_object_create()\r
425 * osd_declare_object_destroy()\r
426 * osd_declare_punch()\r
427 * osd_declare_write()\r
428 * osd_delcare_write_commit()\r
429 - qsd_op_end()\r
430 Perform post quota operation: pre-acquire/release quota from/to master, it should be called after the transaction stopped: osd_trans_stop().\r
431 - qsd_adjust_quota()\r
432 Trigger pre-acquire/release if necessary, it's only used for ldiskfs osd so far. When unlink a file in ldiskfs, the quota accounting isn't updated when the transaction stopped, instead, it'll be udpated on the final iput, so qsd_adjust_quota() will be called then (in osd_object_delete()) to trigger quota release if neccessary.\r
433 \r
434 It is highly desirable that an OSD object can be accessed and modified by multiple threads concurrently.\r
435 \r
436 For regular objects, the preferred implementation allows an object to be read concurrently at overlapping offsets, and written by multiple threads at non-overlapping offsets with the minimum amount of contention possible, or any combination of concurrent read/write operations.  Lustre will not itself perform concurrent overlapping writes to a single region of the object, due to serialization at a higher layer[s]. \r
437 \r
438 For index objects, the preferred implementation allows key/value pair to be looked up concurrently, allows non-conflicting keys to be inserted or removed concurrently, or any combination of concurrent lookup, insertion, or removal.  Lustre does not require the storage of multiple identical keys.[t]  Operations on the same key should be serialized[u].\r
439  \r
440 Requirements for Storage Subsystems Below the OSD API\r
441 As previously discussed, the underlying OSD storage must be able to provide some form of atomic commit for multiple arbitrary updates to OSD storage within a single transaction.  It will always know in advance of the transaction starting which objects will be modified, and how they will be modified.\r
442 \r
443 Atomicity of Updates\r
444 If any of the updates associated with a transaction are stored persistently (i.e. some state in the OSD is modified), then all of the updates in that transaction must also be stored persistently (Atomic).  If the OSD should fail in some manner that prevents all the updates of a transaction from being completed, then none of the updates shall be completed (Consistent).  Once the updates have been reported committed to the caller (i.e. commit callbacks have been run), they cannot be rolled back for any reason (Durable).\r
445 \r
446 \r
447 Object Attributes\r
448 The OSD object should be able to store normal POSIX attributes on each object as specified by Lustre:\r
449 - user ID (32 bits)\r
450 - group ID (32 bits)\r
451 - object type (16 bits)\r
452 - access mode (16 bits)\r
453 - metadata change time (96 bits, 64-bit seconds, 32-bit nanoseconds)\r
454 - data modification time (96 bits, 64-bit seconds, 32-bit nanoseconds)\r
455 - data access time (96 bits, 64-bit seconds, 32-bit nanoseconds)\r
456 - creation time (96 bits, 64-bit seconds, 32-bit nanoseconds, optional)\r
457 - object size (64 bits)\r
458 - link count (32 bits)\r
459 - flags (32 bits)\r
460 - object version (64 bits)\r
461 \r
462 \r
463 The OSD object shall not modify these attributes itself.\r
464 \r
465 In addition, it is desirable track the object allocation size (“blocks”), which the OSD manages itself.  Lustre will query the object allocation size, but will never modify it.  If these attributes are not managed by the OSD natively as part of the object itself, they can be stored in an extended attribute[v] associated with the object.\r
466 \r
467 Extended Attributes\r
468 The OSD should have an efficient mechanism for storing small extended attributes with each object.  This implies that the extended attributes can be accessed at the same time as the object (without extra seek/read operations). There is also a requirement to store larger extended attributes in some cases (over 1kB in size), but the performance of such attributes can be slower proportional to the attribute size.\r
469 \r
470 Efficient Index\r
471 The OSD must provide a mechanism for efficient key=value retrieval, for both fixed-length and variable length keys and values.  It is expected that an index may hold tens of millions of keys, and must be able to do random key lookups in an efficient manner. It must also provide a mechanism for iterating over all of the keys in a particular index and returning these to the caller in a consistent order across multiple calls.  It must be able to provide a cookie that defines the current index at which the iteration is positioned, and must be able to continue iteration at this index at a later time.\r
472 \r
473 Commit Callbacks\r
474 The OSD must provide some mechanism to register multiple arbitrary callback functions for each transaction, and call these functions after the transaction with which they are associated has committed to persistent storage.  It is not required that they be called immediately at transaction commit time, but they cannot be delayed an arbitrarily long time, or other parts of the system may suffer resource exhaustion.  If this mechanism is not implemented by the underlying storage, then it needs to be provided in some manner by the OSD implementation itself.\r
475 \r
476 \r
477 Optional\r
478 In order to provide quota functionality for the OSD, it must be able to track the object allocation size against at least two different keys (typically User ID and Group ID).  The actual mechanism of tracking this allocation is internal to the OSD.  Lustre will specify the owners of the object against which to track this space. Space accounting information will be accessed by Lustre via the index API on special objects dedicated to space allocation management.\r
479
480 Sampel Code\r
481 - http://git.whamcloud.com/?p=fs/lustre-release.git;a=tree;f=lustre/osd-zfs[w];\r
482 \r
483 Appendix 1. A brief note on Lustre configuration.\r
484 =================================================\r
485 \r
486 In the current versions (1.8, 2.x) MGS is used to store configuration of the servers, so called profile. The profile stores configuration commands and arguments to setup specific stack. To see how it looks exactly you can fetch MDT profile with debugfs -R "dump /CONFIGS/lustre-MDT0000 <tempfile>", then parse it with: llog_reader <tempfile>. Here is a short extract:\r
487 #02 (136)attach    0:lustre-MDT0000-mdtlov  1:lov  2:lustre-MDT0000-mdtlov_UUID  \r
488 #03 (176)lov_setup 0:lustre-MDT0000-mdtlov  1:(struct lov_desc)\r
489                 uuid=lustre-MDT0000-mdtlov_UUID  stripe:cnt=1 size=1048576 offset=18446744073709551615 pattern=0x1\r
490 #06 (120)attach    0:lustre-MDT0000  1:mdt  2:lustre-MDT0000_UUID  \r
491 #07 (112)mount_option 0:  1:lustre-MDT0000  2:lustre-MDT0000-mdtlov  \r
492 #08 (160)setup     0:lustre-MDT0000  1:lustre-MDT0000_UUID  2:0  3:lustre-MDT0000-mdtlov  4:f  \r
493 #23 (080)add_uuid  nid=10.0.2.15@tcp(0x200000a00020f)  0:  1:10.0.2.15@tcp  \r
494 #24 (144)attach    0:lustre-OST0000-osc-MDT0000  1:osc  2:lustre-MDT0000-mdtlov_UUID  \r
495 #25 (144)setup     0:lustre-OST0000-osc-MDT0000  1:lustre-OST0000_UUID  2:10.0.2.15@tcp  \r
496 #26 (136)lov_modify_tgts add 0:lustre-MDT0000-mdtlov  1:lustre-OST0000_UUID  2:0  3:1  \r
497 #32 (080)add_uuid  nid=10.0.2.15@tcp(0x200000a00020f)  0:  1:10.0.2.15@tcp  \r
498 #33 (144)attach    0:lustre-OST0001-osc-MDT0000  1:osc  2:lustre-MDT0000-mdtlov_UUID  \r
499 #34 (144)setup     0:lustre-OST0001-osc-MDT0000  1:lustre-OST0001_UUID  2:10.0.2.15@tcp  \r
500 #35 (136)lov_modify_tgts add 0:lustre-MDT0000-mdtlov  1:lustre-OST0001_UUID  2:1  3:1  \r
501 #41 (120)param 0:  1:sys.jobid_var=procname_uid  2:procname_uid  \r
502 #44 (080)set_timeout=20 \r
503 #48 (112)param 0:lustre-MDT0000-mdtlov  1:lov.stripesize=1048576  \r
504 #51 (112)param 0:lustre-MDT0000-mdtlov  1:lov.stripecount=-1  \r
505 #54 (160)param 0:lustre-MDT0000  1:mdt.identity_upcall=/work/lustre/head/lustre-release/lustre/utils/l_getidentity  \r
506 \r
507 \r
508 Every line starts with a specific command (attach, lov_setup, set, etc) to do specific configuration action. Then arguments follow. Often the first argument is a device name. For example,\r
509 \r
510 \r
511 #02 (136)attach    0:lustre-MDT0000-mdtlov  1:lov  2:lustre-MDT0000-mdtlov_UUID  \r
512 \r
513 \r
514 This command will be setting up device “lustre-MDT0000-mdtlov” of type “lov” with additional argument “lustre-MDT0000-mdtlov_UUID”. All these arguments are packed into lustre configuration buffers ( struct lustre_cfg).\r
515 \r
516 \r
517 Another commands will be attaching device into the stack (like setup and lov_modify_tgts).\r
518 \r
519 \r
520 =====================================================================\r
521 \r
522 \r
523 Lustre Environment\r
524 \r
525 \r
526 There is a notion of an environment represented by struct lu_env in many functions and methods. Literally this is a Thread Local Storage (TLS), which is bound to every service thread and used by that thread exclusively, there is no need to serialize access to the data stored here.\r
527 The original purpose of the environment was to workaround small Linux stack (4-8K). A component (like device or library) can register its own descriptor (see LU_KEY_INIT macro) and then every new thread will be populating the environment with buffers described.\r
528 Devices\r
529 \r
530 \r
531 To access disk file system Lustre uses a notion of device which is represented by struct dt_device (which in turn a sub-class of generic lu_device). This structure holds the very basic data like reference counter, a reference to the site (Lustre object collection in-core, very similar to inode cache), a reference to struct lu_type which in turn describe this specific type of devices (type name, operations etc).\r
532 \r
533 \r
534 OSD device is created and initialized at mount time to let configuration component access data it needs before the whole Lustre stack is ready. OSD device is destroyed when all the devices using that are destroyed too. Usually this happen when the server stack shuts down at umount time.\r
535 \r
536 \r
537 There might be few OSD devices of the given type (say, few zfs-osd and ldiskfs-osd). The type stores method common for all OSD instances of given type (below they start with ldto_ prefix). Then every instance of OSD device can get few specific methods (below the start with ldo_ prefix).\r
538 \r
539 \r
540 To connect devices into a stack, ->o_connect() method is used (see struct obd_ops). Currently OSD should implement this method to track all it’s users. Then to disconnect ->o_disconnect() method is used. OSD should implement this method, track remaining users and once no users left, call class_manual_cleanup() function which initiate removal of OSD.\r
541 \r
542 \r
543 As the stack involves many devices and there may be cross-references between them, it’s easier to break the whole shutdown procedure into the two steps and do not set a specific order in which different devices shutdown: at the first step the devices should release all the resources they use internally (so-called pre-cleanup procedure), at the second step they are actually destroyed.\r
544 Device Management Operations\r
545 \r
546 \r
547 struct lu_device *(*ldto_device_alloc)(const struct lu_env *env, struct lu_device_type *t,\r
548                                      struct lustre_cfg *lcfg);\r
549 struct lu_device *(*ldto_device_free)(const struct lu_env *, struct lu_device *);\r
550 int  (*ldto_device_init)(const struct lu_env *env, struct lu_device *, const char *,\r
551                                     struct lu_device *);\r
552 struct lu_device *(*ldto_device_fini)(const struct lu_env *env, struct lu_device *);\r
553 int  (*ldto_init)(struct lu_device_type *t);\r
554 void (*ldto_fini)(struct lu_device_type *t);\r
555 void (*ldto_start)(struct lu_device_type *t);\r
556 void (*ldto_stop)(struct lu_device_type *t);\r
557 \r
558 \r
559 \r
560 \r
561 struct lu_object *(*ldo_object_alloc)(const struct lu_env *env, const struct lu_object_header *h,\r
562                                                           struct lu_device *d);\r
563 int (*ldo_process_config)(const struct lu_env *env, struct lu_device *, struct lustre_cfg *);\r
564 int (*ldo_recovery_complete)(const struct lu_env *, struct lu_device *);\r
565 int (*ldo_prepare)(const struct lu_env *, struct lu_device *parent, struct lu_device *dev);\r
566 int (*o_connect)(const struct lu_env *env, struct obd_export **exp, struct obd_device *src,\r
567   struct obd_uuid *cluuid, struct obd_connect_data *ocd, void *localdata);\r
568 int (*o_reconnect)(const struct lu_env *env, struct obd_export *exp, struct obd_device *src,\r
569       struct obd_uuid *cluuid, struct obd_connect_data *ocd, void *localdata);\r
570 int (*o_disconnect)(struct obd_export *exp);\r
571 \r
572 \r
573 \r
574 \r
575 \r
576 \r
577 \r
578 \r
579 ldto_device_alloc\r
580         the method is called by configuration component (in case of disk file system OSD, this is lustre/obdclass/obd_mount.c) to allocate device. Notice generic struct lu_device does not hold a pointer to private data. Instead OSD should embbed struct lu_device into own structure (like struct osd_device) and return address of lu_device in that structure.\r
581         ldto_device_fini\r
582         the method is called when OSD is about to release. OSD should detach from resources like disk file system, procfs, release objects it holds internally, etc. This is so-called precleanup procedure.\r
583         ldto_device_free\r
584         the method is called to actually release memory allocated in ->ldto_device_alloc().\r
585         ldto_device_ini\r
586         the method is not used by OSD currently.\r
587         ldto_init\r
588         The method is called when specific type of OSD is registered in the system. Currently the method  is used to register OSD-specific data for environments (see Lustre environment).  see LU_TYPE_INIT_FINI() macro as an example.\r
589         ldto_fini\r
590         The method is called when specific type of OSD unregisters. Currently used to unregister OSD-specific data from environment.\r
591         ldto_start\r
592         The method is called when the first device of this type is being instantiated. Currently used to fill existing environments with OSD-specific data.\r
593         ldto_stop\r
594         This method is called when the last instance of specific OSD has gone.  Currently used to release OSD-specific data from environments.\r
595         ldo_object_alloc\r
596         The method is called when a high-level service wants to access an object not found in local lustre cache (see struct lu_site). OSD should allocate a structure, initialize object’s methods  and return a pointer to struct lu_device which is embedded into OSD object structure.\r
597         ldo_process_config\r
598         The method is called in case of configuration changes. Mostly used by high-level services to update local tunables. It’s also possible to let MGS store OSD tunables and set them properly on every server mount or when tunables change run-time.\r
599         ldto_recovery_complete\r
600         The method is called when recovery procedure between a server and clients is completed. This method is used by high-level devices mostly (like OSP to cleanup OST orphans, MDD to cleanup open unlinked files left by missing client, etc).\r
601 \r
602 \r
603         ldo_prepare\r
604         The method is called when all the devices belonging to the stack are configured and setup properly. At this point the server becomes ready to handle RPCs and start recovery procedure.\r
605 In current implementation OSD uses this method to initialize local quota management.\r
606         \r
607 \r
608         the method should also track number of connections made (i.e. number of active users of this OSD).\r
609         o_disconnect\r
610         the method is called then some one using this OSD does not need its service any more (i.e. at umount). For every passed struct export the method should call class_disconnect(export). Once the last user has gone, OSD should call class_manual_cleanup() to schedule the device removal.\r
611         \r
612 \r
613 Device Storage Operations\r
614 \r
615 \r
616 int   (*dt_statfs)(const struct lu_env *env, struct dt_device *dev, struct obd_statfs *osfs);\r
617 struct thandle *(*dt_trans_create)(const struct lu_env *env, struct dt_device *dev);\r
618 int   (*dt_trans_start)(const struct lu_env *env, struct dt_device *dev, struct thandle *th);\r
619 int   (*dt_trans_stop)(const struct lu_env *env, struct thandle *th);\r
620 int   (*dt_trans_cb_add)(struct thandle *th, struct dt_txn_commit_cb *dcb);\r
621 int   (*dt_root_get)(const struct lu_env *env, struct dt_device *dev, struct lu_fid *f);\r
622 void  (*dt_conf_get)(const struct lu_env *env, const struct dt_device *dev,\r
623                              struct dt_device_param *param);\r
624 int   (*dt_sync)(const struct lu_env *env, struct dt_device *dev);\r
625 int   (*dt_ro)(const struct lu_env *env, struct dt_device *dev);\r
626 int   (*dt_commit_async)(const struct lu_env *env, struct dt_device *dev);\r
627 int   (*dt_init_capa_ctxt)(const struct lu_env *env, struct dt_device *dev,\r
628                                        int mode, unsigned long timeout,\r
629                                        __u32 alg, struct lustre_capa_key *keys);\r
630 \r
631 \r
632 \r
633 \r
634 dt_statfs\r
635         called to report current file system usage information: all, free and available blocks/objects.\r
636         dt_trans_create\r
637         called to allocate/initialize transaction handler\r
638         dt_trans_start\r
639         called to start transaction with specific transaction handle\r
640         dt_trans_stop\r
641         called to stop transaction, at this point the transaction is considered complete and OSD/backend can start writeout preserving atomicity\r
642         dt_trans_cb_add\r
643         called to assign a commit callback to specified transaction handler. Used by recovery functionality, sequence manager.\r
644         dt_root_get\r
645         called to get FID of the root object. Used to follow backend filesystem rules and support backend file system in a state where users can mount it directly (with ldiskfs/zfs/etc).\r
646         dt_sync\r
647         called to flush all complete but not written transactions. Should block until the flush is completed.\r
648         dt_ro\r
649         called to turn backend into read-only mode. Used by testing infrastructure to simulate recovery cases.\r
650         dt_commit_async\r
651         called to notify OSD/backend that higher level need transaction to be flushed as soon as possible. Used by Commit-on-Share feature. Should return immediately and not block for long.\r
652         dt_init_capa_ctxt\r
653         called to initialize context for capabilities. not in use currently.\r
654         \r
655 \r
656 \r
657 \r
658 Objects\r
659 \r
660 \r
661 Every object is represented with a header (struct lu_header) and so-called slice on every layer of the stack. Core Lustre code maintains a cache of objects (so-called lu-site, see struct lu_site). which is very similar to Linux inode cache.\r
662 \r
663 \r
664 Object lifetime\r
665 \r
666 \r
667 In-core object is created when high-level service need it to process RPC or do some background job like LFSCK. FID of the object is supposed to be known before the object is created. FID can come from RPC or from a disk. Having the FID lu_object_find() function is called, it search for the object in the cache (see struct lu_site) and if the object is not found, creates it using ->ldo_device_alloc(), ->loo_object_init() and ->loo_object_start() methods.\r
668 Objects are referenced and tracked by Lustre core. If object is not in use, it’s put on LRU list and at some point (subject to internal caching policy or memory pressure callbacks from the kernel) Lustre schedules such an object for a removal from the cache. To do so Lustre core marks the object is going out and calls ->loo_object_release() and ->loo_object_free() iterating over all the layers involved.\r
669 \r
670 \r
671 Locking on the objects and consistency\r
672 \r
673 \r
674 OSD is expected to maintain internal consistency of the file system and its object on its own, requiring no additional locking or serialization from higher levels. This let OSD to control how fine the locking is depending on the internal structuring of a specific file system.  If few update conflict then the result is not defined by OSD API and left to OSD.\r
675 \r
676 \r
677 OSD should provide the caller with few methods to serialize access to an object in shared and exclusive mode. It’s up to caller how to use them, to define order of locking. In general the locks provided by OSD are used to group complex updates so that other threads do not see intermediate result of operations.\r
678 Object Management Methods\r
679 \r
680 \r
681 Object management methods are called by Lustre to manipulate OSD-specific (private) data associated with a specific object during the lifetime of an object. Described in struct lu_object_operations. To allocate an object device’s ->ldo_object_alloc() method is used. It should allocate and initialize object’s methods.\r
682 \r
683 \r
684 \r
685 \r
686 int (*loo_object_init)(const struct lu_env *env, struct lu_object *o,const struct lu_object_conf *);\r
687 int (*loo_object_start)(const struct lu_env *env, struct lu_object *o);\r
688 void (*loo_object_delete)(const struct lu_env *env, struct lu_object *o);\r
689 void (*loo_object_free)(const struct lu_env *env, struct lu_object *o);\r
690 void (*loo_object_release)(const struct lu_env *env, struct lu_object *o);\r
691 int (*loo_object_print)(const struct lu_env *env, void *, lu_printer_t p, const struct lu_object *o);\r
692 int (*loo_object_invariant)(const struct lu_object *o);\r
693 \r
694 \r
695 \r
696 \r
697 loo_object_init\r
698         This method is called when a new object is being created (see lu_object_alloc(), it’s purpose is to initialize object’s internals, usually file system lookups object on a disk (notice a header storing FID is already created by a top device) using Object Index mapping FID to local object id like dnode. LOC_F_NEW can be passed to the method when the caller knows the object is new and OSD can skip OI lookup to improve performance.\r
699         loo_object_start\r
700         The method is called when all the structures and the header are initialized. Currently user by high-level service to as a post-init procedure (i.e. to setup own methods depending on object type which is brought into the header by OSD’s ->loo_object_init())\r
701         loo_object_delete\r
702         is called to let OSD release resources behind an object (except memory allocated for an object), like release file system’s inode. it’s separated from ->loo_object_free() to be able to iterate over still-existing objects. the main purpose to separate ->loo_object_delete() and ->loo_object_free() is to avoid recursion during potentially stack consuming resource release.\r
703         loo_object_free\r
704         is called to actually release memory allocated by ->ldo->object_alloc()\r
705         loo_object_release\r
706         is called when object last it’s last user and moves onto LRU list of unused objects. implementation of this method is optional to OSD.\r
707         loo_object_print\r
708         is used for debugging purpose, it should output details of an object in human-readable format. details usually include information like address of an object, local object number (dnode/inode), type of an object, etc.\r
709         loo_object_invariant\r
710         another optional method for debugging purposes which is called to verify internal consistency of object. \r
711         \r
712 \r
713 Object attributes\r
714 \r
715 \r
716 The OSD object should be able to store normal POSIX attributes with every object as specified by Lustre:\r
717 - user ID (32 bits)\r
718 - group ID (32 bits)\r
719 - object type (16 bits)\r
720 - access mode (16 bits)\r
721 - metadata change time (96 bits, 64-bit seconds, 32-bit nanoseconds)\r
722 - data modification time (96 bits, 64-bit seconds, 32-bit nanoseconds)\r
723 - data access time (96 bits, 64-bit seconds, 32-bit nanoseconds)\r
724 - creation time (96 bits, 64-bit seconds, 32-bit nanoseconds, optional)\r
725 - object size (64 bits)\r
726 - link count (32 bits)\r
727 - flags (32 bits)\r
728 - object version (64 bits)\r
729 \r
730 \r
731 It’s up to OSD and disk file system where to store these attributes. Regular disk file systems usually provide a space for that (inode/dnode).\r
732 \r
733 \r
734 The OSD object shall not modify these attributes itself, all the attributes are controlled by the caller. The only exception is an attribute storing space occupied by object, it’s data and metadata. Lustre can not track this properly, so it’s a responsibility of OSD or disk file system to maintain this attribute. This is require for Lustre quota mechanism. OSD should be able to disable or workaround quota enforcement of disk filesystem. \r
735 \r
736 \r
737 OSD should provide with a mechanism to store extended named attributes. Limits of the size of names and values should be provided by ->do_conf_get() method as it depends on a specific file system. To perform well it’s recommended that OSD store often used attributes in an object (or close to object) so that they can be accessed with a single disk I/O. At the moment the often used attributes are: \r
738 1. "system.posix_acl_access"        - stores ACLs\r
739 2.  "trusted.lov"                        - stores striping information\r
740 3. "trusted.version"                - stores version of object\r
741 \r
742 \r
743 \r
744 \r
745 Object Common Storage Methods\r
746 \r
747 \r
748 \r
749 \r
750 void  (*do_read_lock)(const struct lu_env *env, struct dt_object *dt, unsigned role);\r
751 void  (*do_write_lock)(const struct lu_env *env, struct dt_object *dt, unsigned role);\r
752 void  (*do_read_unlock)(const struct lu_env *env, struct dt_object *dt);\r
753 void  (*do_write_unlock)(const struct lu_env *env, struct dt_object *dt);\r
754 int  (*do_write_locked)(const struct lu_env *env, struct dt_object *dt);\r
755 int   (*do_attr_get)(const struct lu_env *env, struct dt_object *dt, struct lu_attr *attr,\r
756                              struct lustre_capa *capa);\r
757 int   (*do_declare_attr_set)(const struct lu_env *env, struct dt_object *dt,\r
758                                      const struct lu_attr *attr, struct thandle *handle);\r
759 int   (*do_attr_set)(const struct lu_env *env, struct dt_object *dt, const struct lu_attr *attr,\r
760                               struct thandle *handle, struct lustre_capa *capa);\r
761 int   (*do_xattr_get)(const struct lu_env *env, struct dt_object *dt,\r
762                               struct lu_buf *buf, const char *name, struct lustre_capa *capa);\r
763 int   (*do_declare_xattr_set)(const struct lu_env *env, struct dt_object *dt,\r
764           const struct lu_buf *buf, const char *name, int fl,\r
765                                               struct thandle *handle);\r
766 int   (*do_xattr_set)(const struct lu_env *env, struct dt_object *dt, const struct lu_buf *buf,\r
767                               const char *name, int fl, struct thandle *handle, struct lustre_capa *capa);\r
768 int   (*do_declare_xattr_del)(const struct lu_env *env, struct dt_object *dt,\r
769                                              const char *name, struct thandle *handle);\r
770 int   (*do_xattr_del)(const struct lu_env *env, struct dt_object *dt, const char *name,\r
771                                struct thandle *handle, struct lustre_capa *capa);\r
772 int   (*do_xattr_list)(const struct lu_env *env, struct dt_object *dt, struct lu_buf *buf,\r
773                                 struct lustre_capa *capa);\r
774 void  (*do_ah_init)(const struct lu_env *env, struct dt_allocation_hint *ah,\r
775                                struct dt_object *parent, struct dt_object *child, cfs_umode_t child_mode);\r
776 int   (*do_declare_create)(const struct lu_env *env, struct dt_object *dt, struct lu_attr *attr,\r
777                                           struct dt_allocation_hint *hint,  struct dt_object_format *dof,\r
778                                           struct thandle *th);\r
779 int   (*do_create)(const struct lu_env *env, struct dt_object *dt, struct lu_attr *attr,\r
780                             struct dt_allocation_hint *hint, struct dt_object_format *dof,\r
781                             struct thandle *th);\r
782 int   (*do_declare_destroy)(const struct lu_env *env, struct dt_object *dt, struct thandle *th);\r
783 int   (*do_destroy)(const struct lu_env *env, struct dt_object *dt, struct thandle *th);\r
784 int   (*do_index_try)(const struct lu_env *env, struct dt_object *dt, \r
785                                  const struct dt_index_features *feat);\r
786 int   (*do_declare_ref_add)(const struct lu_env *env, struct dt_object *dt, struct thandle *th);\r
787 int   (*do_ref_add)(const struct lu_env *env, struct dt_object *dt, struct thandle *th);\r
788 int   (*do_declare_ref_del)(const struct lu_env *env, struct dt_object *dt, struct thandle *th);\r
789 int   (*do_ref_del)(const struct lu_env *env, struct dt_object *dt, struct thandle *th);\r
790 struct obd_capa *(*do_capa_get)(const struct lu_env *env, struct dt_object *dt,\r
791                               struct lustre_capa *old, __u64 opc);\r
792 int (*do_object_sync)(const struct lu_env *, struct dt_object *);\r
793 \r
794 \r
795 \r
796 \r
797 \r
798 \r
799 do_read_lock\r
800         get a shared lock on the object, this is a blocking lock.\r
801         do_write_lock\r
802         get an exclusive lock on the object, this is a blocking lock.\r
803         do_read_unlock\r
804         release a shared lock on an object, this is a blocking lock.\r
805         do_write_unlock\r
806         release an exclusive lock on an object, this is a blocking lock.\r
807         do_write_locked\r
808         check whether an object is exclusive-locked.\r
809         do_attr_get\r
810         the method is called to get regular attributes an object stores.\r
811         do_declare_attr_set\r
812         the method is called to notify OSD the caller is going to modify regular attributes of an object in specified transaction. OSD should use this method to reserve resources needed to change attributes.\r
813         do_attr_set\r
814         the method is called to change attributes of an object.\r
815         do_xattr_get\r
816         called when the caller needs to get an extended attribute with a specified name\r
817         do_declare_xattr_set\r
818         called to notify OSD the caller is going to set/change an extended attribute on an object. OSD should use this method to reserve resources needed to change an attribute.\r
819         do_xattr_set\r
820         called when the caller needs to change an extended attribute with specified name.\r
821         do_declare_xattr_del\r
822         called to notify OSD the caller is going to remove an extended attribute with a specified name\r
823         do_xattr_del\r
824         called when the caller needs to remove an extended attribute with a specified name\r
825         do_xattr_list\r
826         called when the caller needs to get a list of existing extended attributes (only names of attributes are returned).\r
827         do_ah_init\r
828         called to let OSD to prepare allocation hint which stores information about object locality, type. later this allocation hint is passed to ->do_create() method and use OSD can use this information to optimize on-disk object location. allocation hint is opaque for the caller and can contain OSD-specific information.\r
829         do_declare_create\r
830         called to notify OSD the caller is going to create a new object in a specified transaction.\r
831         do_create\r
832         called to create an object on the OSD in a specified transaction. for index objects the caller can request a set of index properties (like key/value size). if OSD can not support requested properties, it should return an error.\r
833         do_declare_destroy\r
834         called to notify OSD the caller is going to destroy an object in a specified transaction.\r
835         do_destroy\r
836         called to destroy an object in a specified transaction.\r
837         do_index_try\r
838         called when the caller needs to use an object as an index (the object should be created as an index before). also the caller specify a set of properties she expect the index should support. \r
839         do_declare_ref_add\r
840         called to notify OSD the caller is going to increment nlink attribute in a specified transaction.\r
841         do_ref_add\r
842         called to increment nlink attribute in a specified transaction.\r
843         do_declare_ref_del\r
844         called to notify OSD the caller is going to decrement nlink attribute in a specified transaction.\r
845         do_ref_del\r
846         called to decrement nlink attribute in a specified transaction.\r
847         do_capa_get\r
848         called to get a capability for a specified object. not used currently.\r
849         do_object_sync\r
850         called to flush a given object on-disk. It’s a fine grained  version of ->do_sync() method which should make sure an object is stored on-disk. OSD (or backend file system) can track a status of every object and if an object is already flushed, then just the method can return immediately. the method is used on OSS now, but can also be used on MDS at some point to improve performance of COS.\r
851         do_data_get\r
852         the method is not used any more and planned for removal.\r
853         \r
854 \r
855 \r
856 \r
857 \r
858 \r
859 Data object operation\r
860 \r
861 \r
862 ssize_t (*dbo_read)(const struct lu_env *env, struct dt_object *dt, struct lu_buf *buf, loff_t *pos,\r
863                                      struct lustre_capa *capa);\r
864 ssize_t (*dbo_declare_write)(const struct lu_env *env, struct dt_object *dt,\r
865                                               const loff_t size, loff_t pos,struct thandle *handle);\r
866 ssize_t (*dbo_write)(const struct lu_env *env, struct dt_object *dt, const struct lu_buf *buf,\r
867          loff_t *pos, struct thandle *handle, struct lustre_capa *capa, int ign_quota);\r
868 int (*dbo_bufs_get)(const struct lu_env *env, struct dt_object *dt, loff_t pos, ssize_t len,\r
869        struct niobuf_local *lb, int rw, struct lustre_capa *capa);\r
870 int (*dbo_bufs_put)(const struct lu_env *env, struct dt_object *dt,struct niobuf_local *lb, int nr);\r
871 int (*dbo_write_prep)(const struct lu_env *env, struct dt_object *dt,struct niobuf_local *lb, int nr);\r
872 int (*dbo_declare_write_commit)(const struct lu_env *env, struct dt_object *dt,\r
873      struct niobuf_local *,int, struct thandle *);\r
874 int (*dbo_write_commit)(const struct lu_env *env, struct dt_object *dt, struct niobuf_local *, \r
875    int nr, struct thandle *);\r
876 int (*dbo_read_prep)(const struct lu_env *env, struct dt_object *dt,  struct niobuf_local *, int nr);\r
877 int (*dbo_fiemap_get)(const struct lu_env *env, struct dt_object *dt, struct ll_user_fiemap *fm);\r
878 int   (*do_declare_punch)(const struct lu_env*,struct dt_object *,__u64,__u64,struct thandle *th);\r
879 int   (*do_punch)(const struct lu_env *env, struct dt_object *dt,__u64 start, __u64 end, struct\r
880                             thandle *th, struct lustre_capa *capa);\r
881 \r
882 \r
883 \r
884 \r
885 \r
886 \r
887 dbo_read\r
888         is called to read raw unstrustructed data from a specified range of an object. returns number of bytes read or an error. Usually OSD implements this method using internal buffering (to be able to put data at non-aligned address). So this method should not be used to move a lot of data. Lustre services use it to read to read small internal data like last_rcvd file, llog files. It's also used to fetch body symlinks.\r
889         dbo_declare_write\r
890         is called to notify OSD the caller will be writing data to a specific range of an object in a specified transaction.\r
891         dbo_write\r
892         is called to write raw unstructured data to a specified range of an object in a specified transaction. data should be written atomically with another change in the transaction. the method is used by Lustre services to update small portions on a disk. OSD should maintain size attribute consistent with data written. \r
893         dbo_bufs_get\r
894         is called to fill memory with buffer descriptors (see struct niobuf_local) for a specified range of an object. memory for the set is provided by the caller, no concurrent access to this memory is allowed. OSD can fill all fields of the descriptor except  lnb_grant_used. the caller specify whether buffers will be user to read or write data. this method is used to access file system's internal buffers for zero-copy IO. internal buffers referenced by descriptors  are supposed to be pinned in memory\r
895         dbo_bufs_put\r
896         is called to unpin/release internal buffers referenced by the descriptors dbo_bufs_get returns. after this point pointers in the descriptors are not valid.\r
897         dbo_write_prep\r
898         is called to fill internal buffers with actual data. this is required for\r
899 buffers which do not match filesystem blocksize, as later the buffer is supposed to be written as a whole. for example, ldiskfs uses 4k blocks, but the caller wants to update just a half of that. to prevent data corruption, this method is called OSD compares range to be written with 4k, if they do not match, then OSD fetches data from a disk. if they do match, then all the data will be overwritten and there is no need to fetch data from a disk.\r
900         dbo_declare_write_commit\r
901         is called to notify OSD the caller is going to write internal buffers and OSD needs to reserve enough resource in a transaction. \r
902         dbo_write_commit\r
903         is called to actually make data in internal buffers part of a specified transaction. data is supposed to be written by the moment the transaction is considered committed. this is slighly different from generic transaction model because in this case it's allowed to have data written, but not have transaction committed. if no dbo_write_commit is called, then dbo_bufs_put should discard internal buffers and possible changes made to internal buffers should not be visible.\r
904         dbo_read_prep\r
905         is called to fill all internal buffers referenced by descriptors with actual data. buffers may already contain valid data (be cached), so OSD can just verify the data is valid and return immediately. \r
906         dbo_fiemap_get\r
907         is called to map logical range of an object to physical blocks where corresponded range of data is actually stored. \r
908         dbo_declare_punch\r
909         is called to notify OSD the caller is going to punch (deallocate) specified range in a transaction.\r
910         dbo_punch\r
911         is called to punch (deallocate) specified range of data in a transaction. this method is allowed to use few disk file system transactions (within the same lustre transaction handle. currently Lustre calls the method in form of truncate only where the end offset is EOF always.\r
912         \r
913 \r
914 Indices\r
915 \r
916 \r
917 Another set of objects in Lustre is indices.\r
918 \r
919 \r
920 In contrast with raw unstructured data they are collection of key=value pairs. OSD should provide with few methods to lookup, insert, delete and scan pairs. Indices may have different properties like key/value size, string/binary keys, etc. When user need to use an index, it needs to check whether the index has required properties with a special method. indices are used by Lustre services to maintain user-visible namespace, FLD, index of unlinked files, etc. \r
921 \r
922 \r
923 int (*dio_lookup)(const struct lu_env *env, struct dt_object *dt, struct dt_rec *rec,\r
924    const struct dt_key *key, struct lustre_capa *capa);\r
925 int (*dio_declare_insert)(const struct lu_env *env, struct dt_object *dt, const struct dt_rec *rec,\r
926     const struct dt_key *key, struct thandle *handle);\r
927 int (*dio_insert)(const struct lu_env *env, struct dt_object *dt, const struct dt_rec *rec,\r
928  const struct dt_key *key, struct thandle *handle, struct lustre_capa *capa,\r
929 int ignore_quota);\r
930 int (*dio_declare_delete)(const struct lu_env *env, struct dt_object *dt,\r
931     const struct dt_key *key, struct thandle *handle);\r
932 int (*dio_delete)(const struct lu_env *env, struct dt_object *dt, const struct dt_key *key,\r
933   struct thandle *handle, struct lustre_capa *capa); \r
934 \r
935 \r
936 \r
937 \r
938 \r
939 \r
940 dio_lookup\r
941         is called to lookup exact key=value pair. a value is copied into a buffer provided by the caller. so the caller should make sure the buffer's size\r
942 is big enough. this should be done with ->do_index_try() method.\r
943         dio_declare_insert\r
944         is called to notify OSD the caller is going to insert key=value pair in a transaction. exact key is specifed by a caller so OSD can use this to make reservation better (i.e. smaller).\r
945         dio_insert\r
946         is called to insert key/value pair into an index object. it's up to OSD whether to allow concurrent inserts or not. the caller is not required to serialize access to an index\r
947         dio_declare_delete\r
948         is called to notify OSD the caller is going to remove a specified key\r
949 in a transaction. exact key is specified by a caller so OSD can use this\r
950 to make reservation better.\r
951         dio_delete\r
952         is called to remove a key/value pair specified by a caller.\r
953         \r
954 \r
955 To iterate over all key=value pair stored in an index, OSD should provide the following set of methods:\r
956 \r
957 \r
958 struct dt_it *(*init)(const struct lu_env *env, struct dt_object *dt, __u32 attr,\r
959      struct lustre_capa *capa);\r
960 void    (*fini)(const struct lu_env *env, struct dt_it *di);\r
961 int       (*get)(const struct lu_env *env, struct dt_it *di, const struct dt_key *key);\r
962 void    (*put)(const struct lu_env *env, struct dt_it *di);\r
963 int       (*next)(const struct lu_env *env, struct dt_it *di);\r
964 struct dt_key *(*key)(const struct lu_env *env, const struct dt_it *di);\r
965 int       (*key_size)(const struct lu_env *env, const struct dt_it *di);\r
966 int       (*rec)(const struct lu_env *env, const struct dt_it *di, struct dt_rec *rec, __u32 attr);\r
967 __u64 (*store)(const struct lu_env *env, const struct dt_it *di);\r
968 int       (*load)(const struct lu_env *env, const struct dt_it *di, __u64 hash);\r
969 int       (*key_rec)(const struct lu_env *env, const struct dt_it *di, void* key_rec);\r
970 \r
971 \r
972 init\r
973         is called to allocate and initialize an instance of "iterator" which subsequent methods will be passed in. the structure is not accessed by Lustre and its content is totally internal to OSD. Usually it contains a reference to index, current position in an index. It may contain prefetched key/value pairs. It's not required to maintain this cache up-to-date, if index changes this is not required to be reflected by an already initialized iterator. In the extreme case ->init() can prefetch all existing pairs to be returned by subsequent calls to an iterator.\r
974         fini\r
975         is called to release an iterator and all its resources. for example, iterator can unpin an index, free prefetched pairs, etc.\r
976         get\r
977         is called to move an iterator to a specified key. if key does not exist then it should be the closest position from the beginning of iteration.\r
978         put\r
979         \r
980 \r
981         next\r
982         is called to move an iterator to a next item\r
983         key\r
984         is called to fill specified buffer with a key at a current position of an iterator. it’s the caller responsibility to pass big enough buffer. in turn OSD should not exceed sizes negotiated with ->do_index_try() method\r
985         key_size\r
986         is called to learn size of a key at current position of an iterator\r
987         rec\r
988         is called to fill specified buffer with a value at a current position of an iterator. it’s the caller responsibility to pass big enough buffer. in turn OSD should not exceed sizes negotiated with ->do_index_try() method.\r
989         store\r
990         is called to get a 64bit cookie of a current position of an iterator.\r
991         load\r
992         is called to reset current position of an iterator to match 64bit cookie ->store() method returns. these two methods allow to implement functionality like POSIX readdir where current position is stored as an integer.\r
993         key_rec\r
994         is not used currently\r
995         \r
996 \r
997 \r
998 \r
999 Transactions\r
1000 \r
1001 \r
1002 Transactions are used by Lustre to implement recovery protocol and support failover.  The main purpose of transactions is to atomically update backend file system. This include as regular changes (file creation, for example) as special Lustre changes (last_rcvd file, lastid, llogs). OSD is supposed to provide the transactional mechanism and let Lustre to control what specific updates to put into transactions.\r
1003 \r
1004 \r
1005 Lustre relies on the following rule for transactions order:  If transaction T1 starts before transaction T2 starts, then the commit of T2 means that T1 is committed at the same time or earlier. Notice that the creation of a transaction does not imply the immediate start of the updates on storage, do not confuse creation of a transaction with start of a transaction.\r
1006 \r
1007 \r
1008 It’s up to OSD and backend file system to group few transactions for better performance given it still follow the rule above.\r
1009 \r
1010 \r
1011 Transactions are identified in the OSD API by an opaque transaction handle, which is a pointer to an OSD-private data structure that it can use to track (and optionally verify) the updates done within that transaction.  This handle is returned by the OSD to the caller when the transaction is first created.  Any potential updates (modifications to the underlying storage) must be declared as part of a transaction, after the transaction has been created, and before the transaction is started. The transaction handle is passed when declaring all updates.  If any part of the declaration should fail, the transaction is aborted without having modified the storage.\r
1012 \r
1013 \r
1014 After all updates have been declared, and have completed successfully, the handle is passed to the transaction start.  After the transaction has started, the handle will be passed to every update that is done as part of that transaction.  All updates done under the transaction must previously have been declared. Once the transaction has started, it is not permitted to add new updates to the transaction, nor is it possible to roll back the transaction after this point.  Should some update to the storage fail, the caller will try to undo the previous updates within the context of the transaction itself, to ensure that the resulting OSD state is correct.\r
1015 \r
1016 \r
1017 Any update that was not previously declared is an implementation error in the caller.  Not all declared updates need to be executed, as they form a worst-case superset of the possible updates that may be required in order to complete the desired operation in a consistent manner.\r
1018 \r
1019 \r
1020 OSD should let a caller to register callback function(s) to be called on transaction commit to a disk. Also OSD should be able to call a special of transaction hooks on all the stages (creation, start, stop, commit) on per-devices basis so that high-level services (like MDT) which are not involved directly into controlling transactions still can be involved. Every commit callback gets a result of transaction commit, if disk filesystem was not able to commit the transaction, then an appropriate error code will be passed.\r
1021 \r
1022 \r
1023 It’s important to note that OSD and disk file system should use asynchronous IO to implement transactions, otherwise the performance is expected to be bad.\r
1024 \r
1025 \r
1026 The maximum number of updates that make up a single transaction is OSD-specific, but is expected to be at least in the tens of updates to multiple objects in the OSD (extending writes of multiple MB of data, modifying or adding attributes, extended attributes, references, etc).     For example, in ext4, each update to the filesystem will modify one or more blocks of storage.  Since one transaction is limited to one quarter of the journal size, if the caller declares a series of updates that modify more than this number of blocks, the declaration must fail or it could not be committed atomically. In general, every constraint must be checked here to ensure that all changes that must commit atomically can complete successfully.\r
1027 \r
1028 \r
1029 Lifetime of a transaction\r
1030 \r
1031 \r
1032 From Lustre point of view a transaction goes through the following steps:\r
1033 1. creation\r
1034 2. declaration of all possible changes planned in transaction\r
1035 3. transaction start\r
1036 4. execution of planned and declared changes\r
1037 5. transaction stop\r
1038 6. commit callback(s) \r
1039 \r
1040 \r
1041 Methods to manage transactions\r
1042 \r
1043 \r
1044 OSD should implement the following methods to let Lustre control transactions:\r
1045 \r
1046 struct thandle *(*dt_trans_create)(const struct lu_env *env, struct dt_device *dev);\r
1047 int   (*dt_trans_start)(const struct lu_env *env, struct dt_device *dev, struct thandle *th);\r
1048 int   (*dt_trans_stop)(const struct lu_env *env, struct thandle *th);\r
1049 int   (*dt_trans_cb_add)(struct thandle *th, struct dt_txn_commit_cb *dcb);\r
1050 \r
1051 \r
1052 dt_trans_create\r
1053         is called to allocate and initialize transaction handle (see struct thandle). this structure has no pointer to a private data so, it should be embedded into private representation of transaction at OSD layer. this method can block.\r
1054         dt_trans_start\r
1055         is called to notify OSD a specified transaction has got all the declarations and now OSD should tell whether it has enough resources to proceed with declared changes or to return an error to a caller. this method can block. OSD should call dt_txn_hook_start()  function before underlying file system’s transaction starts to support per-device transaction hooks. if OSD (or disk files ystem) can not start transaction, then an error is returned and transaction handle is destroyed, no commit callbacks are called.\r
1056         dt_trans_stop\r
1057         is called to notify OSD a specified transaction has been executed and no more changes are expected in a context of that. usually this mean that at this point OSD is free to start writeout preserving notion all-or-nothing. this method can block. if th_sync flag is set at this point, then OSD should start to commit this transaction and block until the transaction is committed. the order of unblock event and transaction’s commit callback functions is not defined by the API. OSD should call dt_txn_hook_stop() functions once underlying file system’s transaction is stopped to support per-device transaction hooks.\r
1058         dt_trans_cb_add\r
1059         is called to register commit callback function(s), which OSD will be calling up on transaction commit to a storage. when all the callback functions are processed, transaction handle can be freed by OSD. There are no constraints on how many callback functions can be running concurrently. They should not be running in an interrupt context. usually this method should not block and use spinlocks. As part of commit callback functions processing dt_txn_hook_commit() function should be called to support per-device transaction hooks.