--- /dev/null
+
+This patch creates the necessary drivers
+for the e1000 card that are not included with
+the standard RH distribution. This is used for the
+GigE e1000 cards.
+
+
+ 0 files changed
+
+--- /dev/null 2002-08-30 16:31:37.000000000 -0700
++++ linux-2.4.18-14-root/drivers/e1000/e1000.h 2003-01-02 16:22:31.000000000 -0800
+@@ -0,0 +1,362 @@
++/*******************************************************************************
++
++ This software program is available to you under a choice of one of two
++ licenses. You may choose to be licensed under either the GNU General Public
++ License (GPL) Version 2, June 1991, available at
++ http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
++ text of which follows:
++
++ Recipient has requested a license and Intel Corporation ("Intel") is willing
++ to grant a license for the software entitled Linux Base Driver for the
++ Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
++ by Intel Corporation. The following definitions apply to this license:
++
++ "Licensed Patents" means patent claims licensable by Intel Corporation which
++ are necessarily infringed by the use of sale of the Software alone or when
++ combined with the operating system referred to below.
++
++ "Recipient" means the party to whom Intel delivers this Software.
++
++ "Licensee" means Recipient and those third parties that receive a license to
++ any operating system available under the GNU Public License version 2.0 or
++ later.
++
++ Copyright (c) 1999 - 2002 Intel Corporation.
++ All rights reserved.
++
++ The license is provided to Recipient and Recipient's Licensees under the
++ following terms.
++
++ Redistribution and use in source and binary forms of the Software, with or
++ without modification, are permitted provided that the following conditions
++ are met:
++
++ Redistributions of source code of the Software may retain the above
++ copyright notice, this list of conditions and the following disclaimer.
++
++ Redistributions in binary form of the Software may reproduce the above
++ copyright notice, this list of conditions and the following disclaimer in
++ the documentation and/or materials provided with the distribution.
++
++ Neither the name of Intel Corporation nor the names of its contributors
++ shall be used to endorse or promote products derived from this Software
++ without specific prior written permission.
++
++ Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
++ royalty-free patent license under Licensed Patents to make, use, sell, offer
++ to sell, import and otherwise transfer the Software, if any, in source code
++ and object code form. This license shall include changes to the Software
++ that are error corrections or other minor changes to the Software that do
++ not add functionality or features when the Software is incorporated in any
++ version of an operating system that has been distributed under the GNU
++ General Public License 2.0 or later. This patent license shall apply to the
++ combination of the Software and any operating system licensed under the GNU
++ Public License version 2.0 or later if, at the time Intel provides the
++ Software to Recipient, such addition of the Software to the then publicly
++ available versions of such operating systems available under the GNU Public
++ License version 2.0 or later (whether in gold, beta or alpha form) causes
++ such combination to be covered by the Licensed Patents. The patent license
++ shall not apply to any other combinations which include the Software. NO
++ hardware per se is licensed hereunder.
++
++ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
++ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
++ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
++ ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
++ AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
++ TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
++ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++
++*******************************************************************************/
++
++
++/* Linux PRO/1000 Ethernet Driver main header file */
++
++#ifndef _E1000_H_
++#define _E1000_H_
++
++#ifndef __E1000_MAIN__
++#define __NO_VERSION__
++#endif
++
++#include <linux/stddef.h>
++#include <linux/config.h>
++#include <linux/module.h>
++#include <linux/types.h>
++#include <asm/byteorder.h>
++#include <linux/init.h>
++#include <linux/mm.h>
++#include <linux/errno.h>
++#include <linux/ioport.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/skbuff.h>
++#include <linux/delay.h>
++#include <linux/timer.h>
++#include <linux/slab.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++#include <linux/pagemap.h>
++#include <asm/bitops.h>
++#include <asm/io.h>
++#include <asm/irq.h>
++#include <linux/capability.h>
++#include <linux/in.h>
++#include <linux/ip.h>
++#include <linux/tcp.h>
++#include <linux/udp.h>
++#include <net/pkt_sched.h>
++
++/* ethtool support */
++#ifdef SIOCETHTOOL
++#include <linux/ethtool.h>
++#include <asm/uaccess.h>
++#define E1000_ETHTOOL_COPPER_INTERFACE_SUPPORTS (SUPPORTED_10baseT_Half | \
++ SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | \
++ SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | \
++ SUPPORTED_Autoneg | SUPPORTED_MII)
++#define E1000_ETHTOOL_COPPER_INTERFACE_ADVERTISE (ADVERTISED_10baseT_Half | \
++ ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | \
++ ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full | \
++ ADVERTISED_Autoneg | ADVERTISED_MII)
++#define E1000_ETHTOOL_FIBER_INTERFACE_SUPPORTS (SUPPORTED_Autoneg | \
++ SUPPORTED_FIBRE)
++#define E1000_ETHTOOL_FIBER_INTERFACE_ADVERTISE (ADVERTISED_Autoneg | \
++ ADVERTISED_FIBRE)
++#endif /* SIOCETHTOOL */
++
++
++
++struct e1000_adapter;
++
++#include "e1000_mac.h"
++#include "e1000_phy.h"
++
++#ifdef IANS
++#include "base_comm.h"
++#include "ans_driver.h"
++#include "ans.h"
++#endif
++
++#ifdef IDIAG
++#include "idiag_pro.h"
++#include "idiag_e1000.h"
++#endif
++
++#define BAR_0 0
++
++/* 8254x can use Dual Address Cycles for 64-bit addressing */
++
++/* Advertise that we can DMA from any address location */
++#define E1000_DMA_MASK (~0x0UL)
++#define E1000_DBG(args...)
++// #define E1000_DBG(args...) printk("e1000: " args)
++#define E1000_ERR(args...) printk(KERN_ERR "e1000: " args)
++#ifdef CONFIG_PPC
++#define E1000_MAX_INTR 1
++#else
++#define E1000_MAX_INTR 10
++#endif
++#define MAX_NUM_MULTICAST_ADDRESSES 128
++
++/* command line options defaults */
++#define DEFAULT_TXD 256
++#define MAX_TXD 256
++#define MIN_TXD 80
++#define MAX_82544_TXD 4096
++#define DEFAULT_RXD 256
++#define MAX_RXD 256
++#define MIN_RXD 80
++#define MAX_82544_RXD 4096
++#define DEFAULT_TIDV 64
++#define MAX_TIDV 0xFFFF
++#define MIN_TIDV 0
++#define DEFAULT_RIDV 64
++#define MAX_RIDV 0xFFFF
++#define MIN_RIDV 0
++#define DEFAULT_MDIX 0
++#define MAX_MDIX 3
++#define MIN_MDIX 0
++
++#define OPTION_UNSET -1
++#define OPTION_DISABLED 0
++#define OPTION_ENABLED 1
++#define XSUMRX_DEFAULT OPTION_ENABLED
++#define WAITFORLINK_DEFAULT OPTION_ENABLED
++#define AUTONEG_ADV_DEFAULT 0x2F
++#define AUTONEG_ADV_MASK 0x2F
++#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
++
++#define E1000_REPORT_TX_EARLY 2
++
++/* Supported RX Buffer Sizes */
++#define E1000_RXBUFFER_2048 2048
++#define E1000_RXBUFFER_4096 4096
++#define E1000_RXBUFFER_8192 8192
++#define E1000_RXBUFFER_16384 16384
++
++#define E1000_JUMBO_PBA 0x00000028
++#define E1000_DEFAULT_PBA 0x00000030
++
++/* Round size up to the next multiple of unit */
++#define E1000_ROUNDUP(size, unit) ((((size) + (unit) - 1) / (unit)) * (unit))
++
++/* This is better, but only works for unit sizes that are powers of 2 */
++#define E1000_ROUNDUP2(size, unit) (((size) + (unit) - 1) & ~((unit) - 1))
++
++/* wrapper around a pointer to a socket buffer,
++ * so a DMA handle can be stored along with the buffer */
++struct e1000_buffer {
++ struct sk_buff *skb;
++ uint64_t dma;
++ unsigned long length;
++};
++
++/* Adapter->flags definitions */
++#define E1000_BOARD_OPEN 0
++#define E1000_RX_REFILL 1
++#define E1000_DIAG_OPEN 2
++#define E1000_LINK_STATUS_CHANGED 3
++
++typedef enum _XSUM_CONTEXT_T {
++ OFFLOAD_NONE,
++ OFFLOAD_TCP_IP,
++ OFFLOAD_UDP_IP
++} XSUM_CONTEXT_T;
++
++struct e1000_desc_ring {
++ void *desc; /* pointer to the descriptor ring memory */
++ dma_addr_t dma; /* physical address of the descriptor ring */
++ unsigned int size; /* length of descriptor ring in bytes */
++ unsigned int count; /* number of descriptors in the ring */
++ atomic_t unused; /* number of descriptors with no buffer */
++ unsigned int next_to_use; /* next descriptor to associate a buffer with */
++ unsigned int next_to_clean; /* next descriptor to check for DD status bit */
++ struct e1000_buffer *buffer_info; /* array of buffer information structs */
++};
++
++#define E1000_RX_DESC(ring, i) \
++ (&(((struct e1000_rx_desc *)(ring.desc))[i]))
++
++#define E1000_TX_DESC(ring, i) \
++ (&(((struct e1000_tx_desc *)(ring.desc))[i]))
++
++#define E1000_CONTEXT_DESC(ring, i) \
++ (&(((struct e1000_context_desc *)(ring.desc))[i]))
++
++/* board specific private data structure */
++
++struct e1000_adapter {
++ struct e1000_adapter *next;
++ struct e1000_adapter *prev;
++
++ struct e1000_shared_adapter shared;
++
++#ifdef IANS
++ void *iANSReserved;
++ piANSsupport_t iANSdata;
++ uint32_t ans_link;
++ uint32_t ans_speed;
++ uint32_t ans_duplex;
++ uint32_t ans_suspend;
++ IANS_BD_TAGGING_MODE tag_mode;
++#endif
++
++ spinlock_t stats_lock;
++ spinlock_t rx_fill_lock;
++
++ unsigned long flags;
++ uint32_t bd_number;
++ struct timer_list timer_id;
++
++ /* Ethernet Node Address */
++ uint8_t perm_net_addr[ETH_LENGTH_OF_ADDRESS];
++
++ /* Status Flags */
++ boolean_t link_active;
++ uint16_t link_speed;
++ uint16_t link_duplex;
++ uint32_t rx_buffer_len;
++
++ /* PCI Device Info */
++ uint16_t vendor_id;
++ uint16_t device_id;
++ uint8_t rev_id;
++ uint16_t subven_id;
++ uint16_t subsys_id;
++
++ uint32_t part_num;
++
++ uint32_t int_mask;
++
++ /* driver specific */
++ struct tasklet_struct rx_fill_tasklet;
++
++ struct e1000_desc_ring tx_ring;
++ uint32_t tx_int_delay;
++ uint32_t TxdCmd;
++ atomic_t tx_timeout;
++
++ struct e1000_desc_ring rx_ring;
++ uint32_t rx_int_delay;
++
++ uint64_t XsumRXGood;
++ uint64_t XsumRXError;
++
++ /* Linux driver specific */
++ struct net_device *netdev;
++ struct pci_dev *pdev;
++ struct net_device_stats net_stats;
++ char *id_string;
++ boolean_t RxChecksum;
++ XSUM_CONTEXT_T ActiveChecksumContext;
++
++ struct e1000_phy_info phy_info;
++ struct e1000_shared_stats stats;
++
++ /* PHY Statistics */
++ struct e1000_phy_stats phy_stats;
++};
++
++/* Prototypes */
++
++/* e1000_main.c */
++extern int e1000_init_module(void);
++extern int e1000_probe_all(void);
++extern void e1000_exit_module(void);
++extern int e1000_probe(struct pci_dev *pdev,
++ const struct pci_device_id *ent);
++extern void e1000_remove(struct pci_dev *pdev);
++extern void e1000_delete(struct e1000_adapter *Adapter);
++extern int e1000_open(struct net_device *netdev);
++extern int e1000_close(struct net_device *netdev);
++extern void e1000_set_multi(struct net_device *netdev);
++extern int e1000_xmit_frame(struct sk_buff *skb,
++ struct net_device *netdev);
++extern struct net_device_stats *e1000_get_stats(struct net_device *netdev);
++extern int e1000_change_mtu(struct net_device *netdev,
++ int new_mtu);
++extern int e1000_set_mac(struct net_device *netdev,
++ void *p);
++extern void e1000_intr(int irq,
++ void *data,
++ struct pt_regs *regs);
++extern int e1000_ioctl(struct net_device *netdev,
++ struct ifreq *ifr,
++ int cmd);
++extern void e1000_watchdog(unsigned long data);
++extern void e1000_diag_ioctl(struct net_device *netdev,
++ struct ifreq *ifr);
++
++#ifdef CONFIG_PROC_FS
++#include "e1000_proc.h"
++#endif
++#ifdef IDIAG
++#include "e1000_idiag.h"
++#endif
++#endif /* _E1000_H_ */
+--- /dev/null 2002-08-30 16:31:37.000000000 -0700
++++ linux-2.4.18-14-root/drivers/e1000/e1000_mac.c 2003-01-02 16:22:31.000000000 -0800
+@@ -0,0 +1,2093 @@
++/*******************************************************************************
++
++ This software program is available to you under a choice of one of two
++ licenses. You may choose to be licensed under either the GNU General Public
++ License (GPL) Version 2, June 1991, available at
++ http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
++ text of which follows:
++
++ Recipient has requested a license and Intel Corporation ("Intel") is willing
++ to grant a license for the software entitled Linux Base Driver for the
++ Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
++ by Intel Corporation. The following definitions apply to this license:
++
++ "Licensed Patents" means patent claims licensable by Intel Corporation which
++ are necessarily infringed by the use of sale of the Software alone or when
++ combined with the operating system referred to below.
++
++ "Recipient" means the party to whom Intel delivers this Software.
++
++ "Licensee" means Recipient and those third parties that receive a license to
++ any operating system available under the GNU Public License version 2.0 or
++ later.
++
++ Copyright (c) 1999 - 2002 Intel Corporation.
++ All rights reserved.
++
++ The license is provided to Recipient and Recipient's Licensees under the
++ following terms.
++
++ Redistribution and use in source and binary forms of the Software, with or
++ without modification, are permitted provided that the following conditions
++ are met:
++
++ Redistributions of source code of the Software may retain the above
++ copyright notice, this list of conditions and the following disclaimer.
++
++ Redistributions in binary form of the Software may reproduce the above
++ copyright notice, this list of conditions and the following disclaimer in
++ the documentation and/or materials provided with the distribution.
++
++ Neither the name of Intel Corporation nor the names of its contributors
++ shall be used to endorse or promote products derived from this Software
++ without specific prior written permission.
++
++ Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
++ royalty-free patent license under Licensed Patents to make, use, sell, offer
++ to sell, import and otherwise transfer the Software, if any, in source code
++ and object code form. This license shall include changes to the Software
++ that are error corrections or other minor changes to the Software that do
++ not add functionality or features when the Software is incorporated in any
++ version of an operating system that has been distributed under the GNU
++ General Public License 2.0 or later. This patent license shall apply to the
++ combination of the Software and any operating system licensed under the GNU
++ Public License version 2.0 or later if, at the time Intel provides the
++ Software to Recipient, such addition of the Software to the then publicly
++ available versions of such operating systems available under the GNU Public
++ License version 2.0 or later (whether in gold, beta or alpha form) causes
++ such combination to be covered by the Licensed Patents. The patent license
++ shall not apply to any other combinations which include the Software. NO
++ hardware per se is licensed hereunder.
++
++ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
++ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
++ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
++ ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
++ AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
++ TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
++ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++
++*******************************************************************************/
++
++/* e1000_mac.c
++ * Shared functions for accessing and configuring the MAC
++ */
++
++#include "e1000_mac.h"
++#include "e1000_phy.h"
++
++/******************************************************************************
++ * Raises the EEPROM's clock input.
++ *
++ * shared - Struct containing variables accessed by shared code
++ * eecd_reg - EECD's current value
++ *****************************************************************************/
++static void
++e1000_raise_clock(struct e1000_shared_adapter *shared,
++ uint32_t *eecd_reg)
++{
++ /* Raise the clock input to the EEPROM (by setting the SK bit), and then
++ * wait 50 microseconds.
++ */
++ *eecd_reg = *eecd_reg | E1000_EECD_SK;
++ E1000_WRITE_REG(shared, EECD, *eecd_reg);
++ usec_delay(50);
++ return;
++}
++
++/******************************************************************************
++ * Lowers the EEPROM's clock input.
++ *
++ * shared - Struct containing variables accessed by shared code
++ * eecd_reg - EECD's current value
++ *****************************************************************************/
++static void
++e1000_lower_clock(struct e1000_shared_adapter *shared,
++ uint32_t *eecd_reg)
++{
++ /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
++ * wait 50 microseconds.
++ */
++ *eecd_reg = *eecd_reg & ~E1000_EECD_SK;
++ E1000_WRITE_REG(shared, EECD, *eecd_reg);
++ usec_delay(50);
++ return;
++}
++
++/******************************************************************************
++ * Shift data bits out to the EEPROM.
++ *
++ * shared - Struct containing variables accessed by shared code
++ * data - data to send to the EEPROM
++ * count - number of bits to shift out
++ *****************************************************************************/
++static void
++e1000_shift_out_bits(struct e1000_shared_adapter *shared,
++ uint16_t data,
++ uint16_t count)
++{
++ uint32_t eecd_reg;
++ uint32_t mask;
++
++ /* We need to shift "count" bits out to the EEPROM. So, value in the
++ * "data" parameter will be shifted out to the EEPROM one bit at a time.
++ * In order to do this, "data" must be broken down into bits.
++ */
++ mask = 0x01 << (count - 1);
++ eecd_reg = E1000_READ_REG(shared, EECD);
++ eecd_reg &= ~(E1000_EECD_DO | E1000_EECD_DI);
++ do {
++ /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
++ * and then raising and then lowering the clock (the SK bit controls
++ * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
++ * by setting "DI" to "0" and then raising and then lowering the clock.
++ */
++ eecd_reg &= ~E1000_EECD_DI;
++
++ if(data & mask)
++ eecd_reg |= E1000_EECD_DI;
++
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++
++ usec_delay(50);
++
++ e1000_raise_clock(shared, &eecd_reg);
++ e1000_lower_clock(shared, &eecd_reg);
++
++ mask = mask >> 1;
++
++ } while(mask);
++
++ /* We leave the "DI" bit set to "0" when we leave this routine. */
++ eecd_reg &= ~E1000_EECD_DI;
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++ return;
++}
++
++/******************************************************************************
++ * Shift data bits in from the EEPROM
++ *
++ * shared - Struct containing variables accessed by shared code
++ *****************************************************************************/
++static uint16_t
++e1000_shift_in_bits(struct e1000_shared_adapter *shared)
++{
++ uint32_t eecd_reg;
++ uint32_t i;
++ uint16_t data;
++
++ /* In order to read a register from the EEPROM, we need to shift 16 bits
++ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
++ * the EEPROM (setting the SK bit), and then reading the value of the "DO"
++ * bit. During this "shifting in" process the "DI" bit should always be
++ * clear..
++ */
++
++ eecd_reg = E1000_READ_REG(shared, EECD);
++
++ eecd_reg &= ~(E1000_EECD_DO | E1000_EECD_DI);
++ data = 0;
++
++ for(i = 0; i < 16; i++) {
++ data = data << 1;
++ e1000_raise_clock(shared, &eecd_reg);
++
++ eecd_reg = E1000_READ_REG(shared, EECD);
++
++ eecd_reg &= ~(E1000_EECD_DI);
++ if(eecd_reg & E1000_EECD_DO)
++ data |= 1;
++
++ e1000_lower_clock(shared, &eecd_reg);
++ }
++
++ return data;
++}
++
++/******************************************************************************
++ * Prepares EEPROM for access
++ *
++ * shared - Struct containing variables accessed by shared code
++ *
++ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
++ * function should be called before issuing a command to the EEPROM.
++ *****************************************************************************/
++static void
++e1000_setup_eeprom(struct e1000_shared_adapter *shared)
++{
++ uint32_t eecd_reg;
++
++ eecd_reg = E1000_READ_REG(shared, EECD);
++
++ /* Clear SK and DI */
++ eecd_reg &= ~(E1000_EECD_SK | E1000_EECD_DI);
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++
++ /* Set CS */
++ eecd_reg |= E1000_EECD_CS;
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++ return;
++}
++
++/******************************************************************************
++ * Returns EEPROM to a "standby" state
++ *
++ * shared - Struct containing variables accessed by shared code
++ *****************************************************************************/
++static void
++e1000_standby_eeprom(struct e1000_shared_adapter *shared)
++{
++ uint32_t eecd_reg;
++
++ eecd_reg = E1000_READ_REG(shared, EECD);
++
++ /* Deselct EEPROM */
++ eecd_reg &= ~(E1000_EECD_CS | E1000_EECD_SK);
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++ usec_delay(50);
++
++ /* Clock high */
++ eecd_reg |= E1000_EECD_SK;
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++ usec_delay(50);
++
++ /* Select EEPROM */
++ eecd_reg |= E1000_EECD_CS;
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++ usec_delay(50);
++
++ /* Clock low */
++ eecd_reg &= ~E1000_EECD_SK;
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++ usec_delay(50);
++ return;
++}
++
++/******************************************************************************
++ * Raises then lowers the EEPROM's clock pin
++ *
++ * shared - Struct containing variables accessed by shared code
++ *****************************************************************************/
++static void
++e1000_clock_eeprom(struct e1000_shared_adapter *shared)
++{
++ uint32_t eecd_reg;
++
++ eecd_reg = E1000_READ_REG(shared, EECD);
++
++ /* Rising edge of clock */
++ eecd_reg |= E1000_EECD_SK;
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++ usec_delay(50);
++
++ /* Falling edge of clock */
++ eecd_reg &= ~E1000_EECD_SK;
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++ usec_delay(50);
++ return;
++}
++
++/******************************************************************************
++ * Terminates a command by lowering the EEPROM's chip select pin
++ *
++ * shared - Struct containing variables accessed by shared code
++ *****************************************************************************/
++static void
++e1000_cleanup_eeprom(struct e1000_shared_adapter *shared)
++{
++ uint32_t eecd_reg;
++
++ eecd_reg = E1000_READ_REG(shared, EECD);
++
++ eecd_reg &= ~(E1000_EECD_CS | E1000_EECD_DI);
++
++ E1000_WRITE_REG(shared, EECD, eecd_reg);
++
++ e1000_clock_eeprom(shared);
++ return;
++}
++
++/******************************************************************************
++ * Waits for the EEPROM to finish the current command.
++ *
++ * shared - Struct containing variables accessed by shared code
++ *
++ * The command is done when the EEPROM's data out pin goes high.
++ *****************************************************************************/
++static uint16_t
++e1000_wait_eeprom_command(struct e1000_shared_adapter *shared)
++{
++ uint32_t eecd_reg;
++ uint32_t i;
++
++
++ /* Toggle the CS line. This in effect tells to EEPROM to actually execute
++ * the command in question.
++ */
++ e1000_standby_eeprom(shared);
++
++ /* Now read DO repeatedly until is high (equal to '1'). The EEEPROM will
++ * signal that the command has been completed by raising the DO signal.
++ * If DO does not go high in 10 milliseconds, then error out.
++ */
++ for(i = 0; i < 200; i++) {
++ eecd_reg = E1000_READ_REG(shared, EECD);
++
++ if(eecd_reg & E1000_EECD_DO)
++ return (TRUE);
++
++ usec_delay(50);
++ }
++ ASSERT(0);
++ return (FALSE);
++}
++
++/******************************************************************************
++ * Forces the MAC's flow control settings.
++ *
++ * shared - Struct containing variables accessed by shared code
++ *
++ * Sets the TFCE and RFCE bits in the device control register to reflect
++ * the adapter settings. TFCE and RFCE need to be explicitly set by
++ * software when a Copper PHY is used because autonegotiation is managed
++ * by the PHY rather than the MAC. Software must also configure these
++ * bits when link is forced on a fiber connection.
++ *****************************************************************************/
++static void
++e1000_force_mac_fc(struct e1000_shared_adapter *shared)
++{
++ uint32_t ctrl_reg;
++
++ DEBUGFUNC("e1000_force_mac_fc");
++
++ /* Get the current configuration of the Device Control Register */
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++
++ /* Because we didn't get link via the internal auto-negotiation
++ * mechanism (we either forced link or we got link via PHY
++ * auto-neg), we have to manually enable/disable transmit an
++ * receive flow control.
++ *
++ * The "Case" statement below enables/disable flow control
++ * according to the "shared->fc" parameter.
++ *
++ * The possible values of the "fc" parameter are:
++ * 0: Flow control is completely disabled
++ * 1: Rx flow control is enabled (we can receive pause
++ * frames but not send pause frames).
++ * 2: Tx flow control is enabled (we can send pause frames
++ * frames but we do not receive pause frames).
++ * 3: Both Rx and TX flow control (symmetric) is enabled.
++ * other: No other values should be possible at this point.
++ */
++
++ switch (shared->fc) {
++ case e1000_fc_none:
++ ctrl_reg &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
++ break;
++ case e1000_fc_rx_pause:
++ ctrl_reg &= (~E1000_CTRL_TFCE);
++ ctrl_reg |= E1000_CTRL_RFCE;
++ break;
++ case e1000_fc_tx_pause:
++ ctrl_reg &= (~E1000_CTRL_RFCE);
++ ctrl_reg |= E1000_CTRL_TFCE;
++ break;
++ case e1000_fc_full:
++ ctrl_reg |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
++ break;
++ default:
++ DEBUGOUT("Flow control param set incorrectly\n");
++ ASSERT(0);
++ break;
++ }
++
++ /* Disable TX Flow Control for 82542 (rev 2.0) */
++ if(shared->mac_type == e1000_82542_rev2_0)
++ ctrl_reg &= (~E1000_CTRL_TFCE);
++
++
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++ return;
++}
++
++/******************************************************************************
++ * Reset the transmit and receive units; mask and clear all interrupts.
++ *
++ * shared - Struct containing variables accessed by shared code
++ *****************************************************************************/
++void
++e1000_adapter_stop(struct e1000_shared_adapter *shared)
++{
++#if DBG
++ uint32_t ctrl_reg;
++#endif
++ uint32_t ctrl_ext_reg;
++ uint32_t icr_reg;
++ uint16_t pci_cmd_word;
++
++ DEBUGFUNC("e1000_shared_adapter_stop");
++
++ /* If we are stopped or resetting exit gracefully and wait to be
++ * started again before accessing the hardware.
++ */
++ if(shared->adapter_stopped) {
++ DEBUGOUT("Exiting because the adapter is already stopped!!!\n");
++ return;
++ }
++
++ /* Set the Adapter Stopped flag so other driver functions stop
++ * touching the Hardware.
++ */
++ shared->adapter_stopped = TRUE;
++
++ /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
++ if(shared->mac_type == e1000_82542_rev2_0) {
++ if(shared->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
++ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
++
++ pci_cmd_word = shared->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
++
++ e1000_write_pci_cfg(shared, PCI_COMMAND_REGISTER, &pci_cmd_word);
++ }
++ }
++
++ /* Clear interrupt mask to stop board from generating interrupts */
++ DEBUGOUT("Masking off all interrupts\n");
++ E1000_WRITE_REG(shared, IMC, 0xffffffff);
++
++ /* Disable the Transmit and Receive units. Then delay to allow
++ * any pending transactions to complete before we hit the MAC with
++ * the global reset.
++ */
++ E1000_WRITE_REG(shared, RCTL, 0);
++ E1000_WRITE_REG(shared, TCTL, E1000_TCTL_PSP);
++
++ /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
++ shared->tbi_compatibility_on = FALSE;
++
++ msec_delay(10);
++
++ /* Issue a global reset to the MAC. This will reset the chip's
++ * transmit, receive, DMA, and link units. It will not effect
++ * the current PCI configuration. The global reset bit is self-
++ * clearing, and should clear within a microsecond.
++ */
++ DEBUGOUT("Issuing a global reset to MAC\n");
++ E1000_WRITE_REG(shared, CTRL, E1000_CTRL_RST);
++
++ /* Delay a few ms just to allow the reset to complete */
++ msec_delay(10);
++
++#if DBG
++ /* Make sure the self-clearing global reset bit did self clear */
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++
++ ASSERT(!(ctrl_reg & E1000_CTRL_RST));
++#endif
++
++ /* Force a reload from the EEPROM */
++ ctrl_ext_reg = E1000_READ_REG(shared, CTRL_EXT);
++ ctrl_ext_reg |= E1000_CTRL_EXT_EE_RST;
++ E1000_WRITE_REG(shared, CTRL_EXT, ctrl_ext_reg);
++ msec_delay(2);
++
++ /* Clear interrupt mask to stop board from generating interrupts */
++ DEBUGOUT("Masking off all interrupts\n");
++ E1000_WRITE_REG(shared, IMC, 0xffffffff);
++
++ /* Clear any pending interrupt events. */
++ icr_reg = E1000_READ_REG(shared, ICR);
++
++ /* If MWI was previously enabled, reenable it. */
++ if(shared->mac_type == e1000_82542_rev2_0) {
++ if(shared->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
++ e1000_write_pci_cfg(shared,
++ PCI_COMMAND_REGISTER, &shared->pci_cmd_word);
++ }
++ }
++ return;
++}
++
++/******************************************************************************
++ * Performs basic configuration of the adapter.
++ *
++ * shared - Struct containing variables accessed by shared code
++ *
++ * Assumes that the controller has previously been reset and is in a
++ * post-reset uninitialized state. Initializes the receive address registers,
++ * multicast table, and VLAN filter table. Calls routines to setup link
++ * configuration and flow control settings. Clears all on-chip counters. Leaves
++ * the transmit and receive units disabled and uninitialized.
++ *****************************************************************************/
++boolean_t
++e1000_init_hw(struct e1000_shared_adapter *shared)
++{
++ uint32_t status_reg;
++ uint32_t i;
++ uint16_t pci_cmd_word;
++ boolean_t status;
++
++ DEBUGFUNC("e1000_init_hw");
++
++ /* Set the Media Type and exit with error if it is not valid. */
++ if(shared->mac_type != e1000_82543) {
++ /* tbi_compatibility is only valid on 82543 */
++ shared->tbi_compatibility_en = FALSE;
++ }
++
++ if(shared->mac_type >= e1000_82543) {
++ status_reg = E1000_READ_REG(shared, STATUS);
++ if(status_reg & E1000_STATUS_TBIMODE) {
++ shared->media_type = e1000_media_type_fiber;
++ /* tbi_compatibility not valid on fiber */
++ shared->tbi_compatibility_en = FALSE;
++ } else {
++ shared->media_type = e1000_media_type_copper;
++ }
++ } else {
++ /* This is an 82542 (fiber only) */
++ shared->media_type = e1000_media_type_fiber;
++ }
++
++ /* Disabling VLAN filtering. */
++ DEBUGOUT("Initializing the IEEE VLAN\n");
++ E1000_WRITE_REG(shared, VET, 0);
++
++ e1000_clear_vfta(shared);
++
++ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
++ if(shared->mac_type == e1000_82542_rev2_0) {
++ if(shared->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
++ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
++ pci_cmd_word = shared->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
++ e1000_write_pci_cfg(shared, PCI_COMMAND_REGISTER, &pci_cmd_word);
++ }
++ E1000_WRITE_REG(shared, RCTL, E1000_RCTL_RST);
++
++ msec_delay(5);
++ }
++
++ /* Setup the receive address. This involves initializing all of the Receive
++ * Address Registers (RARs 0 - 15).
++ */
++ e1000_init_rx_addrs(shared);
++
++ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
++ if(shared->mac_type == e1000_82542_rev2_0) {
++ E1000_WRITE_REG(shared, RCTL, 0);
++
++ msec_delay(1);
++
++ if(shared->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
++ e1000_write_pci_cfg(shared,
++ PCI_COMMAND_REGISTER, &shared->pci_cmd_word);
++ }
++ }
++
++ /* Zero out the Multicast HASH table */
++ DEBUGOUT("Zeroing the MTA\n");
++ for(i = 0; i < E1000_MC_TBL_SIZE; i++)
++ E1000_WRITE_REG_ARRAY(shared, MTA, i, 0);
++
++ /* Call a subroutine to configure the link and setup flow control. */
++ status = e1000_setup_fc_and_link(shared);
++
++ /* Clear all of the statistics registers (clear on read). It is
++ * important that we do this after we have tried to establish link
++ * because the symbol error count will increment wildly if there
++ * is no link.
++ */
++ e1000_clear_hw_cntrs(shared);
++
++ shared->low_profile = FALSE;
++ if(shared->mac_type == e1000_82544) {
++ if(e1000_read_eeprom(shared, E1000_EEPROM_LED_LOGIC) &
++ E1000_EEPROM_SWDPIN0)
++ shared->low_profile = TRUE;
++ }
++
++ return (status);
++}
++
++/******************************************************************************
++ * Initializes receive address filters.
++ *
++ * shared - Struct containing variables accessed by shared code
++ *
++ * Places the MAC address in receive address register 0 and clears the rest
++ * of the receive addresss registers. Clears the multicast table. Assumes
++ * the receiver is in reset when the routine is called.
++ *****************************************************************************/
++void
++e1000_init_rx_addrs(struct e1000_shared_adapter *shared)
++{
++ uint32_t i;
++ uint32_t addr_low;
++ uint32_t addr_high;
++
++ DEBUGFUNC("e1000_init_rx_addrs");
++
++ /* Setup the receive address. */
++ DEBUGOUT("Programming MAC Address into RAR[0]\n");
++ addr_low = (shared->mac_addr[0] |
++ (shared->mac_addr[1] << 8) |
++ (shared->mac_addr[2] << 16) | (shared->mac_addr[3] << 24));
++
++ addr_high = (shared->mac_addr[4] |
++ (shared->mac_addr[5] << 8) | E1000_RAH_AV);
++
++ E1000_WRITE_REG_ARRAY(shared, RA, 0, addr_low);
++ E1000_WRITE_REG_ARRAY(shared, RA, 1, addr_high);
++
++ /* Zero out the other 15 receive addresses. */
++ DEBUGOUT("Clearing RAR[1-15]\n");
++ for(i = 1; i < E1000_RAR_ENTRIES; i++) {
++ E1000_WRITE_REG_ARRAY(shared, RA, (i << 1), 0);
++ E1000_WRITE_REG_ARRAY(shared, RA, ((i << 1) + 1), 0);
++ }
++
++ return;
++}
++
++/******************************************************************************
++ * Updates the MAC's list of multicast addresses.
++ *
++ * shared - Struct containing variables accessed by shared code
++ * mc_addr_list - the list of new multicast addresses
++ * mc_addr_count - number of addresses
++ * pad - number of bytes between addresses in the list
++ *
++ * The given list replaces any existing list. Clears the last 15 receive
++ * address registers and the multicast table. Uses receive address registers
++ * for the first 15 multicast addresses, and hashes the rest into the
++ * multicast table.
++ *****************************************************************************/
++void
++e1000_mc_addr_list_update(struct e1000_shared_adapter *shared,
++ uint8_t *mc_addr_list,
++ uint32_t mc_addr_count,
++ uint32_t pad)
++{
++ uint32_t hash_value;
++ uint32_t i;
++ uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */
++
++ DEBUGFUNC("e1000_mc_addr_list_update");
++
++ /* Set the new number of MC addresses that we are being requested to use. */
++ shared->num_mc_addrs = mc_addr_count;
++
++ /* Clear RAR[1-15] */
++ DEBUGOUT(" Clearing RAR[1-15]\n");
++ for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) {
++ E1000_WRITE_REG_ARRAY(shared, RA, (i << 1), 0);
++ E1000_WRITE_REG_ARRAY(shared, RA, ((i << 1) + 1), 0);
++ }
++
++ /* Clear the MTA */
++ DEBUGOUT(" Clearing MTA\n");
++ for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) {
++ E1000_WRITE_REG_ARRAY(shared, MTA, i, 0);
++ }
++
++ /* Add the new addresses */
++ for(i = 0; i < mc_addr_count; i++) {
++ DEBUGOUT(" Adding the multicast addresses:\n");
++ DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
++ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
++ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
++ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
++ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
++ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
++ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
++
++ hash_value = e1000_hash_mc_addr(shared,
++ mc_addr_list +
++ (i * (ETH_LENGTH_OF_ADDRESS + pad)));
++
++ DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
++
++ /* Place this multicast address in the RAR if there is room, *
++ * else put it in the MTA
++ */
++ if(rar_used_count < E1000_RAR_ENTRIES) {
++ e1000_rar_set(shared,
++ mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
++ rar_used_count);
++ rar_used_count++;
++ } else {
++ e1000_mta_set(shared, hash_value);
++ }
++ }
++
++ DEBUGOUT("MC Update Complete\n");
++ return;
++}
++
++/******************************************************************************
++ * Hashes an address to determine its location in the multicast table
++ *
++ * shared - Struct containing variables accessed by shared code
++ * mc_addr - the multicast address to hash
++ *****************************************************************************/
++uint32_t
++e1000_hash_mc_addr(struct e1000_shared_adapter *shared,
++ uint8_t *mc_addr)
++{
++ uint32_t hash_value = 0;
++
++ /* The portion of the address that is used for the hash table is
++ * determined by the mc_filter_type setting.
++ */
++ switch (shared->mc_filter_type) {
++ /* [0] [1] [2] [3] [4] [5]
++ * 01 AA 00 12 34 56
++ * LSB MSB - According to H/W docs */
++ case 0:
++ /* [47:36] i.e. 0x563 for above example address */
++ hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
++ break;
++ case 1: /* [46:35] i.e. 0xAC6 for above example address */
++ hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
++ break;
++ case 2: /* [45:34] i.e. 0x5D8 for above example address */
++ hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
++ break;
++ case 3: /* [43:32] i.e. 0x634 for above example address */
++ hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
++ break;
++ }
++
++ hash_value &= 0xFFF;
++ return (hash_value);
++}
++
++/******************************************************************************
++ * Sets the bit in the multicast table corresponding to the hash value.
++ *
++ * shared - Struct containing variables accessed by shared code
++ * hash_value - Multicast address hash value
++ *****************************************************************************/
++void
++e1000_mta_set(struct e1000_shared_adapter *shared,
++ uint32_t hash_value)
++{
++ uint32_t hash_bit, hash_reg;
++ uint32_t mta_reg;
++ uint32_t temp;
++
++ /* The MTA is a register array of 128 32-bit registers.
++ * It is treated like an array of 4096 bits. We want to set
++ * bit BitArray[hash_value]. So we figure out what register
++ * the bit is in, read it, OR in the new bit, then write
++ * back the new value. The register is determined by the
++ * upper 7 bits of the hash value and the bit within that
++ * register are determined by the lower 5 bits of the value.
++ */
++ hash_reg = (hash_value >> 5) & 0x7F;
++ hash_bit = hash_value & 0x1F;
++
++ mta_reg = E1000_READ_REG_ARRAY(shared, MTA, hash_reg);
++
++ mta_reg |= (1 << hash_bit);
++
++ /* If we are on an 82544 and we are trying to write an odd offset
++ * in the MTA, save off the previous entry before writing and
++ * restore the old value after writing.
++ */
++ if((shared->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
++ temp = E1000_READ_REG_ARRAY(shared, MTA, (hash_reg - 1));
++ E1000_WRITE_REG_ARRAY(shared, MTA, hash_reg, mta_reg);
++ E1000_WRITE_REG_ARRAY(shared, MTA, (hash_reg - 1), temp);
++ } else {
++ E1000_WRITE_REG_ARRAY(shared, MTA, hash_reg, mta_reg);
++ }
++ return;
++}
++
++/******************************************************************************
++ * Puts an ethernet address into a receive address register.
++ *
++ * shared - Struct containing variables accessed by shared code
++ * addr - Address to put into receive address register
++ * index - Receive address register to write
++ *****************************************************************************/
++void
++e1000_rar_set(struct e1000_shared_adapter *shared,
++ uint8_t *addr,
++ uint32_t index)
++{
++ uint32_t rar_low, rar_high;
++
++ /* HW expects these in little endian so we reverse the byte order
++ * from network order (big endian) to little endian
++ */
++ rar_low = ((uint32_t) addr[0] |
++ ((uint32_t) addr[1] << 8) |
++ ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
++
++ rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
++
++ E1000_WRITE_REG_ARRAY(shared, RA, (index << 1), rar_low);
++ E1000_WRITE_REG_ARRAY(shared, RA, ((index << 1) + 1), rar_high);
++ return;
++}
++
++/******************************************************************************
++ * Writes a value to the specified offset in the VLAN filter table.
++ *
++ * shared - Struct containing variables accessed by shared code
++ * offset - Offset in VLAN filer table to write
++ * value - Value to write into VLAN filter table
++ *****************************************************************************/
++void
++e1000_write_vfta(struct e1000_shared_adapter *shared,
++ uint32_t offset,
++ uint32_t value)
++{
++ uint32_t temp;
++
++ if((shared->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
++ temp = E1000_READ_REG_ARRAY(shared, VFTA, (offset - 1));
++ E1000_WRITE_REG_ARRAY(shared, VFTA, offset, value);
++ E1000_WRITE_REG_ARRAY(shared, VFTA, (offset - 1), temp);
++ } else {
++ E1000_WRITE_REG_ARRAY(shared, VFTA, offset, value);
++ }
++ return;
++}
++
++/******************************************************************************
++ * Clears the VLAN filer table
++ *
++ * shared - Struct containing variables accessed by shared code
++ *****************************************************************************/
++void
++e1000_clear_vfta(struct e1000_shared_adapter *shared)
++{
++ uint32_t offset;
++
++ for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
++ E1000_WRITE_REG_ARRAY(shared, VFTA, offset, 0);
++ return;
++}
++
++/******************************************************************************
++ * Configures flow control and link settings.
++ *
++ * shared - Struct containing variables accessed by shared code
++ *
++ * Determines which flow control settings to use. Calls the apropriate media-
++ * specific link configuration function. Configures the flow control settings.
++ * Assuming the adapter has a valid link partner, a valid link should be
++ * established. Assumes the hardware has previously been reset and the
++ * transmitter and receiver are not enabled.
++ *****************************************************************************/
++boolean_t
++e1000_setup_fc_and_link(struct e1000_shared_adapter *shared)
++{
++ uint32_t ctrl_reg;
++ uint32_t eecd_reg;
++ uint32_t ctrl_ext_reg;
++ boolean_t status = TRUE;
++
++ DEBUGFUNC("e1000_setup_fc_and_link");
++
++ /* Read the SWDPIO bits and the ILOS bit out of word 0x0A in the
++ * EEPROM. Store these bits in a variable that we will later write
++ * to the Device Control Register (CTRL).
++ */
++ eecd_reg = e1000_read_eeprom(shared, EEPROM_INIT_CONTROL1_REG);
++
++ ctrl_reg =
++ (((eecd_reg & EEPROM_WORD0A_SWDPIO) << SWDPIO_SHIFT) |
++ ((eecd_reg & EEPROM_WORD0A_ILOS) << ILOS_SHIFT));
++
++ /* Set the PCI priority bit correctly in the CTRL register. This
++ * determines if the adapter gives priority to receives, or if it
++ * gives equal priority to transmits and receives.
++ */
++ if(shared->dma_fairness)
++ ctrl_reg |= E1000_CTRL_PRIOR;
++
++ /* Read and store word 0x0F of the EEPROM. This word contains bits
++ * that determine the hardware's default PAUSE (flow control) mode,
++ * a bit that determines whether the HW defaults to enabling or
++ * disabling auto-negotiation, and the direction of the
++ * SW defined pins. If there is no SW over-ride of the flow
++ * control setting, then the variable shared->fc will
++ * be initialized based on a value in the EEPROM.
++ */
++ eecd_reg = e1000_read_eeprom(shared, EEPROM_INIT_CONTROL2_REG);
++
++ if(shared->fc > e1000_fc_full) {
++ if((eecd_reg & EEPROM_WORD0F_PAUSE_MASK) == 0)
++ shared->fc = e1000_fc_none;
++ else if((eecd_reg & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR)
++ shared->fc = e1000_fc_tx_pause;
++ else
++ shared->fc = e1000_fc_full;
++ }
++
++ /* We want to save off the original Flow Control configuration just
++ * in case we get disconnected and then reconnected into a different
++ * hub or switch with different Flow Control capabilities.
++ */
++ shared->original_fc = shared->fc;
++
++ if(shared->mac_type == e1000_82542_rev2_0)
++ shared->fc &= (~e1000_fc_tx_pause);
++
++ if((shared->mac_type < e1000_82543) && (shared->report_tx_early == 1))
++ shared->fc &= (~e1000_fc_rx_pause);
++
++ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", shared->fc);
++
++ /* Take the 4 bits from EEPROM word 0x0F that determine the initial
++ * polarity value for the SW controlled pins, and setup the
++ * Extended Device Control reg with that info.
++ * This is needed because one of the SW controlled pins is used for
++ * signal detection. So this should be done before e1000_setup_pcs_link()
++ * or e1000_phy_setup() is called.
++ */
++ if(shared->mac_type == e1000_82543) {
++ ctrl_ext_reg = ((eecd_reg & EEPROM_WORD0F_SWPDIO_EXT)
++ << SWDPIO__EXT_SHIFT);
++ E1000_WRITE_REG(shared, CTRL_EXT, ctrl_ext_reg);
++ }
++
++ /* Call the necessary subroutine to configure the link. */
++ if(shared->media_type == e1000_media_type_fiber)
++ status = e1000_setup_pcs_link(shared, ctrl_reg);
++ else
++ status = e1000_phy_setup(shared, ctrl_reg);
++
++ /* Initialize the flow control address, type, and PAUSE timer
++ * registers to their default values. This is done even if flow
++ * control is disabled, because it does not hurt anything to
++ * initialize these registers.
++ */
++ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
++
++ E1000_WRITE_REG(shared, FCAL, FLOW_CONTROL_ADDRESS_LOW);
++ E1000_WRITE_REG(shared, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
++ E1000_WRITE_REG(shared, FCT, FLOW_CONTROL_TYPE);
++ E1000_WRITE_REG(shared, FCTTV, shared->fc_pause_time);
++
++ /* Set the flow control receive threshold registers. Normally,
++ * these registers will be set to a default threshold that may be
++ * adjusted later by the driver's runtime code. However, if the
++ * ability to transmit pause frames in not enabled, then these
++ * registers will be set to 0.
++ */
++ if(!(shared->fc & e1000_fc_tx_pause)) {
++ E1000_WRITE_REG(shared, FCRTL, 0);
++ E1000_WRITE_REG(shared, FCRTH, 0);
++ } else {
++ /* We need to set up the Receive Threshold high and low water marks
++ * as well as (optionally) enabling the transmission of XON frames.
++ */
++ if(shared->fc_send_xon) {
++ E1000_WRITE_REG(shared, FCRTL,
++ (shared->fc_low_water | E1000_FCRTL_XONE));
++ E1000_WRITE_REG(shared, FCRTH, shared->fc_high_water);
++ } else {
++ E1000_WRITE_REG(shared, FCRTL, shared->fc_low_water);
++ E1000_WRITE_REG(shared, FCRTH, shared->fc_high_water);
++ }
++ }
++ return (status);
++}
++
++/******************************************************************************
++ * Sets up link for a fiber based adapter
++ *
++ * shared - Struct containing variables accessed by shared code
++ * ctrl_reg - Current value of the device control register
++ *
++ * Manipulates Physical Coding Sublayer functions in order to configure
++ * link. Assumes the hardware has been previously reset and the transmitter
++ * and receiver are not enabled.
++ *****************************************************************************/
++boolean_t
++e1000_setup_pcs_link(struct e1000_shared_adapter *shared,
++ uint32_t ctrl_reg)
++{
++ uint32_t status_reg;
++ uint32_t tctl_reg;
++ uint32_t txcw_reg = 0;
++ uint32_t i;
++
++ DEBUGFUNC("e1000_setup_pcs_link");
++
++ /* Setup the collsion distance. Since this is configuring the
++ * TBI it is assumed that we are in Full Duplex.
++ */
++ tctl_reg = E1000_READ_REG(shared, TCTL);
++ i = E1000_FDX_COLLISION_DISTANCE;
++ i <<= E1000_COLD_SHIFT;
++ tctl_reg |= i;
++ E1000_WRITE_REG(shared, TCTL, tctl_reg);
++
++ /* Check for a software override of the flow control settings, and
++ * setup the device accordingly. If auto-negotiation is enabled,
++ * then software will have to set the "PAUSE" bits to the correct
++ * value in the Tranmsit Config Word Register (TXCW) and re-start
++ * auto-negotiation. However, if auto-negotiation is disabled,
++ * then software will have to manually configure the two flow
++ * control enable bits in the CTRL register.
++ *
++ * The possible values of the "fc" parameter are:
++ * 0: Flow control is completely disabled
++ * 1: Rx flow control is enabled (we can receive pause frames
++ * but not send pause frames).
++ * 2: Tx flow control is enabled (we can send pause frames
++ * but we do not support receiving pause frames).
++ * 3: Both Rx and TX flow control (symmetric) are enabled.
++ * other: No software override. The flow control configuration
++ * in the EEPROM is used.
++ */
++ switch (shared->fc) {
++ case e1000_fc_none: /* 0 */
++ /* Flow control (RX & TX) is completely disabled by a
++ * software over-ride.
++ */
++ txcw_reg = (E1000_TXCW_ANE | E1000_TXCW_FD);
++ break;
++ case e1000_fc_rx_pause: /* 1 */
++ /* RX Flow control is enabled, and TX Flow control is
++ * disabled, by a software over-ride.
++ */
++ /* Since there really isn't a way to advertise that we are
++ * capable of RX Pause ONLY, we will advertise that we
++ * support both symmetric and asymmetric RX PAUSE. Later
++ * we will disable the adapter's ability to send PAUSE
++ * frames.
++ */
++ txcw_reg = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
++ break;
++ case e1000_fc_tx_pause: /* 2 */
++ /* TX Flow control is enabled, and RX Flow control is
++ * disabled, by a software over-ride.
++ */
++ txcw_reg = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
++ break;
++ case e1000_fc_full: /* 3 */
++ /* Flow control (both RX and TX) is enabled by a software
++ * over-ride.
++ */
++ txcw_reg = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
++ break;
++ default:
++ /* We should never get here. The value should be 0-3. */
++ DEBUGOUT("Flow control param set incorrectly\n");
++ ASSERT(0);
++ break;
++ }
++
++ /* Since auto-negotiation is enabled, take the link out of reset.
++ * (the link will be in reset, because we previously reset the
++ * chip). This will restart auto-negotiation. If auto-neogtiation
++ * is successful then the link-up status bit will be set and the
++ * flow control enable bits (RFCE and TFCE) will be set according
++ * to their negotiated value.
++ */
++ DEBUGOUT("Auto-negotiation enabled\n");
++
++ E1000_WRITE_REG(shared, TXCW, txcw_reg);
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++
++ shared->txcw_reg = txcw_reg;
++ msec_delay(1);
++
++ /* If we have a signal then poll for a "Link-Up" indication in the
++ * Device Status Register. Time-out if a link isn't seen in 500
++ * milliseconds seconds (Auto-negotiation should complete in less
++ * than 500 milliseconds even if the other end is doing it in SW).
++ */
++ if(!(E1000_READ_REG(shared, CTRL) & E1000_CTRL_SWDPIN1)) {
++
++ DEBUGOUT("Looking for Link\n");
++ for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
++ msec_delay(10);
++ status_reg = E1000_READ_REG(shared, STATUS);
++ if(status_reg & E1000_STATUS_LU)
++ break;
++ }
++
++ if(i == (LINK_UP_TIMEOUT / 10)) {
++ /* AutoNeg failed to achieve a link, so we'll call the
++ * "CheckForLink" routine. This routine will force the link
++ * up if we have "signal-detect". This will allow us to
++ * communicate with non-autonegotiating link partners.
++ */
++ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
++
++ shared->autoneg_failed = 1;
++ e1000_check_for_link(shared);
++ shared->autoneg_failed = 0;
++ } else {
++ shared->autoneg_failed = 0;
++ DEBUGOUT("Valid Link Found\n");
++ }
++ } else {
++ DEBUGOUT("No Signal Detected\n");
++ }
++
++ return (TRUE);
++}
++
++/******************************************************************************
++ * Configures flow control settings after link is established
++ *
++ * shared - Struct containing variables accessed by shared code
++ *
++ * Should be called immediately after a valid link has been established.
++ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
++ * and autonegotiation is enabled, the MAC flow control settings will be set
++ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
++ * and RFCE bits will be automaticaly set to the negotiated flow control mode.
++ *****************************************************************************/
++void
++e1000_config_fc_after_link_up(struct e1000_shared_adapter *shared)
++{
++ uint16_t mii_status_reg;
++ uint16_t mii_nway_adv_reg;
++ uint16_t mii_nway_lp_ability_reg;
++ uint16_t speed;
++ uint16_t duplex;
++
++ DEBUGFUNC("e1000_config_fc_after_link_up");
++
++ /* Check for the case where we have fiber media and auto-neg failed
++ * so we had to force link. In this case, we need to force the
++ * configuration of the MAC to match the "fc" parameter.
++ */
++ if(((shared->media_type == e1000_media_type_fiber)
++ && (shared->autoneg_failed))
++ || ((shared->media_type == e1000_media_type_copper)
++ && (!shared->autoneg))) {
++ e1000_force_mac_fc(shared);
++ }
++
++ /* Check for the case where we have copper media and auto-neg is
++ * enabled. In this case, we need to check and see if Auto-Neg
++ * has completed, and if so, how the PHY and link partner has
++ * flow control configured.
++ */
++ if((shared->media_type == e1000_media_type_copper) && shared->autoneg) {
++ /* Read the MII Status Register and check to see if AutoNeg
++ * has completed. We read this twice because this reg has
++ * some "sticky" (latched) bits.
++ */
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++
++ if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
++ /* The AutoNeg process has completed, so we now need to
++ * read both the Auto Negotiation Advertisement Register
++ * (Address 4) and the Auto_Negotiation Base Page Ability
++ * Register (Address 5) to determine how flow control was
++ * negotiated.
++ */
++ mii_nway_adv_reg = e1000_read_phy_reg(shared,
++ PHY_AUTONEG_ADV);
++ mii_nway_lp_ability_reg = e1000_read_phy_reg(shared,
++ PHY_LP_ABILITY);
++
++ /* Two bits in the Auto Negotiation Advertisement Register
++ * (Address 4) and two bits in the Auto Negotiation Base
++ * Page Ability Register (Address 5) determine flow control
++ * for both the PHY and the link partner. The following
++ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
++ * 1999, describes these PAUSE resolution bits and how flow
++ * control is determined based upon these settings.
++ * NOTE: DC = Don't Care
++ *
++ * LOCAL DEVICE | LINK PARTNER
++ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
++ *-------|---------|-------|---------|--------------------
++ * 0 | 0 | DC | DC | e1000_fc_none
++ * 0 | 1 | 0 | DC | e1000_fc_none
++ * 0 | 1 | 1 | 0 | e1000_fc_none
++ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
++ * 1 | 0 | 0 | DC | e1000_fc_none
++ * 1 | DC | 1 | DC | e1000_fc_full
++ * 1 | 1 | 0 | 0 | e1000_fc_none
++ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
++ *
++ */
++ /* Are both PAUSE bits set to 1? If so, this implies
++ * Symmetric Flow Control is enabled at both ends. The
++ * ASM_DIR bits are irrelevant per the spec.
++ *
++ * For Symmetric Flow Control:
++ *
++ * LOCAL DEVICE | LINK PARTNER
++ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
++ *-------|---------|-------|---------|--------------------
++ * 1 | DC | 1 | DC | e1000_fc_full
++ *
++ */
++ if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
++ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
++ /* Now we need to check if the user selected RX ONLY
++ * of pause frames. In this case, we had to advertise
++ * FULL flow control because we could not advertise RX
++ * ONLY. Hence, we must now check to see if we need to
++ * turn OFF the TRANSMISSION of PAUSE frames.
++ */
++ if(shared->original_fc == e1000_fc_full) {
++ shared->fc = e1000_fc_full;
++ DEBUGOUT("Flow Control = FULL.\r\n");
++ } else {
++ shared->fc = e1000_fc_rx_pause;
++ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
++ }
++ }
++ /* For receiving PAUSE frames ONLY.
++ *
++ * LOCAL DEVICE | LINK PARTNER
++ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
++ *-------|---------|-------|---------|--------------------
++ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
++ *
++ */
++ else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
++ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
++ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
++ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
++ shared->fc = e1000_fc_tx_pause;
++ DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
++ }
++ /* For transmitting PAUSE frames ONLY.
++ *
++ * LOCAL DEVICE | LINK PARTNER
++ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
++ *-------|---------|-------|---------|--------------------
++ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
++ *
++ */
++ else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
++ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
++ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
++ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
++ shared->fc = e1000_fc_rx_pause;
++ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
++ }
++ /* Per the IEEE spec, at this point flow control should be
++ * disabled. However, we want to consider that we could
++ * be connected to a legacy switch that doesn't advertise
++ * desired flow control, but can be forced on the link
++ * partner. So if we advertised no flow control, that is
++ * what we will resolve to. If we advertised some kind of
++ * receive capability (Rx Pause Only or Full Flow Control)
++ * and the link partner advertised none, we will configure
++ * ourselves to enable Rx Flow Control only. We can do
++ * this safely for two reasons: If the link partner really
++ * didn't want flow control enabled, and we enable Rx, no
++ * harm done since we won't be receiving any PAUSE frames
++ * anyway. If the intent on the link partner was to have
++ * flow control enabled, then by us enabling RX only, we
++ * can at least receive pause frames and process them.
++ * This is a good idea because in most cases, since we are
++ * predominantly a server NIC, more times than not we will
++ * be asked to delay transmission of packets than asking
++ * our link partner to pause transmission of frames.
++ */
++ else if(shared->original_fc == e1000_fc_none ||
++ shared->original_fc == e1000_fc_tx_pause) {
++ shared->fc = e1000_fc_none;
++ DEBUGOUT("Flow Control = NONE.\r\n");
++ } else {
++ shared->fc = e1000_fc_rx_pause;
++ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
++ }
++
++ /* Now we need to do one last check... If we auto-
++ * negotiated to HALF DUPLEX, flow control should not be
++ * enabled per IEEE 802.3 spec.
++ */
++ e1000_get_speed_and_duplex(shared, &speed, &duplex);
++
++ if(duplex == HALF_DUPLEX)
++ shared->fc = e1000_fc_none;
++
++ /* Now we call a subroutine to actually force the MAC
++ * controller to use the correct flow control settings.
++ */
++ e1000_force_mac_fc(shared);
++ } else {
++ DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
++ }
++ }
++ return;
++}
++
++/******************************************************************************
++ * Checks to see if the link status of the hardware has changed.
++ *
++ * shared - Struct containing variables accessed by shared code
++ *
++ * Called by any function that needs to check the link status of the adapter.
++ *****************************************************************************/
++void
++e1000_check_for_link(struct e1000_shared_adapter *shared)
++{
++ uint32_t rxcw_reg;
++ uint32_t ctrl_reg;
++ uint32_t status_reg;
++ uint32_t rctl_reg;
++ uint16_t phy_data;
++ uint16_t lp_capability;
++
++ DEBUGFUNC("e1000_check_for_link");
++
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++ status_reg = E1000_READ_REG(shared, STATUS);
++ rxcw_reg = E1000_READ_REG(shared, RXCW);
++
++ /* If we have a copper PHY then we only want to go out to the PHY
++ * registers to see if Auto-Neg has completed and/or if our link
++ * status has changed. The get_link_status flag will be set if we
++ * receive a Link Status Change interrupt or we have Rx Sequence
++ * Errors.
++ */
++ if(shared->media_type == e1000_media_type_copper
++ && shared->get_link_status) {
++ /* First we want to see if the MII Status Register reports
++ * link. If so, then we want to get the current speed/duplex
++ * of the PHY.
++ * Read the register twice since the link bit is sticky.
++ */
++ phy_data = e1000_read_phy_reg(shared, PHY_STATUS);
++ phy_data = e1000_read_phy_reg(shared, PHY_STATUS);
++
++ if(phy_data & MII_SR_LINK_STATUS) {
++ shared->get_link_status = FALSE;
++ } else {
++ DEBUGOUT("**** CFL - No link detected. ****\r\n");
++ return;
++ }
++
++ /* If we are forcing speed/duplex, then we simply return since
++ * we have already determined whether we have link or not.
++ */
++ if(!shared->autoneg) {
++ return;
++ }
++
++ switch (shared->phy_id) {
++ case M88E1000_12_PHY_ID:
++ case M88E1000_14_PHY_ID:
++ case M88E1000_I_PHY_ID:
++ case M88E1011_I_PHY_ID:
++ /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
++ * have Si on board that is 82544 or newer, Auto
++ * Speed Detection takes care of MAC speed/duplex
++ * configuration. So we only need to configure Collision
++ * Distance in the MAC. Otherwise, we need to force
++ * speed/duplex on the MAC to the current PHY speed/duplex
++ * settings.
++ */
++ if(shared->mac_type >= e1000_82544) {
++ DEBUGOUT("CFL - Auto-Neg complete.");
++ DEBUGOUT("Configuring Collision Distance.");
++ e1000_config_collision_dist(shared);
++ } else {
++ /* Read the Phy Specific Status register to get the
++ * resolved speed/duplex settings. Then call
++ * e1000_config_mac_to_phy which will retrieve
++ * PHY register information and configure the MAC to
++ * equal the negotiated speed/duplex.
++ */
++ phy_data = e1000_read_phy_reg(shared,
++ M88E1000_PHY_SPEC_STATUS);
++
++ DEBUGOUT1("CFL - Auto-Neg complete. phy_data = %x\r\n",
++ phy_data);
++ e1000_config_mac_to_phy(shared, phy_data);
++ }
++
++ /* Configure Flow Control now that Auto-Neg has completed.
++ * We need to first restore the users desired Flow
++ * Control setting since we may have had to re-autoneg
++ * with a different link partner.
++ */
++ e1000_config_fc_after_link_up(shared);
++ break;
++
++ default:
++ DEBUGOUT("CFL - Invalid PHY detected.\r\n");
++
++ } /* end switch statement */
++
++ /* At this point we know that we are on copper, link is up,
++ * and we are auto-neg'd. These are pre-conditions for checking
++ * the link parter capabilities register. We use the link partner
++ * capabilities to determine if TBI Compatibility needs to be turned on
++ * or turned off. If the link partner advertises any speed in addition
++ * to Gigabit, then we assume that they are GMII-based and TBI
++ * compatibility is not needed.
++ * If no other speeds are advertised, then we assume the link partner
++ * is TBI-based and we turn on TBI Compatibility.
++ */
++ if(shared->tbi_compatibility_en) {
++ lp_capability = e1000_read_phy_reg(shared, PHY_LP_ABILITY);
++ if(lp_capability & (NWAY_LPAR_10T_HD_CAPS |
++ NWAY_LPAR_10T_FD_CAPS |
++ NWAY_LPAR_100TX_HD_CAPS |
++ NWAY_LPAR_100TX_FD_CAPS |
++ NWAY_LPAR_100T4_CAPS)) {
++ /* If our link partner advertises below Gig, then they do not
++ * need the special Tbi Compatibility mode.
++ */
++ if(shared->tbi_compatibility_on) {
++ /* If we previously were in the mode, turn it off, now. */
++ rctl_reg = E1000_READ_REG(shared, RCTL);
++ rctl_reg &= ~E1000_RCTL_SBP;
++ E1000_WRITE_REG(shared, RCTL, rctl_reg);
++ shared->tbi_compatibility_on = FALSE;
++ }
++ } else {
++ /* If the mode is was previously off, turn it on.
++ * For compatibility with a suspected Tbi link partners,
++ * we will store bad packets.
++ * (Certain frames have an additional byte on the end and will
++ * look like CRC errors to to the hardware).
++ */
++ if(!shared->tbi_compatibility_on) {
++ shared->tbi_compatibility_on = TRUE;
++ rctl_reg = E1000_READ_REG(shared, RCTL);
++ rctl_reg |= E1000_RCTL_SBP;
++ E1000_WRITE_REG(shared, RCTL, rctl_reg);
++ }
++ }
++ }
++ } /* end if e1000_media_type_copper statement */
++ /* If we don't have link (auto-negotiation failed or link partner
++ * cannot auto-negotiate) and the cable is plugged in since we don't
++ * have Loss-Of-Signal (we HAVE a signal) and our link partner is
++ * not trying to AutoNeg with us (we are receiving idles/data
++ * then we need to force our link to connect to a non
++ * auto-negotiating link partner. We also need to give
++ * auto-negotiation time to complete in case the cable was just
++ * plugged in. The autoneg_failed flag does this.
++ */
++ else if((shared->media_type == e1000_media_type_fiber) && /* Fiber PHY */
++ (!(status_reg & E1000_STATUS_LU)) && /* no link and */
++ (!(ctrl_reg & E1000_CTRL_SWDPIN1)) && /* we have signal */
++ (!(rxcw_reg & E1000_RXCW_C))) { /* and rxing idle/data */
++ if(shared->autoneg_failed == 0) { /* given AutoNeg time */
++ shared->autoneg_failed = 1;
++ return;
++ }
++
++ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
++
++ /* Disable auto-negotiation in the TXCW register */
++ E1000_WRITE_REG(shared, TXCW, (shared->txcw_reg & ~E1000_TXCW_ANE));
++
++ /* Force link-up and also force full-duplex. */
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++ ctrl_reg |= (E1000_CTRL_SLU | E1000_CTRL_FD);
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++
++ /* Configure Flow Control after forcing link up. */
++ e1000_config_fc_after_link_up(shared);
++
++ } else if((shared->media_type == e1000_media_type_fiber) && /* Fiber */
++ (ctrl_reg & E1000_CTRL_SLU) && /* we have forced link */
++ (rxcw_reg & E1000_RXCW_C)) { /* and Rxing /C/ ordered sets */
++ /* If we are forcing link and we are receiving /C/ ordered sets,
++ * then re-enable auto-negotiation in the RXCW register and
++ * disable forced link in the Device Control register in an attempt
++ * to AutoNeg with our link partner.
++ */
++ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
++
++ /* Enable auto-negotiation in the TXCW register and stop
++ * forcing link.
++ */
++ E1000_WRITE_REG(shared, TXCW, shared->txcw_reg);
++
++ E1000_WRITE_REG(shared, CTRL, (ctrl_reg & ~E1000_CTRL_SLU));
++ }
++
++ return;
++}
++
++/******************************************************************************
++ * Clears all hardware statistics counters.
++ *
++ * shared - Struct containing variables accessed by shared code
++ *****************************************************************************/
++void
++e1000_clear_hw_cntrs(struct e1000_shared_adapter *shared)
++{
++ volatile uint32_t temp_reg;
++
++ DEBUGFUNC("e1000_clear_hw_cntrs");
++
++ /* if we are stopped or resetting exit gracefully */
++ if(shared->adapter_stopped) {
++ DEBUGOUT("Exiting because the adapter is stopped!!!\n");
++ return;
++ }
++
++ temp_reg = E1000_READ_REG(shared, CRCERRS);
++ temp_reg = E1000_READ_REG(shared, SYMERRS);
++ temp_reg = E1000_READ_REG(shared, MPC);
++ temp_reg = E1000_READ_REG(shared, SCC);
++ temp_reg = E1000_READ_REG(shared, ECOL);
++ temp_reg = E1000_READ_REG(shared, MCC);
++ temp_reg = E1000_READ_REG(shared, LATECOL);
++ temp_reg = E1000_READ_REG(shared, COLC);
++ temp_reg = E1000_READ_REG(shared, DC);
++ temp_reg = E1000_READ_REG(shared, SEC);
++ temp_reg = E1000_READ_REG(shared, RLEC);
++ temp_reg = E1000_READ_REG(shared, XONRXC);
++ temp_reg = E1000_READ_REG(shared, XONTXC);
++ temp_reg = E1000_READ_REG(shared, XOFFRXC);
++ temp_reg = E1000_READ_REG(shared, XOFFTXC);
++ temp_reg = E1000_READ_REG(shared, FCRUC);
++ temp_reg = E1000_READ_REG(shared, PRC64);
++ temp_reg = E1000_READ_REG(shared, PRC127);
++ temp_reg = E1000_READ_REG(shared, PRC255);
++ temp_reg = E1000_READ_REG(shared, PRC511);
++ temp_reg = E1000_READ_REG(shared, PRC1023);
++ temp_reg = E1000_READ_REG(shared, PRC1522);
++ temp_reg = E1000_READ_REG(shared, GPRC);
++ temp_reg = E1000_READ_REG(shared, BPRC);
++ temp_reg = E1000_READ_REG(shared, MPRC);
++ temp_reg = E1000_READ_REG(shared, GPTC);
++ temp_reg = E1000_READ_REG(shared, GORCL);
++ temp_reg = E1000_READ_REG(shared, GORCH);
++ temp_reg = E1000_READ_REG(shared, GOTCL);
++ temp_reg = E1000_READ_REG(shared, GOTCH);
++ temp_reg = E1000_READ_REG(shared, RNBC);
++ temp_reg = E1000_READ_REG(shared, RUC);
++ temp_reg = E1000_READ_REG(shared, RFC);
++ temp_reg = E1000_READ_REG(shared, ROC);
++ temp_reg = E1000_READ_REG(shared, RJC);
++ temp_reg = E1000_READ_REG(shared, TORL);
++ temp_reg = E1000_READ_REG(shared, TORH);
++ temp_reg = E1000_READ_REG(shared, TOTL);
++ temp_reg = E1000_READ_REG(shared, TOTH);
++ temp_reg = E1000_READ_REG(shared, TPR);
++ temp_reg = E1000_READ_REG(shared, TPT);
++ temp_reg = E1000_READ_REG(shared, PTC64);
++ temp_reg = E1000_READ_REG(shared, PTC127);
++ temp_reg = E1000_READ_REG(shared, PTC255);
++ temp_reg = E1000_READ_REG(shared, PTC511);
++ temp_reg = E1000_READ_REG(shared, PTC1023);
++ temp_reg = E1000_READ_REG(shared, PTC1522);
++ temp_reg = E1000_READ_REG(shared, MPTC);
++ temp_reg = E1000_READ_REG(shared, BPTC);
++
++ if(shared->mac_type < e1000_82543)
++ return;
++
++ temp_reg = E1000_READ_REG(shared, ALGNERRC);
++ temp_reg = E1000_READ_REG(shared, RXERRC);
++ temp_reg = E1000_READ_REG(shared, TNCRS);
++ temp_reg = E1000_READ_REG(shared, CEXTERR);
++ temp_reg = E1000_READ_REG(shared, TSCTC);
++ temp_reg = E1000_READ_REG(shared, TSCTFC);
++ return;
++}
++
++/******************************************************************************
++ * Detects the current speed and duplex settings of the hardware.
++ *
++ * shared - Struct containing variables accessed by shared code
++ * speed - Speed of the connection
++ * duplex - Duplex setting of the connection
++ *****************************************************************************/
++void
++e1000_get_speed_and_duplex(struct e1000_shared_adapter *shared,
++ uint16_t *speed,
++ uint16_t *duplex)
++{
++ uint32_t status_reg;
++#if DBG
++ uint16_t phy_data;
++#endif
++
++ DEBUGFUNC("e1000_get_speed_and_duplex");
++
++ /* If the adapter is stopped we don't have a speed or duplex */
++ if(shared->adapter_stopped) {
++ *speed = 0;
++ *duplex = 0;
++ return;
++ }
++
++ if(shared->mac_type >= e1000_82543) {
++ status_reg = E1000_READ_REG(shared, STATUS);
++ if(status_reg & E1000_STATUS_SPEED_1000) {
++ *speed = SPEED_1000;
++ DEBUGOUT("1000 Mbs, ");
++ } else if(status_reg & E1000_STATUS_SPEED_100) {
++ *speed = SPEED_100;
++ DEBUGOUT("100 Mbs, ");
++ } else {
++ *speed = SPEED_10;
++ DEBUGOUT("10 Mbs, ");
++ }
++
++ if(status_reg & E1000_STATUS_FD) {
++ *duplex = FULL_DUPLEX;
++ DEBUGOUT("Full Duplex\r\n");
++ } else {
++ *duplex = HALF_DUPLEX;
++ DEBUGOUT(" Half Duplex\r\n");
++ }
++ } else {
++ DEBUGOUT("1000 Mbs, Full Duplex\r\n");
++ *speed = SPEED_1000;
++ *duplex = FULL_DUPLEX;
++ }
++
++#if DBG
++ if(shared->phy_id == M88E1000_12_PHY_ID ||
++ shared->phy_id == M88E1000_14_PHY_ID ||
++ shared->phy_id == M88E1000_I_PHY_ID ||
++ shared->phy_id == M88E1011_I_PHY_ID) {
++ /* read the phy specific status register */
++ phy_data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_STATUS);
++ DEBUGOUT1("M88E1000 Phy Specific Status Reg contents = %x\n", phy_data);
++ phy_data = e1000_read_phy_reg(shared, PHY_STATUS);
++ DEBUGOUT1("Phy MII Status Reg contents = %x\n", phy_data);
++ DEBUGOUT1("Device Status Reg contents = %x\n",
++ E1000_READ_REG(shared, STATUS));
++ }
++#endif
++ return;
++}
++
++/******************************************************************************
++ * Reads a 16 bit word from the EEPROM.
++ *
++ * shared - Struct containing variables accessed by shared code
++ * offset - offset of 16 bit word in the EEPROM to read
++ *****************************************************************************/
++uint16_t
++e1000_read_eeprom(struct e1000_shared_adapter *shared,
++ uint16_t offset)
++{
++ boolean_t large_eeprom = FALSE;
++ uint16_t data;
++ uint32_t eecd_reg;
++ uint32_t tmp = 0;
++
++ if((shared->mac_type > e1000_82544) &&
++ (E1000_READ_REG(shared, EECD) & E1000_EECD_SIZE)) large_eeprom = TRUE;
++
++ /* Request EEPROM Access */
++ if(shared->mac_type > e1000_82544) {
++ E1000_WRITE_REG(shared, EECD, (uint32_t) E1000_EECD_REQ);
++ eecd_reg = E1000_READ_REG(shared, EECD);
++ while((!(eecd_reg & E1000_EECD_GNT)) && (tmp < 100)) {
++ tmp++;
++ usec_delay(5);
++ eecd_reg = E1000_READ_REG(shared, EECD);
++ }
++ if(!(eecd_reg & E1000_EECD_GNT)) return(FALSE);
++ }
++
++ /* Prepare the EEPROM for reading */
++ e1000_setup_eeprom(shared);
++
++ /* Send the READ command (opcode + addr) */
++ e1000_shift_out_bits(shared, EEPROM_READ_OPCODE, 3);
++ /* If we have a 256 word EEPROM, there are 8 address bits
++ * if we have a 64 word EEPROM, there are 6 address bits
++ */
++ if(large_eeprom)
++ e1000_shift_out_bits(shared, offset, 8);
++ else
++ e1000_shift_out_bits(shared, offset, 6);
++
++ /* Read the data */
++ data = e1000_shift_in_bits(shared);
++
++ /* End this read operation */
++ e1000_standby_eeprom(shared);
++
++ /* Stop requestiong EEPROM access */
++ if(shared->mac_type > e1000_82544)
++ E1000_WRITE_REG(shared, EECD, (uint32_t) 0);
++
++ return (data);
++}
++
++/******************************************************************************
++ * Verifies that the EEPROM has a valid checksum
++ *
++ * shared - Struct containing variables accessed by shared code
++ *
++ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
++ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
++ * valid.
++ *****************************************************************************/
++boolean_t
++e1000_validate_eeprom_checksum(struct e1000_shared_adapter *shared)
++{
++ uint16_t checksum = 0;
++ uint16_t i;
++
++ for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++)
++ checksum += e1000_read_eeprom(shared, i);
++
++ if(checksum == (uint16_t) EEPROM_SUM)
++ return (TRUE);
++ else
++ return (FALSE);
++}
++
++/******************************************************************************
++ * Calculates the EEPROM checksum and writes it to the EEPROM
++ *
++ * shared - Struct containing variables accessed by shared code
++ *
++ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
++ * Writes the difference to word offset 63 of the EEPROM.
++ *****************************************************************************/
++void
++e1000_update_eeprom_checksum(struct e1000_shared_adapter *shared)
++{
++ uint16_t checksum = 0;
++ uint16_t i;
++
++ for(i = 0; i < EEPROM_CHECKSUM_REG; i++)
++ checksum += e1000_read_eeprom(shared, i);
++
++ checksum = (uint16_t) EEPROM_SUM - checksum;
++
++ e1000_write_eeprom(shared, EEPROM_CHECKSUM_REG, checksum);
++ return;
++}
++
++/******************************************************************************
++ * Writes a 16 bit word to a given offset in the EEPROM.
++ *
++ * shared - Struct containing variables accessed by shared code
++ * offset - offset within the EEPROM to be written to
++ * data - 16 bit word to be writen to the EEPROM
++ *
++ * If e1000_update_eeprom_checksum is not called after this function, the
++ * EEPROM will most likely contain an invalid checksum.
++ *****************************************************************************/
++boolean_t
++e1000_write_eeprom(struct e1000_shared_adapter *shared,
++ uint16_t offset,
++ uint16_t data)
++{
++ boolean_t large_eeprom = FALSE;
++ uint32_t eecd_reg;
++ uint32_t tmp = 0;
++
++ if((shared->mac_type > e1000_82544) &&
++ (E1000_READ_REG(shared, EECD) & E1000_EECD_SIZE)) large_eeprom = TRUE;
++
++ /* Request EEPROM Access */
++ if(shared->mac_type > e1000_82544) {
++ E1000_WRITE_REG(shared, EECD, (uint32_t) E1000_EECD_REQ);
++ eecd_reg = E1000_READ_REG(shared, EECD);
++ while((!(eecd_reg & E1000_EECD_GNT)) && (tmp < 100)) {
++ tmp++;
++ usec_delay(5);
++ eecd_reg = E1000_READ_REG(shared, EECD);
++ }
++ if(!(eecd_reg & E1000_EECD_GNT)) return(FALSE);
++ }
++
++ /* Prepare the EEPROM for writing */
++ e1000_setup_eeprom(shared);
++
++ /* Send the 9-bit (or 11-bit on large EEPROM) EWEN (write enable)
++ * command to the EEPROM (5-bit opcode plus 4/6-bit dummy).
++ * This puts the EEPROM into write/erase mode.
++ */
++ e1000_shift_out_bits(shared, EEPROM_EWEN_OPCODE, 5);
++ if(large_eeprom)
++ e1000_shift_out_bits(shared, 0, 6);
++ else
++ e1000_shift_out_bits(shared, 0, 4);
++
++ /* Prepare the EEPROM */
++ e1000_standby_eeprom(shared);
++
++ /* Send the Write command (3-bit opcode + addr) */
++ e1000_shift_out_bits(shared, EEPROM_WRITE_OPCODE, 3);
++ /* If we have a 256 word EEPROM, there are 8 address bits
++ * if we have a 64 word EEPROM, there are 6 address bits
++ */
++ if(large_eeprom)
++ e1000_shift_out_bits(shared, offset, 8);
++ else
++ e1000_shift_out_bits(shared, offset, 6);
++
++ /* Send the data */
++ e1000_shift_out_bits(shared, data, 16);
++ e1000_wait_eeprom_command(shared);
++
++ /* Recover from write */
++ e1000_standby_eeprom(shared);
++
++ /* Send the 9-bit (or 11-bit on large EEPROM) EWDS (write disable)
++ * command to the EEPROM (5-bit opcode plus 4/6-bit dummy).
++ * This takes the EEPROM out of write/erase mode.
++ */
++ e1000_shift_out_bits(shared, EEPROM_EWDS_OPCODE, 5);
++ if(large_eeprom)
++ e1000_shift_out_bits(shared, 0, 6);
++ else
++ e1000_shift_out_bits(shared, 0, 4);
++
++ /* Done with writing */
++ e1000_cleanup_eeprom(shared);
++
++ /* Stop requestiong EEPROM access */
++ if(shared->mac_type > e1000_82544)
++ E1000_WRITE_REG(shared, EECD, (uint32_t) 0);
++
++ return (TRUE);
++}
++
++/******************************************************************************
++ * Reads the adapter's part number from the EEPROM
++ *
++ * shared - Struct containing variables accessed by shared code
++ * part_num - Adapter's part number
++ *****************************************************************************/
++boolean_t
++e1000_read_part_num(struct e1000_shared_adapter *shared,
++ uint32_t *part_num)
++{
++ uint16_t eeprom_word;
++
++ DEBUGFUNC("e1000_read_part_num");
++
++ /* Don't read the EEPROM if we are stopped */
++ if(shared->adapter_stopped) {
++ *part_num = 0;
++ return (FALSE);
++ }
++
++ /* Get word 0 from EEPROM */
++ eeprom_word = e1000_read_eeprom(shared, (uint16_t) (EEPROM_PBA_BYTE_1));
++
++ DEBUGOUT("Read first part number word\n");
++
++ /* Save word 0 in upper half is PartNumber */
++ *part_num = (uint32_t) eeprom_word;
++ *part_num = *part_num << 16;
++
++ /* Get word 1 from EEPROM */
++ eeprom_word =
++ e1000_read_eeprom(shared, (uint16_t) (EEPROM_PBA_BYTE_1 + 1));
++
++ DEBUGOUT("Read second part number word\n");
++
++ /* Save word 1 in lower half of PartNumber */
++ *part_num |= eeprom_word;
++
++ /* read a valid part number */
++ return (TRUE);
++}
++
++/******************************************************************************
++ * Turns on the software controllable LED
++ *
++ * shared - Struct containing variables accessed by shared code
++ *****************************************************************************/
++void
++e1000_led_on(struct e1000_shared_adapter *shared)
++{
++ uint32_t ctrl_reg;
++
++ /* if we're stopped don't touch the hardware */
++ if(shared->adapter_stopped)
++ return;
++
++ /* Read the content of the device control reg */
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++
++ /* Set the LED control pin to an output */
++ ctrl_reg |= E1000_CTRL_SWDPIO0;
++
++ /* Drive it high on normal boards, low on low profile boards */
++ if(shared->low_profile)
++ ctrl_reg &= ~E1000_CTRL_SWDPIN0;
++ else
++ ctrl_reg |= E1000_CTRL_SWDPIN0;
++
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++ return;
++}
++
++/******************************************************************************
++ * Turns off the software controllable LED
++ *
++ * shared - Struct containing variables accessed by shared code
++ *****************************************************************************/
++void
++e1000_led_off(struct e1000_shared_adapter *shared)
++{
++ uint32_t ctrl_reg;
++
++ /* if we're stopped don't touch the hardware */
++ if(shared->adapter_stopped)
++ return;
++
++ /* Read the content of the device control reg */
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++
++ /* Set the LED control pin to an output */
++ ctrl_reg |= E1000_CTRL_SWDPIO0;
++
++ /* Drive it low on normal boards, high on low profile boards */
++ if(shared->low_profile)
++ ctrl_reg |= E1000_CTRL_SWDPIN0;
++ else
++ ctrl_reg &= ~E1000_CTRL_SWDPIN0;
++
++ /* Write the device control reg. back */
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++ return;
++}
++
++/******************************************************************************
++ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
++ *
++ * shared - Struct containing variables accessed by shared code
++ * frame_len - The length of the frame in question
++ * mac_addr - The Ethernet destination address of the frame in question
++ *****************************************************************************/
++uint32_t
++e1000_tbi_adjust_stats(struct e1000_shared_adapter *shared,
++ struct e1000_shared_stats *stats,
++ uint32_t frame_len,
++ uint8_t *mac_addr)
++{
++ uint64_t carry_bit;
++
++ /* First adjust the frame length. */
++ frame_len--;
++ /* We need to adjust the statistics counters, since the hardware
++ * counters overcount this packet as a CRC error and undercount
++ * the packet as a good packet
++ */
++ /* This packet should not be counted as a CRC error. */
++ stats->crcerrs--;
++ /* This packet does count as a Good Packet Received. */
++ stats->gprc++;
++
++ /* Adjust the Good Octets received counters */
++ carry_bit = 0x80000000 & stats->gorcl;
++ stats->gorcl += frame_len;
++ /* If the high bit of Gorcl (the low 32 bits of the Good Octets
++ * Received Count) was one before the addition,
++ * AND it is zero after, then we lost the carry out,
++ * need to add one to Gorch (Good Octets Received Count High).
++ * This could be simplified if all environments supported
++ * 64-bit integers.
++ */
++ if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
++ stats->gorch++;
++ /* Is this a broadcast or multicast? Check broadcast first,
++ * since the test for a multicast frame will test positive on
++ * a broadcast frame.
++ */
++ if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
++ /* Broadcast packet */
++ stats->bprc++;
++ else if(*mac_addr & 0x01)
++ /* Multicast packet */
++ stats->mprc++;
++
++ if(frame_len == shared->max_frame_size) {
++ /* In this case, the hardware has overcounted the number of
++ * oversize frames.
++ */
++ if(stats->roc > 0)
++ stats->roc--;
++ }
++
++ /* Adjust the bin counters when the extra byte put the frame in the
++ * wrong bin. Remember that the frame_len was adjusted above.
++ */
++ if(frame_len == 64) {
++ stats->prc64++;
++ stats->prc127--;
++ } else if(frame_len == 127) {
++ stats->prc127++;
++ stats->prc255--;
++ } else if(frame_len == 255) {
++ stats->prc255++;
++ stats->prc511--;
++ } else if(frame_len == 511) {
++ stats->prc511++;
++ stats->prc1023--;
++ } else if(frame_len == 1023) {
++ stats->prc1023++;
++ stats->prc1522--;
++ } else if(frame_len == 1522) {
++ stats->prc1522++;
++ }
++ return frame_len;
++}
++
++/******************************************************************************
++ * Gets the current PCI bus type, speed, and width of the hardware
++ *
++ * shared - Struct containing variables accessed by shared code
++ *****************************************************************************/
++void
++e1000_get_bus_info(struct e1000_shared_adapter *shared)
++{
++ uint32_t status_reg;
++
++ if(shared->mac_type < e1000_82543) {
++ shared->bus_type = e1000_bus_type_unknown;
++ shared->bus_speed = e1000_bus_speed_unknown;
++ shared->bus_width = e1000_bus_width_unknown;
++ return;
++ }
++
++ status_reg = E1000_READ_REG(shared, STATUS);
++
++ shared->bus_type = (status_reg & E1000_STATUS_PCIX_MODE) ?
++ e1000_bus_type_pcix : e1000_bus_type_pci;
++
++ if(shared->bus_type == e1000_bus_type_pci) {
++ shared->bus_speed = (status_reg & E1000_STATUS_PCI66) ?
++ e1000_bus_speed_66 : e1000_bus_speed_33;
++ } else {
++ switch (status_reg & E1000_STATUS_PCIX_SPEED) {
++ case E1000_STATUS_PCIX_SPEED_66:
++ shared->bus_speed = e1000_bus_speed_66;
++ break;
++ case E1000_STATUS_PCIX_SPEED_100:
++ shared->bus_speed = e1000_bus_speed_100;
++ break;
++ case E1000_STATUS_PCIX_SPEED_133:
++ shared->bus_speed = e1000_bus_speed_133;
++ break;
++ default:
++ shared->bus_speed = e1000_bus_speed_reserved;
++ break;
++ }
++ }
++
++ shared->bus_width = (status_reg & E1000_STATUS_BUS64) ?
++ e1000_bus_width_64 : e1000_bus_width_32;
++
++ return;
++}
+--- /dev/null 2002-08-30 16:31:37.000000000 -0700
++++ linux-2.4.18-14-root/drivers/e1000/e1000_mac.h 2003-01-02 16:22:31.000000000 -0800
+@@ -0,0 +1,1381 @@
++/*******************************************************************************
++
++ This software program is available to you under a choice of one of two
++ licenses. You may choose to be licensed under either the GNU General Public
++ License (GPL) Version 2, June 1991, available at
++ http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
++ text of which follows:
++
++ Recipient has requested a license and Intel Corporation ("Intel") is willing
++ to grant a license for the software entitled Linux Base Driver for the
++ Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
++ by Intel Corporation. The following definitions apply to this license:
++
++ "Licensed Patents" means patent claims licensable by Intel Corporation which
++ are necessarily infringed by the use of sale of the Software alone or when
++ combined with the operating system referred to below.
++
++ "Recipient" means the party to whom Intel delivers this Software.
++
++ "Licensee" means Recipient and those third parties that receive a license to
++ any operating system available under the GNU Public License version 2.0 or
++ later.
++
++ Copyright (c) 1999 - 2002 Intel Corporation.
++ All rights reserved.
++
++ The license is provided to Recipient and Recipient's Licensees under the
++ following terms.
++
++ Redistribution and use in source and binary forms of the Software, with or
++ without modification, are permitted provided that the following conditions
++ are met:
++
++ Redistributions of source code of the Software may retain the above
++ copyright notice, this list of conditions and the following disclaimer.
++
++ Redistributions in binary form of the Software may reproduce the above
++ copyright notice, this list of conditions and the following disclaimer in
++ the documentation and/or materials provided with the distribution.
++
++ Neither the name of Intel Corporation nor the names of its contributors
++ shall be used to endorse or promote products derived from this Software
++ without specific prior written permission.
++
++ Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
++ royalty-free patent license under Licensed Patents to make, use, sell, offer
++ to sell, import and otherwise transfer the Software, if any, in source code
++ and object code form. This license shall include changes to the Software
++ that are error corrections or other minor changes to the Software that do
++ not add functionality or features when the Software is incorporated in any
++ version of an operating system that has been distributed under the GNU
++ General Public License 2.0 or later. This patent license shall apply to the
++ combination of the Software and any operating system licensed under the GNU
++ Public License version 2.0 or later if, at the time Intel provides the
++ Software to Recipient, such addition of the Software to the then publicly
++ available versions of such operating systems available under the GNU Public
++ License version 2.0 or later (whether in gold, beta or alpha form) causes
++ such combination to be covered by the Licensed Patents. The patent license
++ shall not apply to any other combinations which include the Software. NO
++ hardware per se is licensed hereunder.
++
++ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
++ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
++ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
++ ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
++ AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
++ TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
++ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++
++*******************************************************************************/
++
++/* e1000_mac.h
++ * Structures, enums, and macros for the MAC
++ */
++
++#ifndef _E1000_MAC_H_
++#define _E1000_MAC_H_
++
++#include "e1000_osdep.h"
++
++/* Forward declarations of structures used by the shared code */
++struct e1000_shared_adapter;
++struct e1000_shared_stats;
++
++/* Enumerated types specific to the e1000 hardware */
++/* Media Access Controlers */
++typedef enum {
++ e1000_82542_rev2_0 = 0,
++ e1000_82542_rev2_1,
++ e1000_82543,
++ e1000_82544,
++ e1000_82540,
++ e1000_num_macs
++} e1000_mac_type;
++
++/* Media Types */
++typedef enum {
++ e1000_media_type_copper = 0,
++ e1000_media_type_fiber = 1,
++ e1000_num_media_types
++} e1000_media_type;
++
++typedef enum {
++ e1000_10_half = 0,
++ e1000_10_full = 1,
++ e1000_100_half = 2,
++ e1000_100_full = 3
++} e1000_speed_duplex_type;
++
++/* Flow Control Settings */
++typedef enum {
++ e1000_fc_none = 0,
++ e1000_fc_rx_pause = 1,
++ e1000_fc_tx_pause = 2,
++ e1000_fc_full = 3,
++ e1000_fc_default = 0xFF
++} e1000_fc_type;
++
++/* PCI bus types */
++typedef enum {
++ e1000_bus_type_unknown = 0,
++ e1000_bus_type_pci,
++ e1000_bus_type_pcix
++} e1000_bus_type;
++
++/* PCI bus speeds */
++typedef enum {
++ e1000_bus_speed_unknown = 0,
++ e1000_bus_speed_33,
++ e1000_bus_speed_66,
++ e1000_bus_speed_100,
++ e1000_bus_speed_133,
++ e1000_bus_speed_reserved
++} e1000_bus_speed;
++
++/* PCI bus widths */
++typedef enum {
++ e1000_bus_width_unknown = 0,
++ e1000_bus_width_32,
++ e1000_bus_width_64
++} e1000_bus_width;
++
++
++
++/* Function prototypes */
++/* Setup */
++void e1000_adapter_stop(struct e1000_shared_adapter *shared);
++boolean_t e1000_init_hw(struct e1000_shared_adapter *shared);
++void e1000_init_rx_addrs(struct e1000_shared_adapter *shared);
++
++/* Filters (multicast, vlan, receive) */
++void e1000_mc_addr_list_update(struct e1000_shared_adapter *shared, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad);
++uint32_t e1000_hash_mc_addr(struct e1000_shared_adapter *shared, uint8_t * mc_addr);
++void e1000_mta_set(struct e1000_shared_adapter *shared, uint32_t hash_value);
++void e1000_rar_set(struct e1000_shared_adapter *shared, uint8_t * mc_addr, uint32_t rar_index);
++void e1000_write_vfta(struct e1000_shared_adapter *shared, uint32_t offset, uint32_t value);
++void e1000_clear_vfta(struct e1000_shared_adapter *shared);
++
++/* Link layer setup functions */
++boolean_t e1000_setup_fc_and_link(struct e1000_shared_adapter *shared);
++boolean_t e1000_setup_pcs_link(struct e1000_shared_adapter *shared, uint32_t dev_ctrl_reg);
++void e1000_config_fc_after_link_up(struct e1000_shared_adapter *shared);
++void e1000_check_for_link(struct e1000_shared_adapter *shared);
++void e1000_get_speed_and_duplex(struct e1000_shared_adapter *shared, uint16_t * speed, uint16_t * duplex);
++
++/* EEPROM Functions */
++uint16_t e1000_read_eeprom(struct e1000_shared_adapter *shared, uint16_t reg);
++boolean_t e1000_validate_eeprom_checksum(struct e1000_shared_adapter *shared);
++void e1000_update_eeprom_checksum(struct e1000_shared_adapter *shared);
++boolean_t e1000_write_eeprom(struct e1000_shared_adapter *shared, uint16_t reg, uint16_t data);
++
++/* Everything else */
++void e1000_clear_hw_cntrs(struct e1000_shared_adapter *shared);
++boolean_t e1000_read_part_num(struct e1000_shared_adapter *shared, uint32_t * part_num);
++void e1000_led_on(struct e1000_shared_adapter *shared);
++void e1000_led_off(struct e1000_shared_adapter *shared);
++void e1000_get_bus_info(struct e1000_shared_adapter *shared);
++uint32_t e1000_tbi_adjust_stats(struct e1000_shared_adapter *shared, struct e1000_shared_stats *stats, uint32_t frame_len, uint8_t * mac_addr);
++void e1000_write_pci_cfg(struct e1000_shared_adapter *shared, uint32_t reg, uint16_t * value);
++
++/* PCI Device IDs */
++#define E1000_DEV_ID_82542 0x1000
++#define E1000_DEV_ID_82543GC_FIBER 0x1001
++#define E1000_DEV_ID_82543GC_COPPER 0x1004
++#define E1000_DEV_ID_82544EI_COPPER 0x1008
++#define E1000_DEV_ID_82544EI_FIBER 0x1009
++#define E1000_DEV_ID_82544GC_COPPER 0x100C
++#define E1000_DEV_ID_82544GC_LOM 0x100D
++#define E1000_DEV_ID_82540EM 0x100E
++#define NUM_DEV_IDS 8
++
++#define NODE_ADDRESS_SIZE 6
++#define ETH_LENGTH_OF_ADDRESS 6
++
++/* MAC decode size is 128K - This is the size of BAR0 */
++#define MAC_DECODE_SIZE (128 * 1024)
++
++#define E1000_82542_2_0_REV_ID 2
++#define E1000_82542_2_1_REV_ID 3
++
++#define SPEED_10 10
++#define SPEED_100 100
++#define SPEED_1000 1000
++#define HALF_DUPLEX 1
++#define FULL_DUPLEX 2
++
++/* The sizes (in bytes) of a ethernet packet */
++#define ENET_HEADER_SIZE 14
++#define MAXIMUM_ETHERNET_PACKET_SIZE 1514 /* Without FCS */
++#define MINIMUM_ETHERNET_PACKET_SIZE 60 /* Without FCS */
++#define CRC_LENGTH 4
++#define MAX_JUMBO_FRAME_SIZE 0x3F00
++
++
++/* 802.1q VLAN Packet Sizes */
++#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */
++
++/* Ethertype field values */
++#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
++#define ETHERNET_IP_TYPE 0x0800 /* IP packets */
++#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */
++
++/* Packet Header defines */
++#define IP_PROTOCOL_TCP 6
++#define IP_PROTOCOL_UDP 0x11
++
++/* This defines the bits that are set in the Interrupt Mask
++ * Set/Read Register. Each bit is documented below:
++ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
++ * o RXSEQ = Receive Sequence Error
++ */
++#define POLL_IMS_ENABLE_MASK ( \
++ E1000_IMS_RXDMT0 | \
++ E1000_IMS_RXSEQ)
++
++/* This defines the bits that are set in the Interrupt Mask
++ * Set/Read Register. Each bit is documented below:
++ * o RXT0 = Receiver Timer Interrupt (ring 0)
++ * o TXDW = Transmit Descriptor Written Back
++ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
++ * o RXSEQ = Receive Sequence Error
++ * o LSC = Link Status Change
++ */
++#define IMS_ENABLE_MASK ( \
++ E1000_IMS_RXT0 | \
++ E1000_IMS_TXDW | \
++ E1000_IMS_RXDMT0 | \
++ E1000_IMS_RXSEQ | \
++ E1000_IMS_LSC)
++
++/* The number of high/low register pairs in the RAR. The RAR (Receive Address
++ * Registers) holds the directed and multicast addresses that we monitor. We
++ * reserve one of these spots for our directed address, allowing us room for
++ * E1000_RAR_ENTRIES - 1 multicast addresses.
++ */
++#define E1000_RAR_ENTRIES 16
++
++#define MIN_NUMBER_OF_DESCRIPTORS 8
++#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
++
++/* Receive Descriptor */
++struct e1000_rx_desc {
++ uint64_t buffer_addr; /* Address of the descriptor's data buffer */
++ uint16_t length; /* Length of data DMAed into data buffer */
++ uint16_t csum; /* Packet checksum */
++ uint8_t status; /* Descriptor status */
++ uint8_t errors; /* Descriptor Errors */
++ uint16_t special;
++};
++
++/* Receive Decriptor bit definitions */
++#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
++#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
++#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
++#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
++#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
++#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
++#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
++#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
++#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
++#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
++#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
++#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
++#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
++#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
++#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
++#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
++#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */
++#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
++#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */
++
++/* mask to determine if packets should be dropped due to frame errors */
++#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
++ E1000_RXD_ERR_CE | \
++ E1000_RXD_ERR_SE | \
++ E1000_RXD_ERR_SEQ | \
++ E1000_RXD_ERR_CXE | \
++ E1000_RXD_ERR_RXE)
++
++/* Transmit Descriptor */
++struct e1000_tx_desc {
++ uint64_t buffer_addr; /* Address of the descriptor's data buffer */
++ union {
++ uint32_t data;
++ struct {
++ uint16_t length; /* Data buffer length */
++ uint8_t cso; /* Checksum offset */
++ uint8_t cmd; /* Descriptor control */
++ } flags;
++ } lower;
++ union {
++ uint32_t data;
++ struct {
++ uint8_t status; /* Descriptor status */
++ uint8_t css; /* Checksum start */
++ uint16_t special;
++ } fields;
++ } upper;
++};
++
++/* Transmit Descriptor bit definitions */
++#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
++#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
++#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
++#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
++#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
++#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
++#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
++#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
++#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
++#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
++#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
++#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
++#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
++#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
++#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
++#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
++#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
++#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
++#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
++#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
++
++/* Offload Context Descriptor */
++struct e1000_context_desc {
++ union {
++ uint32_t ip_config;
++ struct {
++ uint8_t ipcss; /* IP checksum start */
++ uint8_t ipcso; /* IP checksum offset */
++ uint16_t ipcse; /* IP checksum end */
++ } ip_fields;
++ } lower_setup;
++ union {
++ uint32_t tcp_config;
++ struct {
++ uint8_t tucss; /* TCP checksum start */
++ uint8_t tucso; /* TCP checksum offset */
++ uint16_t tucse; /* TCP checksum end */
++ } tcp_fields;
++ } upper_setup;
++ uint32_t cmd_and_length; /* */
++ union {
++ uint32_t data;
++ struct {
++ uint8_t status; /* Descriptor status */
++ uint8_t hdr_len; /* Header length */
++ uint16_t mss; /* Maximum segment size */
++ } fields;
++ } tcp_seg_setup;
++};
++
++/* Offload data descriptor */
++struct e1000_data_desc {
++ uint64_t buffer_addr; /* Address of the descriptor's buffer address */
++ union {
++ uint32_t data;
++ struct {
++ uint16_t length; /* Data buffer length */
++ uint8_t typ_len_ext; /* */
++ uint8_t cmd; /* */
++ } flags;
++ } lower;
++ union {
++ uint32_t data;
++ struct {
++ uint8_t status; /* Descriptor status */
++ uint8_t popts; /* Packet Options */
++ uint16_t special; /* */
++ } fields;
++ } upper;
++};
++
++/* Filters */
++#define E1000_NUM_UNICAST 16 /* Unicast filter entries */
++#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
++#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
++
++
++/* Receive Address Register */
++struct e1000_rar {
++ volatile uint32_t low; /* receive address low */
++ volatile uint32_t high; /* receive address high */
++};
++
++/* The number of entries in the Multicast Table Array (MTA). */
++#define E1000_NUM_MTA_REGISTERS 128
++
++/* IPv4 Address Table Entry */
++struct e1000_ipv4_at_entry {
++ volatile uint32_t ipv4_addr; /* IP Address (RW) */
++ volatile uint32_t reserved;
++};
++
++/* Four wakeup IP addresses are supported */
++#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
++#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
++#define E1000_IP6AT_SIZE 1
++
++/* IPv6 Address Table Entry */
++struct e1000_ipv6_at_entry {
++ volatile uint8_t ipv6_addr[16];
++};
++
++/* Flexible Filter Length Table Entry */
++struct e1000_fflt_entry {
++ volatile uint32_t length; /* Flexible Filter Length (RW) */
++ volatile uint32_t reserved;
++};
++
++/* Flexible Filter Mask Table Entry */
++struct e1000_ffmt_entry {
++ volatile uint32_t mask; /* Flexible Filter Mask (RW) */
++ volatile uint32_t reserved;
++};
++
++/* Flexible Filter Value Table Entry */
++struct e1000_ffvt_entry {
++ volatile uint32_t value; /* Flexible Filter Value (RW) */
++ volatile uint32_t reserved;
++};
++
++/* Four Flexible Filters are supported */
++#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
++
++/* Each Flexible Filter is at most 128 (0x80) bytes in length */
++#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
++
++#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
++#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
++#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
++
++/* Register Set. (82543, 82544)
++ *
++ * Registers are defined to be 32 bits and should be accessed as 32 bit values.
++ * These registers are physically located on the NIC, but are mapped into the
++ * host memory address space.
++ *
++ * RW - register is both readable and writable
++ * RO - register is read only
++ * WO - register is write only
++ * R/clr - register is read only and is cleared when read
++ * A - register array
++ */
++#define E1000_CTRL 0x00000 /* Device Control - RW */
++#define E1000_STATUS 0x00008 /* Device Status - RO */
++#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
++#define E1000_EERD 0x00014 /* EEPROM Read - RW */
++#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
++#define E1000_MDIC 0x00020 /* MDI Control - RW */
++#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
++#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
++#define E1000_FCT 0x00030 /* Flow Control Type - RW */
++#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
++#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
++#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
++#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
++#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
++#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
++#define E1000_RCTL 0x00100 /* RX Control - RW */
++#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
++#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
++#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */
++#define E1000_TCTL 0x00400 /* TX Control - RW */
++#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
++#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
++#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
++#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
++#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
++#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
++#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
++#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
++#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
++#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */
++#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */
++#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */
++#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */
++#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
++#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
++#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
++#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */
++#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */
++#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */
++#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */
++#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */
++#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */
++#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
++#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
++#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
++#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
++#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
++#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
++#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
++#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
++#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
++#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
++#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
++#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
++#define E1000_COLC 0x04028 /* Collision Count - R/clr */
++#define E1000_DC 0x04030 /* Defer Count - R/clr */
++#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
++#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
++#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
++#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
++#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
++#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
++#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
++#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
++#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
++#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
++#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
++#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
++#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
++#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
++#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
++#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
++#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
++#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
++#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
++#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
++#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
++#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
++#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
++#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
++#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
++#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
++#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
++#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
++#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
++#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
++#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
++#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
++#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
++#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
++#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
++#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
++#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
++#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
++#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
++#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
++#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
++#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
++#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
++#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
++#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
++#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
++#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
++#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
++#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
++#define E1000_RA 0x05400 /* Receive Address - RW Array */
++#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
++#define E1000_WUC 0x05800 /* Wakeup Control - RW */
++#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
++#define E1000_WUS 0x05810 /* Wakeup Status - RO */
++#define E1000_MANC 0x05820 /* Management Control - RW */
++#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
++#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
++#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
++#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
++#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
++#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
++#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
++#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
++
++/* Register Set (82542)
++ *
++ * Some of the 82542 registers are located at different offsets than they are
++ * in more current versions of the 8254x. Despite the difference in location,
++ * the registers function in the same manner.
++ */
++#define E1000_82542_CTRL E1000_CTRL
++#define E1000_82542_STATUS E1000_STATUS
++#define E1000_82542_EECD E1000_EECD
++#define E1000_82542_EERD E1000_EERD
++#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
++#define E1000_82542_MDIC E1000_MDIC
++#define E1000_82542_FCAL E1000_FCAL
++#define E1000_82542_FCAH E1000_FCAH
++#define E1000_82542_FCT E1000_FCT
++#define E1000_82542_VET E1000_VET
++#define E1000_82542_RA 0x00040
++#define E1000_82542_ICR E1000_ICR
++#define E1000_82542_ITR E1000_ITR
++#define E1000_82542_ICS E1000_ICS
++#define E1000_82542_IMS E1000_IMS
++#define E1000_82542_IMC E1000_IMC
++#define E1000_82542_RCTL E1000_RCTL
++#define E1000_82542_RDTR 0x00108
++#define E1000_82542_RDBAL 0x00110
++#define E1000_82542_RDBAH 0x00114
++#define E1000_82542_RDLEN 0x00118
++#define E1000_82542_RDH 0x00120
++#define E1000_82542_RDT 0x00128
++#define E1000_82542_FCRTH 0x00160
++#define E1000_82542_FCRTL 0x00168
++#define E1000_82542_FCTTV E1000_FCTTV
++#define E1000_82542_TXCW E1000_TXCW
++#define E1000_82542_RXCW E1000_RXCW
++#define E1000_82542_MTA 0x00200
++#define E1000_82542_TCTL E1000_TCTL
++#define E1000_82542_TIPG E1000_TIPG
++#define E1000_82542_TDBAL 0x00420
++#define E1000_82542_TDBAH 0x00424
++#define E1000_82542_TDLEN 0x00428
++#define E1000_82542_TDH 0x00430
++#define E1000_82542_TDT 0x00438
++#define E1000_82542_TIDV 0x00440
++#define E1000_82542_TBT E1000_TBT
++#define E1000_82542_VFTA 0x00600
++#define E1000_82542_LEDCTL E1000_LEDCTL
++#define E1000_82542_PBA E1000_PBA
++#define E1000_82542_RXDCTL E1000_RXDCTL
++#define E1000_82542_RADV E1000_RADV
++#define E1000_82542_RSRPD E1000_RSRPD
++#define E1000_82542_TXDMAC E1000_TXDMAC
++#define E1000_82542_TXDCTL E1000_TXDCTL
++#define E1000_82542_TADV E1000_TADV
++#define E1000_82542_TSPMT E1000_TSPMT
++#define E1000_82542_CRCERRS E1000_CRCERRS
++#define E1000_82542_ALGNERRC E1000_ALGNERRC
++#define E1000_82542_SYMERRS E1000_SYMERRS
++#define E1000_82542_RXERRC E1000_RXERRC
++#define E1000_82542_MPC E1000_MPC
++#define E1000_82542_SCC E1000_SCC
++#define E1000_82542_ECOL E1000_ECOL
++#define E1000_82542_MCC E1000_MCC
++#define E1000_82542_LATECOL E1000_LATECOL
++#define E1000_82542_COLC E1000_COLC
++#define E1000_82542_DC E1000_DC
++#define E1000_82542_TNCRS E1000_TNCRS
++#define E1000_82542_SEC E1000_SEC
++#define E1000_82542_CEXTERR E1000_CEXTERR
++#define E1000_82542_RLEC E1000_RLEC
++#define E1000_82542_XONRXC E1000_XONRXC
++#define E1000_82542_XONTXC E1000_XONTXC
++#define E1000_82542_XOFFRXC E1000_XOFFRXC
++#define E1000_82542_XOFFTXC E1000_XOFFTXC
++#define E1000_82542_FCRUC E1000_FCRUC
++#define E1000_82542_PRC64 E1000_PRC64
++#define E1000_82542_PRC127 E1000_PRC127
++#define E1000_82542_PRC255 E1000_PRC255
++#define E1000_82542_PRC511 E1000_PRC511
++#define E1000_82542_PRC1023 E1000_PRC1023
++#define E1000_82542_PRC1522 E1000_PRC1522
++#define E1000_82542_GPRC E1000_GPRC
++#define E1000_82542_BPRC E1000_BPRC
++#define E1000_82542_MPRC E1000_MPRC
++#define E1000_82542_GPTC E1000_GPTC
++#define E1000_82542_GORCL E1000_GORCL
++#define E1000_82542_GORCH E1000_GORCH
++#define E1000_82542_GOTCL E1000_GOTCL
++#define E1000_82542_GOTCH E1000_GOTCH
++#define E1000_82542_RNBC E1000_RNBC
++#define E1000_82542_RUC E1000_RUC
++#define E1000_82542_RFC E1000_RFC
++#define E1000_82542_ROC E1000_ROC
++#define E1000_82542_RJC E1000_RJC
++#define E1000_82542_MGTPRC E1000_MGTPRC
++#define E1000_82542_MGTPDC E1000_MGTPDC
++#define E1000_82542_MGTPTC E1000_MGTPTC
++#define E1000_82542_TORL E1000_TORL
++#define E1000_82542_TORH E1000_TORH
++#define E1000_82542_TOTL E1000_TOTL
++#define E1000_82542_TOTH E1000_TOTH
++#define E1000_82542_TPR E1000_TPR
++#define E1000_82542_TPT E1000_TPT
++#define E1000_82542_PTC64 E1000_PTC64
++#define E1000_82542_PTC127 E1000_PTC127
++#define E1000_82542_PTC255 E1000_PTC255
++#define E1000_82542_PTC511 E1000_PTC511
++#define E1000_82542_PTC1023 E1000_PTC1023
++#define E1000_82542_PTC1522 E1000_PTC1522
++#define E1000_82542_MPTC E1000_MPTC
++#define E1000_82542_BPTC E1000_BPTC
++#define E1000_82542_TSCTC E1000_TSCTC
++#define E1000_82542_TSCTFC E1000_TSCTFC
++#define E1000_82542_RXCSUM E1000_RXCSUM
++#define E1000_82542_WUC E1000_WUC
++#define E1000_82542_WUFC E1000_WUFC
++#define E1000_82542_WUS E1000_WUS
++#define E1000_82542_MANC E1000_MANC
++#define E1000_82542_IPAV E1000_IPAV
++#define E1000_82542_IP4AT E1000_IP4AT
++#define E1000_82542_IP6AT E1000_IP6AT
++#define E1000_82542_WUPL E1000_WUPL
++#define E1000_82542_WUPM E1000_WUPM
++#define E1000_82542_FFLT E1000_FFLT
++#define E1000_82542_FFMT E1000_FFMT
++#define E1000_82542_FFVT E1000_FFVT
++
++/* Statistics counters collected by the MAC */
++struct e1000_shared_stats {
++ uint64_t crcerrs;
++ uint64_t algnerrc;
++ uint64_t symerrs;
++ uint64_t rxerrc;
++ uint64_t mpc;
++ uint64_t scc;
++ uint64_t ecol;
++ uint64_t mcc;
++ uint64_t latecol;
++ uint64_t colc;
++ uint64_t dc;
++ uint64_t tncrs;
++ uint64_t sec;
++ uint64_t cexterr;
++ uint64_t rlec;
++ uint64_t xonrxc;
++ uint64_t xontxc;
++ uint64_t xoffrxc;
++ uint64_t xofftxc;
++ uint64_t fcruc;
++ uint64_t prc64;
++ uint64_t prc127;
++ uint64_t prc255;
++ uint64_t prc511;
++ uint64_t prc1023;
++ uint64_t prc1522;
++ uint64_t gprc;
++ uint64_t bprc;
++ uint64_t mprc;
++ uint64_t gptc;
++ uint64_t gorcl;
++ uint64_t gorch;
++ uint64_t gotcl;
++ uint64_t gotch;
++ uint64_t rnbc;
++ uint64_t ruc;
++ uint64_t rfc;
++ uint64_t roc;
++ uint64_t rjc;
++ uint64_t mgprc;
++ uint64_t mgpdc;
++ uint64_t mgptc;
++ uint64_t torl;
++ uint64_t torh;
++ uint64_t totl;
++ uint64_t toth;
++ uint64_t tpr;
++ uint64_t tpt;
++ uint64_t ptc64;
++ uint64_t ptc127;
++ uint64_t ptc255;
++ uint64_t ptc511;
++ uint64_t ptc1023;
++ uint64_t ptc1522;
++ uint64_t mptc;
++ uint64_t bptc;
++ uint64_t tsctc;
++ uint64_t tsctfc;
++};
++
++/* Structure containing variables used by the shared code (e1000_mac.c and
++ * e1000_phy.c)
++ */
++struct e1000_shared_adapter {
++ uint8_t *hw_addr;
++ e1000_mac_type mac_type;
++ e1000_media_type media_type;
++ void *back;
++ e1000_fc_type fc;
++ e1000_bus_speed bus_speed;
++ e1000_bus_width bus_width;
++ e1000_bus_type bus_type;
++ uint32_t phy_id;
++ uint32_t phy_addr;
++ uint32_t original_fc;
++ uint32_t txcw_reg;
++ uint32_t autoneg_failed;
++ uint32_t max_frame_size;
++ uint32_t min_frame_size;
++ uint32_t mc_filter_type;
++ uint32_t num_mc_addrs;
++ uint16_t autoneg_advertised;
++ uint16_t pci_cmd_word;
++ uint16_t fc_high_water;
++ uint16_t fc_low_water;
++ uint16_t fc_pause_time;
++ uint16_t device_id;
++ uint16_t vendor_id;
++ uint16_t subsystem_id;
++ uint16_t subsystem_vendor_id;
++ uint8_t revision_id;
++ boolean_t disable_polarity_correction;
++ boolean_t get_link_status;
++ boolean_t tbi_compatibility_en;
++ boolean_t tbi_compatibility_on;
++ boolean_t adapter_stopped;
++ boolean_t fc_send_xon;
++ boolean_t report_tx_early;
++ boolean_t low_profile;
++ uint8_t autoneg;
++ uint8_t mdix;
++ uint8_t forced_speed_duplex;
++ uint8_t wait_autoneg_complete;
++ uint8_t dma_fairness;
++ uint8_t mac_addr[NODE_ADDRESS_SIZE];
++};
++
++
++#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
++#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
++
++/* Register Bit Masks */
++/* Device Control */
++#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
++#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
++#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
++#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
++#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
++#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
++#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
++#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
++#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
++#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
++#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
++#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
++#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
++#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
++#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
++#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
++#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
++#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
++#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
++#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
++#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
++#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
++#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
++#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
++#define E1000_CTRL_RST 0x04000000 /* Global reset */
++#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
++#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
++#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
++#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
++#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
++
++/* Device Status */
++#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
++#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
++#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
++#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
++#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
++#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
++#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
++#define E1000_STATUS_SPEED_MASK 0x000000C0
++#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
++#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
++#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
++#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
++#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
++#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
++#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
++#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
++#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
++
++/* Constants used to intrepret the masked PCI-X bus speed. */
++#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
++#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
++#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
++
++/* EEPROM/Flash Control */
++#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */
++#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */
++#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */
++#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */
++#define E1000_EECD_FWE_MASK 0x00000030
++#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
++#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
++#define E1000_EECD_FWE_SHIFT 4
++#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
++#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */
++#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */
++#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */
++
++/* EEPROM Read */
++#define E1000_EERD_START 0x00000001 /* Start Read */
++#define E1000_EERD_DONE 0x00000010 /* Read Done */
++#define E1000_EERD_ADDR_SHIFT 8
++#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */
++#define E1000_EERD_DATA_SHIFT 16
++#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */
++
++/* Extended Device Control */
++#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
++#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
++#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
++#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
++#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
++#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
++#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
++#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
++#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
++#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
++#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
++#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
++#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
++#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
++#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
++#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
++#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
++#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
++#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
++#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
++#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
++#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
++#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
++#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
++#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
++#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
++
++/* MDI Control */
++#define E1000_MDIC_DATA_MASK 0x0000FFFF
++#define E1000_MDIC_REG_MASK 0x001F0000
++#define E1000_MDIC_REG_SHIFT 16
++#define E1000_MDIC_PHY_MASK 0x03E00000
++#define E1000_MDIC_PHY_SHIFT 21
++#define E1000_MDIC_OP_WRITE 0x04000000
++#define E1000_MDIC_OP_READ 0x08000000
++#define E1000_MDIC_READY 0x10000000
++#define E1000_MDIC_INT_EN 0x20000000
++#define E1000_MDIC_ERROR 0x40000000
++
++/* LED Control */
++#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
++#define E1000_LEDCTL_LED0_MODE_SHIFT 0
++#define E1000_LEDCTL_LED0_IVRT 0x00000040
++#define E1000_LEDCTL_LED0_BLINK 0x00000080
++#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
++#define E1000_LEDCTL_LED1_MODE_SHIFT 8
++#define E1000_LEDCTL_LED1_IVRT 0x00004000
++#define E1000_LEDCTL_LED1_BLINK 0x00008000
++#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
++#define E1000_LEDCTL_LED2_MODE_SHIFT 16
++#define E1000_LEDCTL_LED2_IVRT 0x00400000
++#define E1000_LEDCTL_LED2_BLINK 0x00800000
++#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
++#define E1000_LEDCTL_LED3_MODE_SHIFT 24
++#define E1000_LEDCTL_LED3_IVRT 0x40000000
++#define E1000_LEDCTL_LED3_BLINK 0x80000000
++
++#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
++#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
++#define E1000_LEDCTL_MODE_LINK_UP 0x2
++#define E1000_LEDCTL_MODE_ACTIVITY 0x3
++#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
++#define E1000_LEDCTL_MODE_LINK_10 0x5
++#define E1000_LEDCTL_MODE_LINK_100 0x6
++#define E1000_LEDCTL_MODE_LINK_1000 0x7
++#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
++#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
++#define E1000_LEDCTL_MODE_COLLISION 0xA
++#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
++#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
++#define E1000_LEDCTL_MODE_PAUSED 0xD
++#define E1000_LEDCTL_MODE_LED_ON 0xE
++#define E1000_LEDCTL_MODE_LED_OFF 0xF
++
++/* Receive Address */
++#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
++
++/* Interrupt Cause Read */
++#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
++#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
++#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
++#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
++#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
++#define E1000_ICR_RXO 0x00000040 /* rx overrun */
++#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
++#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
++#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
++#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
++#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
++#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
++#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
++#define E1000_ICR_TXD_LOW 0x00008000
++#define E1000_ICR_SRPD 0x00010000
++
++/* Interrupt Cause Set */
++#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
++#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
++#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
++#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
++#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
++#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
++#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
++#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
++#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
++#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
++#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
++#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
++#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
++#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
++#define E1000_ICS_SRPD E1000_ICR_SRPD
++
++/* Interrupt Mask Set */
++#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
++#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
++#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
++#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
++#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
++#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
++#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
++#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
++#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
++#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
++#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
++#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
++#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
++#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
++#define E1000_IMS_SRPD E1000_ICR_SRPD
++
++/* Interrupt Mask Clear */
++#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
++#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
++#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */
++#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
++#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
++#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */
++#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */
++#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */
++#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
++#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
++#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
++#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
++#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
++#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
++#define E1000_IMC_SRPD E1000_ICR_SRPD
++
++/* Receive Control */
++#define E1000_RCTL_RST 0x00000001 /* Software reset */
++#define E1000_RCTL_EN 0x00000002 /* enable */
++#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
++#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
++#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
++#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
++#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
++#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
++#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
++#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
++#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
++#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
++#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
++#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
++#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
++#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
++#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
++#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
++#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
++#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
++/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
++#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
++#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
++#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
++#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
++/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
++#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
++#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
++#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
++#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
++#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
++#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
++#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
++#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
++#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
++
++/* Receive Descriptor */
++#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
++#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */
++#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */
++#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */
++#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */
++
++/* Flow Control */
++#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
++#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
++#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
++#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
++
++/* Receive Descriptor Control */
++#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
++#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
++#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
++#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
++
++/* Transmit Descriptor Control */
++#define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */
++#define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */
++#define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */
++#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
++#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
++
++/* Transmit Configuration Word */
++#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
++#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
++#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
++#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
++#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
++#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
++#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
++#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
++#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
++#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
++
++/* Receive Configuration Word */
++#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
++#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
++#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
++#define E1000_RXCW_CC 0x10000000 /* Receive config change */
++#define E1000_RXCW_C 0x20000000 /* Receive config */
++#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
++#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
++
++/* Transmit Control */
++#define E1000_TCTL_RST 0x00000001 /* software reset */
++#define E1000_TCTL_EN 0x00000002 /* enable tx */
++#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
++#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
++#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
++#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
++#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
++#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
++#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
++#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
++
++/* Receive Checksum Control */
++#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
++#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
++#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
++#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
++
++/* Definitions for power management and wakeup registers */
++/* Wake Up Control */
++#define E1000_WUC_APME 0x00000001 /* APM Enable */
++#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
++#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
++#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
++
++/* Wake Up Filter Control */
++#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
++#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
++#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
++#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
++#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
++#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
++#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
++#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
++#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
++#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
++#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
++#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
++#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
++#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
++#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
++
++/* Wake Up Status */
++#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
++#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */
++#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */
++#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */
++#define E1000_WUS_BC 0x00000010 /* Broadcast Received */
++#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */
++#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
++#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
++#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
++#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
++#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
++#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
++#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
++
++/* Management Control */
++#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
++#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
++#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
++#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
++#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
++#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
++#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
++#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
++#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
++#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
++ * Filtering */
++#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
++#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
++#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
++#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
++#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
++#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
++#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
++#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
++#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
++
++#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
++#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
++
++/* Wake Up Packet Length */
++#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
++
++#define E1000_MDALIGN 4096
++
++/* EEPROM Commands */
++#define EEPROM_READ_OPCODE 0x6 /* EERPOM read opcode */
++#define EEPROM_WRITE_OPCODE 0x5 /* EERPOM write opcode */
++#define EEPROM_ERASE_OPCODE 0x7 /* EERPOM erase opcode */
++#define EEPROM_EWEN_OPCODE 0x13 /* EERPOM erase/write enable */
++#define EEPROM_EWDS_OPCODE 0x10 /* EERPOM erast/write disable */
++
++/* EEPROM Word Offsets */
++#define EEPROM_INIT_CONTROL1_REG 0x000A
++#define EEPROM_INIT_CONTROL2_REG 0x000F
++#define EEPROM_FLASH_VERSION 0x0032
++#define EEPROM_CHECKSUM_REG 0x003F
++
++/* Mask bits for fields in Word 0x0a of the EEPROM */
++#define EEPROM_WORD0A_ILOS 0x0010
++#define EEPROM_WORD0A_SWDPIO 0x01E0
++#define EEPROM_WORD0A_LRST 0x0200
++#define EEPROM_WORD0A_FD 0x0400
++#define EEPROM_WORD0A_66MHZ 0x0800
++
++/* Mask bits for fields in Word 0x0f of the EEPROM */
++#define EEPROM_WORD0F_PAUSE_MASK 0x3000
++#define EEPROM_WORD0F_PAUSE 0x1000
++#define EEPROM_WORD0F_ASM_DIR 0x2000
++#define EEPROM_WORD0F_ANE 0x0800
++#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
++
++/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
++#define EEPROM_SUM 0xBABA
++
++/* EEPROM Map defines (WORD OFFSETS)*/
++#define EEPROM_NODE_ADDRESS_BYTE_0 0
++#define EEPROM_PBA_BYTE_1 8
++
++/* EEPROM Map Sizes (Byte Counts) */
++#define PBA_SIZE 4
++
++/* Collision related configuration parameters */
++#define E1000_COLLISION_THRESHOLD 16
++#define E1000_CT_SHIFT 4
++#define E1000_FDX_COLLISION_DISTANCE 64
++#define E1000_HDX_COLLISION_DISTANCE 64
++#define E1000_GB_HDX_COLLISION_DISTANCE 512
++#define E1000_COLD_SHIFT 12
++
++/* The number of Transmit and Receive Descriptors must be a multiple of 8 */
++#define REQ_TX_DESCRIPTOR_MULTIPLE 8
++#define REQ_RX_DESCRIPTOR_MULTIPLE 8
++
++/* Default values for the transmit IPG register */
++#define DEFAULT_82542_TIPG_IPGT 10
++#define DEFAULT_82543_TIPG_IPGT_FIBER 9
++#define DEFAULT_82543_TIPG_IPGT_COPPER 8
++
++#define E1000_TIPG_IPGT_MASK 0x000003FF
++#define E1000_TIPG_IPGR1_MASK 0x000FFC00
++#define E1000_TIPG_IPGR2_MASK 0x3FF00000
++
++#define DEFAULT_82542_TIPG_IPGR1 2
++#define DEFAULT_82543_TIPG_IPGR1 8
++#define E1000_TIPG_IPGR1_SHIFT 10
++
++#define DEFAULT_82542_TIPG_IPGR2 10
++#define DEFAULT_82543_TIPG_IPGR2 6
++#define E1000_TIPG_IPGR2_SHIFT 20
++
++#define E1000_TXDMAC_DPP 0x00000001
++
++/* PBA constants */
++#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
++#define E1000_PBA_24K 0x0018
++#define E1000_PBA_40K 0x0028
++#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
++
++/* Flow Control Constants */
++#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
++#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
++#define FLOW_CONTROL_TYPE 0x8808
++
++/* The historical defaults for the flow control values are given below. */
++#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */
++#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */
++#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */
++
++
++/* The number of bits that we need to shift right to move the "pause"
++ * bits from the EEPROM (bits 13:12) to the "pause" (bits 8:7) field
++ * in the TXCW register
++ */
++#define PAUSE_SHIFT 5
++
++/* The number of bits that we need to shift left to move the "SWDPIO"
++ * bits from the EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field
++ * in the CTRL register
++ */
++#define SWDPIO_SHIFT 17
++
++/* The number of bits that we need to shift left to move the "SWDPIO_EXT"
++ * bits from the EEPROM word F (bits 7:4) to the bits 11:8 of The
++ * Extended CTRL register.
++ * in the CTRL register
++ */
++#define SWDPIO__EXT_SHIFT 4
++
++/* The number of bits that we need to shift left to move the "ILOS"
++ * bit from the EEPROM (bit 4) to the "ILOS" (bit 7) field
++ * in the CTRL register
++ */
++#define ILOS_SHIFT 3
++
++
++#define RECEIVE_BUFFER_ALIGN_SIZE (256)
++
++/* The number of milliseconds we wait for auto-negotiation to complete */
++#define LINK_UP_TIMEOUT 500
++
++#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
++
++/* The carrier extension symbol, as received by the NIC. */
++#define CARRIER_EXTENSION 0x0F
++
++/* TBI_ACCEPT macro definition:
++ *
++ * This macro requires:
++ * adapter = a pointer to struct e1000_shared_adapter
++ * status = the 8 bit status field of the RX descriptor with EOP set
++ * error = the 8 bit error field of the RX descriptor with EOP set
++ * length = the sum of all the length fields of the RX descriptors that
++ * make up the current frame
++ * last_byte = the last byte of the frame DMAed by the hardware
++ * max_frame_length = the maximum frame length we want to accept.
++ * min_frame_length = the minimum frame length we want to accept.
++ *
++ * This macro is a conditional that should be used in the interrupt
++ * handler's Rx processing routine when RxErrors have been detected.
++ *
++ * Typical use:
++ * ...
++ * if (TBI_ACCEPT) {
++ * accept_frame = TRUE;
++ * e1000_tbi_adjust_stats(adapter, MacAddress);
++ * frame_length--;
++ * } else {
++ * accept_frame = FALSE;
++ * }
++ * ...
++ */
++
++#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
++ ((adapter)->tbi_compatibility_on && \
++ (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
++ ((last_byte) == CARRIER_EXTENSION) && \
++ (((status) & E1000_RXD_STAT_VP) ? \
++ (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
++ ((length) <= ((adapter)->max_frame_size + 1))) : \
++ (((length) > (adapter)->min_frame_size) && \
++ ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
++
++
++#endif /* _E1000_MAC_H_ */
+--- /dev/null 2002-08-30 16:31:37.000000000 -0700
++++ linux-2.4.18-14-root/drivers/e1000/e1000_main.c 2003-01-02 16:22:31.000000000 -0800
+@@ -0,0 +1,3780 @@
++/*******************************************************************************
++
++ This software program is available to you under a choice of one of two
++ licenses. You may choose to be licensed under either the GNU General Public
++ License (GPL) Version 2, June 1991, available at
++ http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
++ text of which follows:
++
++ Recipient has requested a license and Intel Corporation ("Intel") is willing
++ to grant a license for the software entitled Linux Base Driver for the
++ Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
++ by Intel Corporation. The following definitions apply to this license:
++
++ "Licensed Patents" means patent claims licensable by Intel Corporation which
++ are necessarily infringed by the use of sale of the Software alone or when
++ combined with the operating system referred to below.
++
++ "Recipient" means the party to whom Intel delivers this Software.
++
++ "Licensee" means Recipient and those third parties that receive a license to
++ any operating system available under the GNU Public License version 2.0 or
++ later.
++
++ Copyright (c) 1999 - 2002 Intel Corporation.
++ All rights reserved.
++
++ The license is provided to Recipient and Recipient's Licensees under the
++ following terms.
++
++ Redistribution and use in source and binary forms of the Software, with or
++ without modification, are permitted provided that the following conditions
++ are met:
++
++ Redistributions of source code of the Software may retain the above
++ copyright notice, this list of conditions and the following disclaimer.
++
++ Redistributions in binary form of the Software may reproduce the above
++ copyright notice, this list of conditions and the following disclaimer in
++ the documentation and/or materials provided with the distribution.
++
++ Neither the name of Intel Corporation nor the names of its contributors
++ shall be used to endorse or promote products derived from this Software
++ without specific prior written permission.
++
++ Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
++ royalty-free patent license under Licensed Patents to make, use, sell, offer
++ to sell, import and otherwise transfer the Software, if any, in source code
++ and object code form. This license shall include changes to the Software
++ that are error corrections or other minor changes to the Software that do
++ not add functionality or features when the Software is incorporated in any
++ version of an operating system that has been distributed under the GNU
++ General Public License 2.0 or later. This patent license shall apply to the
++ combination of the Software and any operating system licensed under the GNU
++ Public License version 2.0 or later if, at the time Intel provides the
++ Software to Recipient, such addition of the Software to the then publicly
++ available versions of such operating systems available under the GNU Public
++ License version 2.0 or later (whether in gold, beta or alpha form) causes
++ such combination to be covered by the Licensed Patents. The patent license
++ shall not apply to any other combinations which include the Software. NO
++ hardware per se is licensed hereunder.
++
++ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
++ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
++ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
++ ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
++ AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
++ TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
++ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++
++*******************************************************************************/
++
++
++#define __E1000_MAIN__
++#ifdef IANS
++#define _IANS_MAIN_MODULE_C_
++#endif
++#include "e1000.h"
++
++/* Driver name string */
++char e1000_driver_name[] = "e1000";
++
++/* Driver ID string, displayed when loading */
++char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
++
++/* Driver version */
++char e1000_driver_version[] = "4.1.7";
++
++/* Copyright string, displayed when loading */
++char e1000_copyright[] = "Copyright (c) 1999-2002 Intel Corporation.";
++
++/* Linked list of board private structures for all NICs found */
++struct e1000_adapter *e1000_adapter_list = NULL;
++
++/* e1000_strings - PCI Device ID Table
++ *
++ * for selecting devices to load on
++ * private driver_data field (last one) stores an index
++ * into e1000_strings
++ * Wildcard entries (PCI_ANY_ID) should come last
++ * Last entry must be all 0s
++ *
++ * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
++ * Class, Class Mask, String Index }
++ */
++static struct pci_device_id e1000_pci_table[] = {
++ /* Intel(R) PRO/1000 Network Connection */
++ {0x8086, 0x1000, 0x8086, 0x1000, 0, 0, 0},
++ {0x8086, 0x1001, 0x8086, 0x1003, 0, 0, 0},
++ {0x8086, 0x1004, 0x8086, 0x1004, 0, 0, 0},
++ {0x8086, 0x1008, 0x8086, 0x1107, 0, 0, 0},
++ {0x8086, 0x1009, 0x8086, 0x1109, 0, 0, 0},
++ {0x8086, 0x100C, 0x8086, 0x1112, 0, 0, 0},
++ {0x8086, 0x100E, 0x8086, 0x001E, 0, 0, 0},
++ /* Compaq Gigabit Ethernet Server Adapter */
++ {0x8086, 0x1000, 0x0E11, PCI_ANY_ID, 0, 0, 1},
++ {0x8086, 0x1001, 0x0E11, PCI_ANY_ID, 0, 0, 1},
++ {0x8086, 0x1004, 0x0E11, PCI_ANY_ID, 0, 0, 1},
++ /* IBM Mobile, Desktop & Server Adapters */
++ {0x8086, 0x1000, 0x1014, PCI_ANY_ID, 0, 0, 2},
++ {0x8086, 0x1001, 0x1014, PCI_ANY_ID, 0, 0, 2},
++ {0x8086, 0x1004, 0x1014, PCI_ANY_ID, 0, 0, 2},
++ /* Generic */
++ {0x8086, 0x1000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
++ {0x8086, 0x1001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
++ {0x8086, 0x1004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
++ {0x8086, 0x1008, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
++ {0x8086, 0x1009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
++ {0x8086, 0x100C, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
++ {0x8086, 0x100D, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
++ {0x8086, 0x100E, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
++ /* required last entry */
++ {0,}
++};
++
++MODULE_DEVICE_TABLE(pci, e1000_pci_table);
++
++/* e1000_pci_table - Table of branding strings for all supported NICs. */
++
++static char *e1000_strings[] = {
++ "Intel(R) PRO/1000 Network Connection",
++ "Compaq Gigabit Ethernet Server Adapter",
++ "IBM Mobile, Desktop & Server Adapters"
++};
++
++/* PCI driver information (Linux 2.4 driver API) */
++static struct pci_driver e1000_driver = {
++ name: e1000_driver_name,
++ id_table: e1000_pci_table,
++ probe: e1000_probe,
++ remove: e1000_remove,
++ /* Power Managment Hooks */
++ suspend: NULL,
++ resume: NULL
++};
++
++/* Module Parameters are always initialized to -1, so that the driver
++ * can tell the difference between no user specified value or the
++ * user asking for the default value.
++ * The true default values are loaded in when e1000_check_options is called.
++ */
++
++/* This is the only thing that needs to be changed to adjust the
++ * maximum number of ports that the driver can manage.
++ */
++
++#define E1000_MAX_NIC 8
++
++/* This is a GCC extension to ANSI C.
++ * See the item "Labeled Elements in Initializers" in the section
++ * "Extensions to the C Language Family" of the GCC documentation.
++ */
++
++#define E1000_OPTION_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
++
++/* Transmit Descriptor Count
++ *
++ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
++ * Valid Range: 80-4096 for 82544
++ *
++ * Default Value: 256
++ */
++
++static int TxDescriptors[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++/* Receive Descriptor Count
++ *
++ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
++ * Valid Range: 80-4096 for 82544
++ *
++ * Default Value: 256
++ */
++
++static int RxDescriptors[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++/* User Specified Speed Override
++ *
++ * Valid Range: 0, 10, 100, 1000
++ * - 0 - auto-negotiate at all supported speeds
++ * - 10 - only link at 10 Mbps
++ * - 100 - only link at 100 Mbps
++ * - 1000 - only link at 1000 Mbps
++ *
++ * Default Value: 0
++ */
++
++static int Speed[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++/* User Specified Duplex Override
++ *
++ * Valid Range: 0-2
++ * - 0 - auto-negotiate for duplex
++ * - 1 - only link at half duplex
++ * - 2 - only link at full duplex
++ *
++ * Default Value: 0
++ */
++
++static int Duplex[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++/* Auto-negotiation Advertisement Override
++ *
++ * Valid Range: 0x00-0x0F, 0x20-0x2F
++ *
++ * The AutoNeg value is a bit mask describing which speed and duplex
++ * combinations should be advertised during auto-negotiation.
++ * The supported speed and duplex modes are listed below
++ *
++ * Bit 7 6 5 4 3 2 1 0
++ * Speed (Mbps) N/A N/A 1000 N/A 100 100 10 10
++ * Duplex Full Full Half Full Half
++ *
++ * Default Value: 0x2F
++ */
++
++static int AutoNeg[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++/* User Specified Flow Control Override
++ *
++ * Valid Range: 0-3
++ * - 0 - No Flow Control
++ * - 1 - Rx only, respond to PAUSE frames but do not generate them
++ * - 2 - Tx only, generate PAUSE frames but ignore them on receive
++ * - 3 - Full Flow Control Support
++ *
++ * Default Value: Read flow control settings from the EEPROM
++ */
++
++static int FlowControl[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++/* XsumRX - Receive Checksum Offload Enable/Disable
++ *
++ * Valid Range: 0, 1
++ * - 0 - disables all checksum offload
++ * - 1 - enables receive IP/TCP/UDP checksum offload
++ * on 82543 based NICs
++ *
++ * Default Value: 1
++ */
++
++static int XsumRX[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++/* Transmit Interrupt Delay in units of 1.024 microseconds
++ *
++ * Valid Range: 0-65535
++ *
++ * Default Value: 64
++ */
++
++static int TxIntDelay[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++/* Receive Interrupt Delay in units of 1.024 microseconds
++ *
++ * Valid Range: 0-65535
++ *
++ * Default Value: 64
++ */
++
++static int RxIntDelay[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++/* MDI-X Support Enable/Disable - Applies only to Copper PHY
++ *
++ * Valid Range: 0, 3
++ * - 0 - Auto in all modes
++ * - 1 - MDI
++ * - 2 - MDI-X
++ * - 3 - Auto in 1000 Base-T mode (MDI in 10 Base-T and 100 Base-T)
++ *
++ * Default Value: 0 (Auto)
++ */
++
++static int MdiX[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++/* Automatic Correction of Reversed Cable Polarity Enable/Disable
++ * This setting applies only to Copper PHY
++ *
++ * Valid Range: 0, 1
++ * - 0 - Disabled
++ * - 1 - Enabled
++ *
++ * Default Value: 1 (Enabled)
++ */
++
++static int DisablePolarityCorrection[E1000_MAX_NIC + 1] = E1000_OPTION_INIT;
++
++#ifdef MODULE
++
++MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
++MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
++
++#if defined(MODULE_LICENSE)
++MODULE_LICENSE("BSD with patent grant");
++#endif
++
++MODULE_PARM(TxDescriptors, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++MODULE_PARM(RxDescriptors, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++MODULE_PARM(Speed, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++MODULE_PARM(Duplex, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++MODULE_PARM(AutoNeg, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++MODULE_PARM(XsumRX, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++MODULE_PARM(FlowControl, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++MODULE_PARM(TxIntDelay, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++MODULE_PARM(RxIntDelay, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++MODULE_PARM(MdiX, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++MODULE_PARM(DisablePolarityCorrection, "1-" __MODULE_STRING(E1000_MAX_NIC) "i");
++
++MODULE_PARM_DESC(TxDescriptors, "Number of transmit descriptors");
++MODULE_PARM_DESC(RxDescriptors, "Number of receive descriptors");
++MODULE_PARM_DESC(Speed, "Speed setting");
++MODULE_PARM_DESC(Duplex, "Duplex setting");
++MODULE_PARM_DESC(AutoNeg, "Advertised auto-negotiation setting");
++MODULE_PARM_DESC(XsumRX, "Disable or enable Receive Checksum offload");
++MODULE_PARM_DESC(FlowControl, "Flow Control setting");
++MODULE_PARM_DESC(TxIntDelay, "Transmit Interrupt Delay");
++MODULE_PARM_DESC(RxIntDelay, "Receive Interrupt Delay");
++MODULE_PARM_DESC(MdiX, "Set MDI/MDI-X Mode");
++MODULE_PARM_DESC(DisablePolarityCorrection,
++ "Disable or enable Automatic Correction for Reversed Cable Polarity");
++
++#ifdef EXPORT_SYMTAB
++/*EXPORT_SYMBOL(e1000_init_module);
++EXPORT_SYMBOL(e1000_exit_module);
++EXPORT_SYMBOL(e1000_probe);
++EXPORT_SYMBOL(e1000_remove);
++EXPORT_SYMBOL(e1000_open);
++EXPORT_SYMBOL(e1000_close);
++EXPORT_SYMBOL(e1000_xmit_frame);
++EXPORT_SYMBOL(e1000_intr);
++EXPORT_SYMBOL(e1000_set_multi);
++EXPORT_SYMBOL(e1000_change_mtu);
++EXPORT_SYMBOL(e1000_set_mac);
++EXPORT_SYMBOL(e1000_get_stats);
++EXPORT_SYMBOL(e1000_watchdog);
++EXPORT_SYMBOL(e1000_ioctl);
++EXPORT_SYMBOL(e1000_adapter_list);*/
++#endif
++
++#endif
++
++/* Local Function Prototypes */
++
++static void e1000_check_options(struct e1000_adapter *adapter);
++static void e1000_check_fiber_options(struct e1000_adapter *adapter);
++static void e1000_check_copper_options(struct e1000_adapter *adapter);
++static int e1000_sw_init(struct e1000_adapter *adapter);
++static int e1000_hw_init(struct e1000_adapter *adapter);
++static void e1000_read_address(struct e1000_adapter *adapter,
++ uint8_t *addr);
++static int e1000_setup_tx_resources(struct e1000_adapter *adapter);
++static int e1000_setup_rx_resources(struct e1000_adapter *adapter);
++static void e1000_setup_rctl(struct e1000_adapter *adapter);
++static void e1000_configure_rx(struct e1000_adapter *adapter);
++static void e1000_configure_tx(struct e1000_adapter *adapter);
++static void e1000_free_tx_resources(struct e1000_adapter *adapter);
++static void e1000_free_rx_resources(struct e1000_adapter *adapter);
++static void e1000_update_stats(struct e1000_adapter *adapter);
++static inline void e1000_irq_disable(struct e1000_adapter *adapter);
++static inline void e1000_irq_enable(struct e1000_adapter *adapter);
++static void e1000_clean_tx_irq(struct e1000_adapter *adapter);
++static void e1000_clean_rx_irq(struct e1000_adapter *adapter);
++static inline void e1000_rx_checksum(struct e1000_adapter *adapter,
++ struct e1000_rx_desc *rx_desc,
++ struct sk_buff *skb);
++static void e1000_alloc_rx_buffers(unsigned long data);
++static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
++static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
++void e1000_hibernate_adapter(struct net_device *netdev);
++void e1000_wakeup_adapter(struct net_device *netdev);
++static void e1000_enable_WOL(struct e1000_adapter *adapter);
++
++#ifdef SIOCETHTOOL
++static int e1000_ethtool_ioctl(struct net_device *netdev,
++ struct ifreq *ifr);
++#endif
++#ifdef IDIAG
++static int e1000_check_lbtest_frame(struct sk_buff *skb,
++ unsigned int frame_size);
++#endif
++
++/**
++ * e1000_init_module - Driver Registration Routine
++ *
++ * e1000_init_module is the first routine called when the driver is
++ * loaded. All it does is register with the PCI subsystem.
++ **/
++
++int
++e1000_init_module()
++{
++ E1000_DBG("e1000_init_module\n");
++
++ /* Print the driver ID string and copyright notice */
++
++ printk("%s - version %s\n%s\n", e1000_driver_string, e1000_driver_version,
++ e1000_copyright);
++
++ /* register the driver with the PCI subsystem */
++
++ return pci_module_init(&e1000_driver);
++}
++
++/* this macro creates a special symbol in the object file that
++ * identifies the driver initialization routine
++ */
++module_init(e1000_init_module);
++
++/**
++ * e1000_exit_module - Driver Exit Cleanup Routine
++ *
++ * e1000_exit_module is called just before the driver is removed
++ * from memory.
++ **/
++
++void
++e1000_exit_module()
++{
++#ifdef CONFIG_PROC_FS
++ struct proc_dir_entry *de;
++#endif
++
++ E1000_DBG("e1000_exit_module\n");
++
++ pci_unregister_driver(&e1000_driver);
++
++#ifdef CONFIG_PROC_FS
++ /* if there is no e1000_proc_dir (proc creation failure on load)
++ * then we're done
++ */
++ if(e1000_proc_dir == NULL)
++ return;
++
++ /* If ADAPTERS_PROC_DIR (/proc/net/PRO_LAN_Adapters) is empty
++ * it can be removed now (might still be in use by e100)
++ */
++ for(de = e1000_proc_dir->subdir; de; de = de->next) {
++
++ /* ignore . and .. */
++
++ if(*(de->name) == '.')
++ continue;
++ break;
++ }
++ if(de)
++ return;
++ remove_proc_entry(ADAPTERS_PROC_DIR, proc_net);
++#endif
++
++ return;
++}
++
++/* this macro creates a special symbol in the object file that
++ * identifies the driver cleanup routine
++ */
++module_exit(e1000_exit_module);
++
++/**
++ * e1000_probe - Device Initialization Routine
++ * @pdev: PCI device information struct
++ * @ent: entry in e1000_pci_table
++ *
++ * Returns 0 on success, negative on failure
++ *
++ * e1000_probe initializes an adapter identified by a pci_dev
++ * structure. The OS initialization is handled here, and
++ * e1000_sw_init and e1000_hw_init are called to handle the driver
++ * specific software structures and hardware initialization
++ * respectively.
++ **/
++
++int
++e1000_probe(struct pci_dev *pdev,
++ const struct pci_device_id *ent)
++{
++ struct net_device *netdev = NULL;
++ struct e1000_adapter *adapter;
++ static int cards_found = 0;
++
++#ifdef CONFIG_PROC_FS
++ int len;
++#endif
++
++ E1000_DBG("e1000_probe\n");
++
++ /* Make sure the PCI device has the proper resources available */
++
++ if(pci_enable_device(pdev) != 0) {
++ E1000_ERR("pci_enable_device failed\n");
++ return -ENODEV;
++ }
++
++ /* Make sure we are enabled as a bus mastering device */
++
++ pci_set_master(pdev);
++
++ /* Check to see if our PCI addressing needs are supported */
++ if(pci_set_dma_mask(pdev, E1000_DMA_MASK) < 0) {
++ E1000_ERR("PCI DMA not supported by the system\n");
++ return -ENODEV;
++ }
++
++ /* Allocate private data structure (struct e1000_adapter)
++ */
++ netdev = alloc_etherdev(sizeof(struct e1000_adapter));
++
++ if(netdev == NULL) {
++ E1000_ERR("Unable to allocate net_device struct\n");
++ return -ENOMEM;
++ }
++
++ /* Calling alloc_etherdev with sizeof(struct e1000_adapter) allocates
++ * a single buffer of size net_device + struct e1000_adapter +
++ * alignment. If this is not done then the struct e1000_adapter needs
++ * to be allocated and freed separately.
++ */
++ adapter = (struct e1000_adapter *) netdev->priv;
++ memset(adapter, 0, sizeof(struct e1000_adapter));
++ adapter->netdev = netdev;
++ adapter->pdev = pdev;
++
++ /* link the struct e1000_adapter into the list */
++
++ if(e1000_adapter_list != NULL)
++ e1000_adapter_list->prev = adapter;
++ adapter->next = e1000_adapter_list;
++ e1000_adapter_list = adapter;
++ adapter->shared.back = (void *) adapter;
++
++ /* reserve the MMIO region as ours */
++
++ if(!request_mem_region
++ (pci_resource_start(pdev, BAR_0), pci_resource_len(pdev, BAR_0),
++ e1000_driver_name)) {
++ E1000_ERR("request_mem_region failed\n");
++ e1000_remove(pdev);
++ return -ENODEV;
++ }
++
++ /* map the MMIO region into the kernel virtual address space */
++
++ adapter->shared.hw_addr =
++ ioremap(pci_resource_start(pdev, BAR_0), pci_resource_len(pdev, BAR_0));
++
++ if(adapter->shared.hw_addr == NULL) {
++ E1000_ERR("ioremap failed\n");
++ release_mem_region(pci_resource_start(pdev, BAR_0),
++ pci_resource_len(pdev, BAR_0));
++ e1000_remove(pdev);
++ return -ENOMEM;
++ }
++
++ /* don't actually register the interrupt handler until e1000_open */
++
++ netdev->irq = pdev->irq;
++
++ /* Set the MMIO base address for the NIC */
++
++#ifdef IANS
++ netdev->base_addr = pci_resource_start(pdev, BAR_0);
++#endif
++ netdev->mem_start = pci_resource_start(pdev, BAR_0);
++ netdev->mem_end = netdev->mem_start + pci_resource_len(pdev, BAR_0);
++
++ /* set up function pointers to driver entry points */
++
++ netdev->open = &e1000_open;
++ netdev->stop = &e1000_close;
++ netdev->hard_start_xmit = &e1000_xmit_frame;
++ netdev->get_stats = &e1000_get_stats;
++ netdev->set_multicast_list = &e1000_set_multi;
++ netdev->set_mac_address = &e1000_set_mac;
++ netdev->change_mtu = &e1000_change_mtu;
++ netdev->do_ioctl = &e1000_ioctl;
++
++ /* set up the struct e1000_adapter */
++
++ adapter->bd_number = cards_found;
++ adapter->id_string = e1000_strings[ent->driver_data];
++ printk("\n%s\n", adapter->id_string);
++
++ /* Order is important here. e1000_sw_init also identifies the
++ * hardware, so that e1000_check_options can treat command line parameters
++ * differently depending on the hardware.
++ */
++ e1000_sw_init(adapter);
++ e1000_check_options(adapter);
++
++#ifdef MAX_SKB_FRAGS
++ if(adapter->shared.mac_type >= e1000_82543) {
++ netdev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
++ } else {
++ netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
++ }
++#endif
++
++#ifdef IANS
++ adapter->iANSdata = kmalloc(sizeof(iANSsupport_t), GFP_KERNEL);
++ if(adapter->iANSdata == NULL) {
++ e1000_remove(pdev);
++ return -ENOMEM;
++ }
++ memset(adapter->iANSdata, 0, sizeof(iANSsupport_t));
++ bd_ans_drv_InitANS(adapter, adapter->iANSdata);
++#endif
++
++ /* finally, we get around to setting up the hardware */
++
++ if(e1000_hw_init(adapter) < 0) {
++ e1000_remove(pdev);
++ return -ENODEV;
++ }
++ cards_found++;
++
++ /* reset stats */
++
++ e1000_clear_hw_cntrs(&adapter->shared);
++ e1000_phy_get_info(&adapter->shared, &adapter->phy_info);
++
++ /* Then register the net device once everything initializes
++ */
++ register_netdev(netdev);
++
++#ifdef CONFIG_PROC_FS
++ /* set up the proc fs entry */
++
++ len = strlen(ADAPTERS_PROC_DIR);
++
++ for(e1000_proc_dir = proc_net->subdir; e1000_proc_dir;
++ e1000_proc_dir = e1000_proc_dir->next) {
++ if((e1000_proc_dir->namelen == len) &&
++ (memcmp(e1000_proc_dir->name, ADAPTERS_PROC_DIR, len) == 0))
++ break;
++ }
++
++ if(e1000_proc_dir == NULL)
++ e1000_proc_dir =
++ create_proc_entry(ADAPTERS_PROC_DIR, S_IFDIR, proc_net);
++
++ if(e1000_proc_dir != NULL)
++ if(e1000_create_proc_dev(adapter) < 0) {
++ e1000_remove_proc_dev(adapter->netdev);
++ }
++#endif
++
++ /* print the link status */
++
++ if(adapter->link_active == 1)
++ printk("%s: Mem:0x%p IRQ:%d Speed:%d Mbps Duplex:%s\n",
++ netdev->name, (void *) netdev->mem_start, netdev->irq,
++ adapter->link_speed,
++ adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
++ else
++ printk("%s: Mem:0x%p IRQ:%d Speed:N/A Duplex:N/A\n", netdev->name,
++ (void *) netdev->mem_start, netdev->irq);
++
++ return 0;
++}
++
++/**
++ * e1000_remove - Device Removal Routine
++ * @pdev: PCI device information struct
++ *
++ * e1000_remove is called by the PCI subsystem to alert the driver
++ * that it should release a PCI device. The could be caused by a
++ * Hot-Plug event, or because the driver is going to be removed from
++ * memory.
++ *
++ * This routine is also called to clean up from a failure in
++ * e1000_probe. The Adapter struct and netdev will always exist,
++ * all other pointers must be checked for NULL before freeing.
++ **/
++
++void
++e1000_remove(struct pci_dev *pdev)
++{
++ struct net_device *netdev;
++ struct e1000_adapter *adapter;
++
++ /* find the Adapter struct that matches this PCI device */
++
++ for(adapter = e1000_adapter_list; adapter != NULL; adapter = adapter->next) {
++ if(adapter->pdev == pdev)
++ break;
++ }
++ if(adapter == NULL)
++ return;
++
++ netdev = adapter->netdev;
++
++ /* this must be called before freeing anything,
++ * otherwise there is a case where the open entry point can be
++ * running at the same time as remove. Calling unregister_netdev on an
++ * open interface results in a call to dev_close, which locks
++ * properly against the other netdev entry points, so this takes
++ * care of the hotplug issue of removing an active interface as well.
++ */
++ unregister_netdev(netdev);
++
++ e1000_phy_hw_reset(&adapter->shared);
++
++#ifdef CONFIG_PROC_FS
++ /* remove the proc nodes */
++
++ if(e1000_proc_dir != NULL)
++ e1000_remove_proc_dev(adapter->netdev);
++#endif
++
++ /* remove from the adapter list */
++
++ if(e1000_adapter_list == adapter)
++ e1000_adapter_list = adapter->next;
++ if(adapter->next != NULL)
++ adapter->next->prev = adapter->prev;
++ if(adapter->prev != NULL)
++ adapter->prev->next = adapter->next;
++
++ /* free system resources */
++
++#ifdef IANS
++ if(adapter->iANSdata != NULL)
++ kfree(adapter->iANSdata);
++#endif
++
++ if(adapter->shared.hw_addr != NULL) {
++ iounmap((void *) adapter->shared.hw_addr);
++ release_mem_region(pci_resource_start(pdev, BAR_0),
++ pci_resource_len(pdev, BAR_0));
++ }
++
++ /* free the net_device _and_ struct e1000_adapter memory */
++
++ kfree(netdev);
++
++ return;
++}
++
++/**
++ * e1000_check_options - Range Checking for Command Line Parameters
++ * @adapter: board private structure
++ *
++ * This routine checks all command line paramters for valid user
++ * input. If an invalid value is given, or if no user specified
++ * value exists, a default value is used. The final value is stored
++ * in a variable in the Adapter structure.
++ **/
++
++static void
++e1000_check_options(struct e1000_adapter *adapter)
++{
++ int board = adapter->bd_number;
++
++ if(board >= E1000_MAX_NIC) {
++ printk("Warning: no configuration for board #%i\n", board);
++ printk("Using defaults for all values\n");
++ board = E1000_MAX_NIC;
++ }
++
++ E1000_DBG("e1000_check_options\n");
++
++ /* Transmit Descriptor Count */
++
++ if(TxDescriptors[board] == OPTION_UNSET) {
++ adapter->tx_ring.count = DEFAULT_TXD;
++ TxDescriptors[board] = DEFAULT_TXD;
++ } else
++ if(((TxDescriptors[board] > MAX_TXD) ||
++ (TxDescriptors[board] < MIN_TXD)) &&
++ (adapter->shared.mac_type <= e1000_82543)) {
++ printk("Invalid TxDescriptors specified (%i), using default %i\n",
++ TxDescriptors[board], DEFAULT_TXD);
++ adapter->tx_ring.count = DEFAULT_TXD;
++ } else
++ if(((TxDescriptors[board] > MAX_82544_TXD) ||
++ (TxDescriptors[board] < MIN_TXD)) &&
++ (adapter->shared.mac_type > e1000_82543)) {
++ printk("Invalid TxDescriptors specified (%i), using default %i\n",
++ TxDescriptors[board], DEFAULT_TXD);
++ adapter->tx_ring.count = DEFAULT_TXD;
++ } else {
++ printk("Using specified value of %i TxDescriptors\n",
++ TxDescriptors[board]);
++ adapter->tx_ring.count = TxDescriptors[board];
++ }
++
++ /* tx_ring.count must be a multiple of 8 */
++
++ adapter->tx_ring.count = E1000_ROUNDUP2(adapter->tx_ring.count,
++ REQ_TX_DESCRIPTOR_MULTIPLE);
++
++ /* Receive Descriptor Count */
++
++ if(RxDescriptors[board] == OPTION_UNSET) {
++ adapter->rx_ring.count = DEFAULT_RXD;
++ RxDescriptors[board] = DEFAULT_RXD;
++ } else
++ if(((RxDescriptors[board] > MAX_RXD) ||
++ (RxDescriptors[board] < MIN_RXD)) &&
++ (adapter->shared.mac_type <= e1000_82543)) {
++ printk("Invalid RxDescriptors specified (%i), using default %i\n",
++ RxDescriptors[board], DEFAULT_RXD);
++ adapter->rx_ring.count = DEFAULT_RXD;
++ } else
++ if(((RxDescriptors[board] > MAX_82544_RXD) ||
++ (RxDescriptors[board] < MIN_RXD)) &&
++ (adapter->shared.mac_type > e1000_82543)) {
++ printk("Invalid RxDescriptors specified (%i), using default %i\n",
++ RxDescriptors[board], DEFAULT_RXD);
++ adapter->rx_ring.count = DEFAULT_RXD;
++ } else {
++ printk("Using specified value of %i RxDescriptors\n",
++ RxDescriptors[board]);
++ adapter->rx_ring.count = RxDescriptors[board];
++ }
++
++ /* rx_ring.count must be a multiple of 8 */
++
++ adapter->rx_ring.count =
++ E1000_ROUNDUP2(adapter->rx_ring.count, REQ_RX_DESCRIPTOR_MULTIPLE);
++
++ /* Receive Checksum Offload Enable */
++
++ if(XsumRX[board] == OPTION_UNSET) {
++ adapter->RxChecksum = XSUMRX_DEFAULT;
++ XsumRX[board] = XSUMRX_DEFAULT;
++ } else if((XsumRX[board] != OPTION_ENABLED) &&
++ (XsumRX[board] != OPTION_DISABLED)) {
++ printk("Invalid XsumRX specified (%i), using default of %i\n",
++ XsumRX[board], XSUMRX_DEFAULT);
++ adapter->RxChecksum = XSUMRX_DEFAULT;
++ } else {
++ printk("Receive Checksum Offload %s\n",
++ XsumRX[board] == OPTION_ENABLED ? "Enabled" : "Disabled");
++ adapter->RxChecksum = XsumRX[board];
++ }
++
++ /* Flow Control */
++
++ if(FlowControl[board] == OPTION_UNSET) {
++ adapter->shared.fc = e1000_fc_default;
++ FlowControl[board] = e1000_fc_default;
++ } else if((FlowControl[board] > e1000_fc_full) ||
++ (FlowControl[board] < e1000_fc_none)) {
++ printk("Invalid FlowControl specified (%i), "
++ "reading default settings from the EEPROM\n",
++ FlowControl[board]);
++ adapter->shared.fc = e1000_fc_default;
++ } else {
++ adapter->shared.fc = FlowControl[board];
++ switch (adapter->shared.fc) {
++ case e1000_fc_none:
++ printk("Flow Control Disabled\n");
++ break;
++ case e1000_fc_rx_pause:
++ printk("Flow Control Receive Only\n");
++ break;
++ case e1000_fc_tx_pause:
++ printk("Flow Control Transmit Only\n");
++ break;
++ case e1000_fc_full:
++ printk("Flow Control Enabled\n");
++ case e1000_fc_default:
++ printk("Flow Control Hardware Default\n");
++ }
++ }
++
++ /* Transmit Interrupt Delay */
++
++ if(TxIntDelay[board] == OPTION_UNSET) {
++ adapter->tx_int_delay = DEFAULT_TIDV;
++ TxIntDelay[board] = DEFAULT_TIDV;
++ } else if((TxIntDelay[board] > MAX_TIDV) || (TxIntDelay[board] < MIN_TIDV)) {
++ printk("Invalid TxIntDelay specified (%i), using default %i\n",
++ TxIntDelay[board], DEFAULT_TIDV);
++ adapter->tx_int_delay = DEFAULT_TIDV;
++ } else {
++ printk("Using specified TxIntDelay of %i\n", TxIntDelay[board]);
++ adapter->tx_int_delay = TxIntDelay[board];
++ }
++
++ /* Receive Interrupt Delay */
++
++ if(RxIntDelay[board] == OPTION_UNSET) {
++ adapter->rx_int_delay = DEFAULT_RIDV;
++ RxIntDelay[board] = DEFAULT_RIDV;
++ } else if((RxIntDelay[board] > MAX_RIDV) || (RxIntDelay[board] < MIN_RIDV)) {
++ printk("Invalid RxIntDelay specified (%i), using default %i\n",
++ RxIntDelay[board], DEFAULT_RIDV);
++ adapter->rx_int_delay = DEFAULT_RIDV;
++ } else {
++ printk("Using specified RxIntDelay of %i\n", RxIntDelay[board]);
++ adapter->rx_int_delay = RxIntDelay[board];
++ }
++
++ if(adapter->shared.media_type == e1000_media_type_copper) {
++ /* MDI/MDI-X Support */
++
++ if(MdiX[board] == OPTION_UNSET) {
++ adapter->shared.mdix = DEFAULT_MDIX;
++ MdiX[board] = DEFAULT_MDIX;
++ } else if((MdiX[board] > MAX_MDIX) || (MdiX[board] < MIN_MDIX)) {
++ printk("Invalid MDI/MDI-X specified (%i), using default %i\n",
++ MdiX[board], DEFAULT_MDIX);
++ adapter->shared.mdix = DEFAULT_MDIX;
++ } else {
++ printk("Using specified MDI/MDI-X of %i\n", MdiX[board]);
++ adapter->shared.mdix = MdiX[board];
++ }
++
++ /* Automatic Correction for Reverse Cable Polarity */
++
++ if(DisablePolarityCorrection[board] == OPTION_UNSET) {
++ adapter->shared.disable_polarity_correction = OPTION_DISABLED;
++ DisablePolarityCorrection[board] = OPTION_DISABLED;
++ } else if((DisablePolarityCorrection[board] != OPTION_ENABLED) &&
++ (DisablePolarityCorrection[board] != OPTION_DISABLED)) {
++ printk("Invalid polarity correction specified (%i),"
++ " using default %i\n", DisablePolarityCorrection[board],
++ OPTION_DISABLED);
++ adapter->shared.disable_polarity_correction = OPTION_DISABLED;
++ } else {
++ printk("Using specified polarity correction of %i\n",
++ DisablePolarityCorrection[board]);
++ adapter->shared.disable_polarity_correction =
++ DisablePolarityCorrection[board];
++ }
++ }
++
++ /* Speed, Duplex, and AutoNeg */
++
++ switch (adapter->shared.media_type) {
++
++ case e1000_media_type_fiber:
++ e1000_check_fiber_options(adapter);
++ break;
++
++ case e1000_media_type_copper:
++ e1000_check_copper_options(adapter);
++ break;
++
++ default:
++ printk("Unknown Media Type\n");
++ break;
++ }
++
++ return;
++}
++
++/**
++ * e1000_check_fiber_options - Range Checking for Link Options, Fiber Version
++ * @adapter: board private structure
++ *
++ * Handles speed and duplex options on fiber based adapters
++ **/
++
++static void
++e1000_check_fiber_options(struct e1000_adapter *adapter)
++{
++ int board =
++ adapter->bd_number > E1000_MAX_NIC ? E1000_MAX_NIC : adapter->bd_number;
++
++ E1000_DBG("CheckSpeedDuplexFiber\n");
++
++ /* Speed, Duplex, and AutoNeg are not valid on fiber NICs */
++
++ if((Speed[board] != OPTION_UNSET)) {
++ Speed[board] = 0;
++ printk("Warning: Speed not valid for fiber adapters\n");
++ printk("Speed Parameter Ignored\n");
++ }
++ if((Duplex[board] != OPTION_UNSET)) {
++ Duplex[board] = 0;
++ printk("Warning: Duplex not valid for fiber adapters\n");
++ printk("Duplex Parameter Ignored\n");
++ }
++ if((AutoNeg[board] != OPTION_UNSET)) {
++ AutoNeg[board] = AUTONEG_ADV_DEFAULT;
++ printk("Warning: AutoNeg not valid for fiber adapters\n");
++ printk("AutoNeg Parameter Ignored\n");
++ }
++
++ return;
++}
++
++/**
++ * e1000_check_copper_options - Range Checking for Link Options, Copper Version
++ * @adapter: board private structure
++ *
++ * Handles speed and duplex options on copper based adapters
++ **/
++
++static void
++e1000_check_copper_options(struct e1000_adapter *adapter)
++{
++ int board =
++ adapter->bd_number > E1000_MAX_NIC ? E1000_MAX_NIC : adapter->bd_number;
++ int speed, duplex;
++ boolean_t all_default = TRUE;
++
++ E1000_DBG("CheckSpeedDuplexCopper\n");
++
++ /* User Specified Auto-negotiation Settings */
++
++ if(AutoNeg[board] == OPTION_UNSET) {
++
++ adapter->shared.autoneg_advertised = AUTONEG_ADV_DEFAULT;
++ AutoNeg[board] = AUTONEG_ADV_DEFAULT;
++
++ } else if((Speed[board] != 0 && Speed[board] != OPTION_UNSET) ||
++ (Duplex[board] != 0 && Duplex[board] != OPTION_UNSET)) {
++
++ printk("Warning: AutoNeg specified along with Speed or Duplex\n");
++ printk("AutoNeg Parameter Ignored\n");
++
++ adapter->shared.autoneg_advertised = AUTONEG_ADV_DEFAULT;
++
++ } else {
++
++ if(AutoNeg[board] & ~AUTONEG_ADV_MASK) {
++
++ printk("Invalid AutoNeg Specified (0x%X), Parameter Ignored\n",
++ AutoNeg[board]);
++
++ adapter->shared.autoneg_advertised = AUTONEG_ADV_DEFAULT;
++
++ } else {
++
++ adapter->shared.autoneg_advertised = AutoNeg[board];
++ }
++
++ printk("AutoNeg Advertising ");
++ if(adapter->shared.autoneg_advertised & ADVERTISE_1000_FULL) {
++ printk("1000/FD");
++ if(adapter->shared.autoneg_advertised & (ADVERTISE_1000_FULL - 1))
++ printk(", ");
++ }
++ if(adapter->shared.autoneg_advertised & ADVERTISE_1000_HALF) {
++ printk("1000/HD");
++ if(adapter->shared.autoneg_advertised & (ADVERTISE_1000_HALF - 1))
++ printk(", ");
++ }
++ if(adapter->shared.autoneg_advertised & ADVERTISE_100_FULL) {
++ printk("100/FD");
++ if(adapter->shared.autoneg_advertised & (ADVERTISE_100_FULL - 1))
++ printk(", ");
++ }
++ if(adapter->shared.autoneg_advertised & ADVERTISE_100_HALF) {
++ printk("100/HD");
++ if(adapter->shared.autoneg_advertised & (ADVERTISE_100_HALF - 1))
++ printk(", ");
++ }
++ if(adapter->shared.autoneg_advertised & ADVERTISE_10_FULL) {
++ printk("10/FD");
++ if(adapter->shared.autoneg_advertised & (ADVERTISE_10_FULL - 1))
++ printk(", ");
++ }
++ if(adapter->shared.autoneg_advertised & ADVERTISE_10_HALF)
++ printk("10/HD");
++ printk("\n");
++ }
++
++ /* Forced Speed and Duplex */
++
++ switch (Speed[board]) {
++ default:
++ printk("Invalid Speed Specified (%i), Parameter Ignored\n",
++ Speed[board]);
++ all_default = FALSE;
++ case OPTION_UNSET:
++ speed = 0;
++ Speed[board] = 0;
++ break;
++ case 0:
++ case 10:
++ case 100:
++ case 1000:
++ speed = Speed[board];
++ all_default = FALSE;
++ break;
++ }
++
++ switch (Duplex[board]) {
++ default:
++ printk("Invalid Duplex Specified (%i), Parameter Ignored\n",
++ Duplex[board]);
++ all_default = FALSE;
++ case OPTION_UNSET:
++ duplex = 0;
++ Duplex[board] = 0;
++ break;
++ case 0:
++ case 1:
++ case 2:
++ duplex = Duplex[board];
++ all_default = FALSE;
++ break;
++ }
++
++ switch (speed + duplex) {
++ case 0:
++ if(all_default == FALSE)
++ printk("Speed and Duplex Auto-negotiation Enabled\n");
++ adapter->shared.autoneg = 1;
++ break;
++ case 1:
++ printk("Warning: Half Duplex specified without Speed\n");
++ printk("Using Auto-negotiation at Half Duplex only\n");
++ adapter->shared.autoneg = 1;
++ adapter->shared.autoneg_advertised =
++ ADVERTISE_10_HALF | ADVERTISE_100_HALF;
++ break;
++ case 2:
++ printk("Warning: Full Duplex specified without Speed\n");
++ printk("Using Auto-negotiation at Full Duplex only\n");
++ adapter->shared.autoneg = 1;
++ adapter->shared.autoneg_advertised =
++ ADVERTISE_10_FULL | ADVERTISE_100_FULL | ADVERTISE_1000_FULL;
++ break;
++ case 10:
++ printk("Warning: 10 Mbps Speed specified without Duplex\n");
++ printk("Using Auto-negotiation at 10 Mbps only\n");
++ adapter->shared.autoneg = 1;
++ adapter->shared.autoneg_advertised =
++ ADVERTISE_10_HALF | ADVERTISE_10_FULL;
++ break;
++ case 11:
++ printk("Forcing to 10 Mbps Half Duplex\n");
++ adapter->shared.autoneg = 0;
++ adapter->shared.forced_speed_duplex = e1000_10_half;
++ adapter->shared.autoneg_advertised = 0;
++ break;
++ case 12:
++ printk("Forcing to 10 Mbps Full Duplex\n");
++ adapter->shared.autoneg = 0;
++ adapter->shared.forced_speed_duplex = e1000_10_full;
++ adapter->shared.autoneg_advertised = 0;
++ break;
++ case 100:
++ printk("Warning: 100 Mbps Speed specified without Duplex\n");
++ printk("Using Auto-negotiation at 100 Mbps only\n");
++ adapter->shared.autoneg = 1;
++ adapter->shared.autoneg_advertised =
++ ADVERTISE_100_HALF | ADVERTISE_100_FULL;
++ break;
++ case 101:
++ printk("Forcing to 100 Mbps Half Duplex\n");
++ adapter->shared.autoneg = 0;
++ adapter->shared.forced_speed_duplex = e1000_100_half;
++ adapter->shared.autoneg_advertised = 0;
++ break;
++ case 102:
++ printk("Forcing to 100 Mbps Full Duplex\n");
++ adapter->shared.autoneg = 0;
++ adapter->shared.forced_speed_duplex = e1000_100_full;
++ adapter->shared.autoneg_advertised = 0;
++ break;
++ case 1000:
++ printk("Warning: 1000 Mbps Speed specified without Duplex\n");
++ printk("Using Auto-negotiation at 1000 Mbps Full Duplex only\n");
++ adapter->shared.autoneg = 1;
++ adapter->shared.autoneg_advertised = ADVERTISE_1000_FULL;
++ break;
++ case 1001:
++ printk("Warning: Half Duplex is not supported at 1000 Mbps\n");
++ printk("Using Auto-negotiation at 1000 Mbps Full Duplex only\n");
++ adapter->shared.autoneg = 1;
++ adapter->shared.autoneg_advertised = ADVERTISE_1000_FULL;
++ break;
++ case 1002:
++ printk("Using Auto-negotiation at 1000 Mbps Full Duplex only\n");
++ adapter->shared.autoneg = 1;
++ adapter->shared.autoneg_advertised = ADVERTISE_1000_FULL;
++ break;
++ default:
++ panic("something is wrong in e1000_check_copper_options");
++ }
++
++ /* Speed, AutoNeg and MDI/MDI-X */
++ if (!e1000_validate_mdi_setting(&(adapter->shared))) {
++ printk ("Speed, AutoNeg and MDI-X specifications are incompatible."
++ " Setting MDI-X to a compatible value.\n");
++ }
++
++ return;
++}
++
++/**
++ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
++ * @adapter: board private structure to initialize
++ *
++ * Returns 0 on success, negative on failure
++ *
++ * e1000_sw_init initializes the Adapter private data structure.
++ * Fields are initialized based on PCI device information and
++ * OS network device settings (MTU size).
++ **/
++
++static int
++e1000_sw_init(struct e1000_adapter *adapter)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct pci_dev *pdev = adapter->pdev;
++ uint32_t status;
++
++ E1000_DBG("e1000_sw_init\n");
++
++ /* PCI config space info */
++
++ pci_read_config_word(pdev, PCI_VENDOR_ID, &adapter->vendor_id);
++ pci_read_config_word(pdev, PCI_DEVICE_ID, &adapter->device_id);
++ pci_read_config_byte(pdev, PCI_REVISION_ID, &adapter->rev_id);
++ pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &adapter->subven_id);
++ pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &adapter->subsys_id);
++ pci_read_config_word(pdev, PCI_COMMAND, &adapter->shared.pci_cmd_word);
++ adapter->shared.vendor_id = adapter->vendor_id;
++ adapter->shared.device_id = adapter->device_id;
++ adapter->shared.revision_id = adapter->rev_id;
++ adapter->shared.subsystem_vendor_id = adapter->subven_id;
++ adapter->shared.subsystem_id = adapter->subsys_id;
++
++ /* Initial Receive Buffer Length */
++
++ if((netdev->mtu + ENET_HEADER_SIZE + CRC_LENGTH) < E1000_RXBUFFER_2048)
++ adapter->rx_buffer_len = E1000_RXBUFFER_2048;
++ else if((netdev->mtu + ENET_HEADER_SIZE + CRC_LENGTH) < E1000_RXBUFFER_4096)
++ adapter->rx_buffer_len = E1000_RXBUFFER_4096;
++ else if((netdev->mtu + ENET_HEADER_SIZE + CRC_LENGTH) < E1000_RXBUFFER_8192)
++ adapter->rx_buffer_len = E1000_RXBUFFER_8192;
++ else
++ adapter->rx_buffer_len = E1000_RXBUFFER_16384;
++
++ adapter->shared.max_frame_size =
++ netdev->mtu + ENET_HEADER_SIZE + CRC_LENGTH;
++ adapter->shared.min_frame_size = MINIMUM_ETHERNET_PACKET_SIZE + CRC_LENGTH;
++
++ /* MAC and Phy settings */
++
++ switch (adapter->device_id) {
++ case E1000_DEV_ID_82542:
++ switch (adapter->rev_id) {
++ case E1000_82542_2_0_REV_ID:
++ adapter->shared.mac_type = e1000_82542_rev2_0;
++ break;
++ case E1000_82542_2_1_REV_ID:
++ adapter->shared.mac_type = e1000_82542_rev2_1;
++ break;
++ default:
++ adapter->shared.mac_type = e1000_82542_rev2_0;
++ E1000_ERR("Could not identify 82542 revision\n");
++ }
++ break;
++ case E1000_DEV_ID_82543GC_FIBER:
++ case E1000_DEV_ID_82543GC_COPPER:
++ adapter->shared.mac_type = e1000_82543;
++ break;
++ case E1000_DEV_ID_82544EI_COPPER:
++ case E1000_DEV_ID_82544EI_FIBER:
++ case E1000_DEV_ID_82544GC_COPPER:
++ case E1000_DEV_ID_82544GC_LOM:
++ adapter->shared.mac_type = e1000_82544;
++ break;
++ case E1000_DEV_ID_82540EM:
++ adapter->shared.mac_type = e1000_82540;
++ break;
++ default:
++ E1000_ERR("Could not identify hardware\n");
++ return -ENODEV;
++ }
++
++ adapter->shared.fc_high_water = FC_DEFAULT_HI_THRESH;
++ adapter->shared.fc_low_water = FC_DEFAULT_LO_THRESH;
++ adapter->shared.fc_pause_time = FC_DEFAULT_TX_TIMER;
++ adapter->shared.fc_send_xon = 1;
++
++ /* Identify the Hardware - this is done by the gigabit shared code
++ * in e1000_init_hw, but it would help to identify the NIC
++ * before bringing the hardware online for use in e1000_check_options.
++ */
++ if(adapter->shared.mac_type >= e1000_82543) {
++ status = E1000_READ_REG(&adapter->shared, STATUS);
++ if(status & E1000_STATUS_TBIMODE) {
++ adapter->shared.media_type = e1000_media_type_fiber;
++ } else {
++ adapter->shared.media_type = e1000_media_type_copper;
++ }
++ } else {
++ adapter->shared.media_type = e1000_media_type_fiber;
++ }
++
++ if((E1000_REPORT_TX_EARLY == 0) || (E1000_REPORT_TX_EARLY == 1)) {
++ adapter->shared.report_tx_early = E1000_REPORT_TX_EARLY;
++ } else {
++ if(adapter->shared.mac_type < e1000_82543) {
++
++ adapter->shared.report_tx_early = 0;
++ } else {
++ adapter->shared.report_tx_early = 1;
++ }
++ }
++
++ adapter->shared.wait_autoneg_complete = WAITFORLINK_DEFAULT;
++
++ adapter->shared.tbi_compatibility_en = 1;
++
++ atomic_set(&adapter->tx_timeout, 0);
++
++ spin_lock_init(&adapter->stats_lock);
++ spin_lock_init(&adapter->rx_fill_lock);
++
++ return 0;
++}
++
++/**
++ * e1000_hw_init - prepare the hardware
++ * @adapter: board private struct containing configuration
++ *
++ * Returns 0 on success, negative on failure
++ *
++ * Initialize the hardware to a configuration as specified by the
++ * Adapter structure. The controler is reset, the EEPROM is
++ * verified, the MAC address is set, then the shared initilization
++ * routines are called.
++ **/
++
++static int
++e1000_hw_init(struct e1000_adapter *adapter)
++{
++ struct net_device *netdev = adapter->netdev;
++
++ E1000_DBG("e1000_hw_init\n");
++
++ /* Repartition Pba for greater than 9k mtu
++ * To take effect Ctrl_Rst is required.
++ */
++ if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
++ E1000_WRITE_REG(&adapter->shared, PBA, E1000_JUMBO_PBA);
++ else
++ E1000_WRITE_REG(&adapter->shared, PBA, E1000_DEFAULT_PBA);
++
++ /* Issue a global reset */
++
++ adapter->shared.adapter_stopped = 0;
++ e1000_adapter_stop(&adapter->shared);
++ adapter->shared.adapter_stopped = 0;
++
++ /* make sure the EEPROM is good */
++
++ if(!e1000_validate_eeprom_checksum(&adapter->shared)) {
++ E1000_ERR("The EEPROM Checksum Is Not Valid\n");
++ return -1;
++ }
++
++ /* copy the MAC address out of the EEPROM */
++
++ e1000_read_address(adapter, adapter->perm_net_addr);
++ memcpy(netdev->dev_addr, adapter->perm_net_addr, netdev->addr_len);
++ memcpy(adapter->shared.mac_addr, netdev->dev_addr, netdev->addr_len);
++
++ e1000_read_part_num(&adapter->shared, &(adapter->part_num));
++
++ if(!e1000_init_hw(&adapter->shared)) {
++ E1000_ERR("Hardware Initialization Failed\n");
++ return -1;
++ }
++
++ e1000_enable_WOL(adapter);
++
++ adapter->shared.get_link_status = 1;
++ e1000_check_for_link(&adapter->shared);
++
++ if(E1000_READ_REG(&adapter->shared, STATUS) & E1000_STATUS_LU)
++ adapter->link_active = TRUE;
++ else
++ adapter->link_active = FALSE;
++
++ if(adapter->link_active == TRUE) {
++ e1000_get_speed_and_duplex(&adapter->shared, &adapter->link_speed,
++ &adapter->link_duplex);
++ } else {
++ adapter->link_speed = 0;
++ adapter->link_duplex = 0;
++ }
++
++ e1000_get_bus_info(&adapter->shared);
++
++ return 0;
++}
++
++/**
++ * e1000_read_address - Reads the MAC address from the EEPROM
++ * @adapter: board private structure
++ * @addr: pointer to an array of bytes
++ **/
++
++static void
++e1000_read_address(struct e1000_adapter *adapter,
++ uint8_t *addr)
++{
++ uint16_t eeprom_word;
++ int i;
++
++ E1000_DBG("e1000_read_address\n");
++
++ for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
++ eeprom_word =
++ e1000_read_eeprom(&adapter->shared,
++ EEPROM_NODE_ADDRESS_BYTE_0 + (i / 2));
++ addr[i] = (uint8_t) (eeprom_word & 0x00FF);
++ addr[i + 1] = (uint8_t) (eeprom_word >> 8);
++ }
++
++ return;
++}
++
++/**
++ * e1000_open - Called when a network interface is made active
++ * @netdev: network interface device structure
++ *
++ * Returns 0 on success, negative value on failure
++ *
++ * The open entry point is called when a network interface is made
++ * active by the system (IFF_UP). At this point all resources needed
++ * for transmit and receive operations are allocated, the interrupt
++ * handler is registered with the OS, the watchdog timer is started,
++ * and the stack is notified that the interface is ready.
++ **/
++
++int
++e1000_open(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev->priv;
++
++ E1000_DBG("e1000_open\n");
++
++ /* prevent multiple opens when dealing with iANS */
++
++ if(test_and_set_bit(E1000_BOARD_OPEN, &adapter->flags)) {
++ return -EBUSY;
++ }
++
++ adapter->shared.fc = adapter->shared.original_fc;
++
++ /* e1000_close issues a global reset (e1000_adapter_stop)
++ * so e1000_hw_init must be called again or the hardware
++ * will resume in it's default state
++ */
++ if(e1000_hw_init(adapter) < 0) {
++ clear_bit(E1000_BOARD_OPEN, &adapter->flags);
++ return -EBUSY;
++ }
++#ifdef IANS
++ /* restore VLAN settings */
++ if((IANS_BD_TAGGING_MODE) (ANS_PRIVATE_DATA_FIELD(adapter)->tag_mode) !=
++ IANS_BD_TAGGING_NONE)
++ bd_ans_hw_EnableVLAN(adapter);
++#endif
++
++ adapter->shared.adapter_stopped = 0;
++
++ /* allocate transmit descriptors */
++
++ if(e1000_setup_tx_resources(adapter) != 0) {
++ e1000_adapter_stop(&adapter->shared);
++ clear_bit(E1000_BOARD_OPEN, &adapter->flags);
++ return -ENOMEM;
++ }
++ e1000_configure_tx(adapter);
++
++ /* allocate receive descriptors and buffers */
++
++ if(e1000_setup_rx_resources(adapter) != 0) {
++ e1000_adapter_stop(&adapter->shared);
++ e1000_free_tx_resources(adapter);
++ clear_bit(E1000_BOARD_OPEN, &adapter->flags);
++ return -ENOMEM;
++ }
++ e1000_setup_rctl(adapter);
++ e1000_configure_rx(adapter);
++
++ /* hook the interrupt */
++
++ if(request_irq(netdev->irq, &e1000_intr,
++ SA_SHIRQ, e1000_driver_name, netdev) != 0) {
++ clear_bit(E1000_BOARD_OPEN, &adapter->flags);
++ e1000_adapter_stop(&adapter->shared);
++ e1000_free_tx_resources(adapter);
++ e1000_free_rx_resources(adapter);
++ clear_bit(E1000_BOARD_OPEN, &adapter->flags);
++ return -EBUSY;
++ }
++
++ /* fill Rx ring with sk_buffs */
++
++ tasklet_init(&adapter->rx_fill_tasklet, e1000_alloc_rx_buffers,
++ (unsigned long) adapter);
++
++ tasklet_schedule(&adapter->rx_fill_tasklet);
++
++ /* Set the watchdog timer for 2 seconds */
++
++ init_timer(&adapter->timer_id);
++ adapter->timer_id.function = &e1000_watchdog;
++ adapter->timer_id.data = (unsigned long) netdev;
++ mod_timer(&adapter->timer_id, (jiffies + 2 * HZ));
++
++ /* stats accumulated while down are dropped
++ * this does not clear the running total
++ */
++
++ e1000_clear_hw_cntrs(&adapter->shared);
++
++ adapter->int_mask = IMS_ENABLE_MASK;
++ e1000_irq_enable(adapter);
++ netif_start_queue(netdev);
++
++#ifdef MODULE
++
++ /* Incrementing the module use count prevents a driver from being
++ * unloaded while an active network interface is using it.
++ */
++ MOD_INC_USE_COUNT;
++
++#endif
++
++ return 0;
++}
++
++/**
++ * e1000_close - Disables a network interface
++ * @netdev: network interface device structure
++ *
++ * Returns 0, this is not allowed to fail
++ *
++ * The close entry point is called when an interface is de-activated
++ * by the OS. The hardware is still under the drivers control, but
++ * needs to be disabled. A global MAC reset is issued to stop the
++ * hardware, and all transmit and receive resources are freed.
++ **/
++
++int
++e1000_close(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev->priv;
++
++ E1000_DBG("e1000_close\n");
++
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ return 0;
++
++ /* Issue a global reset */
++
++ e1000_adapter_stop((&adapter->shared));
++
++ /* Enable receiver unit after Global reset
++ * for WOL, so that receiver can still recive
++ * wake up packet and will not drop it.
++ */
++ if(adapter->shared.mac_type > e1000_82543)
++ E1000_WRITE_REG(&adapter->shared, RCTL, E1000_RCTL_EN);
++
++ /* free OS resources */
++
++ netif_stop_queue(netdev);
++ free_irq(netdev->irq, netdev);
++ del_timer_sync(&adapter->timer_id);
++
++ /* Make sure the tasklet won't be left after ifconfig down */
++
++ /*
++ * Assumption: tasklet is ALREADY enabled, ie, t->count == 0.
++ * Otherwise, tasklet is still left in the tasklet list, and,
++ * tasklet_kill will not be able to return (hang).
++ */
++ tasklet_kill(&adapter->rx_fill_tasklet);
++
++ /* free software resources */
++
++ e1000_free_tx_resources(adapter);
++ e1000_free_rx_resources(adapter);
++
++#ifdef MODULE
++
++ /* decrement the module usage count
++ * so that the driver can be unloaded
++ */
++ MOD_DEC_USE_COUNT;
++
++#endif
++
++ clear_bit(E1000_BOARD_OPEN, &adapter->flags);
++ return 0;
++}
++
++/**
++ * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
++ * @adapter: board private structure
++ *
++ * Return 0 on success, negative on failure
++ *
++ * e1000_setup_tx_resources allocates all software transmit resources
++ * and enabled the Tx unit of the MAC.
++ **/
++
++static int
++e1000_setup_tx_resources(struct e1000_adapter *adapter)
++{
++ struct pci_dev *pdev = adapter->pdev;
++ int size;
++
++ E1000_DBG("e1000_setup_tx_resources\n");
++
++ size = sizeof(struct e1000_buffer) * adapter->tx_ring.count;
++ adapter->tx_ring.buffer_info = kmalloc(size, GFP_KERNEL);
++ if(adapter->tx_ring.buffer_info == NULL) {
++ return -ENOMEM;
++ }
++ memset(adapter->tx_ring.buffer_info, 0, size);
++
++ /* round up to nearest 4K */
++
++ adapter->tx_ring.size = E1000_ROUNDUP2(adapter->tx_ring.count *
++ sizeof(struct e1000_tx_desc),
++ 4096);
++
++ adapter->tx_ring.desc = pci_alloc_consistent(pdev, adapter->tx_ring.size,
++ &adapter->tx_ring.dma);
++ if(adapter->tx_ring.desc == NULL) {
++ kfree(adapter->tx_ring.buffer_info);
++ return -ENOMEM;
++ }
++ memset(adapter->tx_ring.desc, 0, adapter->tx_ring.size);
++
++ atomic_set(&adapter->tx_ring.unused, adapter->tx_ring.count);
++ adapter->tx_ring.next_to_use = 0;
++ adapter->tx_ring.next_to_clean = 0;
++
++ return 0;
++}
++
++/**
++ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
++ * @adapter: board private structure
++ *
++ * Configure the Tx unit of the MAC after a reset.
++ **/
++
++static void
++e1000_configure_tx(struct e1000_adapter *adapter)
++{
++ uint32_t tctl, tipg;
++
++ /* Setup the Base and Length of the Rx Descriptor Ring */
++ /* tx_ring.dma can be either a 32 or 64 bit value */
++
++#if (BITS_PER_LONG == 32)
++ E1000_WRITE_REG(&adapter->shared, TDBAL, adapter->tx_ring.dma);
++ E1000_WRITE_REG(&adapter->shared, TDBAH, 0);
++#elif ( BITS_PER_LONG == 64)
++ E1000_WRITE_REG(&adapter->shared, TDBAL,
++ (uint32_t) (adapter->tx_ring.dma & 0x00000000FFFFFFFF));
++ E1000_WRITE_REG(&adapter->shared, TDBAH,
++ (uint32_t) (adapter->tx_ring.dma >> 32));
++#else
++#error "Unsupported System - does not use 32 or 64 bit pointers!"
++#endif
++
++ E1000_WRITE_REG(&adapter->shared, TDLEN,
++ adapter->tx_ring.count * sizeof(struct e1000_tx_desc));
++
++ /* Setup the HW Tx Head and Tail descriptor pointers */
++
++ E1000_WRITE_REG(&adapter->shared, TDH, 0);
++ E1000_WRITE_REG(&adapter->shared, TDT, 0);
++
++ /* Set the default values for the Tx Inter Packet Gap timer */
++
++ switch (adapter->shared.mac_type) {
++ case e1000_82543:
++ case e1000_82544:
++ case e1000_82540:
++ if(adapter->shared.media_type == e1000_media_type_fiber)
++ tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
++ else
++ tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
++ tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
++ tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
++ break;
++ case e1000_82542_rev2_0:
++ case e1000_82542_rev2_1:
++ default:
++ tipg = DEFAULT_82542_TIPG_IPGT;
++ tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
++ tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
++ break;
++ }
++ E1000_WRITE_REG(&adapter->shared, TIPG, tipg);
++
++ /* Set the Tx Interrupt Delay register */
++
++ E1000_WRITE_REG(&adapter->shared, TIDV, adapter->tx_int_delay);
++
++ /* Program the Transmit Control Register */
++
++ tctl =
++ E1000_TCTL_PSP | E1000_TCTL_EN | (E1000_COLLISION_THRESHOLD <<
++ E1000_CT_SHIFT);
++ if(adapter->link_duplex == FULL_DUPLEX) {
++ tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
++ } else {
++ tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
++ }
++ E1000_WRITE_REG(&adapter->shared, TCTL, tctl);
++
++#ifdef CONFIG_PPC
++ if(adapter->shared.mac_type >= e1000_82543) {
++ E1000_WRITE_REG(&adapter->shared, TXDCTL, 0x00020000);
++ }
++#endif
++
++ /* Setup Transmit Descriptor Settings for this adapter */
++ adapter->TxdCmd = E1000_TXD_CMD_IFCS;
++
++ if(adapter->tx_int_delay > 0)
++ adapter->TxdCmd |= E1000_TXD_CMD_IDE;
++ if(adapter->shared.report_tx_early == 1)
++ adapter->TxdCmd |= E1000_TXD_CMD_RS;
++ else
++ adapter->TxdCmd |= E1000_TXD_CMD_RPS;
++
++ adapter->ActiveChecksumContext = OFFLOAD_NONE;
++
++ return;
++}
++
++/**
++ * e1000_setup_rx_resources - allocate Rx resources (Descriptors, receive SKBs)
++ * @adapter: board private structure
++ *
++ * Returns 0 on success, negative on failure
++ *
++ * e1000_setup_rx_resources allocates all software receive resources
++ * and network buffers, and enables the Rx unit of the MAC.
++ **/
++
++static int
++e1000_setup_rx_resources(struct e1000_adapter *adapter)
++{
++ struct pci_dev *pdev = adapter->pdev;
++ int size;
++
++ E1000_DBG("e1000_setup_rx_resources\n");
++
++ size = sizeof(struct e1000_buffer) * adapter->rx_ring.count;
++ adapter->rx_ring.buffer_info = kmalloc(size, GFP_KERNEL);
++ if(adapter->rx_ring.buffer_info == NULL) {
++ return -ENOMEM;
++ }
++ memset(adapter->rx_ring.buffer_info, 0, size);
++
++ /* Round up to nearest 4K */
++
++ adapter->rx_ring.size = E1000_ROUNDUP2(adapter->rx_ring.count *
++ sizeof(struct e1000_rx_desc),
++ 4096);
++
++ adapter->rx_ring.desc = pci_alloc_consistent(pdev, adapter->rx_ring.size,
++ &adapter->rx_ring.dma);
++
++ if(adapter->rx_ring.desc == NULL) {
++ kfree(adapter->rx_ring.buffer_info);
++ return -ENOMEM;
++ }
++ memset(adapter->rx_ring.desc, 0, adapter->rx_ring.size);
++
++ adapter->rx_ring.next_to_clean = 0;
++ atomic_set(&adapter->rx_ring.unused, adapter->rx_ring.count);
++
++ adapter->rx_ring.next_to_use = 0;
++
++ return 0;
++}
++
++/**
++ * e1000_setup_rctl - configure the receive control register
++ * @adapter: Board private structure
++ **/
++
++static void
++e1000_setup_rctl(struct e1000_adapter *adapter)
++{
++ uint32_t rctl;
++
++ /* Setup the Receive Control Register */
++ rctl =
++ E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
++ E1000_RCTL_RDMTS_HALF | (adapter->shared.
++ mc_filter_type << E1000_RCTL_MO_SHIFT);
++
++ if(adapter->shared.tbi_compatibility_on == 1)
++ rctl |= E1000_RCTL_SBP;
++
++ switch (adapter->rx_buffer_len) {
++ case E1000_RXBUFFER_2048:
++ default:
++ rctl |= E1000_RCTL_SZ_2048;
++ break;
++ case E1000_RXBUFFER_4096:
++ rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
++ break;
++ case E1000_RXBUFFER_8192:
++ rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
++ break;
++ case E1000_RXBUFFER_16384:
++ rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
++ break;
++ }
++
++ E1000_WRITE_REG(&adapter->shared, RCTL, rctl);
++}
++
++/**
++ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
++ * @adapter: board private structure
++ *
++ * Configure the Rx unit of the MAC after a reset.
++ **/
++
++static void
++e1000_configure_rx(struct e1000_adapter *adapter)
++{
++ uint32_t rctl;
++ uint32_t rxcsum;
++
++ /* make sure receives are disabled while setting up the descriptor ring */
++ rctl = E1000_READ_REG(&adapter->shared, RCTL);
++ E1000_WRITE_REG(&adapter->shared, RCTL, rctl & ~E1000_RCTL_EN);
++
++ /* set the Receive Delay Timer Register */
++ E1000_WRITE_REG(&adapter->shared, RDTR,
++ adapter->rx_int_delay | E1000_RDT_FPDB);
++
++ /* Setup the Base and Length of the Rx Descriptor Ring */
++ /* rx_ring.dma can be either a 32 or 64 bit value */
++
++#if (BITS_PER_LONG == 32)
++ E1000_WRITE_REG(&adapter->shared, RDBAL, adapter->rx_ring.dma);
++ E1000_WRITE_REG(&adapter->shared, RDBAH, 0);
++#elif ( BITS_PER_LONG == 64)
++ E1000_WRITE_REG(&adapter->shared, RDBAL,
++ (uint32_t) (adapter->rx_ring.dma & 0x00000000FFFFFFFF));
++ E1000_WRITE_REG(&adapter->shared, RDBAH,
++ (uint32_t) (adapter->rx_ring.dma >> 32));
++#else
++#error "Unsupported System - does not use 32 or 64 bit pointers!"
++#endif
++
++ E1000_WRITE_REG(&adapter->shared, RDLEN,
++ adapter->rx_ring.count * sizeof(struct e1000_rx_desc));
++
++ /* Setup the HW Rx Head and Tail Descriptor Pointers */
++ E1000_WRITE_REG(&adapter->shared, RDH, 0);
++ E1000_WRITE_REG(&adapter->shared, RDT, 0);
++
++ /* Enable 82543 Receive Checksum Offload for TCP and UDP */
++ if((adapter->shared.mac_type >= e1000_82543) &&
++ (adapter->RxChecksum == TRUE)) {
++ rxcsum = E1000_READ_REG(&adapter->shared, RXCSUM);
++ rxcsum |= E1000_RXCSUM_TUOFL;
++ E1000_WRITE_REG(&adapter->shared, RXCSUM, rxcsum);
++ }
++#ifdef CONFIG_PPC
++ if(adapter->shared.mac_type >= e1000_82543) {
++ E1000_WRITE_REG(&adapter->shared, RXDCTL, 0x00020000);
++ }
++#endif
++
++ /* Enable Receives */
++ E1000_WRITE_REG(&adapter->shared, RCTL, rctl);
++
++ return;
++}
++
++/**
++ * e1000_free_tx_resources - Free Tx Resources
++ * @adapter: board private structure
++ *
++ * Free all transmit software resources
++ **/
++
++static void
++e1000_free_tx_resources(struct e1000_adapter *adapter)
++{
++ struct pci_dev *pdev = adapter->pdev;
++
++ E1000_DBG("e1000_free_tx_resources\n");
++
++ e1000_clean_tx_ring(adapter);
++
++ kfree(adapter->tx_ring.buffer_info);
++ adapter->tx_ring.buffer_info = NULL;
++
++ pci_free_consistent(pdev, adapter->tx_ring.size, adapter->tx_ring.desc,
++ adapter->tx_ring.dma);
++
++ adapter->tx_ring.desc = NULL;
++
++ return;
++}
++
++/**
++ * e1000_clean_tx_ring - Free Tx Buffers
++ * @adapter: board private structure
++ **/
++
++static void
++e1000_clean_tx_ring(struct e1000_adapter *adapter)
++{
++ struct pci_dev *pdev = adapter->pdev;
++ unsigned long size;
++ int i;
++
++ /* Free all the Tx ring sk_buffs */
++
++ for(i = 0; i < adapter->tx_ring.count; i++) {
++ if(adapter->tx_ring.buffer_info[i].skb != NULL) {
++
++ pci_unmap_page(pdev, adapter->tx_ring.buffer_info[i].dma,
++ adapter->tx_ring.buffer_info[i].length,
++ PCI_DMA_TODEVICE);
++
++ dev_kfree_skb(adapter->tx_ring.buffer_info[i].skb);
++
++ adapter->tx_ring.buffer_info[i].skb = NULL;
++ }
++ }
++
++ size = sizeof(struct e1000_buffer) * adapter->tx_ring.count;
++ memset(adapter->tx_ring.buffer_info, 0, size);
++
++ /* Zero out the descriptor ring */
++
++ memset(adapter->tx_ring.desc, 0, adapter->tx_ring.size);
++
++ atomic_set(&adapter->tx_ring.unused, adapter->tx_ring.count);
++ adapter->tx_ring.next_to_use = 0;
++ adapter->tx_ring.next_to_clean = 0;
++
++ return;
++}
++
++/**
++ * e1000_free_rx_resources - Free Rx Resources
++ * @adapter: board private structure
++ *
++ * Free all receive software resources
++ **/
++
++static void
++e1000_free_rx_resources(struct e1000_adapter *adapter)
++{
++ struct pci_dev *pdev = adapter->pdev;
++
++ E1000_DBG("e1000_free_rx_resources\n");
++
++ tasklet_disable(&adapter->rx_fill_tasklet);
++
++ e1000_clean_rx_ring(adapter);
++
++ kfree(adapter->rx_ring.buffer_info);
++ adapter->rx_ring.buffer_info = NULL;
++
++ pci_free_consistent(pdev, adapter->rx_ring.size, adapter->rx_ring.desc,
++ adapter->rx_ring.dma);
++
++ adapter->rx_ring.desc = NULL;
++
++ return;
++}
++
++/**
++ * e1000_clean_rx_ring - Free Rx Buffers
++ * @adapter: board private structure
++ **/
++
++static void
++e1000_clean_rx_ring(struct e1000_adapter *adapter)
++{
++ struct pci_dev *pdev = adapter->pdev;
++ unsigned long size;
++ int i;
++
++ /* Free all the Rx ring sk_buffs */
++
++ for(i = 0; i < adapter->rx_ring.count; i++) {
++ if(adapter->rx_ring.buffer_info[i].skb != NULL) {
++
++ pci_unmap_single(pdev, adapter->rx_ring.buffer_info[i].dma,
++ adapter->rx_ring.buffer_info[i].length,
++ PCI_DMA_FROMDEVICE);
++
++ dev_kfree_skb(adapter->rx_ring.buffer_info[i].skb);
++
++ adapter->rx_ring.buffer_info[i].skb = NULL;
++ }
++ }
++
++ size = sizeof(struct e1000_buffer) * adapter->rx_ring.count;
++ memset(adapter->rx_ring.buffer_info, 0, size);
++
++ /* Zero out the descriptor ring */
++
++ memset(adapter->rx_ring.desc, 0, adapter->rx_ring.size);
++
++ atomic_set(&adapter->rx_ring.unused, adapter->rx_ring.count);
++ adapter->rx_ring.next_to_clean = 0;
++ adapter->rx_ring.next_to_use = 0;
++
++ return;
++}
++
++/**
++ * e1000_set_multi - Multicast and Promiscuous mode set
++ * @netdev: network interface device structure
++ *
++ * The set_multi entry point is called whenever the multicast address
++ * list or the network interface flags are updated. This routine is
++ * resposible for configuring the hardware for proper multicast,
++ * promiscuous mode, and all-multi behavior.
++ **/
++
++void
++e1000_set_multi(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev->priv;
++ struct pci_dev *pdev = adapter->pdev;
++ uint32_t rctl;
++ uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
++ uint16_t pci_command_word;
++ struct dev_mc_list *mc_ptr;
++ int i;
++
++ E1000_DBG("e1000_set_multi\n");
++
++ rctl = E1000_READ_REG(&adapter->shared, RCTL);
++
++ if(adapter->shared.mac_type == e1000_82542_rev2_0) {
++ if(adapter->shared.pci_cmd_word & PCI_COMMAND_INVALIDATE) {
++ pci_command_word =
++ adapter->shared.pci_cmd_word & ~PCI_COMMAND_INVALIDATE;
++ pci_write_config_word(pdev, PCI_COMMAND, pci_command_word);
++ }
++ rctl |= E1000_RCTL_RST;
++ E1000_WRITE_REG(&adapter->shared, RCTL, rctl);
++ mdelay(5);
++ if(test_bit(E1000_BOARD_OPEN, &adapter->flags)) {
++ tasklet_disable(&adapter->rx_fill_tasklet);
++ e1000_clean_rx_ring(adapter);
++ }
++ }
++
++ /* Check for Promiscuous and All Multicast modes */
++
++ if(netdev->flags & IFF_PROMISC) {
++ rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
++ } else if(netdev->flags & IFF_ALLMULTI) {
++ rctl |= E1000_RCTL_MPE;
++ rctl &= ~E1000_RCTL_UPE;
++ } else {
++ rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
++ }
++
++ if(netdev->mc_count > MAX_NUM_MULTICAST_ADDRESSES) {
++ rctl |= E1000_RCTL_MPE;
++ E1000_WRITE_REG(&adapter->shared, RCTL, rctl);
++ } else {
++ E1000_WRITE_REG(&adapter->shared, RCTL, rctl);
++ for(i = 0, mc_ptr = netdev->mc_list; mc_ptr; i++, mc_ptr = mc_ptr->next)
++ memcpy(&mta[i * ETH_LENGTH_OF_ADDRESS], mc_ptr->dmi_addr,
++ ETH_LENGTH_OF_ADDRESS);
++ e1000_mc_addr_list_update(&adapter->shared, mta, netdev->mc_count, 0);
++ }
++
++ if(adapter->shared.mac_type == e1000_82542_rev2_0) {
++ rctl = E1000_READ_REG(&adapter->shared, RCTL);
++ rctl &= ~E1000_RCTL_RST;
++ E1000_WRITE_REG(&adapter->shared, RCTL, rctl);
++ mdelay(5);
++ if(adapter->shared.pci_cmd_word & PCI_COMMAND_INVALIDATE) {
++ pci_write_config_word(pdev, PCI_COMMAND,
++ adapter->shared.pci_cmd_word);
++ }
++ if(test_bit(E1000_BOARD_OPEN, &adapter->flags)) {
++ e1000_configure_rx(adapter);
++ tasklet_enable(&adapter->rx_fill_tasklet);
++ }
++ }
++
++ return;
++}
++
++#ifdef IANS
++
++/* flush Tx queue without link */
++static void
++e1000_tx_flush(struct e1000_adapter *adapter)
++{
++ uint32_t ctrl, txcw, icr;
++
++ adapter->int_mask = 0;
++ e1000_irq_disable(adapter);
++ synchronize_irq();
++
++ if(adapter->shared.mac_type < e1000_82543) {
++ /* Transmit Unit Reset */
++ E1000_WRITE_REG(&adapter->shared, TCTL, E1000_TCTL_RST);
++ E1000_WRITE_REG(&adapter->shared, TCTL, 0);
++ e1000_clean_tx_ring(adapter);
++ e1000_configure_tx(adapter);
++ } else {
++ /* turn off autoneg, set link up, and invert loss of signal */
++ txcw = E1000_READ_REG(&adapter->shared, TXCW);
++ ctrl = E1000_READ_REG(&adapter->shared, CTRL);
++ E1000_WRITE_REG(&adapter->shared, TXCW, txcw & ~E1000_TXCW_ANE);
++ E1000_WRITE_REG(&adapter->shared, CTRL,
++ (ctrl | E1000_CTRL_SLU | E1000_CTRL_ILOS));
++ /* delay to flush queue, then clean up */
++ mdelay(20);
++ e1000_clean_tx_irq(adapter);
++ E1000_WRITE_REG(&adapter->shared, CTRL, ctrl);
++ E1000_WRITE_REG(&adapter->shared, TXCW, txcw);
++ /* clear the link status change interrupts this caused */
++ icr = E1000_READ_REG(&adapter->shared, ICR);
++ }
++
++ adapter->int_mask = IMS_ENABLE_MASK;
++ e1000_irq_enable(adapter);
++ return;
++}
++#endif
++
++/**
++ * e1000_watchdog - Timer Call-back
++ * @data: pointer to netdev cast into an unsigned long
++ **/
++
++void
++e1000_watchdog(unsigned long data)
++{
++ struct net_device *netdev = (struct net_device *) data;
++ struct e1000_adapter *adapter = netdev->priv;
++
++#ifdef IANS
++#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0))
++ int flags;
++#endif
++#endif
++
++ e1000_check_for_link(&adapter->shared);
++
++ if (test_and_clear_bit(E1000_LINK_STATUS_CHANGED, &adapter->flags))
++ e1000_phy_get_info(&adapter->shared, &adapter->phy_info);
++
++ if(E1000_READ_REG(&adapter->shared, STATUS) & E1000_STATUS_LU) {
++ if(adapter->link_active != TRUE) {
++
++#ifdef IANS
++ if((adapter->iANSdata->iANS_status == IANS_COMMUNICATION_UP) &&
++ (adapter->iANSdata->reporting_mode == IANS_STATUS_REPORTING_ON))
++ if(ans_notify)
++ ans_notify(netdev, IANS_IND_XMIT_QUEUE_READY);
++#endif
++ netif_wake_queue(netdev);
++
++ e1000_get_speed_and_duplex(&adapter->shared, &adapter->link_speed,
++ &adapter->link_duplex);
++ printk(KERN_ERR "e1000: %s NIC Link is Up %d Mbps %s\n",
++ netdev->name, adapter->link_speed,
++ adapter->link_duplex ==
++ FULL_DUPLEX ? "Full Duplex" : "Half Duplex");
++
++ adapter->link_active = TRUE;
++ set_bit(E1000_LINK_STATUS_CHANGED, &adapter->flags);
++ }
++ } else {
++ if(adapter->link_active != FALSE) {
++ adapter->link_speed = 0;
++ adapter->link_duplex = 0;
++ printk(KERN_ERR "e1000: %s NIC Link is Down\n", netdev->name);
++ adapter->link_active = FALSE;
++ atomic_set(&adapter->tx_timeout, 0);
++ }
++ }
++
++ e1000_update_stats(adapter);
++
++ if(atomic_read(&adapter->tx_timeout) > 1)
++ atomic_dec(&adapter->tx_timeout);
++
++ if((adapter->link_active == TRUE) &&
++ (atomic_read(&adapter->tx_timeout) == 1)) {
++
++ if(E1000_READ_REG(&adapter->shared, STATUS) & E1000_STATUS_TXOFF) {
++ atomic_set(&adapter->tx_timeout, 3);
++ } else {
++
++ e1000_hibernate_adapter(netdev);
++
++#ifdef IANS
++ if((adapter->iANSdata->iANS_status == IANS_COMMUNICATION_UP) &&
++ (adapter->iANSdata->reporting_mode == IANS_STATUS_REPORTING_ON)) {
++ adapter->link_active = FALSE;
++ bd_ans_os_Watchdog(netdev, adapter);
++ adapter->link_active = TRUE;
++ }
++#endif
++ atomic_set(&adapter->tx_timeout, 0);
++ e1000_wakeup_adapter(netdev);
++ }
++ }
++#ifdef IANS
++ if(adapter->iANSdata->iANS_status == IANS_COMMUNICATION_UP) {
++
++ if(adapter->iANSdata->reporting_mode == IANS_STATUS_REPORTING_ON)
++ bd_ans_os_Watchdog(netdev, adapter);
++
++ if(adapter->link_active == FALSE) {
++ /* don't sit on SKBs while link is down */
++
++ if(atomic_read(&adapter->tx_ring.unused) < adapter->tx_ring.count) {
++
++#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0))
++ spin_lock_irqsave(&netdev->xmit_lock, flags);
++ e1000_tx_flush(adapter);
++ spin_unlock_irqrestore(&netdev->xmit_lock, flags);
++#else
++ e1000_tx_flush(adapter);
++#endif
++ }
++#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0))
++ spin_lock_irqsave(&netdev->queue_lock, flags);
++ qdisc_reset(netdev->qdisc);
++ spin_unlock_irqrestore(&netdev->queue_lock, flags);
++#else
++ qdisc_reset(netdev->qdisc);
++#endif
++ }
++ }
++#endif
++
++ if(test_bit(E1000_RX_REFILL, &adapter->flags)) {
++ tasklet_schedule(&adapter->rx_fill_tasklet);
++ }
++
++ /* Reset the timer */
++ mod_timer(&adapter->timer_id, jiffies + 2 * HZ);
++
++ return;
++}
++
++/**
++ * e1000_tx_checksum_setup
++ * @adapter:
++ * @skb:
++ * @txd_upper:
++ * @txd_lower:
++ **/
++
++static inline void
++e1000_tx_checksum_setup(struct e1000_adapter *adapter,
++ struct sk_buff *skb,
++ uint32_t *txd_upper,
++ uint32_t *txd_lower)
++{
++
++ struct e1000_context_desc *desc;
++ int i;
++
++ if(skb->protocol != __constant_htons(ETH_P_IP)) {
++ *txd_upper = 0;
++ *txd_lower = adapter->TxdCmd;
++ return;
++ }
++
++ switch (skb->nh.iph->protocol) {
++ case IPPROTO_TCP:
++ /* Offload TCP checksum */
++ *txd_upper = E1000_TXD_POPTS_TXSM << 8;
++ *txd_lower = adapter->TxdCmd | E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
++ if(adapter->ActiveChecksumContext == OFFLOAD_TCP_IP)
++ return;
++ else
++ adapter->ActiveChecksumContext = OFFLOAD_TCP_IP;
++ break;
++ case IPPROTO_UDP:
++ /* Offload UDP checksum */
++ *txd_upper = E1000_TXD_POPTS_TXSM << 8;
++ *txd_lower = adapter->TxdCmd | E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
++ if(adapter->ActiveChecksumContext == OFFLOAD_UDP_IP)
++ return;
++ else
++ adapter->ActiveChecksumContext = OFFLOAD_UDP_IP;
++ break;
++ default:
++ /* no checksum to offload */
++ *txd_upper = 0;
++ *txd_lower = adapter->TxdCmd;
++ return;
++ }
++
++ /* If we reach this point, the checksum offload context
++ * needs to be reset
++ */
++
++ i = adapter->tx_ring.next_to_use;
++ desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
++
++ desc->lower_setup.ip_fields.ipcss = skb->nh.raw - skb->data;
++ desc->lower_setup.ip_fields.ipcso =
++ ((skb->nh.raw + offsetof(struct iphdr, check)) - skb->data);
++ desc->lower_setup.ip_fields.ipcse = cpu_to_le16(skb->h.raw - skb->data - 1);
++
++ desc->upper_setup.tcp_fields.tucss = (skb->h.raw - skb->data);
++ desc->upper_setup.tcp_fields.tucso = ((skb->h.raw + skb->csum) - skb->data);
++ desc->upper_setup.tcp_fields.tucse = 0;
++
++ desc->tcp_seg_setup.data = 0;
++ desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT) | adapter->TxdCmd;
++
++ i = (i + 1) % adapter->tx_ring.count;
++ atomic_dec(&adapter->tx_ring.unused);
++ adapter->tx_ring.next_to_use = i;
++ E1000_WRITE_REG(&adapter->shared, TDT, adapter->tx_ring.next_to_use);
++ return;
++}
++
++/**
++ * e1000_xmit_frame - Transmit entry point
++ * @skb: buffer with frame data to transmit
++ * @netdev: network interface device structure
++ *
++ * Returns 0 on success, negative on error
++ *
++ * e1000_xmit_frame is called by the stack to initiate a transmit.
++ * The out of resource condition is checked after each successful Tx
++ * so that the stack can be notified, preventing the driver from
++ * ever needing to drop a frame. The atomic operations on
++ * tx_ring.unused are used to syncronize with the transmit
++ * interrupt processing code without the need for a spinlock.
++ **/
++
++int
++e1000_xmit_frame(struct sk_buff *skb,
++ struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev->priv;
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_tx_desc *tx_desc;
++ int i, len, offset, txd_needed;
++ uint32_t txd_upper, txd_lower;
++
++#define TXD_USE_COUNT(x) (((x) >> 12) + ((x) & 0x0fff ? 1 : 0))
++
++#ifdef MAX_SKB_FRAGS
++ int f;
++ skb_frag_t *frag;
++#endif
++
++ E1000_DBG("e1000_xmit_frame\n");
++
++ if(adapter->link_active == FALSE) {
++#ifdef IANS
++ if((adapter->iANSdata->iANS_status == IANS_COMMUNICATION_UP) &&
++ (adapter->iANSdata->reporting_mode == IANS_STATUS_REPORTING_ON))
++ if(ans_notify)
++ ans_notify(netdev, IANS_IND_XMIT_QUEUE_FULL);
++#endif
++ netif_stop_queue(netdev);
++ return 1;
++ }
++
++#ifdef MAX_SKB_FRAGS
++ txd_needed = TXD_USE_COUNT(skb->len - skb->data_len);
++ for(f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
++ frag = &skb_shinfo(skb)->frags[f];
++ txd_needed += TXD_USE_COUNT(frag->size);
++ }
++#else
++ txd_needed = TXD_USE_COUNT(skb->len);
++#endif
++
++ /* make sure there are enough Tx descriptors available in the ring */
++ if(atomic_read(&adapter->tx_ring.unused) <= (txd_needed + 1)) {
++ adapter->net_stats.tx_dropped++;
++#ifdef IANS
++ if((adapter->iANSdata->iANS_status == IANS_COMMUNICATION_UP) &&
++ (adapter->iANSdata->reporting_mode == IANS_STATUS_REPORTING_ON))
++ if(ans_notify)
++ ans_notify(netdev, IANS_IND_XMIT_QUEUE_FULL);
++#endif
++ netif_stop_queue(netdev);
++
++ return 1;
++ }
++
++ if(skb->ip_summed == CHECKSUM_HW) {
++ e1000_tx_checksum_setup(adapter, skb, &txd_upper, &txd_lower);
++ } else {
++ txd_upper = 0;
++ txd_lower = adapter->TxdCmd;
++ }
++
++ i = adapter->tx_ring.next_to_use;
++ tx_desc = E1000_TX_DESC(adapter->tx_ring, i);
++
++#ifdef IANS
++ if(adapter->iANSdata->iANS_status == IANS_COMMUNICATION_UP) {
++ tx_desc->lower.data = cpu_to_le32(txd_lower);
++ tx_desc->upper.data = cpu_to_le32(txd_upper);
++ if(bd_ans_os_Transmit(adapter, tx_desc, &skb) == BD_ANS_FAILURE) {
++ return 1;
++ }
++ txd_lower = le32_to_cpu(tx_desc->lower.data);
++ txd_upper = le32_to_cpu(tx_desc->upper.data);
++ }
++#endif
++
++#ifdef MAX_SKB_FRAGS
++ len = skb->len - skb->data_len;
++#else
++ len = skb->len;
++#endif
++ offset = 0;
++
++ while(len > 4096) {
++ adapter->tx_ring.buffer_info[i].length = 4096;
++ adapter->tx_ring.buffer_info[i].dma =
++ pci_map_page(pdev, virt_to_page(skb->data + offset),
++ (unsigned long) (skb->data + offset) & ~PAGE_MASK,
++ 4096, PCI_DMA_TODEVICE);
++
++ tx_desc->buffer_addr = cpu_to_le64(adapter->tx_ring.buffer_info[i].dma);
++ tx_desc->lower.data = cpu_to_le32(txd_lower | 4096);
++ tx_desc->upper.data = cpu_to_le32(txd_upper);
++
++ len -= 4096;
++ offset += 4096;
++ i = (i + 1) % adapter->tx_ring.count;
++ atomic_dec(&adapter->tx_ring.unused);
++ tx_desc = E1000_TX_DESC(adapter->tx_ring, i);
++ }
++ adapter->tx_ring.buffer_info[i].length = len;
++ adapter->tx_ring.buffer_info[i].dma =
++ pci_map_page(pdev, virt_to_page(skb->data + offset),
++ (unsigned long) (skb->data + offset) & ~PAGE_MASK, len,
++ PCI_DMA_TODEVICE);
++
++ tx_desc->buffer_addr = cpu_to_le64(adapter->tx_ring.buffer_info[i].dma);
++ tx_desc->lower.data = cpu_to_le32(txd_lower | len);
++ tx_desc->upper.data = cpu_to_le32(txd_upper);
++
++#ifdef MAX_SKB_FRAGS
++ for(f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
++ frag = &skb_shinfo(skb)->frags[f];
++ i = (i + 1) % adapter->tx_ring.count;
++ atomic_dec(&adapter->tx_ring.unused);
++ tx_desc = E1000_TX_DESC(adapter->tx_ring, i);
++
++ len = frag->size;
++ offset = 0;
++
++ while(len > 4096) {
++ adapter->tx_ring.buffer_info[i].length = 4096;
++ adapter->tx_ring.buffer_info[i].dma =
++ pci_map_page(pdev, frag->page, frag->page_offset + offset,
++ 4096, PCI_DMA_TODEVICE);
++
++ tx_desc->buffer_addr =
++ cpu_to_le64(adapter->tx_ring.buffer_info[i].dma);
++ tx_desc->lower.data = cpu_to_le32(txd_lower | 4096);
++ tx_desc->upper.data = cpu_to_le32(txd_upper);
++
++ len -= 4096;
++ offset += 4096;
++ i = (i + 1) % adapter->tx_ring.count;
++ atomic_dec(&adapter->tx_ring.unused);
++ tx_desc = E1000_TX_DESC(adapter->tx_ring, i);
++ }
++ adapter->tx_ring.buffer_info[i].length = len;
++ adapter->tx_ring.buffer_info[i].dma =
++ pci_map_page(pdev, frag->page, frag->page_offset + offset, len,
++ PCI_DMA_TODEVICE);
++ tx_desc->buffer_addr =
++ cpu_to_le64(adapter->tx_ring.buffer_info[i].dma);
++
++ tx_desc->lower.data = cpu_to_le32(txd_lower | len);
++ tx_desc->upper.data = cpu_to_le32(txd_upper);
++ }
++#endif
++
++ /* EOP and SKB pointer go with the last fragment */
++ tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP);
++ adapter->tx_ring.buffer_info[i].skb = skb;
++
++ i = (i + 1) % adapter->tx_ring.count;
++ atomic_dec(&adapter->tx_ring.unused);
++
++ /* Move the HW Tx Tail Pointer */
++ adapter->tx_ring.next_to_use = i;
++
++ E1000_WRITE_REG(&adapter->shared, TDT, adapter->tx_ring.next_to_use);
++
++ if(atomic_read(&adapter->tx_timeout) == 0)
++ atomic_set(&adapter->tx_timeout, 3);
++
++ netdev->trans_start = jiffies;
++
++ return 0;
++}
++
++/**
++ * e1000_get_stats - Get System Network Statistics
++ * @netdev: network interface device structure
++ *
++ * Returns the address of the device statistics structure.
++ * The statistics are actually updated from the timer callback.
++ **/
++
++struct net_device_stats *
++e1000_get_stats(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev->priv;
++
++ E1000_DBG("e1000_get_stats\n");
++
++ return &adapter->net_stats;
++}
++
++/**
++ * e1000_change_mtu - Change the Maximum Transfer Unit
++ * @netdev: network interface device structure
++ * @new_mtu: new value for maximum frame size
++ *
++ * Returns 0 on success, negative on failure
++ **/
++
++int
++e1000_change_mtu(struct net_device *netdev,
++ int new_mtu)
++{
++ struct e1000_adapter *adapter = netdev->priv;
++ uint32_t old_mtu = adapter->rx_buffer_len;
++
++ E1000_DBG("e1000_change_mtu\n");
++ if((new_mtu < MINIMUM_ETHERNET_PACKET_SIZE - ENET_HEADER_SIZE) ||
++ (new_mtu > MAX_JUMBO_FRAME_SIZE - ENET_HEADER_SIZE)) {
++ E1000_ERR("Invalid MTU setting\n");
++ return -EINVAL;
++ }
++
++ if(new_mtu <= MAXIMUM_ETHERNET_PACKET_SIZE - ENET_HEADER_SIZE) {
++ /* 2k buffers */
++ adapter->rx_buffer_len = E1000_RXBUFFER_2048;
++
++ } else if(adapter->shared.mac_type < e1000_82543) {
++ E1000_ERR("Jumbo Frames not supported on 82542\n");
++ return -EINVAL;
++
++ } else if(new_mtu <= E1000_RXBUFFER_4096 - ENET_HEADER_SIZE - CRC_LENGTH) {
++ /* 4k buffers */
++ adapter->rx_buffer_len = E1000_RXBUFFER_4096;
++
++ } else if(new_mtu <= E1000_RXBUFFER_8192 - ENET_HEADER_SIZE - CRC_LENGTH) {
++ /* 8k buffers */
++ adapter->rx_buffer_len = E1000_RXBUFFER_8192;
++
++ } else {
++ /* 16k buffers */
++ adapter->rx_buffer_len = E1000_RXBUFFER_16384;
++ }
++
++ if(old_mtu != adapter->rx_buffer_len &&
++ test_bit(E1000_BOARD_OPEN, &adapter->flags)) {
++
++ /* stop */
++ tasklet_disable(&adapter->rx_fill_tasklet);
++ netif_stop_queue(netdev);
++ adapter->shared.adapter_stopped = 0;
++ e1000_adapter_stop(&adapter->shared);
++
++ /* clean out old buffers */
++ e1000_clean_rx_ring(adapter);
++ e1000_clean_tx_ring(adapter);
++
++ /* reset hardware */
++ adapter->shared.adapter_stopped = 0;
++ e1000_hw_init(adapter);
++
++ /* go */
++ e1000_setup_rctl(adapter);
++ e1000_configure_rx(adapter);
++ e1000_configure_tx(adapter);
++#ifdef IANS
++ /* restore VLAN settings */
++ if((IANS_BD_TAGGING_MODE) (ANS_PRIVATE_DATA_FIELD(adapter)->tag_mode)
++ != IANS_BD_TAGGING_NONE)
++ bd_ans_hw_EnableVLAN(adapter);
++#endif
++ tasklet_enable(&adapter->rx_fill_tasklet);
++ tasklet_schedule(&adapter->rx_fill_tasklet);
++ e1000_irq_enable(adapter);
++ netif_start_queue(netdev);
++ }
++
++ netdev->mtu = new_mtu;
++ adapter->shared.max_frame_size = new_mtu + ENET_HEADER_SIZE + CRC_LENGTH;
++
++ return 0;
++}
++
++/**
++ * e1000_set_mac - Change the Ethernet Address of the NIC
++ * @netdev: network interface device structure
++ * @p: pointer to an address structure
++ *
++ * Returns 0 on success, negative on failure
++ **/
++
++int
++e1000_set_mac(struct net_device *netdev,
++ void *p)
++{
++ struct e1000_adapter *adapter = netdev->priv;
++ struct pci_dev *pdev = adapter->pdev;
++ struct sockaddr *addr = (struct sockaddr *) p;
++ uint32_t pci_command;
++ uint32_t rctl;
++
++ E1000_DBG("e1000_set_mac\n");
++
++ rctl = E1000_READ_REG(&adapter->shared, RCTL);
++
++ if(adapter->shared.mac_type == e1000_82542_rev2_0) {
++ if(adapter->shared.pci_cmd_word & PCI_COMMAND_INVALIDATE) {
++ pci_command =
++ adapter->shared.pci_cmd_word & ~PCI_COMMAND_INVALIDATE;
++ pci_write_config_word(pdev, PCI_COMMAND, pci_command);
++ }
++ E1000_WRITE_REG(&adapter->shared, RCTL, rctl | E1000_RCTL_RST);
++ mdelay(5);
++ if(test_bit(E1000_BOARD_OPEN, &adapter->flags)) {
++ tasklet_disable(&adapter->rx_fill_tasklet);
++ e1000_clean_rx_ring(adapter);
++ }
++ }
++
++ memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
++ memcpy(adapter->shared.mac_addr, addr->sa_data, netdev->addr_len);
++
++ e1000_rar_set(&adapter->shared, adapter->shared.mac_addr, 0);
++
++ if(adapter->shared.mac_type == e1000_82542_rev2_0) {
++ E1000_WRITE_REG(&adapter->shared, RCTL, rctl);
++ mdelay(5);
++ if(adapter->shared.pci_cmd_word & PCI_COMMAND_INVALIDATE) {
++ pci_write_config_word(pdev, PCI_COMMAND,
++ adapter->shared.pci_cmd_word);
++ }
++ if(test_bit(E1000_BOARD_OPEN, &adapter->flags)) {
++ e1000_configure_rx(adapter);
++ tasklet_enable(&adapter->rx_fill_tasklet);
++ }
++ }
++
++ return 0;
++}
++
++/**
++ * e1000_update_stats - Update the board statistics counters
++ * @adapter: board private structure
++ **/
++
++static void
++e1000_update_stats(struct e1000_adapter *adapter)
++{
++ unsigned long flags;
++
++#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
++
++ spin_lock_irqsave(&adapter->stats_lock, flags);
++
++ adapter->stats.crcerrs += E1000_READ_REG(&adapter->shared, CRCERRS);
++ adapter->stats.symerrs += E1000_READ_REG(&adapter->shared, SYMERRS);
++ adapter->stats.mpc += E1000_READ_REG(&adapter->shared, MPC);
++ adapter->stats.scc += E1000_READ_REG(&adapter->shared, SCC);
++ adapter->stats.ecol += E1000_READ_REG(&adapter->shared, ECOL);
++ adapter->stats.mcc += E1000_READ_REG(&adapter->shared, MCC);
++ adapter->stats.latecol += E1000_READ_REG(&adapter->shared, LATECOL);
++ adapter->stats.colc += E1000_READ_REG(&adapter->shared, COLC);
++ adapter->stats.dc += E1000_READ_REG(&adapter->shared, DC);
++ adapter->stats.sec += E1000_READ_REG(&adapter->shared, SEC);
++ adapter->stats.rlec += E1000_READ_REG(&adapter->shared, RLEC);
++ adapter->stats.xonrxc += E1000_READ_REG(&adapter->shared, XONRXC);
++ adapter->stats.xontxc += E1000_READ_REG(&adapter->shared, XONTXC);
++ adapter->stats.xoffrxc += E1000_READ_REG(&adapter->shared, XOFFRXC);
++ adapter->stats.xofftxc += E1000_READ_REG(&adapter->shared, XOFFTXC);
++ adapter->stats.fcruc += E1000_READ_REG(&adapter->shared, FCRUC);
++ adapter->stats.prc64 += E1000_READ_REG(&adapter->shared, PRC64);
++ adapter->stats.prc127 += E1000_READ_REG(&adapter->shared, PRC127);
++ adapter->stats.prc255 += E1000_READ_REG(&adapter->shared, PRC255);
++ adapter->stats.prc511 += E1000_READ_REG(&adapter->shared, PRC511);
++ adapter->stats.prc1023 += E1000_READ_REG(&adapter->shared, PRC1023);
++ adapter->stats.prc1522 += E1000_READ_REG(&adapter->shared, PRC1522);
++ adapter->stats.gprc += E1000_READ_REG(&adapter->shared, GPRC);
++ adapter->stats.bprc += E1000_READ_REG(&adapter->shared, BPRC);
++ adapter->stats.mprc += E1000_READ_REG(&adapter->shared, MPRC);
++ adapter->stats.gptc += E1000_READ_REG(&adapter->shared, GPTC);
++
++ /* for the 64-bit byte counters the low dword must be read first */
++ /* both registers clear on the read of the high dword */
++
++ adapter->stats.gorcl += E1000_READ_REG(&adapter->shared, GORCL);
++ adapter->stats.gorch += E1000_READ_REG(&adapter->shared, GORCH);
++ adapter->stats.gotcl += E1000_READ_REG(&adapter->shared, GOTCL);
++ adapter->stats.gotch += E1000_READ_REG(&adapter->shared, GOTCH);
++
++ adapter->stats.rnbc += E1000_READ_REG(&adapter->shared, RNBC);
++ adapter->stats.ruc += E1000_READ_REG(&adapter->shared, RUC);
++ adapter->stats.rfc += E1000_READ_REG(&adapter->shared, RFC);
++ adapter->stats.roc += E1000_READ_REG(&adapter->shared, ROC);
++ adapter->stats.rjc += E1000_READ_REG(&adapter->shared, RJC);
++
++ adapter->stats.torl += E1000_READ_REG(&adapter->shared, TORL);
++ adapter->stats.torh += E1000_READ_REG(&adapter->shared, TORH);
++ adapter->stats.totl += E1000_READ_REG(&adapter->shared, TOTL);
++ adapter->stats.toth += E1000_READ_REG(&adapter->shared, TOTH);
++
++ adapter->stats.tpr += E1000_READ_REG(&adapter->shared, TPR);
++ adapter->stats.tpt += E1000_READ_REG(&adapter->shared, TPT);
++ adapter->stats.ptc64 += E1000_READ_REG(&adapter->shared, PTC64);
++ adapter->stats.ptc127 += E1000_READ_REG(&adapter->shared, PTC127);
++ adapter->stats.ptc255 += E1000_READ_REG(&adapter->shared, PTC255);
++ adapter->stats.ptc511 += E1000_READ_REG(&adapter->shared, PTC511);
++ adapter->stats.ptc1023 += E1000_READ_REG(&adapter->shared, PTC1023);
++ adapter->stats.ptc1522 += E1000_READ_REG(&adapter->shared, PTC1522);
++ adapter->stats.mptc += E1000_READ_REG(&adapter->shared, MPTC);
++ adapter->stats.bptc += E1000_READ_REG(&adapter->shared, BPTC);
++
++ if(adapter->shared.mac_type >= e1000_82543) {
++ adapter->stats.algnerrc += E1000_READ_REG(&adapter->shared, ALGNERRC);
++ adapter->stats.rxerrc += E1000_READ_REG(&adapter->shared, RXERRC);
++ adapter->stats.tncrs += E1000_READ_REG(&adapter->shared, TNCRS);
++ adapter->stats.cexterr += E1000_READ_REG(&adapter->shared, CEXTERR);
++ adapter->stats.tsctc += E1000_READ_REG(&adapter->shared, TSCTC);
++ adapter->stats.tsctfc += E1000_READ_REG(&adapter->shared, TSCTFC);
++ }
++
++ /* Fill out the OS statistics structure */
++
++ adapter->net_stats.rx_packets = adapter->stats.gprc;
++ adapter->net_stats.tx_packets = adapter->stats.gptc;
++ adapter->net_stats.rx_bytes = adapter->stats.gorcl;
++ adapter->net_stats.tx_bytes = adapter->stats.gotcl;
++ adapter->net_stats.multicast = adapter->stats.mprc;
++ adapter->net_stats.collisions = adapter->stats.colc;
++
++ /* Rx Errors */
++
++ adapter->net_stats.rx_errors =
++ adapter->stats.rxerrc + adapter->stats.crcerrs +
++ adapter->stats.algnerrc + adapter->stats.rlec + adapter->stats.rnbc +
++ adapter->stats.mpc + adapter->stats.cexterr;
++ adapter->net_stats.rx_dropped = adapter->stats.rnbc;
++ adapter->net_stats.rx_length_errors = adapter->stats.rlec;
++ adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
++ adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
++ adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
++ adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
++
++ /* Tx Errors */
++
++ adapter->net_stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
++ adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
++ adapter->net_stats.tx_window_errors = adapter->stats.latecol;
++
++ /* Tx Dropped needs to be maintained elsewhere */
++
++ if(adapter->shared.media_type == e1000_media_type_copper) {
++ adapter->phy_stats.idle_errors +=
++ (e1000_read_phy_reg(&adapter->shared, PHY_1000T_STATUS)
++ & PHY_IDLE_ERROR_COUNT_MASK);
++ adapter->phy_stats.receive_errors +=
++ e1000_read_phy_reg(&adapter->shared, M88E1000_RX_ERR_CNTR);
++ }
++
++ spin_unlock_irqrestore(&adapter->stats_lock, flags);
++ return;
++}
++
++/**
++ * e1000_irq_disable - Mask off interrupt generation on the NIC
++ * @adapter: board private structure
++ **/
++
++static inline void
++e1000_irq_disable(struct e1000_adapter *adapter)
++{
++ E1000_DBG("e1000_irq_disable\n");
++
++ /* Mask off all interrupts */
++
++ E1000_WRITE_REG(&adapter->shared, IMC, ~0);
++ return;
++}
++
++/**
++ * e1000_irq_enable - Enable default interrupt generation settings
++ * @adapter: board private structure
++ **/
++
++static inline void
++e1000_irq_enable(struct e1000_adapter *adapter)
++{
++ E1000_DBG("e1000_irq_enable\n");
++
++ E1000_WRITE_REG(&adapter->shared, IMS, adapter->int_mask);
++ return;
++}
++
++/**
++ * e1000_intr - Interrupt Handler
++ * @irq: interrupt number
++ * @data: pointer to a network interface device structure
++ * @pt_regs: CPU registers structure
++ **/
++
++void
++e1000_intr(int irq,
++ void *data,
++ struct pt_regs *regs)
++{
++ struct net_device *netdev = (struct net_device *) data;
++ struct e1000_adapter *adapter = netdev->priv;
++ uint32_t icr;
++ uint loop_count = E1000_MAX_INTR;
++
++ E1000_DBG("e1000_intr\n");
++
++ e1000_irq_disable(adapter);
++
++ while(loop_count > 0 && (icr = E1000_READ_REG(&adapter->shared, ICR)) != 0) {
++
++ if(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
++ adapter->shared.get_link_status = 1;
++ set_bit(E1000_LINK_STATUS_CHANGED, &adapter->flags);
++ /* run the watchdog ASAP */
++ mod_timer(&adapter->timer_id, jiffies);
++ }
++
++ e1000_clean_rx_irq(adapter);
++ e1000_clean_tx_irq(adapter);
++ loop_count--;
++ }
++
++ e1000_irq_enable(adapter);
++
++ return;
++}
++
++/**
++ * e1000_clean_tx_irq - Reclaim resources after transmit completes
++ * @adapter: board private structure
++ **/
++
++static void
++e1000_clean_tx_irq(struct e1000_adapter *adapter)
++{
++ struct pci_dev *pdev = adapter->pdev;
++ int i;
++
++ struct e1000_tx_desc *tx_desc;
++ struct net_device *netdev = adapter->netdev;
++
++ E1000_DBG("e1000_clean_tx_irq\n");
++
++ i = adapter->tx_ring.next_to_clean;
++ tx_desc = E1000_TX_DESC(adapter->tx_ring, i);
++
++ while(tx_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
++
++ if(adapter->tx_ring.buffer_info[i].dma != 0) {
++ pci_unmap_page(pdev, adapter->tx_ring.buffer_info[i].dma,
++ adapter->tx_ring.buffer_info[i].length,
++ PCI_DMA_TODEVICE);
++ adapter->tx_ring.buffer_info[i].dma = 0;
++ }
++
++ if(adapter->tx_ring.buffer_info[i].skb != NULL) {
++ dev_kfree_skb_irq(adapter->tx_ring.buffer_info[i].skb);
++ adapter->tx_ring.buffer_info[i].skb = NULL;
++ }
++
++ atomic_inc(&adapter->tx_ring.unused);
++ i = (i + 1) % adapter->tx_ring.count;
++
++ tx_desc->upper.data = 0;
++ tx_desc = E1000_TX_DESC(adapter->tx_ring, i);
++ }
++
++ adapter->tx_ring.next_to_clean = i;
++
++ if(adapter->tx_ring.next_to_clean == adapter->tx_ring.next_to_use)
++ atomic_set(&adapter->tx_timeout, 0);
++ else
++ atomic_set(&adapter->tx_timeout, 3);
++
++ if(netif_queue_stopped(netdev) &&
++ (atomic_read(&adapter->tx_ring.unused) >
++ (adapter->tx_ring.count * 3 / 4))) {
++
++#ifdef IANS
++ if((adapter->iANSdata->iANS_status == IANS_COMMUNICATION_UP) &&
++ (adapter->iANSdata->reporting_mode == IANS_STATUS_REPORTING_ON))
++ if(ans_notify)
++ ans_notify(netdev, IANS_IND_XMIT_QUEUE_READY);
++#endif
++ netif_wake_queue(netdev);
++ }
++
++ return;
++}
++
++/**
++ * e1000_clean_rx_irq - Send received data up the network stack,
++ * @adapter: board private structure
++ **/
++
++static void
++e1000_clean_rx_irq(struct e1000_adapter *adapter)
++{
++ struct net_device *netdev = adapter->netdev;
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_rx_desc *rx_desc;
++ int i;
++ uint32_t length;
++ struct sk_buff *skb;
++ uint8_t last_byte;
++ unsigned long flags;
++
++ E1000_DBG("e1000_clean_rx_irq\n");
++
++ i = adapter->rx_ring.next_to_clean;
++ rx_desc = E1000_RX_DESC(adapter->rx_ring, i);
++
++ while(rx_desc->status & E1000_RXD_STAT_DD) {
++ pci_unmap_single(pdev, adapter->rx_ring.buffer_info[i].dma,
++ adapter->rx_ring.buffer_info[i].length,
++ PCI_DMA_FROMDEVICE);
++
++ skb = adapter->rx_ring.buffer_info[i].skb;
++ length = le16_to_cpu(rx_desc->length);
++
++ if(!(rx_desc->status & E1000_RXD_STAT_EOP)) {
++
++ /* All receives must fit into a single buffer */
++
++ E1000_DBG("Receive packet consumed multiple buffers\n");
++
++ dev_kfree_skb_irq(skb);
++ memset(rx_desc, 0, 16);
++ mb();
++ adapter->rx_ring.buffer_info[i].skb = NULL;
++
++ atomic_inc(&adapter->rx_ring.unused);
++
++ i = (i + 1) % adapter->rx_ring.count;
++
++ rx_desc = E1000_RX_DESC(adapter->rx_ring, i);
++ continue;
++ }
++
++ if(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
++
++ last_byte = *(skb->data + length - 1);
++
++ if(TBI_ACCEPT
++ (&adapter->shared, rx_desc->status, rx_desc->errors, length,
++ last_byte)) {
++ spin_lock_irqsave(&adapter->stats_lock, flags);
++ e1000_tbi_adjust_stats(&adapter->shared, &adapter->stats,
++ length, skb->data);
++ spin_unlock_irqrestore(&adapter->stats_lock, flags);
++ length--;
++ } else {
++
++ E1000_DBG("Receive Errors Reported by Hardware\n");
++
++ dev_kfree_skb_irq(skb);
++ memset(rx_desc, 0, 16);
++ mb();
++ adapter->rx_ring.buffer_info[i].skb = NULL;
++
++ atomic_inc(&adapter->rx_ring.unused);
++ i = (i + 1) % adapter->rx_ring.count;
++
++ rx_desc = E1000_RX_DESC(adapter->rx_ring, i);
++ continue;
++ }
++ }
++
++ /* Good Receive */
++ skb_put(skb, length - CRC_LENGTH);
++
++ /* Adjust socket buffer accounting to only cover the ethernet frame
++ * Not what the stack intends, but there exist TCP problems that
++ * break NFS for network interfaces that need 2k receive buffers
++ */
++ skb->truesize = skb->len;
++
++ /* Receive Checksum Offload */
++ e1000_rx_checksum(adapter, rx_desc, skb);
++
++#ifdef IANS
++ if(adapter->iANSdata->iANS_status == IANS_COMMUNICATION_UP) {
++ if(bd_ans_os_Receive(adapter, rx_desc, skb) == BD_ANS_FAILURE)
++ dev_kfree_skb_irq(skb);
++ else
++ netif_rx(skb);
++ } else {
++ skb->protocol = eth_type_trans(skb, netdev);
++ netif_rx(skb);
++ }
++#else
++ skb->protocol = eth_type_trans(skb, netdev);
++ netif_rx(skb);
++#endif
++ memset(rx_desc, 0, 16);
++ mb();
++ adapter->rx_ring.buffer_info[i].skb = NULL;
++
++ atomic_inc(&adapter->rx_ring.unused);
++
++ i = (i + 1) % adapter->rx_ring.count;
++
++ rx_desc = E1000_RX_DESC(adapter->rx_ring, i);
++ }
++
++ /* if the Rx ring is less than 3/4 full, allocate more sk_buffs */
++
++ if(atomic_read(&adapter->rx_ring.unused) > (adapter->rx_ring.count / 4)) {
++ tasklet_schedule(&adapter->rx_fill_tasklet);
++ }
++ adapter->rx_ring.next_to_clean = i;
++
++ return;
++}
++
++/**
++ * e1000_alloc_rx_buffers - Replace used receive buffers
++ * @data: address of board private structure
++ **/
++
++static void
++e1000_alloc_rx_buffers(unsigned long data)
++{
++ struct e1000_adapter *adapter = (struct e1000_adapter *) data;
++ struct net_device *netdev = adapter->netdev;
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_rx_desc *rx_desc;
++ struct sk_buff *skb;
++ int i;
++ int reserve_len;
++
++ E1000_DBG("e1000_alloc_rx_buffers\n");
++
++ /* kernel 2.4.7 seems to be broken with respect to tasklet locking */
++ if(!spin_trylock(&adapter->rx_fill_lock))
++ return;
++
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags)) {
++ spin_unlock(&adapter->rx_fill_lock);
++ return;
++ }
++
++#ifdef IANS
++ reserve_len = E1000_ROUNDUP2(BD_ANS_INFO_SIZE, 16) + 2;
++#else
++ reserve_len = 2;
++#endif
++
++ i = adapter->rx_ring.next_to_use;
++
++ while(adapter->rx_ring.buffer_info[i].skb == NULL) {
++ rx_desc = E1000_RX_DESC(adapter->rx_ring, i);
++
++ skb = alloc_skb(adapter->rx_buffer_len + reserve_len, GFP_ATOMIC);
++
++ if(skb == NULL) {
++ /* Alloc Failed; If we could not allocate a
++ * skb during this schedule. Wait for a while before
++ * tasklet to allocate skb is called again.
++ */
++ set_bit(E1000_RX_REFILL, &adapter->flags);
++ break;
++ }
++
++ /* Make buffer alignment 2 beyond a 16 byte boundary
++ * this will result in a 16 byte aligned IP header after
++ * the 14 byte MAC header is removed
++ */
++ skb_reserve(skb, reserve_len);
++
++ skb->dev = netdev;
++
++ adapter->rx_ring.buffer_info[i].skb = skb;
++ adapter->rx_ring.buffer_info[i].length = adapter->rx_buffer_len;
++ adapter->rx_ring.buffer_info[i].dma =
++ pci_map_single(pdev, skb->data, adapter->rx_buffer_len,
++ PCI_DMA_FROMDEVICE);
++
++ rx_desc->buffer_addr = cpu_to_le64(adapter->rx_ring.buffer_info[i].dma);
++
++ /* move tail */
++ E1000_WRITE_REG(&adapter->shared, RDT, i);
++
++ atomic_dec(&adapter->rx_ring.unused);
++
++ i = (i + 1) % adapter->rx_ring.count;
++
++ if(test_and_clear_bit(E1000_RX_REFILL, &adapter->flags)) {
++ /* Trigger Soft Interrupt */
++ E1000_WRITE_REG(&adapter->shared, ICS, E1000_ICS_RXT0);
++ }
++ }
++
++ adapter->rx_ring.next_to_use = i;
++
++ spin_unlock(&adapter->rx_fill_lock);
++ return;
++}
++
++/**
++ * e1000_ioctl -
++ * @netdev:
++ * @ifreq:
++ * @cmd:
++ **/
++
++int
++e1000_ioctl(struct net_device *netdev,
++ struct ifreq *ifr,
++ int cmd)
++{
++#ifdef IANS
++ IANS_BD_PARAM_HEADER *header;
++#endif
++
++ E1000_DBG("e1000_do_ioctl\n");
++
++ switch (cmd) {
++
++#ifdef IANS
++ case IANS_BASE_SIOC:
++ header = (IANS_BD_PARAM_HEADER *) ifr->ifr_data;
++ if((header->Opcode != IANS_OP_EXT_GET_STATUS) &&
++ (!capable(CAP_NET_ADMIN)))
++ return -EPERM;
++ return bd_ans_os_Ioctl(netdev, ifr, cmd);
++ break;
++#endif
++
++#ifdef IDIAG
++ case IDIAG_PRO_BASE_SIOC:
++ if(!capable(CAP_NET_ADMIN))
++ return -EPERM;
++
++#ifdef DIAG_DEBUG
++ printk("Entering diagnostics\n");
++#endif
++ e1000_diag_ioctl(netdev, ifr);
++ break;
++#endif /* IDIAG */
++
++#ifdef SIOCETHTOOL
++ case SIOCETHTOOL:
++
++ return e1000_ethtool_ioctl(netdev, ifr);
++
++ break;
++#endif
++
++ default:
++ return -EOPNOTSUPP;
++ }
++
++ return 0;
++}
++
++/**
++ * e1000_rx_checksum - Receive Checksum Offload for 82543
++ * @adapter: board private structure
++ * @rx_desc: receive descriptor
++ * @sk_buff: socket buffer with received data
++ **/
++
++static inline void
++e1000_rx_checksum(struct e1000_adapter *adapter,
++ struct e1000_rx_desc *rx_desc,
++ struct sk_buff *skb)
++{
++ /* 82543 or newer only */
++ if((adapter->shared.mac_type < e1000_82543) ||
++ /* Ignore Checksum bit is set */
++ (rx_desc->status & E1000_RXD_STAT_IXSM) ||
++ /* TCP Checksum has not been calculated */
++ (!(rx_desc->status & E1000_RXD_STAT_TCPCS))) {
++
++ skb->ip_summed = CHECKSUM_NONE;
++ return;
++ }
++
++ /* At this point we know the hardware did the TCP checksum */
++ /* now look at the TCP checksum error bit */
++ if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
++ /* let the stack verify checksum errors */
++ skb->ip_summed = CHECKSUM_NONE;
++ adapter->XsumRXError++;
++ } else {
++ /* TCP checksum is good */
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++ adapter->XsumRXGood++;
++ }
++
++ return;
++}
++
++void
++e1000_hibernate_adapter(struct net_device *netdev)
++{
++ uint32_t icr;
++ struct e1000_adapter *adapter = netdev->priv;
++
++ e1000_irq_disable(adapter);
++ netif_stop_queue(netdev);
++ adapter->shared.adapter_stopped = 0;
++ e1000_adapter_stop(&adapter->shared);
++
++ if(test_bit(E1000_BOARD_OPEN, &adapter->flags)) {
++
++ /* Disable tasklet only when interface is opened. */
++ tasklet_disable(&adapter->rx_fill_tasklet);
++
++ /* clean out old buffers */
++ e1000_clean_rx_ring(adapter);
++ e1000_clean_tx_ring(adapter);
++
++ /* Delete watchdog timer */
++ del_timer(&adapter->timer_id);
++
++ /* Unhook irq */
++ e1000_irq_disable(adapter);
++ icr = E1000_READ_REG(&adapter->shared, ICR);
++ free_irq(netdev->irq, netdev);
++ }
++}
++
++void
++e1000_wakeup_adapter(struct net_device *netdev)
++{
++ uint32_t icr;
++ struct e1000_adapter *adapter = netdev->priv;
++
++ adapter->shared.adapter_stopped = 0;
++ e1000_adapter_stop(&adapter->shared);
++ adapter->shared.adapter_stopped = 0;
++ adapter->shared.fc = adapter->shared.original_fc;
++
++ if(!e1000_init_hw(&adapter->shared))
++ printk("Hardware Init Failed at wakeup\n");
++
++ if(test_bit(E1000_BOARD_OPEN, &adapter->flags)) {
++
++ /* Setup Rctl */
++ e1000_setup_rctl(adapter);
++ e1000_configure_rx(adapter);
++ e1000_alloc_rx_buffers((unsigned long) adapter);
++ e1000_set_multi(netdev);
++ e1000_configure_tx(adapter);
++
++#ifdef IANS
++ if((IANS_BD_TAGGING_MODE) (ANS_PRIVATE_DATA_FIELD(adapter)->tag_mode)
++ != IANS_BD_TAGGING_NONE)
++ bd_ans_hw_EnableVLAN(adapter);
++#endif
++
++ /* Set the watchdog timer for 2 seconds */
++ init_timer(&adapter->timer_id);
++ adapter->timer_id.function = &e1000_watchdog;
++ adapter->timer_id.data = (unsigned long) netdev;
++ mod_timer(&adapter->timer_id, (jiffies + 2 * HZ));
++
++ tasklet_enable(&adapter->rx_fill_tasklet);
++
++ /* Hook irq */
++ e1000_irq_disable(adapter);
++ icr = E1000_READ_REG(&adapter->shared, ICR);
++ if(request_irq
++ (netdev->irq, &e1000_intr, SA_SHIRQ, e1000_driver_name, netdev) != 0)
++ printk(KERN_ERR "e1000: Unable to hook irq.\n");
++
++ e1000_irq_enable(adapter);
++ netif_start_queue(netdev);
++ }
++}
++
++#ifdef IDIAG
++int
++e1000_xmit_lbtest_frame(struct sk_buff *skb,
++ struct e1000_adapter *adapter)
++{
++ /*struct e1000_adapter *adapter = netdev->priv; */
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_tx_desc *tx_desc;
++ int i;
++
++ i = adapter->tx_ring.next_to_use;
++ tx_desc = E1000_TX_DESC(adapter->tx_ring, i);
++
++ adapter->tx_ring.buffer_info[i].skb = skb;
++ adapter->tx_ring.buffer_info[i].length = skb->len;
++ adapter->tx_ring.buffer_info[i].dma =
++ pci_map_page(pdev, virt_to_page(skb->data),
++ (unsigned long) skb->data & ~PAGE_MASK, skb->len,
++ PCI_DMA_TODEVICE);
++
++ tx_desc->buffer_addr = cpu_to_le64(adapter->tx_ring.buffer_info[i].dma);
++ tx_desc->lower.data = cpu_to_le32(skb->len);
++
++ /* zero out the status field in the descriptor */
++
++ tx_desc->upper.data = 0;
++
++ tx_desc->lower.data |= E1000_TXD_CMD_EOP;
++ tx_desc->lower.data |= E1000_TXD_CMD_IFCS;
++ tx_desc->lower.data |= E1000_TXD_CMD_IDE;
++
++ if(adapter->shared.report_tx_early == 1)
++ tx_desc->lower.data |= E1000_TXD_CMD_RS;
++ else
++ tx_desc->lower.data |= E1000_TXD_CMD_RPS;
++
++ /* Move the HW Tx Tail Pointer */
++
++ adapter->tx_ring.next_to_use++;
++ adapter->tx_ring.next_to_use %= adapter->tx_ring.count;
++
++ E1000_WRITE_REG(&adapter->shared, TDT, adapter->tx_ring.next_to_use);
++ mdelay(10);
++
++ atomic_dec(&adapter->tx_ring.unused);
++
++ if(atomic_read(&adapter->tx_ring.unused) <= 1) {
++
++ /* this driver never actually drops transmits,
++ * so use tx_dropped count to indicate the number of times
++ * netif_stop_queue is called due to no available descriptors
++ */
++
++ adapter->net_stats.tx_dropped++;
++ return (0);
++ }
++ return (1);
++}
++
++int
++e1000_rcv_lbtest_frame(struct e1000_adapter *adapter,
++ unsigned int frame_size)
++{
++ struct pci_dev *pdev = adapter->pdev;
++ struct e1000_rx_desc *rx_desc;
++ int i, j = 0, rcved_pkt = 0;
++ uint32_t Length;
++ struct sk_buff *skb;
++
++ mdelay(500);
++ i = adapter->rx_ring.next_to_clean;
++ rx_desc = E1000_RX_DESC(adapter->rx_ring, i);
++
++ while(rx_desc->status & E1000_RXD_STAT_DD) {
++ Length = le16_to_cpu(rx_desc->length) - CRC_LENGTH;
++ skb = adapter->rx_ring.buffer_info[i].skb;
++
++ /* Snoop the packet for pattern */
++ rcved_pkt = e1000_check_lbtest_frame(skb, frame_size);
++
++ pci_unmap_single(pdev, adapter->rx_ring.buffer_info[i].dma,
++ adapter->rx_ring.buffer_info[i].length,
++ PCI_DMA_FROMDEVICE);
++
++ dev_kfree_skb_irq(skb);
++ adapter->rx_ring.buffer_info[i].skb = NULL;
++
++ rx_desc->status = 0;
++ atomic_inc(&adapter->rx_ring.unused);
++
++ i++;
++ i %= adapter->rx_ring.count;
++ rx_desc = E1000_RX_DESC(adapter->rx_ring, i);
++
++ if(rcved_pkt)
++ break;
++
++ /* waited enough */
++ if(j++ >= adapter->rx_ring.count)
++ return 0;
++
++ mdelay(5);
++
++ }
++
++ adapter->rx_ring.next_to_clean = i;
++
++ return (rcved_pkt);
++
++}
++
++void
++e1000_selective_wakeup_adapter(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev->priv;
++ uint32_t ctrl, txcw;
++
++ e1000_init_hw(&adapter->shared);
++
++ if((adapter->link_active == FALSE) &&
++ (adapter->shared.mac_type == e1000_82543)) {
++
++ txcw = E1000_READ_REG(&adapter->shared, TXCW);
++ ctrl = E1000_READ_REG(&adapter->shared, CTRL);
++ E1000_WRITE_REG(&adapter->shared, TXCW, txcw & ~E1000_TXCW_ANE);
++ E1000_WRITE_REG(&adapter->shared, CTRL,
++ (ctrl | E1000_CTRL_SLU | E1000_CTRL_ILOS |
++ E1000_CTRL_FD));
++ mdelay(20);
++ }
++
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags)) {
++ set_bit(E1000_BOARD_OPEN, &adapter->flags);
++ set_bit(E1000_DIAG_OPEN, &adapter->flags);
++ e1000_setup_tx_resources(adapter);
++ e1000_setup_rx_resources(adapter);
++ }
++ e1000_setup_rctl(adapter);
++ e1000_configure_rx(adapter);
++ e1000_alloc_rx_buffers((unsigned long) adapter);
++ e1000_configure_tx(adapter);
++}
++
++void
++e1000_selective_hibernate_adapter(struct net_device *netdev)
++{
++ struct e1000_adapter *adapter = netdev->priv;
++ uint32_t ctrl, txcw;
++
++ if((adapter->link_active == FALSE) &&
++ (adapter->shared.mac_type == e1000_82543)) {
++
++ txcw = E1000_READ_REG(&adapter->shared, TXCW);
++ ctrl = E1000_READ_REG(&adapter->shared, CTRL);
++ ctrl &= ~E1000_CTRL_SLU & ~E1000_CTRL_ILOS;
++ E1000_WRITE_REG(&adapter->shared, TXCW, txcw | E1000_TXCW_ANE);
++ E1000_WRITE_REG(&adapter->shared, CTRL, ctrl);
++ mdelay(20);
++ }
++ /* clean out old buffers */
++ e1000_clean_rx_ring(adapter);
++ e1000_clean_tx_ring(adapter);
++ if(test_and_clear_bit(E1000_DIAG_OPEN, &adapter->flags)) {
++ e1000_free_tx_resources(adapter);
++ e1000_free_rx_resources(adapter);
++ clear_bit(E1000_BOARD_OPEN, &adapter->flags);
++ }
++}
++
++static int
++e1000_check_lbtest_frame(struct sk_buff *skb,
++ unsigned int frame_size)
++{
++ frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
++ if(*(skb->data + 3) == 0xFF) {
++ if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
++ (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
++ return 1;
++ }
++ }
++ return 0;
++}
++#endif /* IDIAG */
++
++#ifdef SIOCETHTOOL
++/**
++ * e1000_ethtool_ioctl - Ethtool Ioctl Support
++ * @netdev: net device structure
++ * @ifr: interface request structure
++ **/
++
++static int
++e1000_ethtool_ioctl(struct net_device *netdev,
++ struct ifreq *ifr)
++{
++ struct ethtool_cmd eth_cmd;
++ struct e1000_adapter *adapter = netdev->priv;
++ boolean_t re_initiate = FALSE;
++
++#ifdef ETHTOOL_GLINK
++ struct ethtool_value eth_e1000_linkinfo;
++#endif
++#ifdef ETHTOOL_GDRVINFO
++ struct ethtool_drvinfo eth_e1000_info;
++#endif
++#ifdef ETHTOOL_GWOL
++ struct ethtool_wolinfo eth_e1000_wolinfo;
++#endif
++
++ /* Get the data structure */
++ if(copy_from_user(ð_cmd, ifr->ifr_data, sizeof(eth_cmd)))
++ return -EFAULT;
++
++ switch (eth_cmd.cmd) {
++ /* Get the information */
++ case ETHTOOL_GSET:
++ if(adapter->shared.media_type == e1000_media_type_copper) {
++ eth_cmd.supported = E1000_ETHTOOL_COPPER_INTERFACE_SUPPORTS;
++ eth_cmd.advertising = E1000_ETHTOOL_COPPER_INTERFACE_ADVERTISE;
++ eth_cmd.port = PORT_MII;
++ eth_cmd.phy_address = adapter->shared.phy_addr;
++ eth_cmd.transceiver =
++ (adapter->shared.mac_type >
++ e1000_82543) ? XCVR_INTERNAL : XCVR_EXTERNAL;
++ } else {
++ eth_cmd.supported = E1000_ETHTOOL_FIBER_INTERFACE_SUPPORTS;
++ eth_cmd.advertising = E1000_ETHTOOL_FIBER_INTERFACE_ADVERTISE;
++ eth_cmd.port = PORT_FIBRE;
++ }
++
++ if(adapter->link_active == TRUE) {
++ e1000_get_speed_and_duplex(&adapter->shared, &adapter->link_speed,
++ &adapter->link_duplex);
++ eth_cmd.speed = adapter->link_speed;
++ eth_cmd.duplex =
++ (adapter->link_duplex ==
++ FULL_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF;
++ } else {
++ eth_cmd.speed = 0;
++ eth_cmd.duplex = 0;
++ }
++
++ if(adapter->shared.autoneg)
++ eth_cmd.autoneg = AUTONEG_ENABLE;
++ else
++ eth_cmd.autoneg = AUTONEG_DISABLE;
++
++ if(copy_to_user(ifr->ifr_data, ð_cmd, sizeof(eth_cmd)))
++ return -EFAULT;
++
++ break;
++
++ /* set information */
++ case ETHTOOL_SSET:
++ /* need proper permission to do set */
++ if(!capable(CAP_NET_ADMIN))
++ return -EPERM;
++
++ /* Cannot Force speed/duplex and at the same time autoneg.
++ * Autoneg will override forcing.
++ * For example to force speed/duplex pass in
++ * 'speed 100 duplex half autoneg off'
++ * pass in 'autoneg on' to start autoneg.
++ */
++ printk("e1000: Requested link to be forced to %d Speed, %s Duplex "
++ "%s\n", eth_cmd.speed, (eth_cmd.duplex ? "Full" : "Half"),
++ (eth_cmd.autoneg ? "and Autonegotiate" : "."));
++
++ if(eth_cmd.autoneg && eth_cmd.speed)
++ printk("e1000: Autoneg request will over-ride speed forcing\n");
++
++ /* if not in autoneg mode and have been asked to enable autoneg */
++ if(eth_cmd.autoneg) {
++ if(adapter->shared.autoneg &&
++ adapter->shared.autoneg_advertised == AUTONEG_ADV_DEFAULT)
++ /* If already in Autoneg */
++ return 0;
++ else {
++ adapter->shared.autoneg = 1;
++ adapter->shared.autoneg_advertised = AUTONEG_ADV_DEFAULT;
++ re_initiate = TRUE;
++ }
++ }
++ /* Force link to whatever speed and duplex */
++ /* Also turning off Autoneg in case of non-gig speeds */
++ else if(eth_cmd.speed) {
++ /* Check for invalid request */
++ if(((eth_cmd.speed != SPEED_10) && (eth_cmd.speed != SPEED_100) &&
++ (eth_cmd.speed != SPEED_1000)) ||
++ ((eth_cmd.duplex != DUPLEX_HALF) &&
++ (eth_cmd.duplex != DUPLEX_FULL)) ||
++ (adapter->shared.media_type == e1000_media_type_fiber))
++ return -EINVAL;
++
++ e1000_get_speed_and_duplex(&adapter->shared, &adapter->link_speed,
++ &adapter->link_duplex);
++ /* If we are already forced to requested speed and duplex
++ * Donot do anything, just return
++ */
++ if(!adapter->shared.autoneg &&
++ (adapter->link_speed == eth_cmd.speed) &&
++ (adapter->link_duplex == (eth_cmd.duplex + 1)))
++
++ return 0;
++
++ adapter->shared.autoneg = 0;
++ adapter->shared.autoneg_advertised = 0;
++ re_initiate = TRUE;
++ switch (eth_cmd.speed + eth_cmd.duplex) {
++ case (SPEED_10 + DUPLEX_HALF):
++ adapter->shared.forced_speed_duplex = e1000_10_half;
++ break;
++ case (SPEED_100 + DUPLEX_HALF):
++ adapter->shared.forced_speed_duplex = e1000_100_half;
++ break;
++ case (SPEED_10 + DUPLEX_FULL):
++ adapter->shared.forced_speed_duplex = e1000_10_full;
++ break;
++ case (SPEED_100 + DUPLEX_FULL):
++ adapter->shared.forced_speed_duplex = e1000_100_full;
++ break;
++ case (SPEED_1000 + DUPLEX_HALF):
++ printk("Half Duplex is not supported at 1000 Mbps\n");
++ case (SPEED_1000 + DUPLEX_FULL):
++ printk("Using Auto-neg at 1000 Mbps Full Duplex\n");
++ default:
++ adapter->shared.autoneg = 1;
++ adapter->shared.autoneg_advertised = ADVERTISE_1000_FULL;
++ break;
++ }
++ }
++
++ /* End of force */
++ /* Put the adapter to new settings */
++ if(re_initiate == TRUE) {
++ e1000_hibernate_adapter(netdev);
++ e1000_wakeup_adapter(netdev);
++ } else if(!eth_cmd.autoneg && !eth_cmd.speed) {
++ printk("Cannot turn off autoneg without "
++ "knowing what speed to force the link\n");
++ printk("Speed specified was %dMbps\n", eth_cmd.speed);
++ return -EINVAL;
++ }
++ /* We donot support setting of
++ * whatever else that was requested */
++ else
++ return -EOPNOTSUPP;
++
++ break;
++
++#ifdef ETHTOOL_NWAY_RST
++ case ETHTOOL_NWAY_RST:
++ /* need proper permission to restart auto-negotiation */
++ if(!capable(CAP_NET_ADMIN))
++ return -EPERM;
++
++ adapter->shared.autoneg = 1;
++ adapter->shared.autoneg_advertised = AUTONEG_ADV_DEFAULT;
++ e1000_hibernate_adapter(netdev);
++ e1000_wakeup_adapter(netdev);
++
++ break;
++#endif
++
++#ifdef ETHTOOL_GLINK
++ case ETHTOOL_GLINK:
++ eth_e1000_linkinfo.data = adapter->link_active;
++ if(copy_to_user(ifr->ifr_data, ð_e1000_linkinfo, sizeof(eth_e1000_linkinfo)))
++ return -EFAULT;
++ break;
++#endif
++
++#ifdef ETHTOOL_GDRVINFO
++ case ETHTOOL_GDRVINFO:
++ strcpy(eth_e1000_info.driver, e1000_driver_name);
++ strcpy(eth_e1000_info.version, e1000_driver_version);
++ strcpy(eth_e1000_info.fw_version, "None");
++ strcpy(eth_e1000_info.bus_info, adapter->pdev->slot_name);
++ if(copy_to_user(ifr->ifr_data, ð_e1000_info, sizeof(eth_e1000_info)))
++ return -EFAULT;
++ break;
++#endif
++
++#ifdef ETHTOOL_GWOL
++ case ETHTOOL_GWOL:
++ eth_e1000_wolinfo.supported = eth_e1000_wolinfo.wolopts = WAKE_MAGIC;
++ if(copy_to_user
++ (ifr->ifr_data, ð_e1000_wolinfo, sizeof(eth_e1000_wolinfo)))
++ return -EFAULT;
++ break;
++#endif
++
++ default:
++ return -EOPNOTSUPP;
++ }
++
++ return 0;
++
++}
++#endif /* SIOCETHTOOL */
++
++/**
++ * e1000_enable_WOL - Wake On Lan Support (Magic Pkt)
++ * @adapter: Adapter structure
++ **/
++
++static void
++e1000_enable_WOL(struct e1000_adapter *adapter)
++{
++ uint32_t wuc_val;
++
++ if(adapter->shared.mac_type <= e1000_82543)
++ return;
++
++ /* Set up Wake-Up Ctrl reg */
++ wuc_val = E1000_READ_REG(&adapter->shared, WUC);
++ wuc_val &= ~(E1000_WUC_APME | E1000_WUC_APMPME);
++ wuc_val |= (E1000_WUC_PME_STATUS | E1000_WUC_PME_EN);
++
++ E1000_WRITE_REG(&adapter->shared, WUC, wuc_val);
++
++ /* Set up Wake-up Filter */
++ E1000_WRITE_REG(&adapter->shared, WUFC, E1000_WUFC_MAG);
++
++ return;
++}
++
++/**
++ * e1000_write_pci_cg -
++ * @shared:
++ * @reg:
++ * @value:
++ **/
++
++void
++e1000_write_pci_cfg(struct e1000_shared_adapter *shared,
++ uint32_t reg,
++ uint16_t *value)
++{
++ struct e1000_adapter *adapter = (struct e1000_adapter *) shared->back;
++
++ pci_write_config_word(adapter->pdev, reg, *value);
++ return;
++}
++
++/* e1000_main.c */
+--- /dev/null 2002-08-30 16:31:37.000000000 -0700
++++ linux-2.4.18-14-root/drivers/e1000/e1000_osdep.h 2003-01-02 16:22:31.000000000 -0800
+@@ -0,0 +1,138 @@
++/*******************************************************************************
++
++ This software program is available to you under a choice of one of two
++ licenses. You may choose to be licensed under either the GNU General Public
++ License (GPL) Version 2, June 1991, available at
++ http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
++ text of which follows:
++
++ Recipient has requested a license and Intel Corporation ("Intel") is willing
++ to grant a license for the software entitled Linux Base Driver for the
++ Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
++ by Intel Corporation. The following definitions apply to this license:
++
++ "Licensed Patents" means patent claims licensable by Intel Corporation which
++ are necessarily infringed by the use of sale of the Software alone or when
++ combined with the operating system referred to below.
++
++ "Recipient" means the party to whom Intel delivers this Software.
++
++ "Licensee" means Recipient and those third parties that receive a license to
++ any operating system available under the GNU Public License version 2.0 or
++ later.
++
++ Copyright (c) 1999 - 2002 Intel Corporation.
++ All rights reserved.
++
++ The license is provided to Recipient and Recipient's Licensees under the
++ following terms.
++
++ Redistribution and use in source and binary forms of the Software, with or
++ without modification, are permitted provided that the following conditions
++ are met:
++
++ Redistributions of source code of the Software may retain the above
++ copyright notice, this list of conditions and the following disclaimer.
++
++ Redistributions in binary form of the Software may reproduce the above
++ copyright notice, this list of conditions and the following disclaimer in
++ the documentation and/or materials provided with the distribution.
++
++ Neither the name of Intel Corporation nor the names of its contributors
++ shall be used to endorse or promote products derived from this Software
++ without specific prior written permission.
++
++ Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
++ royalty-free patent license under Licensed Patents to make, use, sell, offer
++ to sell, import and otherwise transfer the Software, if any, in source code
++ and object code form. This license shall include changes to the Software
++ that are error corrections or other minor changes to the Software that do
++ not add functionality or features when the Software is incorporated in any
++ version of an operating system that has been distributed under the GNU
++ General Public License 2.0 or later. This patent license shall apply to the
++ combination of the Software and any operating system licensed under the GNU
++ Public License version 2.0 or later if, at the time Intel provides the
++ Software to Recipient, such addition of the Software to the then publicly
++ available versions of such operating systems available under the GNU Public
++ License version 2.0 or later (whether in gold, beta or alpha form) causes
++ such combination to be covered by the Licensed Patents. The patent license
++ shall not apply to any other combinations which include the Software. NO
++ hardware per se is licensed hereunder.
++
++ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
++ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
++ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
++ ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
++ AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
++ TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
++ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++
++*******************************************************************************/
++
++
++/* glue for the OS independant part of e1000
++ * includes register access macros
++ */
++
++#ifndef _E1000_OSDEP_H_
++#define _E1000_OSDEP_H_
++
++#include <linux/types.h>
++#include <linux/pci.h>
++#include <linux/delay.h>
++#include <asm/io.h>
++
++#define usec_delay(x) udelay(x)
++#define msec_delay(x) mdelay(x)
++
++#define PCI_COMMAND_REGISTER PCI_COMMAND
++#define CMD_MEM_WRT_INVALIDATE PCI_COMMAND_INVALIDATE
++
++typedef enum {
++ FALSE = 0,
++ TRUE = 1
++} boolean_t;
++
++#if DBG
++#define ASSERT(x) if(!(x)) panic("E1000: x")
++#define DEBUGOUT(S) printk(S "\n")
++#define DEBUGOUT1(S,A) printk(S "\n",A)
++#define DEBUGOUT2(S,A,B) printk(S "\n",A,B)
++#define DEBUGOUT3(S,A,B,C) printk(S "\n",A,B,C)
++#define DEBUGOUT7(S,A,B,C,D,E,F,G) printk(S "\n",A,B,C,D,E,F,G)
++#else
++#define ASSERT(x)
++#define DEBUGOUT(S)
++#define DEBUGOUT1(S,A)
++#define DEBUGOUT2(S,A,B)
++#define DEBUGOUT3(S,A,B,C)
++#define DEBUGOUT7(S,A,B,C,D,E,F,G)
++#endif
++
++#define MSGOUT(S, A, B) printk(S "\n", A, B)
++#define DEBUGFUNC(F) DEBUGOUT(F)
++
++#define E1000_WRITE_REG(a, reg, value) ( \
++ ((a)->mac_type >= e1000_82543) ? \
++ (writel((value), ((a)->hw_addr + E1000_##reg))) : \
++ (writel((value), ((a)->hw_addr + E1000_82542_##reg))))
++
++#define E1000_READ_REG(a, reg) ( \
++ ((a)->mac_type >= e1000_82543) ? \
++ readl((a)->hw_addr + E1000_##reg) : \
++ readl((a)->hw_addr + E1000_82542_##reg))
++
++#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
++ ((a)->mac_type >= e1000_82543) ? \
++ writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))) : \
++ writel((value), ((a)->hw_addr + E1000_82542_##reg + ((offset) << 2))))
++
++#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
++ ((a)->mac_type >= e1000_82543) ? \
++ readl((a)->hw_addr + E1000_##reg + ((offset) << 2)) : \
++ readl((a)->hw_addr + E1000_82542_##reg + ((offset) << 2)))
++
++#endif /* _E1000_OSDEP_H_ */
+--- /dev/null 2002-08-30 16:31:37.000000000 -0700
++++ linux-2.4.18-14-root/drivers/e1000/e1000_phy.c 2003-01-02 16:22:31.000000000 -0800
+@@ -0,0 +1,1576 @@
++/*******************************************************************************
++
++ This software program is available to you under a choice of one of two
++ licenses. You may choose to be licensed under either the GNU General Public
++ License (GPL) Version 2, June 1991, available at
++ http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
++ text of which follows:
++
++ Recipient has requested a license and Intel Corporation ("Intel") is willing
++ to grant a license for the software entitled Linux Base Driver for the
++ Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
++ by Intel Corporation. The following definitions apply to this license:
++
++ "Licensed Patents" means patent claims licensable by Intel Corporation which
++ are necessarily infringed by the use of sale of the Software alone or when
++ combined with the operating system referred to below.
++
++ "Recipient" means the party to whom Intel delivers this Software.
++
++ "Licensee" means Recipient and those third parties that receive a license to
++ any operating system available under the GNU Public License version 2.0 or
++ later.
++
++ Copyright (c) 1999 - 2002 Intel Corporation.
++ All rights reserved.
++
++ The license is provided to Recipient and Recipient's Licensees under the
++ following terms.
++
++ Redistribution and use in source and binary forms of the Software, with or
++ without modification, are permitted provided that the following conditions
++ are met:
++
++ Redistributions of source code of the Software may retain the above
++ copyright notice, this list of conditions and the following disclaimer.
++
++ Redistributions in binary form of the Software may reproduce the above
++ copyright notice, this list of conditions and the following disclaimer in
++ the documentation and/or materials provided with the distribution.
++
++ Neither the name of Intel Corporation nor the names of its contributors
++ shall be used to endorse or promote products derived from this Software
++ without specific prior written permission.
++
++ Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
++ royalty-free patent license under Licensed Patents to make, use, sell, offer
++ to sell, import and otherwise transfer the Software, if any, in source code
++ and object code form. This license shall include changes to the Software
++ that are error corrections or other minor changes to the Software that do
++ not add functionality or features when the Software is incorporated in any
++ version of an operating system that has been distributed under the GNU
++ General Public License 2.0 or later. This patent license shall apply to the
++ combination of the Software and any operating system licensed under the GNU
++ Public License version 2.0 or later if, at the time Intel provides the
++ Software to Recipient, such addition of the Software to the then publicly
++ available versions of such operating systems available under the GNU Public
++ License version 2.0 or later (whether in gold, beta or alpha form) causes
++ such combination to be covered by the Licensed Patents. The patent license
++ shall not apply to any other combinations which include the Software. NO
++ hardware per se is licensed hereunder.
++
++ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
++ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
++ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
++ ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
++ AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
++ TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
++ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++
++*******************************************************************************/
++
++/* e1000_phy.c
++ * Shared functions for accessing and configuring the PHY
++ */
++
++#include "e1000_mac.h"
++#include "e1000_phy.h"
++
++/******************************************************************************
++* Raises the Management Data Clock
++*
++* shared - Struct containing variables accessed by shared code
++* ctrl_reg - Device control register's current value
++******************************************************************************/
++static void
++e1000_raise_mdc(struct e1000_shared_adapter *shared,
++ uint32_t *ctrl_reg)
++{
++ /* Raise the clock input to the Management Data Clock (by setting
++ * the MDC bit), and then delay 2 microseconds.
++ */
++ E1000_WRITE_REG(shared, CTRL, (*ctrl_reg | E1000_CTRL_MDC));
++ usec_delay(2);
++ return;
++}
++
++/******************************************************************************
++* Lowers the Management Data Clock
++*
++* shared - Struct containing variables accessed by shared code
++* ctrl_reg - Device control register's current value
++******************************************************************************/
++static void
++e1000_lower_mdc(struct e1000_shared_adapter *shared,
++ uint32_t *ctrl_reg)
++{
++ /* Lower the clock input to the Management Data Clock (by clearing
++ * the MDC bit), and then delay 2 microseconds.
++ */
++ E1000_WRITE_REG(shared, CTRL, (*ctrl_reg & ~E1000_CTRL_MDC));
++ usec_delay(2);
++ return;
++}
++
++/******************************************************************************
++* Shifts data bits out to the PHY
++*
++* shared - Struct containing variables accessed by shared code
++* data - Data to send out to the PHY
++* count - Number of bits to shift out
++*
++* Bits are shifted out in MSB to LSB order.
++******************************************************************************/
++static void
++e1000_phy_shift_out(struct e1000_shared_adapter *shared,
++ uint32_t data,
++ uint16_t count)
++{
++ uint32_t ctrl_reg;
++ uint32_t mask;
++
++ ASSERT(count <= 32);
++
++ /* We need to shift "count" number of bits out to the PHY. So, the
++ * value in the "Data" parameter will be shifted out to the PHY
++ * one bit at a time. In order to do this, "Data" must be broken
++ * down into bits, which is what the "while" logic does below.
++ */
++ mask = 0x01;
++ mask <<= (count - 1);
++
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++
++ /* Set MDIO_DIR (SWDPIO1) and MDC_DIR (SWDPIO2) direction bits to
++ * be used as output pins.
++ */
++ ctrl_reg |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
++
++ while(mask) {
++ /* A "1" is shifted out to the PHY by setting the MDIO bit to
++ * "1" and then raising and lowering the Management Data Clock
++ * (MDC). A "0" is shifted out to the PHY by setting the MDIO
++ * bit to "0" and then raising and lowering the clock.
++ */
++ if(data & mask)
++ ctrl_reg |= E1000_CTRL_MDIO;
++ else
++ ctrl_reg &= ~E1000_CTRL_MDIO;
++
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++
++ usec_delay(2);
++
++ e1000_raise_mdc(shared, &ctrl_reg);
++ e1000_lower_mdc(shared, &ctrl_reg);
++
++ mask = mask >> 1;
++ }
++
++ /* Clear the data bit just before leaving this routine. */
++ ctrl_reg &= ~E1000_CTRL_MDIO;
++ return;
++}
++
++/******************************************************************************
++* Shifts data bits in from the PHY
++*
++* shared - Struct containing variables accessed by shared code
++*
++* Bits are shifted in in MSB to LSB order.
++******************************************************************************/
++static uint16_t
++e1000_phy_shift_in(struct e1000_shared_adapter *shared)
++{
++ uint32_t ctrl_reg;
++ uint16_t data = 0;
++ uint8_t i;
++
++ /* In order to read a register from the PHY, we need to shift in a
++ * total of 18 bits from the PHY. The first two bit (TurnAround)
++ * times are used to avoid contention on the MDIO pin when a read
++ * operation is performed. These two bits are ignored by us and
++ * thrown away. Bits are "shifted in" by raising the clock input
++ * to the Management Data Clock (setting the MDC bit), and then
++ * reading the value of the MDIO bit.
++ */
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++
++ /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
++ * input.
++ */
++ ctrl_reg &= ~E1000_CTRL_MDIO_DIR;
++ ctrl_reg &= ~E1000_CTRL_MDIO;
++
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++
++ /* Raise and Lower the clock before reading in the data. This
++ * accounts for the TurnAround bits. The first clock occurred
++ * when we clocked out the last bit of the Register Address.
++ */
++ e1000_raise_mdc(shared, &ctrl_reg);
++ e1000_lower_mdc(shared, &ctrl_reg);
++
++ for(data = 0, i = 0; i < 16; i++) {
++ data = data << 1;
++ e1000_raise_mdc(shared, &ctrl_reg);
++
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++
++ /* Check to see if we shifted in a "1". */
++ if(ctrl_reg & E1000_CTRL_MDIO)
++ data |= 1;
++
++ e1000_lower_mdc(shared, &ctrl_reg);
++ }
++
++ e1000_raise_mdc(shared, &ctrl_reg);
++ e1000_lower_mdc(shared, &ctrl_reg);
++
++ /* Clear the MDIO bit just before leaving this routine. */
++ ctrl_reg &= ~E1000_CTRL_MDIO;
++
++ return (data);
++}
++
++/******************************************************************************
++* Force PHY speed and duplex settings to shared->forced_speed_duplex
++*
++* shared - Struct containing variables accessed by shared code
++******************************************************************************/
++static void
++e1000_phy_force_speed_duplex(struct e1000_shared_adapter *shared)
++{
++ uint32_t tctl_reg;
++ uint32_t ctrl_reg;
++ uint32_t shift;
++ uint16_t mii_ctrl_reg;
++ uint16_t mii_status_reg;
++ uint16_t phy_data;
++ uint16_t i;
++
++ DEBUGFUNC("e1000_phy_force_speed_duplex");
++
++ /* Turn off Flow control if we are forcing speed and duplex. */
++ shared->fc = e1000_fc_none;
++
++ DEBUGOUT1("shared->fc = %d\n", shared->fc);
++
++ /* Read the Device Control Register. */
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++
++ /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
++ ctrl_reg |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
++ ctrl_reg &= ~(DEVICE_SPEED_MASK);
++
++ /* Clear the Auto Speed Detect Enable bit. */
++ ctrl_reg &= ~E1000_CTRL_ASDE;
++
++ /* Read the MII Control Register. */
++ mii_ctrl_reg = e1000_read_phy_reg(shared, PHY_CTRL);
++
++ /* We need to disable autoneg in order to force link and duplex. */
++
++ mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
++
++ /* Are we forcing Full or Half Duplex? */
++ if(shared->forced_speed_duplex == e1000_100_full ||
++ shared->forced_speed_duplex == e1000_10_full) {
++
++ /* We want to force full duplex so we SET the full duplex bits
++ * in the Device and MII Control Registers.
++ */
++ ctrl_reg |= E1000_CTRL_FD;
++ mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
++
++ DEBUGOUT("Full Duplex\n");
++ } else {
++
++ /* We want to force half duplex so we CLEAR the full duplex
++ * bits in the Device and MII Control Registers.
++ */
++ ctrl_reg &= ~E1000_CTRL_FD;
++ mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; /* Do this implies HALF */
++
++ DEBUGOUT("Half Duplex\n");
++ }
++
++ /* Are we forcing 100Mbps??? */
++ if(shared->forced_speed_duplex == e1000_100_full ||
++ shared->forced_speed_duplex == e1000_100_half) {
++
++ /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
++ ctrl_reg |= E1000_CTRL_SPD_100;
++ mii_ctrl_reg |= MII_CR_SPEED_100;
++ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
++
++ DEBUGOUT("Forcing 100mb ");
++ } else { /* Force 10MB Full or Half */
++
++ /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
++ ctrl_reg &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
++ mii_ctrl_reg |= MII_CR_SPEED_10;
++ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
++
++ DEBUGOUT("Forcing 10mb ");
++ }
++
++ /* Now we need to configure the Collision Distance. We need to read
++ * the Transmit Control Register to do this.
++ * Note: This must be done for both Half or Full Duplex.
++ */
++ tctl_reg = E1000_READ_REG(shared, TCTL);
++ DEBUGOUT1("tctl_reg = %x\n", tctl_reg);
++
++ if(!(mii_ctrl_reg & MII_CR_FULL_DUPLEX)) {
++
++ /* We are in Half Duplex mode so we need to set up our collision
++ * distance for 10/100.
++ */
++ tctl_reg &= ~E1000_TCTL_COLD;
++ shift = E1000_HDX_COLLISION_DISTANCE;
++ shift <<= E1000_COLD_SHIFT;
++ tctl_reg |= shift;
++ } else {
++ /* We are in Full Duplex mode. We have the same collision
++ * distance regardless of speed.
++ */
++ tctl_reg &= ~E1000_TCTL_COLD;
++ shift = E1000_FDX_COLLISION_DISTANCE;
++ shift <<= E1000_COLD_SHIFT;
++ tctl_reg |= shift;
++ }
++
++ /* Write the configured values back to the Transmit Control Reg. */
++ E1000_WRITE_REG(shared, TCTL, tctl_reg);
++
++ /* Write the configured values back to the Device Control Reg. */
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++
++ /* Write the MII Control Register with the new PHY configuration. */
++ phy_data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);
++
++ /* Clear Auto-Crossover to force MDI manually.
++ * M88E1000 requires MDI forced whenever speed/duplex is forced
++ */
++ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
++
++ e1000_write_phy_reg(shared, M88E1000_PHY_SPEC_CTRL, phy_data);
++
++ DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
++
++ /* Need to reset the PHY or these bits will get ignored. */
++ mii_ctrl_reg |= MII_CR_RESET;
++
++ e1000_write_phy_reg(shared, PHY_CTRL, mii_ctrl_reg);
++
++ /* The wait_autoneg_complete flag may be a little misleading here.
++ * Since we are forcing speed and duplex, Auto-Neg is not enabled.
++ * But we do want to delay for a period while forcing only so we
++ * don't generate false No Link messages. So we will wait here
++ * only if the user has set wait_autoneg_complete to 1, which is
++ * the default.
++ */
++ if(shared->wait_autoneg_complete) {
++ /* We will wait for autoneg to complete. */
++ DEBUGOUT("Waiting for forced speed/duplex link.\n");
++ mii_status_reg = 0;
++
++ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
++ for(i = PHY_FORCE_TIME; i > 0; i--) {
++ /* Read the MII Status Register and wait for Auto-Neg
++ * Complete bit to be set.
++ */
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++
++ if(mii_status_reg & MII_SR_LINK_STATUS)
++ break;
++
++ msec_delay(100);
++ } /* end for loop */
++
++ if(i == 0) { /* We didn't get link */
++
++ /* Reset the DSP and wait again for link. */
++ e1000_phy_reset_dsp(shared);
++ }
++
++ /* This loop will early-out if the link condition has been met. */
++ for(i = PHY_FORCE_TIME; i > 0; i--) {
++ if(mii_status_reg & MII_SR_LINK_STATUS)
++ break;
++
++ msec_delay(100);
++ /* Read the MII Status Register and wait for Auto-Neg
++ * Complete bit to be set.
++ */
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++
++ } /* end for loop */
++ } /* end if wait_autoneg_complete */
++ /*
++ * Because we reset the PHY above, we need to re-force TX_CLK in the
++ * Extended PHY Specific Control Register to 25MHz clock. This
++ * value defaults back to a 2.5MHz clock when the PHY is reset.
++ */
++ phy_data = e1000_read_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL);
++
++ phy_data |= M88E1000_EPSCR_TX_CLK_25;
++
++ e1000_write_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
++
++ /* In addition, because of the s/w reset above, we need to enable
++ * CRS on TX. This must be set for both full and half duplex
++ * operation.
++ */
++ phy_data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);
++
++ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
++
++ e1000_write_phy_reg(shared, M88E1000_PHY_SPEC_CTRL, phy_data);
++ DEBUGOUT1("M88E1000 Phy Specific Ctrl Reg = %4x\r\n", phy_data);
++
++ return;
++}
++
++/*****************************************************************************
++* Reads the value from a PHY register
++*
++* shared - Struct containing variables accessed by shared code
++* reg_addr - address of the PHY register to read
++******************************************************************************/
++uint16_t
++e1000_read_phy_reg(struct e1000_shared_adapter *shared,
++ uint32_t reg_addr)
++{
++ uint32_t i;
++ uint32_t data = 0;
++ uint32_t command = 0;
++
++ ASSERT(reg_addr <= MAX_PHY_REG_ADDRESS);
++
++ if(shared->mac_type > e1000_82543) {
++ /* Set up Op-code, Phy Address, and
++ * register address in the MDI Control register. The MAC will
++ * take care of interfacing with the PHY to retrieve the
++ * desired data.
++ */
++ command = ((reg_addr << E1000_MDIC_REG_SHIFT) |
++ (shared->phy_addr << E1000_MDIC_PHY_SHIFT) |
++ (E1000_MDIC_OP_READ));
++
++ E1000_WRITE_REG(shared, MDIC, command);
++
++ /* Check every 10 usec to see if the read completed. The read
++ * may take as long as 64 usecs (we'll wait 100 usecs max)
++ * from the CPU Write to the Ready bit assertion.
++ */
++ for(i = 0; i < 64; i++) {
++ usec_delay(10);
++
++ data = E1000_READ_REG(shared, MDIC);
++
++ if(data & E1000_MDIC_READY)
++ break;
++ }
++ } else {
++ /* We must first send a preamble through the MDIO pin to signal the
++ * beginning of an MII instruction. This is done by sending 32
++ * consecutive "1" bits.
++ */
++ e1000_phy_shift_out(shared, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
++
++ /* Now combine the next few fields that are required for a read
++ * operation. We use this method instead of calling the
++ * e1000_phy_shift_out routine five different times. The format of
++ * a MII read instruction consists of a shift out of 14 bits and is
++ * defined as follows:
++ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
++ * followed by a shift in of 18 bits. This first two bits shifted
++ * in are TurnAround bits used to avoid contention on the MDIO pin
++ * when a READ operation is performed. These two bits are thrown
++ * away followed by a shift in of 16 bits which contains the
++ * desired data.
++ */
++ command = ((reg_addr) |
++ (shared->phy_addr << 5) |
++ (PHY_OP_READ << 10) | (PHY_SOF << 12));
++
++ e1000_phy_shift_out(shared, command, 14);
++
++ /* Now that we've shifted out the read command to the MII, we need
++ * to "shift in" the 16-bit value (18 total bits) of the requested
++ * PHY register address.
++ */
++ data = (uint32_t) e1000_phy_shift_in(shared);
++ }
++
++ ASSERT(!(data & E1000_MDIC_ERROR));
++
++ return ((uint16_t) data);
++}
++
++/******************************************************************************
++* Writes a value to a PHY register
++*
++* shared - Struct containing variables accessed by shared code
++* reg_addr - address of the PHY register to write
++* data - data to write to the PHY
++******************************************************************************/
++void
++e1000_write_phy_reg(struct e1000_shared_adapter *shared,
++ uint32_t reg_addr,
++ uint16_t data)
++{
++ uint32_t i;
++ uint32_t command = 0;
++ uint32_t mdic_reg;
++
++ ASSERT(reg_addr <= MAX_PHY_REG_ADDRESS);
++
++ if(shared->mac_type > e1000_82543) {
++ /* Set up Op-code, Phy Address, register
++ * address, and data intended for the PHY register in the MDI
++ * Control register. The MAC will take care of interfacing
++ * with the PHY to send the desired data.
++ */
++ command = (((uint32_t) data) |
++ (reg_addr << E1000_MDIC_REG_SHIFT) |
++ (shared->phy_addr << E1000_MDIC_PHY_SHIFT) |
++ (E1000_MDIC_OP_WRITE));
++
++ E1000_WRITE_REG(shared, MDIC, command);
++
++ /* Check every 10 usec to see if the read completed. The read
++ * may take as long as 64 usecs (we'll wait 100 usecs max)
++ * from the CPU Write to the Ready bit assertion.
++ */
++ for(i = 0; i < 10; i++) {
++ usec_delay(10);
++
++ mdic_reg = E1000_READ_REG(shared, MDIC);
++
++ if(mdic_reg & E1000_MDIC_READY)
++ break;
++ }
++ } else {
++ /* We'll need to use the SW defined pins to shift the write command
++ * out to the PHY. We first send a preamble to the PHY to signal the
++ * beginning of the MII instruction. This is done by sending 32
++ * consecutive "1" bits.
++ */
++ e1000_phy_shift_out(shared, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
++
++ /* Now combine the remaining required fields that will indicate
++ * a write operation. We use this method instead of calling the
++ * e1000_phy_shift_out routine for each field in the command. The
++ * format of a MII write instruction is as follows:
++ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
++ */
++ command = ((PHY_TURNAROUND) |
++ (reg_addr << 2) |
++ (shared->phy_addr << 7) |
++ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
++ command <<= 16;
++ command |= ((uint32_t) data);
++
++ e1000_phy_shift_out(shared, command, 32);
++ }
++ return;
++}
++
++/******************************************************************************
++* Returns the PHY to the power-on reset state
++*
++* shared - Struct containing variables accessed by shared code
++******************************************************************************/
++void
++e1000_phy_hw_reset(struct e1000_shared_adapter *shared)
++{
++ uint32_t ctrl_reg;
++ uint32_t ctrl_ext_reg;
++
++ DEBUGFUNC("e1000_phy_hw_reset");
++
++ DEBUGOUT("Resetting Phy...\n");
++
++ if(shared->mac_type > e1000_82543) {
++ /* Read the device control register and assert the
++ * E1000_CTRL_PHY_RST bit. Hold for 20ms and then take it out
++ * of reset.
++ */
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++
++ ctrl_reg |= E1000_CTRL_PHY_RST;
++
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++
++ msec_delay(20);
++
++ ctrl_reg &= ~E1000_CTRL_PHY_RST;
++
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++
++ msec_delay(20);
++ } else {
++ /* Read the Extended Device Control Register, assert the
++ * PHY_RESET_DIR bit. Then clock it out to the PHY.
++ */
++ ctrl_ext_reg = E1000_READ_REG(shared, CTRL_EXT);
++
++ ctrl_ext_reg |= E1000_CTRL_PHY_RESET_DIR4;
++
++ E1000_WRITE_REG(shared, CTRL_EXT, ctrl_ext_reg);
++
++ msec_delay(20);
++
++ /* Set the reset bit in the device control register and clock
++ * it out to the PHY.
++ */
++ ctrl_ext_reg = E1000_READ_REG(shared, CTRL_EXT);
++
++ ctrl_ext_reg &= ~E1000_CTRL_PHY_RESET4;
++
++ E1000_WRITE_REG(shared, CTRL_EXT, ctrl_ext_reg);
++
++ msec_delay(20);
++
++ ctrl_ext_reg = E1000_READ_REG(shared, CTRL_EXT);
++
++ ctrl_ext_reg |= E1000_CTRL_PHY_RESET4;
++
++ E1000_WRITE_REG(shared, CTRL_EXT, ctrl_ext_reg);
++
++ msec_delay(20);
++ }
++ return;
++}
++
++/******************************************************************************
++* Resets the PHY
++*
++* shared - Struct containing variables accessed by shared code
++*
++* Sets bit 15 of the MII Control regiser
++******************************************************************************/
++boolean_t
++e1000_phy_reset(struct e1000_shared_adapter *shared)
++{
++ uint16_t reg_data;
++ uint16_t i;
++
++ DEBUGFUNC("e1000_phy_reset");
++
++ /* Read the MII control register, set the reset bit and write the
++ * value back by clocking it out to the PHY.
++ */
++ reg_data = e1000_read_phy_reg(shared, PHY_CTRL);
++
++ reg_data |= MII_CR_RESET;
++
++ e1000_write_phy_reg(shared, PHY_CTRL, reg_data);
++
++ /* Wait for bit 15 of the MII Control Register to be cleared
++ * indicating the PHY has been reset.
++ */
++ i = 0;
++ while((reg_data & MII_CR_RESET) && i++ < 500) {
++ reg_data = e1000_read_phy_reg(shared, PHY_CTRL);
++ usec_delay(1);
++ }
++
++ if(i >= 500) {
++ DEBUGOUT("Timeout waiting for PHY to reset.\n");
++ return FALSE;
++ }
++ return TRUE;
++}
++
++/******************************************************************************
++* Detects which PHY is present and the speed and duplex
++*
++* shared - Struct containing variables accessed by shared code
++* ctrl_reg - current value of the device control register
++******************************************************************************/
++boolean_t
++e1000_phy_setup(struct e1000_shared_adapter *shared,
++ uint32_t ctrl_reg)
++{
++ uint16_t mii_ctrl_reg;
++ uint16_t mii_status_reg;
++ uint16_t phy_specific_ctrl_reg;
++ uint16_t mii_autoneg_adv_reg;
++ uint16_t mii_1000t_ctrl_reg;
++ uint16_t i;
++ uint16_t data;
++ uint16_t autoneg_hw_setting;
++ uint16_t autoneg_fc_setting;
++ boolean_t restart_autoneg = FALSE;
++ boolean_t force_autoneg_restart = FALSE;
++
++ DEBUGFUNC("e1000_phy_setup");
++
++ /* We want to enable the Auto-Speed Detection bit in the Device
++ * Control Register. When set to 1, the MAC automatically detects
++ * the resolved speed of the link and self-configures appropriately.
++ * The Set Link Up bit must also be set for this behavior work
++ * properly.
++ */
++ /* Nothing but 82543 and newer */
++ ASSERT(shared->mac_type >= e1000_82543);
++
++ /* With 82543, we need to force speed/duplex
++ * on the MAC equal to what the PHY speed/duplex configuration is.
++ * In addition, on 82543, we need to perform a hardware reset
++ * on the PHY to take it out of reset.
++ */
++ if(shared->mac_type >= e1000_82544) {
++ ctrl_reg |= E1000_CTRL_SLU;
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++ } else {
++ ctrl_reg |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++
++ if(shared->mac_type == e1000_82543)
++ e1000_phy_hw_reset(shared);
++ }
++
++ if(!e1000_detect_gig_phy(shared)) {
++ /* No PHY detected, return FALSE */
++ DEBUGOUT("PhySetup failure, did not detect valid phy.\n");
++ return (FALSE);
++ }
++
++ DEBUGOUT1("Phy ID = %x \n", shared->phy_id);
++
++ /* Read the MII Control Register. */
++ mii_ctrl_reg = e1000_read_phy_reg(shared, PHY_CTRL);
++
++ DEBUGOUT1("MII Ctrl Reg contents = %x\n", mii_ctrl_reg);
++
++ /* Check to see if the Auto Neg Enable bit is set in the MII Control
++ * Register. If not, we could be in a situation where a driver was
++ * loaded previously and was forcing speed and duplex. Then the
++ * driver was unloaded but a e1000_phy_hw_reset was not performed, so
++ * link was still being forced and link was still achieved. Then
++ * the driver was reloaded with the intention to auto-negotiate, but
++ * since link is already established we end up not restarting
++ * auto-neg. So if the auto-neg bit is not enabled and the driver
++ * is being loaded with the desire to auto-neg, we set this flag to
++ * to ensure the restart of the auto-neg engine later in the logic.
++ */
++ if(!(mii_ctrl_reg & MII_CR_AUTO_NEG_EN))
++ force_autoneg_restart = TRUE;
++
++ /* Clear the isolate bit for normal operation and write it back to
++ * the MII Control Reg. Although the spec says this doesn't need
++ * to be done when the PHY address is not equal to zero, we do it
++ * anyway just to be safe.
++ */
++ mii_ctrl_reg &= ~(MII_CR_ISOLATE);
++
++ e1000_write_phy_reg(shared, PHY_CTRL, mii_ctrl_reg);
++
++ data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);
++
++ /* Enable CRS on TX. This must be set for half-duplex operation. */
++ data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
++
++ DEBUGOUT1("M88E1000 PSCR: %x \n", data);
++
++ e1000_write_phy_reg(shared, M88E1000_PHY_SPEC_CTRL, data);
++
++ data = e1000_read_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL);
++
++ /* Force TX_CLK in the Extended PHY Specific Control Register
++ * to 25MHz clock.
++ */
++ data |= M88E1000_EPSCR_TX_CLK_25;
++
++ e1000_write_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL, data);
++
++ /* Certain PHYs will set the default of MII register 4 differently.
++ * We need to check this against our fc value. If it is
++ * different, we need to setup up register 4 correctly and restart
++ * autonegotiation.
++ */
++ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
++ mii_autoneg_adv_reg = e1000_read_phy_reg(shared, PHY_AUTONEG_ADV);
++
++ /* Shift right to put 10T-Half bit in bit 0
++ * Isolate the four bits for 100/10 Full/Half.
++ */
++ autoneg_hw_setting = (mii_autoneg_adv_reg >> 5) & 0xF;
++
++ /* Get the 1000T settings. */
++ mii_1000t_ctrl_reg = e1000_read_phy_reg(shared, PHY_1000T_CTRL);
++
++ /* Isolate and OR in the 1000T settings. */
++ autoneg_hw_setting |= ((mii_1000t_ctrl_reg & 0x0300) >> 4);
++
++ /* mask all bits in the MII Auto-Neg Advertisement Register
++ * except for ASM_DIR and PAUSE and shift. This value
++ * will be used later to see if we need to restart Auto-Negotiation.
++ */
++ autoneg_fc_setting = ((mii_autoneg_adv_reg & 0x0C00) >> 10);
++
++ /* Perform some bounds checking on the shared->autoneg_advertised
++ * parameter. If this variable is zero, then set it to the default.
++ */
++ shared->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
++
++ /* If autoneg_advertised is zero, we assume it was not defaulted
++ * by the calling code so we set to advertise full capability.
++ */
++ if(shared->autoneg_advertised == 0)
++ shared->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
++
++ /* We could be in the situation where Auto-Neg has already completed
++ * and the user has not indicated any overrides. In this case we
++ * simply need to call e1000_get_speed_and_duplex to obtain the Auto-
++ * Negotiated speed and duplex, then return.
++ */
++ if(!force_autoneg_restart && shared->autoneg &&
++ (shared->autoneg_advertised == autoneg_hw_setting) &&
++ (shared->fc == autoneg_fc_setting)) {
++
++ DEBUGOUT("No overrides - Reading MII Status Reg..\n");
++
++ /* Read the MII Status Register. We read this twice because
++ * certain bits are "sticky" and need to be read twice.
++ */
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++
++ DEBUGOUT1("MII Status Reg contents = %x\n", mii_status_reg);
++
++ /* Do we have link now? (if so, auto-neg has completed) */
++ if(mii_status_reg & MII_SR_LINK_STATUS) {
++ data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_STATUS);
++ DEBUGOUT1("M88E1000 Phy Specific Status Reg contents = %x\n", data);
++
++ /* We have link, so we need to finish the config process:
++ * 1) Set up the MAC to the current PHY speed/duplex
++ * if we are on 82543. If we
++ * are on newer silicon, we only need to configure
++ * collision distance in the Transmit Control Register.
++ * 2) Set up flow control on the MAC to that established
++ * with the link partner.
++ */
++ if(shared->mac_type >= e1000_82544)
++ e1000_config_collision_dist(shared);
++ else
++ e1000_config_mac_to_phy(shared, data);
++
++ e1000_config_fc_after_link_up(shared);
++
++ return (TRUE);
++ }
++ }
++
++ /* Options:
++ * MDI/MDI-X = 0 (default)
++ * 0 - Auto for all speeds
++ * 1 - MDI mode
++ * 2 - MDI-X mode
++ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
++ */
++ phy_specific_ctrl_reg = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);
++
++ phy_specific_ctrl_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
++
++ switch (shared->mdix) {
++ case 1:
++ phy_specific_ctrl_reg |= M88E1000_PSCR_MDI_MANUAL_MODE;
++ break;
++ case 2:
++ phy_specific_ctrl_reg |= M88E1000_PSCR_MDIX_MANUAL_MODE;
++ break;
++ case 3:
++ phy_specific_ctrl_reg |= M88E1000_PSCR_AUTO_X_1000T;
++ break;
++ case 0:
++ default:
++ phy_specific_ctrl_reg |= M88E1000_PSCR_AUTO_X_MODE;
++ break;
++ }
++
++ e1000_write_phy_reg(shared, M88E1000_PHY_SPEC_CTRL, phy_specific_ctrl_reg);
++
++ /* Options:
++ * disable_polarity_correction = 0 (default)
++ * Automatic Correction for Reversed Cable Polarity
++ * 0 - Disabled
++ * 1 - Enabled
++ */
++ phy_specific_ctrl_reg = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);
++
++ phy_specific_ctrl_reg &= ~M88E1000_PSCR_POLARITY_REVERSAL;
++
++ if(shared->disable_polarity_correction == 1)
++ phy_specific_ctrl_reg |= M88E1000_PSCR_POLARITY_REVERSAL;
++
++ e1000_write_phy_reg(shared, M88E1000_PHY_SPEC_CTRL, phy_specific_ctrl_reg);
++
++ /* Options:
++ * autoneg = 1 (default)
++ * PHY will advertise value(s) parsed from
++ * autoneg_advertised and fc
++ * autoneg = 0
++ * PHY will be set to 10H, 10F, 100H, or 100F
++ * depending on value parsed from forced_speed_duplex.
++ */
++
++ /* Is autoneg enabled? This is enabled by default or by software override.
++ * If so, call e1000_phy_setup_autoneg routine to parse the
++ * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
++ * user should have provided a speed/duplex override. If so, then call
++ * e1000_phy_force_speed_duplex to parse and set this up. Otherwise,
++ * we are in an error situation and need to bail.
++ */
++ if(shared->autoneg) {
++ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
++ restart_autoneg = e1000_phy_setup_autoneg(shared);
++ } else {
++ DEBUGOUT("Forcing speed and duplex\n");
++ e1000_phy_force_speed_duplex(shared);
++ }
++
++ /* Based on information parsed above, check the flag to indicate
++ * whether we need to restart Auto-Neg.
++ */
++ if(restart_autoneg) {
++ DEBUGOUT("Restarting Auto-Neg\n");
++
++ /* Read the MII Control Register. */
++ mii_ctrl_reg = e1000_read_phy_reg(shared, PHY_CTRL);
++
++ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
++ * the Auto Neg Restart bit.
++ */
++ mii_ctrl_reg |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
++
++ e1000_write_phy_reg(shared, PHY_CTRL, mii_ctrl_reg);
++
++ /* Does the user want to wait for Auto-Neg to complete here, or
++ * check at a later time (for example, callback routine).
++ */
++ if(shared->wait_autoneg_complete)
++ e1000_wait_autoneg(shared);
++ } /* end if restart_autoneg */
++
++ /* Read the MII Status Register. */
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++
++ DEBUGOUT1("Checking for link status - MII Status Reg contents = %x\n",
++ mii_status_reg);
++
++ /* Check link status. Wait up to 100 microseconds for link to
++ * become valid.
++ */
++ for(i = 0; i < 10; i++) {
++ if(mii_status_reg & MII_SR_LINK_STATUS)
++ break;
++ usec_delay(10);
++ DEBUGOUT(". ");
++
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++ }
++
++ if(mii_status_reg & MII_SR_LINK_STATUS) {
++ /* Yes, so configure MAC to PHY settings as well as flow control
++ * registers.
++ */
++ data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_STATUS);
++
++ DEBUGOUT1("M88E1000 Phy Specific Status Reg contents = %x\n", data);
++
++ /* We have link, so we need to finish the config process:
++ * 1) Set up the MAC to the current PHY speed/duplex
++ * if we are on 82543. If we
++ * are on newer silicon, we only need to configure
++ * collision distance in the Transmit Control Register.
++ * 2) Set up flow control on the MAC to that established with
++ * the link partner.
++ */
++ if(shared->mac_type >= e1000_82544)
++ e1000_config_collision_dist(shared);
++ else
++ e1000_config_mac_to_phy(shared, data);
++
++ e1000_config_fc_after_link_up(shared);
++
++ DEBUGOUT("Valid link established!!!\n");
++ } else {
++ DEBUGOUT("Unable to establish link!!!\n");
++ }
++
++ return (TRUE);
++}
++
++/******************************************************************************
++* Configures PHY autoneg and flow control advertisement settings
++*
++* shared - Struct containing variables accessed by shared code
++******************************************************************************/
++boolean_t
++e1000_phy_setup_autoneg(struct e1000_shared_adapter *shared)
++{
++ uint16_t mii_autoneg_adv_reg;
++ uint16_t mii_1000t_ctrl_reg;
++
++ DEBUGFUNC("e1000_phy_setup_autoneg");
++
++ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
++ mii_autoneg_adv_reg = e1000_read_phy_reg(shared, PHY_AUTONEG_ADV);
++
++ /* Read the MII 1000Base-T Control Register (Address 9). */
++ mii_1000t_ctrl_reg = e1000_read_phy_reg(shared, PHY_1000T_CTRL);
++
++ /* Need to parse both autoneg_advertised and fc and set up
++ * the appropriate PHY registers. First we will parse for
++ * autoneg_advertised software override. Since we can advertise
++ * a plethora of combinations, we need to check each bit
++ * individually.
++ */
++
++ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
++ * Advertisement Register (Address 4) and the 1000 mb speed bits in
++ * the 1000Base-T Control Register (Address 9).
++ */
++ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
++ mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
++
++ DEBUGOUT1("autoneg_advertised %x\n", shared->autoneg_advertised);
++
++ /* Do we want to advertise 10 Mb Half Duplex? */
++ if(shared->autoneg_advertised & ADVERTISE_10_HALF) {
++ DEBUGOUT("Advertise 10mb Half duplex\n");
++ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
++ }
++
++ /* Do we want to advertise 10 Mb Full Duplex? */
++ if(shared->autoneg_advertised & ADVERTISE_10_FULL) {
++ DEBUGOUT("Advertise 10mb Full duplex\n");
++ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
++ }
++
++ /* Do we want to advertise 100 Mb Half Duplex? */
++ if(shared->autoneg_advertised & ADVERTISE_100_HALF) {
++ DEBUGOUT("Advertise 100mb Half duplex\n");
++ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
++ }
++
++ /* Do we want to advertise 100 Mb Full Duplex? */
++ if(shared->autoneg_advertised & ADVERTISE_100_FULL) {
++ DEBUGOUT("Advertise 100mb Full duplex\n");
++ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
++ }
++
++ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
++ if(shared->autoneg_advertised & ADVERTISE_1000_HALF) {
++ DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
++ }
++
++ /* Do we want to advertise 1000 Mb Full Duplex? */
++ if(shared->autoneg_advertised & ADVERTISE_1000_FULL) {
++ DEBUGOUT("Advertise 1000mb Full duplex\n");
++ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
++ }
++
++ /* Check for a software override of the flow control settings, and
++ * setup the PHY advertisement registers accordingly. If
++ * auto-negotiation is enabled, then software will have to set the
++ * "PAUSE" bits to the correct value in the Auto-Negotiation
++ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
++ *
++ * The possible values of the "fc" parameter are:
++ * 0: Flow control is completely disabled
++ * 1: Rx flow control is enabled (we can receive pause frames
++ * but not send pause frames).
++ * 2: Tx flow control is enabled (we can send pause frames
++ * but we do not support receiving pause frames).
++ * 3: Both Rx and TX flow control (symmetric) are enabled.
++ * other: No software override. The flow control configuration
++ * in the EEPROM is used.
++ */
++ switch (shared->fc) {
++ case e1000_fc_none: /* 0 */
++ /* Flow control (RX & TX) is completely disabled by a
++ * software over-ride.
++ */
++ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
++ break;
++ case e1000_fc_rx_pause: /* 1 */
++ /* RX Flow control is enabled, and TX Flow control is
++ * disabled, by a software over-ride.
++ */
++
++ /* Since there really isn't a way to advertise that we are
++ * capable of RX Pause ONLY, we will advertise that we
++ * support both symmetric and asymmetric RX PAUSE. Later
++ * (in e1000_config_fc_after_link_up) we will disable the
++ *shared's ability to send PAUSE frames.
++ */
++ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
++ break;
++ case e1000_fc_tx_pause: /* 2 */
++ /* TX Flow control is enabled, and RX Flow control is
++ * disabled, by a software over-ride.
++ */
++ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
++ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
++ break;
++ case e1000_fc_full: /* 3 */
++ /* Flow control (both RX and TX) is enabled by a software
++ * over-ride.
++ */
++ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
++ break;
++ default:
++ /* We should never get here. The value should be 0-3. */
++ DEBUGOUT("Flow control param set incorrectly\n");
++ ASSERT(0);
++ break;
++ }
++
++ /* Write the MII Auto-Neg Advertisement Register (Address 4). */
++ e1000_write_phy_reg(shared, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
++
++ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
++
++ /* Write the MII 1000Base-T Control Register (Address 9). */
++ e1000_write_phy_reg(shared, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
++ return (TRUE);
++}
++
++/******************************************************************************
++* Sets MAC speed and duplex settings to reflect the those in the PHY
++*
++* shared - Struct containing variables accessed by shared code
++* mii_reg - data to write to the MII control register
++*
++* The contents of the PHY register containing the needed information need to
++* be passed in.
++******************************************************************************/
++void
++e1000_config_mac_to_phy(struct e1000_shared_adapter *shared,
++ uint16_t mii_reg)
++{
++ uint32_t ctrl_reg;
++ uint32_t tctl_reg;
++ uint32_t shift;
++
++ DEBUGFUNC("e1000_config_mac_to_phy");
++
++ /* We need to read the Transmit Control register to configure the
++ * collision distance.
++ * Note: This must be done for both Half or Full Duplex.
++ */
++ tctl_reg = E1000_READ_REG(shared, TCTL);
++ DEBUGOUT1("tctl_reg = %x\n", tctl_reg);
++
++ /* Read the Device Control Register and set the bits to Force Speed
++ * and Duplex.
++ */
++ ctrl_reg = E1000_READ_REG(shared, CTRL);
++
++ ctrl_reg |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
++ ctrl_reg &= ~(DEVICE_SPEED_MASK);
++
++ DEBUGOUT1("MII Register Data = %x\r\n", mii_reg);
++
++ /* Clear the ILOS bit. */
++ ctrl_reg &= ~E1000_CTRL_ILOS;
++
++ /* Set up duplex in the Device Control and Transmit Control
++ * registers depending on negotiated values.
++ */
++ if(mii_reg & M88E1000_PSSR_DPLX) {
++ ctrl_reg |= E1000_CTRL_FD;
++
++ /* We are in Full Duplex mode. We have the same collision
++ * distance regardless of speed.
++ */
++ tctl_reg &= ~E1000_TCTL_COLD;
++ shift = E1000_FDX_COLLISION_DISTANCE;
++ shift <<= E1000_COLD_SHIFT;
++ tctl_reg |= shift;
++ } else {
++ ctrl_reg &= ~E1000_CTRL_FD;
++
++ /* We are in Half Duplex mode. Our Half Duplex collision
++ * distance is different for Gigabit than for 10/100 so we will
++ * set accordingly.
++ */
++ if((mii_reg & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
++ /* 1000Mbs HDX */
++ tctl_reg &= ~E1000_TCTL_COLD;
++ shift = E1000_GB_HDX_COLLISION_DISTANCE;
++ shift <<= E1000_COLD_SHIFT;
++ tctl_reg |= shift;
++ tctl_reg |= E1000_TCTL_PBE; /* Enable Packet Bursting */
++ } else {
++ /* 10/100Mbs HDX */
++ tctl_reg &= ~E1000_TCTL_COLD;
++ shift = E1000_HDX_COLLISION_DISTANCE;
++ shift <<= E1000_COLD_SHIFT;
++ tctl_reg |= shift;
++ }
++ }
++
++ /* Set up speed in the Device Control register depending on
++ * negotiated values.
++ */
++ if((mii_reg & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
++ ctrl_reg |= E1000_CTRL_SPD_1000;
++ else if((mii_reg & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
++ ctrl_reg |= E1000_CTRL_SPD_100;
++ else
++ ctrl_reg &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
++
++ /* Write the configured values back to the Transmit Control Reg. */
++ E1000_WRITE_REG(shared, TCTL, tctl_reg);
++
++ /* Write the configured values back to the Device Control Reg. */
++ E1000_WRITE_REG(shared, CTRL, ctrl_reg);
++
++ return;
++}
++
++/******************************************************************************
++* Sets the collision distance in the Transmit Control register
++*
++* shared - Struct containing variables accessed by shared code
++*
++* Link should have been established previously. Reads the speed and duplex
++* information from the Device Status register.
++******************************************************************************/
++void
++e1000_config_collision_dist(struct e1000_shared_adapter *shared)
++{
++ uint32_t tctl_reg;
++ uint16_t speed;
++ uint16_t duplex;
++ uint32_t shift;
++
++ DEBUGFUNC("e1000_config_collision_dist");
++
++ /* Get our current speed and duplex from the Device Status Register. */
++ e1000_get_speed_and_duplex(shared, &speed, &duplex);
++
++ /* We need to configure the Collision Distance for both Full or
++ * Half Duplex.
++ */
++ tctl_reg = E1000_READ_REG(shared, TCTL);
++ DEBUGOUT1("tctl_reg = %x\n", tctl_reg);
++
++ /* mask the Collision Distance bits in the Transmit Control Reg. */
++ tctl_reg &= ~E1000_TCTL_COLD;
++
++ if(duplex == FULL_DUPLEX) {
++ /* We are in Full Duplex mode. Therefore, the collision distance
++ * is the same regardless of speed.
++ */
++ shift = E1000_FDX_COLLISION_DISTANCE;
++ shift <<= E1000_COLD_SHIFT;
++ tctl_reg |= shift;
++ } else {
++ /* We are in Half Duplex mode. Half Duplex collision distance is
++ * different for Gigabit vs. 10/100, so we will set accordingly.
++ */
++ if(speed == SPEED_1000) { /* 1000Mbs HDX */
++ shift = E1000_GB_HDX_COLLISION_DISTANCE;
++ shift <<= E1000_COLD_SHIFT;
++ tctl_reg |= shift;
++ tctl_reg |= E1000_TCTL_PBE; /* Enable Packet Bursting */
++ } else { /* 10/100Mbs HDX */
++ shift = E1000_HDX_COLLISION_DISTANCE;
++ shift <<= E1000_COLD_SHIFT;
++ tctl_reg |= shift;
++ }
++ }
++
++ /* Write the configured values back to the Transmit Control Reg. */
++ E1000_WRITE_REG(shared, TCTL, tctl_reg);
++
++ return;
++}
++
++#if DBG
++/******************************************************************************
++* Displays the contents of all of the MII registers
++*
++* shared - Struct containing variables accessed by shared code
++*
++* For debugging.
++******************************************************************************/
++void
++e1000_display_mii(struct e1000_shared_adapter *shared)
++{
++ uint16_t data;
++ uint16_t phy_id_high;
++ uint16_t phy_id_low;
++ uint32_t phy_id;
++
++ DEBUGFUNC("e1000_display_mii");
++
++ DEBUGOUT1("adapter Base Address = %x\n", shared->hw_addr);
++
++ /* This will read each PHY Reg address and display its contents. */
++
++ data = e1000_read_phy_reg(shared, PHY_CTRL);
++ DEBUGOUT1("MII Ctrl Reg contents = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, PHY_STATUS);
++ data = e1000_read_phy_reg(shared, PHY_STATUS);
++ DEBUGOUT1("MII Status Reg contents = %x\n", data);
++
++ phy_id_high = e1000_read_phy_reg(shared, PHY_ID1);
++ usec_delay(2);
++ phy_id_low = e1000_read_phy_reg(shared, PHY_ID2);
++ phy_id = (phy_id_low | (phy_id_high << 16)) & PHY_REVISION_MASK;
++ DEBUGOUT1("Phy ID = %x \n", phy_id);
++
++ data = e1000_read_phy_reg(shared, PHY_AUTONEG_ADV);
++ DEBUGOUT1("Reg 4 contents = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, PHY_LP_ABILITY);
++ DEBUGOUT1("Reg 5 contents = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, PHY_AUTONEG_EXP);
++ DEBUGOUT1("Reg 6 contents = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, PHY_NEXT_PAGE_TX);
++ DEBUGOUT1("Reg 7 contents = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, PHY_LP_NEXT_PAGE);
++ DEBUGOUT1("Reg 8 contents = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, PHY_1000T_CTRL);
++ DEBUGOUT1("Reg 9 contents = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, PHY_1000T_STATUS);
++ DEBUGOUT1("Reg A contents = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, PHY_EXT_STATUS);
++ DEBUGOUT1("Reg F contents = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);
++ DEBUGOUT1("M88E1000 Specific Control Reg (0x10) = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_STATUS);
++ DEBUGOUT1("M88E1000 Specific Status Reg (0x11) = %x\n", data);
++
++ /*
++ * data = e1000_read_phy_reg(shared, M88E1000_INT_ENABLE_REG);
++ * DEBUGOUT1("M88E1000 Interrupt Enable Reg (0x12) = %x\n", data);
++ */
++
++ /*
++ * data = e1000_read_phy_reg(shared, M88E1000_INT_STATUS_REG);
++ * DEBUGOUT1("M88E1000 Interrupt Status Reg (0x13) = %x\n", data);
++ */
++
++ data = e1000_read_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL);
++ DEBUGOUT1("M88E1000 Ext. Phy Specific Control (0x14) = %x\n", data);
++
++ data = e1000_read_phy_reg(shared, M88E1000_RX_ERR_CNTR);
++ DEBUGOUT1("M88E1000 Receive Error Counter (0x15) = %x\n", data);
++
++ /*
++ * data = e1000_read_phy_reg(shared, M88E1000_LED_CTRL_REG);
++ * DEBUGOUT1("M88E1000 LED control reg (0x18) = %x\n", data);
++ */
++
++ return;
++}
++#endif // DBG
++
++/******************************************************************************
++* Probes the expected PHY address for known PHY IDs
++*
++* shared - Struct containing variables accessed by shared code
++******************************************************************************/
++boolean_t
++e1000_detect_gig_phy(struct e1000_shared_adapter *shared)
++{
++ uint32_t phy_id_high;
++ uint16_t phy_id_low;
++
++ DEBUGFUNC("e1000_detect_gig_phy");
++
++ /* Read the PHY ID Registers to identify which PHY is onboard. */
++ shared->phy_addr = 1;
++
++ phy_id_high = e1000_read_phy_reg(shared, PHY_ID1);
++
++ usec_delay(2);
++
++ phy_id_low = e1000_read_phy_reg(shared, PHY_ID2);
++
++ shared->phy_id = (phy_id_low | (phy_id_high << 16)) & PHY_REVISION_MASK;
++
++ if(shared->phy_id == M88E1000_12_PHY_ID ||
++ shared->phy_id == M88E1000_14_PHY_ID ||
++ shared->phy_id == M88E1000_I_PHY_ID ||
++ shared->phy_id == M88E1011_I_PHY_ID) {
++
++ DEBUGOUT2("phy_id 0x%x detected at address 0x%x\n",
++ shared->phy_id, shared->phy_addr);
++ return (TRUE);
++ } else {
++ DEBUGOUT("Could not auto-detect Phy!\n");
++ return (FALSE);
++ }
++}
++
++/******************************************************************************
++* Resets the PHY's DSP
++*
++* shared - Struct containing variables accessed by shared code
++******************************************************************************/
++void
++e1000_phy_reset_dsp(struct e1000_shared_adapter *shared)
++{
++ e1000_write_phy_reg(shared, 29, 0x1d);
++ e1000_write_phy_reg(shared, 30, 0xc1);
++ e1000_write_phy_reg(shared, 30, 0x00);
++ return;
++}
++
++/******************************************************************************
++* Blocks until autoneg completes or times out (~4.5 seconds)
++*
++* shared - Struct containing variables accessed by shared code
++******************************************************************************/
++boolean_t
++e1000_wait_autoneg(struct e1000_shared_adapter *shared)
++{
++ uint16_t i;
++ uint16_t mii_status_reg;
++ boolean_t autoneg_complete = FALSE;
++
++ DEBUGFUNC("e1000_wait_autoneg");
++
++ /* We will wait for autoneg to complete. */
++ DEBUGOUT("Waiting for Auto-Neg to complete.\n");
++ mii_status_reg = 0;
++
++ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
++
++ for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
++ /* Read the MII Status Register and wait for Auto-Neg
++ * Complete bit to be set.
++ */
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++ mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++
++ if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
++ autoneg_complete = TRUE;
++ break;
++ }
++
++ msec_delay(100);
++ }
++
++ return (autoneg_complete);
++}
++
++/******************************************************************************
++* Get PHY information from various PHY registers
++*
++* shared - Struct containing variables accessed by shared code
++* phy_status_info - PHY information structure
++******************************************************************************/
++boolean_t
++e1000_phy_get_info(struct e1000_shared_adapter *shared,
++ struct e1000_phy_info *phy_status_info)
++{
++ uint16_t phy_mii_status_reg;
++ uint16_t phy_specific_ctrl_reg;
++ uint16_t phy_specific_status_reg;
++ uint16_t phy_specific_ext_ctrl_reg;
++ uint16_t phy_1000t_stat_reg;
++
++ phy_status_info->cable_length = e1000_cable_length_undefined;
++ phy_status_info->extended_10bt_distance =
++ e1000_10bt_ext_dist_enable_undefined;
++ phy_status_info->cable_polarity = e1000_rev_polarity_undefined;
++ phy_status_info->polarity_correction = e1000_polarity_reversal_undefined;
++ phy_status_info->link_reset = e1000_down_no_idle_undefined;
++ phy_status_info->mdix_mode = e1000_auto_x_mode_undefined;
++ phy_status_info->local_rx = e1000_1000t_rx_status_undefined;
++ phy_status_info->remote_rx = e1000_1000t_rx_status_undefined;
++
++ /* PHY info only valid for copper media. */
++ if(shared == NULL || shared->media_type != e1000_media_type_copper)
++ return FALSE;
++
++ /* PHY info only valid for LINK UP. Read MII status reg
++ * back-to-back to get link status.
++ */
++ phy_mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++ phy_mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
++ if((phy_mii_status_reg & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS)
++ return FALSE;
++
++ /* Read various PHY registers to get the PHY info. */
++ phy_specific_ctrl_reg = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);
++ phy_specific_status_reg =
++ e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_STATUS);
++ phy_specific_ext_ctrl_reg =
++ e1000_read_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL);
++ phy_1000t_stat_reg = e1000_read_phy_reg(shared, PHY_1000T_STATUS);
++
++ phy_status_info->cable_length =
++ ((phy_specific_status_reg & M88E1000_PSSR_CABLE_LENGTH) >>
++ M88E1000_PSSR_CABLE_LENGTH_SHIFT);
++
++ phy_status_info->extended_10bt_distance =
++ (phy_specific_ctrl_reg & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
++ M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
++
++ phy_status_info->cable_polarity =
++ (phy_specific_status_reg & M88E1000_PSSR_REV_POLARITY) >>
++ M88E1000_PSSR_REV_POLARITY_SHIFT;
++
++ phy_status_info->polarity_correction =
++ (phy_specific_ctrl_reg & M88E1000_PSCR_POLARITY_REVERSAL) >>
++ M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
++
++ phy_status_info->link_reset =
++ (phy_specific_ext_ctrl_reg & M88E1000_EPSCR_DOWN_NO_IDLE) >>
++ M88E1000_EPSCR_DOWN_NO_IDLE_SHIFT;
++
++ phy_status_info->mdix_mode =
++ (phy_specific_status_reg & M88E1000_PSSR_MDIX) >>
++ M88E1000_PSSR_MDIX_SHIFT;
++
++ phy_status_info->local_rx =
++ (phy_1000t_stat_reg & SR_1000T_LOCAL_RX_STATUS) >>
++ SR_1000T_LOCAL_RX_STATUS_SHIFT;
++
++ phy_status_info->remote_rx =
++ (phy_1000t_stat_reg & SR_1000T_REMOTE_RX_STATUS) >>
++ SR_1000T_REMOTE_RX_STATUS_SHIFT;
++
++ return TRUE;
++}
++
++boolean_t
++e1000_validate_mdi_setting(struct e1000_shared_adapter *shared)
++{
++ if(!shared->autoneg && (shared->mdix == 0 || shared->mdix == 3)) {
++ shared->mdix = 1;
++ return FALSE;
++ }
++ return TRUE;
++}
+--- /dev/null 2002-08-30 16:31:37.000000000 -0700
++++ linux-2.4.18-14-root/drivers/e1000/e1000_phy.h 2003-01-02 16:22:31.000000000 -0800
+@@ -0,0 +1,424 @@
++/*******************************************************************************
++
++ This software program is available to you under a choice of one of two
++ licenses. You may choose to be licensed under either the GNU General Public
++ License (GPL) Version 2, June 1991, available at
++ http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
++ text of which follows:
++
++ Recipient has requested a license and Intel Corporation ("Intel") is willing
++ to grant a license for the software entitled Linux Base Driver for the
++ Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
++ by Intel Corporation. The following definitions apply to this license:
++
++ "Licensed Patents" means patent claims licensable by Intel Corporation which
++ are necessarily infringed by the use of sale of the Software alone or when
++ combined with the operating system referred to below.
++
++ "Recipient" means the party to whom Intel delivers this Software.
++
++ "Licensee" means Recipient and those third parties that receive a license to
++ any operating system available under the GNU Public License version 2.0 or
++ later.
++
++ Copyright (c) 1999 - 2002 Intel Corporation.
++ All rights reserved.
++
++ The license is provided to Recipient and Recipient's Licensees under the
++ following terms.
++
++ Redistribution and use in source and binary forms of the Software, with or
++ without modification, are permitted provided that the following conditions
++ are met:
++
++ Redistributions of source code of the Software may retain the above
++ copyright notice, this list of conditions and the following disclaimer.
++
++ Redistributions in binary form of the Software may reproduce the above
++ copyright notice, this list of conditions and the following disclaimer in
++ the documentation and/or materials provided with the distribution.
++
++ Neither the name of Intel Corporation nor the names of its contributors
++ shall be used to endorse or promote products derived from this Software
++ without specific prior written permission.
++
++ Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
++ royalty-free patent license under Licensed Patents to make, use, sell, offer
++ to sell, import and otherwise transfer the Software, if any, in source code
++ and object code form. This license shall include changes to the Software
++ that are error corrections or other minor changes to the Software that do
++ not add functionality or features when the Software is incorporated in any
++ version of an operating system that has been distributed under the GNU
++ General Public License 2.0 or later. This patent license shall apply to the
++ combination of the Software and any operating system licensed under the GNU
++ Public License version 2.0 or later if, at the time Intel provides the
++ Software to Recipient, such addition of the Software to the then publicly
++ available versions of such operating systems available under the GNU Public
++ License version 2.0 or later (whether in gold, beta or alpha form) causes
++ such combination to be covered by the Licensed Patents. The patent license
++ shall not apply to any other combinations which include the Software. NO
++ hardware per se is licensed hereunder.
++
++ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
++ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
++ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
++ ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
++ AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
++ TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
++ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++
++*******************************************************************************/
++
++/* e1000_phy.h
++ * Structures, enums, and macros for the PHY
++ */
++
++#ifndef _E1000_PHY_H_
++#define _E1000_PHY_H_
++
++#include "e1000_osdep.h"
++
++/* PHY status info structure and supporting enums */
++typedef enum {
++ e1000_cable_length_50 = 0,
++ e1000_cable_length_50_80,
++ e1000_cable_length_80_110,
++ e1000_cable_length_110_140,
++ e1000_cable_length_140,
++ e1000_cable_length_undefined = 0xFF
++} e1000_cable_length;
++
++typedef enum {
++ e1000_10bt_ext_dist_enable_normal = 0,
++ e1000_10bt_ext_dist_enable_lower,
++ e1000_10bt_ext_dist_enable_undefined = 0xFF
++} e1000_10bt_ext_dist_enable;
++
++typedef enum {
++ e1000_rev_polarity_normal = 0,
++ e1000_rev_polarity_reversed,
++ e1000_rev_polarity_undefined = 0xFF
++} e1000_rev_polarity;
++
++typedef enum {
++ e1000_polarity_reversal_enabled = 0,
++ e1000_polarity_reversal_disabled,
++ e1000_polarity_reversal_undefined = 0xFF
++} e1000_polarity_reversal;
++
++typedef enum {
++ e1000_down_no_idle_no_detect = 0,
++ e1000_down_no_idle_detect,
++ e1000_down_no_idle_undefined = 0xFF
++} e1000_down_no_idle;
++
++typedef enum {
++ e1000_auto_x_mode_manual_mdi = 0,
++ e1000_auto_x_mode_manual_mdix,
++ e1000_auto_x_mode_auto1,
++ e1000_auto_x_mode_auto2,
++ e1000_auto_x_mode_undefined = 0xFF
++} e1000_auto_x_mode;
++
++typedef enum {
++ e1000_1000t_rx_status_not_ok = 0,
++ e1000_1000t_rx_status_ok,
++ e1000_1000t_rx_status_undefined = 0xFF
++} e1000_1000t_rx_status;
++
++struct e1000_phy_info {
++ e1000_cable_length cable_length;
++ e1000_10bt_ext_dist_enable extended_10bt_distance;
++ e1000_rev_polarity cable_polarity;
++ e1000_polarity_reversal polarity_correction;
++ e1000_down_no_idle link_reset;
++ e1000_auto_x_mode mdix_mode;
++ e1000_1000t_rx_status local_rx;
++ e1000_1000t_rx_status remote_rx;
++};
++
++struct e1000_phy_stats {
++ uint32_t idle_errors;
++ uint32_t receive_errors;
++};
++
++/* Function Prototypes */
++uint16_t e1000_read_phy_reg(struct e1000_shared_adapter *shared, uint32_t reg_addr);
++void e1000_write_phy_reg(struct e1000_shared_adapter *shared, uint32_t reg_addr, uint16_t data);
++void e1000_phy_hw_reset(struct e1000_shared_adapter *shared);
++boolean_t e1000_phy_reset(struct e1000_shared_adapter *shared);
++boolean_t e1000_phy_setup(struct e1000_shared_adapter *shared, uint32_t ctrl_reg);
++boolean_t e1000_phy_setup_autoneg(struct e1000_shared_adapter *shared);
++void e1000_config_mac_to_phy(struct e1000_shared_adapter *shared, uint16_t mii_reg);
++void e1000_config_collision_dist(struct e1000_shared_adapter *shared);
++void e1000_display_mii(struct e1000_shared_adapter *shared);
++boolean_t e1000_detect_gig_phy(struct e1000_shared_adapter *shared);
++void e1000_phy_reset_dsp(struct e1000_shared_adapter *shared);
++boolean_t e1000_wait_autoneg(struct e1000_shared_adapter *shared);
++boolean_t e1000_phy_get_info(struct e1000_shared_adapter *shared, struct e1000_phy_info *phy_status_info);
++boolean_t e1000_validate_mdi_setting(struct e1000_shared_adapter *shared);
++
++/* Bit definitions for the Management Data IO (MDIO) and Management Data
++ * Clock (MDC) pins in the Device Control Register.
++ */
++#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
++#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
++#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
++#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
++#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
++#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
++#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
++#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
++
++/* PHY 1000 MII Register/Bit Definitions */
++/* PHY Registers defined by IEEE */
++#define PHY_CTRL 0x00 /* Control Register */
++#define PHY_STATUS 0x01 /* Status Regiser */
++#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
++#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
++#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
++#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
++#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
++#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
++#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
++#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
++#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
++#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
++
++/* M88E1000 Specific Registers */
++#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
++#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
++#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
++#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
++#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
++#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
++
++#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
++
++/* PHY Control Register */
++#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
++#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
++#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
++#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
++#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
++#define MII_CR_POWER_DOWN 0x0800 /* Power down */
++#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
++#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
++#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
++#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
++
++/* PHY Status Register */
++#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
++#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
++#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
++#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
++#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
++#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
++#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
++#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
++#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
++#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
++#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
++#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
++#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
++#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
++#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
++
++/* Autoneg Advertisement Register */
++#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
++#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
++#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
++#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
++#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
++#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
++#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
++#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
++#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
++#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
++
++/* Link Partner Ability Register (Base Page) */
++#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
++#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
++#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
++#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
++#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
++#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
++#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
++#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
++#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
++#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
++#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
++
++/* Autoneg Expansion Register */
++#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
++#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
++#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
++#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
++#define NWAY_ER_PAR_DETECT_FAULT 0x0100 /* LP is 100TX Full Duplex Capable */
++
++/* Next Page TX Register */
++#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
++#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges
++ * of different NP
++ */
++#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
++ * 0 = cannot comply with msg
++ */
++#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
++#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
++ * 0 = sending last NP
++ */
++
++/* Link Partner Next Page Register */
++#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
++#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges
++ * of different NP
++ */
++#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
++ * 0 = cannot comply with msg
++ */
++#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
++#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */
++#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
++ * 0 = sending last NP
++ */
++
++/* 1000BASE-T Control Register */
++#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
++#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
++#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
++#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
++ /* 0=DTE device */
++#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
++ /* 0=Configure PHY as Slave */
++#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
++ /* 0=Automatic Master/Slave config */
++#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
++#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
++#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
++#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
++#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
++
++/* 1000BASE-T Status Register */
++#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
++#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
++#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
++#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
++#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
++#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
++#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
++#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
++#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12
++#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13
++
++/* Extended Status Register */
++#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
++#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
++#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
++#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
++
++#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */
++#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */
++
++#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */
++ /* (0=enable, 1=disable) */
++
++/* M88E1000 PHY Specific Control Register */
++#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
++#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
++#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
++#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
++ * 0=CLK125 toggling
++ */
++#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
++ /* Manual MDI configuration */
++#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
++#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
++ * 100BASE-TX/10BASE-T:
++ * MDI Mode
++ */
++#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
++ * all speeds.
++ */
++#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
++ /* 1=Enable Extended 10BASE-T distance
++ * (Lower 10BASE-T RX Threshold)
++ * 0=Normal 10BASE-T RX Threshold */
++#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
++ /* 1=5-Bit interface in 100BASE-TX
++ * 0=MII interface in 100BASE-TX */
++#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
++#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
++#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
++
++#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1
++#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5
++#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
++
++/* M88E1000 PHY Specific Status Register */
++#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
++#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
++#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
++#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
++ * 3=110-140M;4=>140M */
++#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
++#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
++#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
++#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
++#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
++#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
++#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
++#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
++
++#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
++#define M88E1000_PSSR_MDIX_SHIFT 6
++#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
++
++/* M88E1000 Extended PHY Specific Control Register */
++#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
++#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled.
++ * Will assert lost lock and bring
++ * link down if idle not seen
++ * within 1ms in 1000BASE-T
++ */
++#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
++#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
++#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
++
++#define M88E1000_EPSCR_DOWN_NO_IDLE_SHIFT 15
++
++/* Bit definitions for valid PHY IDs. */
++#define M88E1000_12_PHY_ID 0x01410C50
++#define M88E1000_14_PHY_ID 0x01410C40
++#define M88E1000_I_PHY_ID 0x01410C30
++#define M88E1011_I_PHY_ID 0x01410C20
++
++/* Miscellaneous PHY bit definitions. */
++#define PHY_PREAMBLE 0xFFFFFFFF
++#define PHY_SOF 0x01
++#define PHY_OP_READ 0x02
++#define PHY_OP_WRITE 0x01
++#define PHY_TURNAROUND 0x02
++#define PHY_PREAMBLE_SIZE 32
++#define MII_CR_SPEED_1000 0x0040
++#define MII_CR_SPEED_100 0x2000
++#define MII_CR_SPEED_10 0x0000
++#define E1000_PHY_ADDRESS 0x01
++#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */
++#define PHY_FORCE_TIME 20 /* 2.0 Seconds */
++#define PHY_REVISION_MASK 0xFFFFFFF0
++#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */
++#define REG4_SPEED_MASK 0x01E0
++#define REG9_SPEED_MASK 0x0300
++#define ADVERTISE_10_HALF 0x0001
++#define ADVERTISE_10_FULL 0x0002
++#define ADVERTISE_100_HALF 0x0004
++#define ADVERTISE_100_FULL 0x0008
++#define ADVERTISE_1000_HALF 0x0010
++#define ADVERTISE_1000_FULL 0x0020
++#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */
++
++#endif /* _E1000_PHY_H_ */
+--- /dev/null 2002-08-30 16:31:37.000000000 -0700
++++ linux-2.4.18-14-root/drivers/e1000/e1000_proc.c 2003-01-02 16:22:31.000000000 -0800
+@@ -0,0 +1,1437 @@
++/*******************************************************************************
++
++ This software program is available to you under a choice of one of two
++ licenses. You may choose to be licensed under either the GNU General Public
++ License (GPL) Version 2, June 1991, available at
++ http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
++ text of which follows:
++
++ Recipient has requested a license and Intel Corporation ("Intel") is willing
++ to grant a license for the software entitled Linux Base Driver for the
++ Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
++ by Intel Corporation. The following definitions apply to this license:
++
++ "Licensed Patents" means patent claims licensable by Intel Corporation which
++ are necessarily infringed by the use of sale of the Software alone or when
++ combined with the operating system referred to below.
++
++ "Recipient" means the party to whom Intel delivers this Software.
++
++ "Licensee" means Recipient and those third parties that receive a license to
++ any operating system available under the GNU Public License version 2.0 or
++ later.
++
++ Copyright (c) 1999 - 2002 Intel Corporation.
++ All rights reserved.
++
++ The license is provided to Recipient and Recipient's Licensees under the
++ following terms.
++
++ Redistribution and use in source and binary forms of the Software, with or
++ without modification, are permitted provided that the following conditions
++ are met:
++
++ Redistributions of source code of the Software may retain the above
++ copyright notice, this list of conditions and the following disclaimer.
++
++ Redistributions in binary form of the Software may reproduce the above
++ copyright notice, this list of conditions and the following disclaimer in
++ the documentation and/or materials provided with the distribution.
++
++ Neither the name of Intel Corporation nor the names of its contributors
++ shall be used to endorse or promote products derived from this Software
++ without specific prior written permission.
++
++ Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
++ royalty-free patent license under Licensed Patents to make, use, sell, offer
++ to sell, import and otherwise transfer the Software, if any, in source code
++ and object code form. This license shall include changes to the Software
++ that are error corrections or other minor changes to the Software that do
++ not add functionality or features when the Software is incorporated in any
++ version of an operating system that has been distributed under the GNU
++ General Public License 2.0 or later. This patent license shall apply to the
++ combination of the Software and any operating system licensed under the GNU
++ Public License version 2.0 or later if, at the time Intel provides the
++ Software to Recipient, such addition of the Software to the then publicly
++ available versions of such operating systems available under the GNU Public
++ License version 2.0 or later (whether in gold, beta or alpha form) causes
++ such combination to be covered by the Licensed Patents. The patent license
++ shall not apply to any other combinations which include the Software. NO
++ hardware per se is licensed hereunder.
++
++ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
++ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
++ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
++ ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
++ AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
++ TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
++ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++
++*******************************************************************************/
++
++/***************************************************************************/
++/* /proc File System Interaface Support Functions */
++/***************************************************************************/
++
++#include "e1000.h"
++extern char e1000_driver_name[];
++extern char e1000_driver_version[];
++#include "e1000_proc.h"
++#include <linux/proc_fs.h>
++
++struct proc_dir_entry *e1000_proc_dir;
++
++#define CABLE_LENGTH_TO_STRING() \
++ msg = \
++ (adapter->phy_info.cable_length == e1000_cable_length_50) ? "0-50 Meters (+/- 20 Meters)" : \
++ (adapter->phy_info.cable_length == e1000_cable_length_50_80) ? "50-80 Meters (+/- 20 Meters)" : \
++ (adapter->phy_info.cable_length == e1000_cable_length_80_110) ? "80-110 Meters (+/- 20 Meters)" : \
++ (adapter->phy_info.cable_length == e1000_cable_length_110_140) ? "110-140 Meters (+/- 20 Meters)" : \
++ (adapter->phy_info.cable_length == e1000_cable_length_140) ? "> 140 Meters (+/- 20 Meters)" : \
++ "Unknown";
++
++#define EXTENDED_10BASE_T_DISTANCE_TO_STRING() \
++ msg = \
++ (adapter->phy_info.extended_10bt_distance == \
++ e1000_10bt_ext_dist_enable_normal) ? "Disabled" : \
++ (adapter->phy_info.extended_10bt_distance == \
++ e1000_10bt_ext_dist_enable_lower) ? "Enabled" : "Unknown";
++
++#define CABLE_POLARITY_TO_STRING() \
++ msg = \
++ (adapter->phy_info.cable_polarity == e1000_rev_polarity_normal) ? "Normal" : \
++ (adapter->phy_info.cable_polarity == e1000_rev_polarity_reversed) ? \
++ "Reversed" : "Unknown";
++
++#define POLARITY_CORRECTION_TO_STRING() \
++ msg = \
++ (adapter->phy_info.polarity_correction == \
++ e1000_polarity_reversal_enabled) ? "Disabled" : \
++ (adapter->phy_info.polarity_correction == \
++ e1000_polarity_reversal_disabled) ? "Enabled" : "Undefined";
++
++#define LINK_RESET_TO_STRING() \
++ msg = \
++ (adapter->phy_info.link_reset == e1000_down_no_idle_no_detect) ? "Disabled" : \
++ (adapter->phy_info.link_reset == e1000_down_no_idle_detect) ? "Enabled" : \
++ "Unknown";
++
++#define MDI_X_MODE_TO_STRING() \
++ msg = (adapter->phy_info.mdix_mode == 0) ? "MDI" : "MDI-X";
++
++#define LOCAL_RECEIVER_STATUS_TO_STRING() \
++ msg = \
++ (adapter->phy_info.local_rx == e1000_1000t_rx_status_not_ok) ? "NOT_OK" : \
++ (adapter->phy_info.local_rx == e1000_1000t_rx_status_ok) ? "OK" : \
++ "Unknown";
++
++#define REMOTE_RECEIVER_STATUS_TO_STRING() \
++ msg = \
++ (adapter->phy_info.remote_rx == e1000_1000t_rx_status_not_ok) ? "NOT_OK" : \
++ (adapter->phy_info.remote_rx == e1000_1000t_rx_status_ok) ? "OK" : \
++ "Unknown";
++
++static void e1000_link_update(struct e1000_adapter * adapter) {
++
++ e1000_check_for_link(&adapter->shared);
++ if(E1000_READ_REG(&adapter->shared, STATUS) & E1000_STATUS_LU)
++ adapter->link_active = 1;
++ else
++ adapter->link_active = 0;
++
++ if (adapter->link_active) {
++ e1000_get_speed_and_duplex(&adapter->shared, &adapter->link_speed, &adapter->link_duplex);
++ } else {
++ adapter->link_speed = 0;
++ adapter->link_duplex = 0;
++ }
++ return;
++}
++
++static int e1000_generic_read(char *page, char **start, off_t off,
++ int count, int *eof)
++{
++ int len;
++
++ len = strlen(page);
++ page[len++] = '\n';
++
++ if (len <= off + count)
++ *eof = 1;
++ *start = page + off;
++ len -= off;
++ if (len > count)
++ len = count;
++ if (len < 0)
++ len = 0;
++ return len;
++}
++
++static int e1000_read_ulong(char *page, char **start, off_t off,
++ int count, int *eof, unsigned long l)
++{
++ sprintf(page, "%lu", l);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_ulong_hex(char *page, char **start, off_t off,
++ int count, int *eof, unsigned long l)
++{
++ sprintf(page, "0x%04lx", l);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_ullong(char *page, char **start, off_t off,
++ int count, int *eof, unsigned long long l)
++{
++ sprintf(page, "%Lu", l);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_hwaddr(char *page, char **start, off_t off,
++ int count, int *eof, unsigned char *hwaddr)
++{
++ sprintf(page, "%02X:%02X:%02X:%02X:%02X:%02X",
++ hwaddr[0], hwaddr[1], hwaddr[2],
++ hwaddr[3], hwaddr[4], hwaddr[5]);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++/* need to check page boundaries !!! */
++static int e1000_read_info(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ struct net_device_stats *stats = &adapter->net_stats;
++ unsigned char *hwaddr;
++ char *pagep = page;
++ char *msg;
++
++ page += sprintf(page, "%-32s %s\n", DESCRIPTION_TAG, adapter->id_string);
++ page += sprintf(page, "%-32s %06lx-%03x\n",
++ PART_NUMBER_TAG,
++ (unsigned long )adapter->part_num >> 8,
++ adapter->part_num & 0x000000FF);
++
++ page += sprintf(page, "%-32s %s\n", DRVR_NAME_TAG, e1000_driver_name);
++
++ page += sprintf(page, "%-32s %s\n", DRVR_VERSION_TAG, e1000_driver_version);
++
++ page += sprintf(page, "%-32s 0x%04lx\n",
++ PCI_VENDOR_TAG, (unsigned long) adapter->vendor_id);
++ page += sprintf(page, "%-32s 0x%04lx\n",
++ PCI_DEVICE_ID_TAG, (unsigned long) adapter->device_id);
++ page += sprintf(page, "%-32s 0x%04lx\n",
++ PCI_SUBSYSTEM_VENDOR_TAG,
++ (unsigned long) adapter->subven_id);
++ page += sprintf(page, "%-32s 0x%04lx\n",
++ PCI_SUBSYSTEM_ID_TAG,
++ (unsigned long) adapter->subsys_id);
++ page += sprintf(page, "%-32s 0x%02lx\n",
++ PCI_REVISION_ID_TAG,
++ (unsigned long) adapter->rev_id);
++
++ page += sprintf(page, "%-32s %lu\n",
++ PCI_BUS_TAG,
++ (unsigned long) (adapter->pdev->bus->number));
++ page += sprintf(page, "%-32s %lu\n",
++ PCI_SLOT_TAG,
++ (unsigned
++ long) (PCI_SLOT((adapter->pdev->devfn))));
++
++ if(adapter->shared.mac_type >= e1000_82543) {
++ page += sprintf(page, "%-32s %s\n",
++ PCI_BUS_TYPE_TAG,
++ (adapter->shared.bus_type == e1000_bus_type_pci) ? "PCI" :
++ (adapter->shared.bus_type == e1000_bus_type_pcix) ? "PCI-X" :
++ "UNKNOWN");
++
++ page += sprintf(page, "%-32s %s\n",
++ PCI_BUS_SPEED_TAG,
++ (adapter->shared.bus_speed == e1000_bus_speed_33) ? "33MHz" :
++ (adapter->shared.bus_speed == e1000_bus_speed_66) ? "66MHz" :
++ (adapter->shared.bus_speed == e1000_bus_speed_100) ? "100MHz" :
++ (adapter->shared.bus_speed == e1000_bus_speed_133) ? "133MHz" :
++ "UNKNOWN");
++
++ page += sprintf(page, "%-32s %s\n",
++ PCI_BUS_WIDTH_TAG,
++ (adapter->shared.bus_width == e1000_bus_width_32) ? "32-bit" :
++ (adapter->shared.bus_width == e1000_bus_width_64) ? "64-bit" :
++ "UNKNOWN");
++ }
++
++ page +=
++ sprintf(page, "%-32s %lu\n", IRQ_TAG,
++ (unsigned long) (adapter->pdev->irq));
++ page +=
++ sprintf(page, "%-32s %s\n", SYSTEM_DEVICE_NAME_TAG,
++ adapter->netdev->name);
++
++ hwaddr = adapter->netdev->dev_addr;
++ page += sprintf(page, "%-32s %02X:%02X:%02X:%02X:%02X:%02X\n",
++ CURRENT_HWADDR_TAG,
++ hwaddr[0], hwaddr[1], hwaddr[2],
++ hwaddr[3], hwaddr[4], hwaddr[5]);
++
++ hwaddr = adapter->perm_net_addr;
++ page += sprintf(page, "%-32s %02X:%02X:%02X:%02X:%02X:%02X\n",
++ PERMANENT_HWADDR_TAG,
++ hwaddr[0], hwaddr[1], hwaddr[2],
++ hwaddr[3], hwaddr[4], hwaddr[5]);
++
++ page += sprintf(page, "\n");
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ if (adapter->link_active == 1)
++ msg = "up";
++ else
++ msg = "down";
++ page += sprintf(page, "%-32s %s\n", LINK_TAG, msg);
++
++ if (adapter->link_speed)
++ page += sprintf(page, "%-32s %lu\n",
++ SPEED_TAG,
++ (unsigned long) (adapter->link_speed));
++ else
++ page += sprintf(page, "%-32s %s\n", SPEED_TAG, "N/A");
++
++ msg = adapter->link_duplex == FULL_DUPLEX ? "full" :
++ ((adapter->link_duplex == 0) ? "N/A" : "half");
++ page += sprintf(page, "%-32s %s\n", DUPLEX_TAG, msg);
++
++ if (adapter->netdev->flags & IFF_UP)
++ msg = "up";
++ else
++ msg = "down";
++ page += sprintf(page, "%-32s %s\n", STATE_TAG, msg);
++
++ page += sprintf(page, "\n");
++
++ page += sprintf(page, "%-32s %lu\n",
++ RX_PACKETS_TAG, (unsigned long) stats->rx_packets);
++ page += sprintf(page, "%-32s %lu\n",
++ TX_PACKETS_TAG, (unsigned long) stats->tx_packets);
++ page += sprintf(page, "%-32s %lu\n",
++ RX_BYTES_TAG, (unsigned long) stats->rx_bytes);
++ page += sprintf(page, "%-32s %lu\n",
++ TX_BYTES_TAG, (unsigned long) stats->tx_bytes);
++ page += sprintf(page, "%-32s %lu\n",
++ RX_ERRORS_TAG, (unsigned long) stats->rx_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ TX_ERRORS_TAG, (unsigned long) stats->tx_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ RX_DROPPED_TAG, (unsigned long) stats->rx_dropped);
++ page += sprintf(page, "%-32s %lu\n",
++ TX_DROPPED_TAG, (unsigned long) stats->tx_dropped);
++ page += sprintf(page, "%-32s %lu\n",
++ MULTICAST_TAG, (unsigned long) stats->multicast);
++ page += sprintf(page, "%-32s %lu\n",
++ COLLISIONS_TAG, (unsigned long) stats->collisions);
++ page += sprintf(page, "%-32s %lu\n",
++ RX_LENGTH_ERRORS_TAG,
++ (unsigned long) stats->rx_length_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ RX_OVER_ERRORS_TAG,
++ (unsigned long) stats->rx_over_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ RX_CRC_ERRORS_TAG,
++ (unsigned long) stats->rx_crc_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ RX_FRAME_ERRORS_TAG,
++ (unsigned long) stats->rx_frame_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ RX_FIFO_ERRORS_TAG,
++ (unsigned long) stats->rx_fifo_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ RX_MISSED_ERRORS_TAG,
++ (unsigned long) stats->rx_missed_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ TX_ABORTED_ERRORS_TAG,
++ (unsigned long) stats->tx_aborted_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ TX_CARRIER_ERRORS_TAG,
++ (unsigned long) stats->tx_carrier_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ TX_FIFO_ERRORS_TAG,
++ (unsigned long) stats->tx_fifo_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ TX_HEARTBEAT_ERRORS_TAG,
++ (unsigned long) stats->tx_heartbeat_errors);
++ page += sprintf(page, "%-32s %lu\n",
++ TX_WINDOW_ERRORS_TAG,
++ (unsigned long) stats->tx_window_errors);
++
++ page += sprintf(page, "\n");
++
++ /* 8254x specific stats */
++ page += sprintf(page, "%-32s %Lu\n",
++ TX_LATE_COLL_TAG,
++ (unsigned long long)adapter->stats.latecol);
++ page += sprintf(page, "%-32s %Lu\n",
++ TX_DEFERRED_TAG,
++ (unsigned long long)adapter->stats.dc);
++ page += sprintf(page, "%-32s %Lu\n",
++ TX_SINGLE_COLL_TAG,
++ (unsigned long long)adapter->stats.scc);
++ page += sprintf(page, "%-32s %Lu\n",
++ TX_MULTI_COLL_TAG,
++ (unsigned long long)adapter->stats.mcc);
++ page += sprintf(page, "%-32s %Lu\n",
++ RX_LONG_ERRORS_TAG,
++ (unsigned long long)adapter->stats.roc);
++ page += sprintf(page, "%-32s %Lu\n",
++ RX_SHORT_ERRORS_TAG,
++ (unsigned long long)adapter->stats.ruc);
++ /* The 82542 does not have an alignment error count register */
++ /* ALGNERRC is only valid in MII mode at 10 or 100 Mbps */
++ if(adapter->shared.mac_type >= e1000_82543)
++ page += sprintf(page, "%-32s %Lu\n",
++ RX_ALIGN_ERRORS_TAG,
++ (unsigned long long)adapter->stats.algnerrc);
++ page += sprintf(page, "%-32s %Lu\n",
++ RX_XON_TAG,
++ (unsigned long long)adapter->stats.xonrxc);
++ page += sprintf(page, "%-32s %Lu\n",
++ RX_XOFF_TAG,
++ (unsigned long long)adapter->stats.xoffrxc);
++ page += sprintf(page, "%-32s %Lu\n",
++ TX_XON_TAG,
++ (unsigned long long)adapter->stats.xontxc);
++ page += sprintf(page, "%-32s %Lu\n",
++ TX_XOFF_TAG,
++ (unsigned long long)adapter->stats.xofftxc);
++ page += sprintf(page, "%-32s %Lu\n",
++ RX_CSUM_GOOD_TAG,
++ (unsigned long long)adapter->XsumRXGood);
++ page += sprintf(page, "%-32s %Lu\n",
++ RX_CSUM_ERROR_TAG,
++ (unsigned long long)adapter->XsumRXError);
++
++ if (adapter->shared.media_type == e1000_media_type_copper)
++ msg = "Copper";
++ else
++ msg = "Fiber";
++ page += sprintf(page, "\n%-32s %s\n", MEDIA_TYPE_TAG, msg);
++
++ if (adapter->shared.media_type == e1000_media_type_copper) {
++ CABLE_LENGTH_TO_STRING();
++ page += sprintf(page, "%-32s %s\n", CABLE_LENGTH_TAG, msg);
++
++ EXTENDED_10BASE_T_DISTANCE_TO_STRING();
++ page += sprintf(page, "%-32s %s\n", EXTENDED_10BASE_T_DISTANCE_TAG, msg);
++
++ CABLE_POLARITY_TO_STRING();
++ page += sprintf(page, "%-32s %s\n", CABLE_POLARITY_TAG, msg);
++
++ POLARITY_CORRECTION_TO_STRING();
++ page += sprintf(page, "%-32s %s\n", CABLE_POLARITY_CORRECTION_TAG, msg);
++
++ page += sprintf(page, "%-32s %lu\n", IDLE_ERRORS_TAG, (unsigned long)adapter->phy_stats.idle_errors );
++
++ LINK_RESET_TO_STRING();
++ page += sprintf(page, "%-32s %s\n", LINK_RESET_ENABLED_TAG, msg);
++
++ page += sprintf(page, "%-32s %lu\n", RECEIVE_ERRORS_TAG, (unsigned long)adapter->phy_stats.receive_errors);
++
++ MDI_X_MODE_TO_STRING();
++ page += sprintf(page, "%-32s %s\n", MDI_X_ENABLED_TAG, msg);
++
++ LOCAL_RECEIVER_STATUS_TO_STRING();
++ page += sprintf(page, "%-32s %s\n", LOCAL_RECEIVER_STATUS_TAG, msg);
++
++ REMOTE_RECEIVER_STATUS_TO_STRING();
++ page += sprintf(page, "%-32s %s\n", REMOTE_RECEIVER_STATUS_TAG, msg);
++ }
++
++ *page = 0;
++ return e1000_generic_read(pagep, start, off, count, eof);
++}
++
++static int e1000_read_descr(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ strncpy(page, adapter->id_string, PAGE_SIZE);
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_partnum(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ sprintf(page, "%06lx-%03x",
++ (unsigned long)adapter->part_num >> 8,
++ adapter->part_num & 0x000000FF);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_drvr_name(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ strncpy(page, e1000_driver_name, PAGE_SIZE);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_drvr_ver(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ strncpy(page, e1000_driver_version, PAGE_SIZE);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_pci_vendor(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong_hex(page, start, off, count, eof,
++ (unsigned long) adapter->vendor_id);
++}
++
++static int e1000_read_pci_device(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong_hex(page, start, off, count, eof,
++ (unsigned long) adapter->device_id);
++}
++
++static int e1000_read_pci_sub_vendor(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong_hex(page, start, off, count, eof,
++ (unsigned long) adapter->subven_id);
++}
++
++static int e1000_read_pci_sub_device(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong_hex(page, start, off, count, eof,
++ (unsigned long) adapter->subsys_id);
++}
++
++static int e1000_read_pci_revision(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong_hex(page, start, off, count, eof,
++ (unsigned long) adapter->rev_id);
++}
++
++static int e1000_read_dev_name(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ strncpy(page, adapter->netdev->name, PAGE_SIZE);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_pci_bus(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) (adapter->pdev->bus->number));
++}
++
++static int e1000_read_pci_slot(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned
++ long) (PCI_SLOT((adapter->pdev->devfn))));
++}
++
++static int e1000_read_pci_bus_type(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ strncpy(page,
++ (adapter->shared.bus_type == e1000_bus_type_pci) ? "PCI" :
++ (adapter->shared.bus_type == e1000_bus_type_pcix) ? "PCI-X" :
++ "UNKNOWN", PAGE_SIZE);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_pci_bus_speed(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ strncpy(page,
++ (adapter->shared.bus_speed == e1000_bus_speed_33) ? "33MHz" :
++ (adapter->shared.bus_speed == e1000_bus_speed_66) ? "66MHz" :
++ (adapter->shared.bus_speed == e1000_bus_speed_100) ? "100MHz" :
++ (adapter->shared.bus_speed == e1000_bus_speed_133) ? "133MHz" :
++ "UNKNOWN", PAGE_SIZE);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_pci_bus_width(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ strncpy(page,
++ (adapter->shared.bus_width == e1000_bus_width_32) ? "32-bit" :
++ (adapter->shared.bus_width == e1000_bus_width_64) ? "64-bit" :
++ "UNKNOWN", PAGE_SIZE);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_irq(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) (adapter->pdev->irq));
++}
++
++static int e1000_read_current_hwaddr(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ unsigned char *hwaddr = adapter->netdev->dev_addr;
++
++ return e1000_read_hwaddr(page, start, off, count, eof, hwaddr);
++}
++
++static int e1000_read_permanent_hwaddr(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ unsigned char *hwaddr = adapter->perm_net_addr;
++
++ return e1000_read_hwaddr(page, start, off, count, eof, hwaddr);
++}
++
++static int e1000_read_link_status(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ if (adapter->link_active == 1)
++ strncpy(page, "up", PAGE_SIZE);
++ else
++ strncpy(page, "down", PAGE_SIZE);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_speed(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ if (adapter->link_speed)
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) (adapter->link_speed));
++ strncpy(page, "N/A", PAGE_SIZE);
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_dplx_mode(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ char *dplx_mode;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ dplx_mode = adapter->link_duplex == FULL_DUPLEX ? "full" :
++ ((adapter->link_duplex == 0) ? "N/A" : "half");
++ strncpy(page, dplx_mode, PAGE_SIZE);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_state(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ if (adapter->netdev->flags & IFF_UP)
++ strncpy(page, "up", PAGE_SIZE);
++ else
++ strncpy(page, "down", PAGE_SIZE);
++
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_rx_packets(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.rx_packets);
++}
++
++static int e1000_read_tx_packets(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.tx_packets);
++}
++
++static int e1000_read_rx_bytes(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.rx_bytes);
++}
++
++static int e1000_read_tx_bytes(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.tx_bytes);
++}
++
++static int e1000_read_rx_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.rx_errors);
++}
++
++static int e1000_read_tx_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.tx_errors);
++}
++
++static int e1000_read_rx_dropped(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.rx_dropped);
++}
++
++static int e1000_read_tx_dropped(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.tx_dropped);
++}
++
++static int e1000_read_rx_multicast_packets(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.multicast);
++}
++
++static int e1000_read_collisions(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.collisions);
++}
++
++static int e1000_read_rx_length_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.rx_length_errors);
++}
++
++static int e1000_read_rx_over_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.rx_over_errors);
++}
++
++static int e1000_read_rx_crc_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.rx_crc_errors);
++}
++
++static int e1000_read_rx_frame_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.rx_frame_errors);
++}
++
++static int e1000_read_rx_fifo_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.rx_fifo_errors);
++}
++
++static int e1000_read_rx_missed_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.rx_missed_errors);
++}
++
++static int e1000_read_tx_aborted_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.tx_aborted_errors);
++}
++
++static int e1000_read_tx_carrier_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.tx_carrier_errors);
++}
++
++static int e1000_read_tx_fifo_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.tx_fifo_errors);
++}
++
++static int e1000_read_tx_heartbeat_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.tx_heartbeat_errors);
++}
++
++static int e1000_read_tx_window_errors(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ return e1000_read_ulong(page, start, off, count, eof,
++ (unsigned long) adapter->net_stats.tx_window_errors);
++}
++
++/* 8254x specific stats */
++static int e1000_read_tx_late_coll(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.latecol);
++}
++
++static int e1000_read_tx_defer_events(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.dc);
++}
++static int e1000_read_tx_single_coll(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.scc);
++}
++static int e1000_read_tx_multi_coll(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.mcc);
++}
++static int e1000_read_rx_oversize(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.roc);
++}
++static int e1000_read_rx_undersize(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.ruc);
++}
++static int e1000_read_rx_align_err(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.algnerrc);
++}
++static int e1000_read_rx_xon(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.xonrxc);
++}
++static int e1000_read_rx_xoff(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.xoffrxc);
++}
++static int e1000_read_tx_xon(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.xontxc);
++}
++static int e1000_read_tx_xoff(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++ return e1000_read_ullong(page, start, off, count, eof, adapter->stats.xofftxc);
++}
++
++static struct proc_dir_entry *e1000_create_proc_read(char *name,
++ struct e1000_adapter * adapter,
++ struct proc_dir_entry *parent,
++ read_proc_t * read_proc)
++{
++ struct proc_dir_entry *pdep;
++
++ if (!(pdep = create_proc_entry(name, S_IFREG, parent)))
++ return NULL;
++ pdep->read_proc = read_proc;
++ pdep->data = adapter;
++ return pdep;
++}
++
++static int e1000_read_cable_length (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ char *msg;
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ CABLE_LENGTH_TO_STRING();
++ strncpy (page, msg, PAGE_SIZE);
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_media_type (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ switch (adapter->shared.media_type) {
++ case e1000_media_type_copper: strncpy(page,"Copper", PAGE_SIZE); break;
++ case e1000_media_type_fiber: strncpy(page, "Fiber", PAGE_SIZE); break;
++ default: strncpy(page, "Unknown", PAGE_SIZE);
++ }
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_extended_10base_t_distance (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ char *msg;
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ EXTENDED_10BASE_T_DISTANCE_TO_STRING();
++ strncpy (page, msg, PAGE_SIZE);
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_cable_polarity (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ char *msg;
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ CABLE_POLARITY_TO_STRING();
++ strncpy (page, msg, PAGE_SIZE);
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_cable_polarity_correction (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ char *msg;
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ POLARITY_CORRECTION_TO_STRING();
++ strncpy (page, msg, PAGE_SIZE);
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_idle_errors (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ return e1000_read_ulong(page, start, off, count, eof, adapter->phy_stats.idle_errors);
++}
++
++static int e1000_read_link_reset_enabled (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ char *msg;
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ LINK_RESET_TO_STRING();
++ strncpy (page, msg, PAGE_SIZE);
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_receive_errors (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ return e1000_read_ulong(page, start, off, count, eof, adapter->phy_stats.receive_errors);
++}
++
++static int e1000_read_mdi_x_enabled (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ char *msg;
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ MDI_X_MODE_TO_STRING();
++ strncpy (page, msg, PAGE_SIZE);
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_local_receiver_status (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ char *msg;
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ LOCAL_RECEIVER_STATUS_TO_STRING();
++ strncpy (page, msg, PAGE_SIZE);
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++static int e1000_read_remote_receiver_status (char *page, char **start,
++ off_t off, int count, int *eof, void *data)
++{
++ char *msg;
++ struct e1000_adapter * adapter = (struct e1000_adapter *) data;
++
++ /* If board is not open yet, */
++ if(!test_bit(E1000_BOARD_OPEN, &adapter->flags))
++ e1000_link_update(adapter);
++
++ REMOTE_RECEIVER_STATUS_TO_STRING();
++ strncpy (page, msg, PAGE_SIZE);
++ return e1000_generic_read(page, start, off, count, eof);
++}
++
++int e1000_create_proc_dev(struct e1000_adapter * adapter)
++{
++ struct proc_dir_entry *dev_dir;
++ char info[256];
++ int len;
++
++ dev_dir = create_proc_entry(adapter->netdev->name, S_IFDIR, e1000_proc_dir);
++
++ strncpy(info, adapter->netdev->name, sizeof(info));
++ len = strlen(info);
++ strncat(info + len, ".info", sizeof(info) - len);
++
++ /* info */
++ if (!(e1000_create_proc_read(info, adapter, e1000_proc_dir, e1000_read_info)))
++ return -1;
++
++ /* description */
++ if (!(e1000_create_proc_read(DESCRIPTION_TAG, adapter, dev_dir, e1000_read_descr)))
++ return -1;
++ /* part number */
++ if (!(e1000_create_proc_read(PART_NUMBER_TAG, adapter, dev_dir, e1000_read_partnum)))
++ return -1;
++ /* driver name */
++ if (!(e1000_create_proc_read(DRVR_NAME_TAG, adapter, dev_dir, e1000_read_drvr_name)))
++ return -1;
++ /* driver version */
++ if (!(e1000_create_proc_read(DRVR_VERSION_TAG, adapter, dev_dir, e1000_read_drvr_ver)))
++ return -1;
++ /* pci vendor */
++ if (!(e1000_create_proc_read(PCI_VENDOR_TAG, adapter, dev_dir, e1000_read_pci_vendor)))
++ return -1;
++ /* pci device id */
++ if (!(e1000_create_proc_read(PCI_DEVICE_ID_TAG, adapter, dev_dir,
++ e1000_read_pci_device))) return -1;
++ /* pci sub vendor */
++ if (!(e1000_create_proc_read(PCI_SUBSYSTEM_VENDOR_TAG, adapter, dev_dir,
++ e1000_read_pci_sub_vendor))) return -1;
++ /* pci sub device id */
++ if (!(e1000_create_proc_read(PCI_SUBSYSTEM_ID_TAG, adapter, dev_dir,
++ e1000_read_pci_sub_device))) return -1;
++ /* pci revision id */
++ if (!(e1000_create_proc_read(PCI_REVISION_ID_TAG, adapter, dev_dir,
++ e1000_read_pci_revision))) return -1;
++ /* device name */
++ if (!(e1000_create_proc_read(SYSTEM_DEVICE_NAME_TAG, adapter, dev_dir,
++ e1000_read_dev_name))) return -1;
++ /* pci bus */
++ if (!(e1000_create_proc_read(PCI_BUS_TAG, adapter, dev_dir, e1000_read_pci_bus)))
++ return -1;
++ /* pci slot */
++ if (!(e1000_create_proc_read(PCI_SLOT_TAG, adapter, dev_dir, e1000_read_pci_slot)))
++ return -1;
++ /* pci bus type */
++ if (!(e1000_create_proc_read(PCI_BUS_TYPE_TAG, adapter, dev_dir,
++ e1000_read_pci_bus_type))) return -1;
++ /* pci bus speed */
++ if (!(e1000_create_proc_read(PCI_BUS_SPEED_TAG, adapter, dev_dir,
++ e1000_read_pci_bus_speed))) return -1;
++ /* pci bus width */
++ if (!(e1000_create_proc_read(PCI_BUS_WIDTH_TAG, adapter, dev_dir,
++ e1000_read_pci_bus_width))) return -1;
++ /* irq */
++ if (!(e1000_create_proc_read(IRQ_TAG, adapter, dev_dir, e1000_read_irq)))
++ return -1;
++ /* current hwaddr */
++ if (!(e1000_create_proc_read(CURRENT_HWADDR_TAG, adapter, dev_dir,
++ e1000_read_current_hwaddr))) return -1;
++ /* permanent hwaddr */
++ if (!(e1000_create_proc_read(PERMANENT_HWADDR_TAG, adapter, dev_dir,
++ e1000_read_permanent_hwaddr))) return -1;
++
++ /* link status */
++ if (!(e1000_create_proc_read(LINK_TAG, adapter, dev_dir, e1000_read_link_status)))
++ return -1;
++ /* speed */
++ if (!(e1000_create_proc_read(SPEED_TAG, adapter, dev_dir, e1000_read_speed)))
++ return -1;
++ /* duplex mode */
++ if (!(e1000_create_proc_read(DUPLEX_TAG, adapter, dev_dir, e1000_read_dplx_mode)))
++ return -1;
++ /* state */
++ if (!(e1000_create_proc_read(STATE_TAG, adapter, dev_dir, e1000_read_state)))
++ return -1;
++ /* rx packets */
++ if (!(e1000_create_proc_read(RX_PACKETS_TAG, adapter, dev_dir, e1000_read_rx_packets)))
++ return -1;
++ /* tx packets */
++ if (!(e1000_create_proc_read(TX_PACKETS_TAG, adapter, dev_dir, e1000_read_tx_packets)))
++ return -1;
++ /* rx bytes */
++ if (!(e1000_create_proc_read(RX_BYTES_TAG, adapter, dev_dir, e1000_read_rx_bytes)))
++ return -1;
++ /* tx bytes */
++ if (!(e1000_create_proc_read(TX_BYTES_TAG, adapter, dev_dir, e1000_read_tx_bytes)))
++ return -1;
++ /* rx errors */
++ if (!(e1000_create_proc_read(RX_ERRORS_TAG, adapter, dev_dir, e1000_read_rx_errors)))
++ return -1;
++ /* tx errors */
++ if (!(e1000_create_proc_read(TX_ERRORS_TAG, adapter, dev_dir, e1000_read_tx_errors)))
++ return -1;
++ /* rx dropped */
++ if (!(e1000_create_proc_read(RX_DROPPED_TAG, adapter, dev_dir, e1000_read_rx_dropped)))
++ return -1;
++ /* tx dropped */
++ if (!(e1000_create_proc_read(TX_DROPPED_TAG, adapter, dev_dir, e1000_read_tx_dropped)))
++ return -1;
++ /* multicast packets */
++ if (!(e1000_create_proc_read(MULTICAST_TAG, adapter, dev_dir,
++ e1000_read_rx_multicast_packets)))
++ return -1;
++
++ /* collisions */
++ if (!(e1000_create_proc_read (COLLISIONS_TAG, adapter, dev_dir, e1000_read_collisions)))
++ return -1;
++
++ /* rx length errors */
++ if (!(e1000_create_proc_read(RX_LENGTH_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_rx_length_errors))) return -1;
++ /* rx over errors */
++ if (!(e1000_create_proc_read(RX_OVER_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_rx_over_errors))) return -1;
++ /* rx crc errors */
++ if (!(e1000_create_proc_read(RX_CRC_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_rx_crc_errors))) return -1;
++ /* rx frame errors */
++ if (!(e1000_create_proc_read(RX_FRAME_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_rx_frame_errors))) return -1;
++ /* rx fifo errors */
++ if (!(e1000_create_proc_read(RX_FIFO_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_rx_fifo_errors))) return -1;
++ /* rx missed errors */
++ if (!(e1000_create_proc_read(RX_MISSED_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_rx_missed_errors))) return -1;
++ /* tx aborted errors */
++ if (!(e1000_create_proc_read(TX_ABORTED_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_tx_aborted_errors))) return -1;
++ /* tx carrier errors */
++ if (!(e1000_create_proc_read(TX_CARRIER_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_tx_carrier_errors))) return -1;
++ /* tx fifo errors */
++ if (!(e1000_create_proc_read(TX_FIFO_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_tx_fifo_errors))) return -1;
++ /* tx heartbeat errors */
++ if (!(e1000_create_proc_read(TX_HEARTBEAT_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_tx_heartbeat_errors))) return -1;
++ /* tx window errors */
++ if (!(e1000_create_proc_read(TX_WINDOW_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_tx_window_errors))) return -1;
++
++ if (!(e1000_create_proc_read(TX_LATE_COLL_TAG, adapter, dev_dir,
++ e1000_read_tx_late_coll))) return -1;
++ if (!(e1000_create_proc_read(TX_DEFERRED_TAG, adapter, dev_dir,
++ e1000_read_tx_defer_events))) return -1;
++ if (!(e1000_create_proc_read(TX_SINGLE_COLL_TAG, adapter, dev_dir,
++ e1000_read_tx_single_coll))) return -1;
++ if (!(e1000_create_proc_read(TX_MULTI_COLL_TAG, adapter, dev_dir,
++ e1000_read_tx_multi_coll))) return -1;
++ if (!(e1000_create_proc_read(RX_LONG_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_rx_oversize))) return -1;
++ if (!(e1000_create_proc_read(RX_SHORT_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_rx_undersize))) return -1;
++ if(adapter->shared.mac_type >= e1000_82543)
++ if (!(e1000_create_proc_read(RX_ALIGN_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_rx_align_err))) return -1;
++ if (!(e1000_create_proc_read(RX_XON_TAG, adapter, dev_dir,
++ e1000_read_rx_xon))) return -1;
++ if (!(e1000_create_proc_read(RX_XOFF_TAG, adapter, dev_dir,
++ e1000_read_rx_xoff))) return -1;
++ if (!(e1000_create_proc_read(TX_XON_TAG, adapter, dev_dir,
++ e1000_read_tx_xon))) return -1;
++ if (!(e1000_create_proc_read(TX_XOFF_TAG, adapter, dev_dir,
++ e1000_read_tx_xoff))) return -1;
++
++ if (!(e1000_create_proc_read(MEDIA_TYPE_TAG, adapter, dev_dir,
++ e1000_read_media_type))) return -1;
++
++ if (adapter->shared.media_type == e1000_media_type_copper) {
++ if (!(e1000_create_proc_read(CABLE_LENGTH_TAG, adapter, dev_dir,
++ e1000_read_cable_length))) return -1;
++
++ if (!(e1000_create_proc_read(EXTENDED_10BASE_T_DISTANCE_TAG,
++ adapter, dev_dir,
++ e1000_read_extended_10base_t_distance))) return -1;
++
++ if (!(e1000_create_proc_read(CABLE_POLARITY_TAG, adapter, dev_dir,
++ e1000_read_cable_polarity))) return -1;
++
++ if (!(e1000_create_proc_read(CABLE_POLARITY_CORRECTION_TAG, adapter, dev_dir,
++ e1000_read_cable_polarity_correction))) return -1;
++
++ if (!(e1000_create_proc_read(IDLE_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_idle_errors))) return -1;
++
++ if (!(e1000_create_proc_read(LINK_RESET_ENABLED_TAG, adapter, dev_dir,
++ e1000_read_link_reset_enabled))) return -1;
++
++ if (!(e1000_create_proc_read(RECEIVE_ERRORS_TAG, adapter, dev_dir,
++ e1000_read_receive_errors))) return -1;
++
++ if (!(e1000_create_proc_read(MDI_X_ENABLED_TAG, adapter, dev_dir,
++ e1000_read_mdi_x_enabled))) return -1;
++
++ if (!(e1000_create_proc_read(LOCAL_RECEIVER_STATUS_TAG, adapter, dev_dir,
++ e1000_read_local_receiver_status))) return -1;
++
++ if (!(e1000_create_proc_read(REMOTE_RECEIVER_STATUS_TAG, adapter, dev_dir,
++ e1000_read_remote_receiver_status))) return -1;
++ }
++
++ return 0;
++}
++
++void e1000_remove_proc_dev(struct net_device *dev)
++{
++ struct proc_dir_entry *de;
++ struct e1000_adapter * adapter = dev->priv;
++ char info[256];
++ int len;
++
++ len = strlen(dev->name);
++ strncpy(info, dev->name, sizeof(info));
++ strncat(info + len, ".info", sizeof(info) - len);
++
++ for (de = e1000_proc_dir->subdir; de; de = de->next) {
++ if ((de->namelen == len) && (!memcmp(de->name, dev->name, len)))
++ break;
++ }
++ if (de) {
++ remove_proc_entry(DESCRIPTION_TAG, de);
++ remove_proc_entry(PART_NUMBER_TAG, de);
++ remove_proc_entry(DRVR_NAME_TAG, de);
++ remove_proc_entry(DRVR_VERSION_TAG, de);
++ remove_proc_entry(PCI_VENDOR_TAG, de);
++ remove_proc_entry(PCI_DEVICE_ID_TAG, de);
++ remove_proc_entry(PCI_SUBSYSTEM_VENDOR_TAG, de);
++ remove_proc_entry(PCI_SUBSYSTEM_ID_TAG, de);
++ remove_proc_entry(PCI_REVISION_ID_TAG, de);
++ remove_proc_entry(SYSTEM_DEVICE_NAME_TAG, de);
++ remove_proc_entry(PCI_BUS_TAG, de);
++ remove_proc_entry(PCI_SLOT_TAG, de);
++ remove_proc_entry(PCI_BUS_TYPE_TAG, de);
++ remove_proc_entry(PCI_BUS_SPEED_TAG, de);
++ remove_proc_entry(PCI_BUS_WIDTH_TAG, de);
++ remove_proc_entry(IRQ_TAG, de);
++ remove_proc_entry(CURRENT_HWADDR_TAG, de);
++ remove_proc_entry(PERMANENT_HWADDR_TAG, de);
++
++ remove_proc_entry(LINK_TAG, de);
++ remove_proc_entry(SPEED_TAG, de);
++ remove_proc_entry(DUPLEX_TAG, de);
++ remove_proc_entry(STATE_TAG, de);
++
++ remove_proc_entry(RX_PACKETS_TAG, de);
++ remove_proc_entry(TX_PACKETS_TAG, de);
++ remove_proc_entry(RX_BYTES_TAG, de);
++ remove_proc_entry(TX_BYTES_TAG, de);
++ remove_proc_entry(RX_ERRORS_TAG, de);
++ remove_proc_entry(TX_ERRORS_TAG, de);
++ remove_proc_entry(RX_DROPPED_TAG, de);
++ remove_proc_entry(TX_DROPPED_TAG, de);
++ remove_proc_entry(MULTICAST_TAG, de);
++ remove_proc_entry(COLLISIONS_TAG, de);
++ remove_proc_entry(RX_LENGTH_ERRORS_TAG, de);
++ remove_proc_entry(RX_OVER_ERRORS_TAG, de);
++ remove_proc_entry(RX_CRC_ERRORS_TAG, de);
++ remove_proc_entry(RX_FRAME_ERRORS_TAG, de);
++ remove_proc_entry(RX_FIFO_ERRORS_TAG, de);
++ remove_proc_entry(RX_MISSED_ERRORS_TAG, de);
++ remove_proc_entry(TX_ABORTED_ERRORS_TAG, de);
++ remove_proc_entry(TX_CARRIER_ERRORS_TAG, de);
++ remove_proc_entry(TX_FIFO_ERRORS_TAG, de);
++ remove_proc_entry(TX_HEARTBEAT_ERRORS_TAG, de);
++ remove_proc_entry(TX_WINDOW_ERRORS_TAG, de);
++ remove_proc_entry(TX_LATE_COLL_TAG, de);
++ remove_proc_entry(TX_DEFERRED_TAG, de);
++ remove_proc_entry(TX_SINGLE_COLL_TAG, de);
++ remove_proc_entry(TX_MULTI_COLL_TAG, de);
++ remove_proc_entry(RX_LONG_ERRORS_TAG, de);
++ remove_proc_entry(RX_SHORT_ERRORS_TAG, de);
++ remove_proc_entry(RX_XON_TAG, de);
++ remove_proc_entry(RX_XOFF_TAG, de);
++ remove_proc_entry(TX_XON_TAG, de);
++ remove_proc_entry(TX_XOFF_TAG, de);
++
++ remove_proc_entry(MEDIA_TYPE_TAG, de);
++ if (adapter->shared.media_type == e1000_media_type_copper) {
++ remove_proc_entry(CABLE_LENGTH_TAG, de);
++ remove_proc_entry(EXTENDED_10BASE_T_DISTANCE_TAG, de);
++ remove_proc_entry(CABLE_POLARITY_TAG, de);
++ remove_proc_entry(CABLE_POLARITY_CORRECTION_TAG, de);
++ remove_proc_entry(IDLE_ERRORS_TAG, de);
++ remove_proc_entry(LINK_RESET_ENABLED_TAG, de);
++ remove_proc_entry(RECEIVE_ERRORS_TAG, de);
++ remove_proc_entry(MDI_X_ENABLED_TAG, de);
++ remove_proc_entry(LOCAL_RECEIVER_STATUS_TAG, de);
++ remove_proc_entry(REMOTE_RECEIVER_STATUS_TAG, de);
++ }
++ }
++
++ remove_proc_entry(info, e1000_proc_dir);
++ remove_proc_entry(dev->name, e1000_proc_dir);
++}
+--- /dev/null 2002-08-30 16:31:37.000000000 -0700
++++ linux-2.4.18-14-root/drivers/e1000/e1000_proc.h 2003-01-02 16:22:31.000000000 -0800
+@@ -0,0 +1,181 @@
++/*******************************************************************************
++
++ This software program is available to you under a choice of one of two
++ licenses. You may choose to be licensed under either the GNU General Public
++ License (GPL) Version 2, June 1991, available at
++ http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
++ text of which follows:
++
++ Recipient has requested a license and Intel Corporation ("Intel") is willing
++ to grant a license for the software entitled Linux Base Driver for the
++ Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
++ by Intel Corporation. The following definitions apply to this license:
++
++ "Licensed Patents" means patent claims licensable by Intel Corporation which
++ are necessarily infringed by the use of sale of the Software alone or when
++ combined with the operating system referred to below.
++
++ "Recipient" means the party to whom Intel delivers this Software.
++
++ "Licensee" means Recipient and those third parties that receive a license to
++ any operating system available under the GNU Public License version 2.0 or
++ later.
++
++ Copyright (c) 1999 - 2002 Intel Corporation.
++ All rights reserved.
++
++ The license is provided to Recipient and Recipient's Licensees under the
++ following terms.
++
++ Redistribution and use in source and binary forms of the Software, with or
++ without modification, are permitted provided that the following conditions
++ are met:
++
++ Redistributions of source code of the Software may retain the above
++ copyright notice, this list of conditions and the following disclaimer.
++
++ Redistributions in binary form of the Software may reproduce the above
++ copyright notice, this list of conditions and the following disclaimer in
++ the documentation and/or materials provided with the distribution.
++
++ Neither the name of Intel Corporation nor the names of its contributors
++ shall be used to endorse or promote products derived from this Software
++ without specific prior written permission.
++
++ Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
++ royalty-free patent license under Licensed Patents to make, use, sell, offer
++ to sell, import and otherwise transfer the Software, if any, in source code
++ and object code form. This license shall include changes to the Software
++ that are error corrections or other minor changes to the Software that do
++ not add functionality or features when the Software is incorporated in any
++ version of an operating system that has been distributed under the GNU
++ General Public License 2.0 or later. This patent license shall apply to the
++ combination of the Software and any operating system licensed under the GNU
++ Public License version 2.0 or later if, at the time Intel provides the
++ Software to Recipient, such addition of the Software to the then publicly
++ available versions of such operating systems available under the GNU Public
++ License version 2.0 or later (whether in gold, beta or alpha form) causes
++ such combination to be covered by the Licensed Patents. The patent license
++ shall not apply to any other combinations which include the Software. NO
++ hardware per se is licensed hereunder.
++
++ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
++ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
++ DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
++ ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
++ AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
++ TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
++ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++
++*******************************************************************************/
++
++/* /proc definitions */
++#include <linux/proc_fs.h>
++
++#define ADAPTERS_PROC_DIR "PRO_LAN_Adapters"
++
++#define DESCRIPTION_TAG "Description"
++#define PART_NUMBER_TAG "Part_Number"
++#define DRVR_NAME_TAG "Driver_Name"
++#define DRVR_VERSION_TAG "Driver_Version"
++#define PCI_VENDOR_TAG "PCI_Vendor"
++#define PCI_DEVICE_ID_TAG "PCI_Device_ID"
++#define PCI_SUBSYSTEM_VENDOR_TAG "PCI_Subsystem_Vendor"
++#define PCI_SUBSYSTEM_ID_TAG "PCI_Subsystem_ID"
++#define PCI_REVISION_ID_TAG "PCI_Revision_ID"
++#define PCI_BUS_TAG "PCI_Bus"
++#define PCI_SLOT_TAG "PCI_Slot"
++#define PCI_BUS_TYPE_TAG "PCI_Bus_Type"
++#define PCI_BUS_SPEED_TAG "PCI_Bus_Speed"
++#define PCI_BUS_WIDTH_TAG "PCI_Bus_Width"
++#define IRQ_TAG "IRQ"
++#define SYSTEM_DEVICE_NAME_TAG "System_Device_Name"
++#define CURRENT_HWADDR_TAG "Current_HWaddr"
++#define PERMANENT_HWADDR_TAG "Permanent_HWaddr"
++
++#define LINK_TAG "Link"
++#define SPEED_TAG "Speed"
++#define DUPLEX_TAG "Duplex"
++#define STATE_TAG "State"
++
++#define RX_PACKETS_TAG "Rx_Packets"
++#define TX_PACKETS_TAG "Tx_Packets"
++#define RX_BYTES_TAG "Rx_Bytes"
++#define TX_BYTES_TAG "Tx_Bytes"
++#define RX_ERRORS_TAG "Rx_Errors"
++#define TX_ERRORS_TAG "Tx_Errors"
++#define RX_DROPPED_TAG "Rx_Dropped"
++#define TX_DROPPED_TAG "Tx_Dropped"
++#define MULTICAST_TAG "Multicast"
++#define COLLISIONS_TAG "Collisions"
++#define RX_LENGTH_ERRORS_TAG "Rx_Length_Errors"
++#define RX_OVER_ERRORS_TAG "Rx_Over_Errors"
++#define RX_CRC_ERRORS_TAG "Rx_CRC_Errors"
++#define RX_FRAME_ERRORS_TAG "Rx_Frame_Errors"
++#define RX_FIFO_ERRORS_TAG "Rx_FIFO_Errors"
++#define RX_MISSED_ERRORS_TAG "Rx_Missed_Errors"
++#define TX_ABORTED_ERRORS_TAG "Tx_Aborted_Errors"
++#define TX_CARRIER_ERRORS_TAG "Tx_Carrier_Errors"
++#define TX_FIFO_ERRORS_TAG "Tx_FIFO_Errors"
++#define TX_HEARTBEAT_ERRORS_TAG "Tx_Heartbeat_Errors"
++#define TX_WINDOW_ERRORS_TAG "Tx_Window_Errors"
++
++#define RX_TCP_CHECKSUM_GOOD_TAG "Rx_TCP_Checksum_Good"
++#define RX_TCP_CHECKSUM_BAD_TAG "Rx_TCP_Checksum_Bad"
++#define TX_TCP_CHECKSUM_GOOD_TAG "Tx_TCP_Checksum_Good"
++#define TX_TCP_CHECKSUM_BAD_TAG "Tx_TCP_Checksum_Bad"
++
++#define TX_LATE_COLL_TAG "Tx_Abort_Late_Coll"
++#define TX_DEFERRED_TAG "Tx_Deferred_Ok"
++#define TX_SINGLE_COLL_TAG "Tx_Single_Coll_Ok"
++#define TX_MULTI_COLL_TAG "Tx_Multi_Coll_Ok"
++#define RX_LONG_ERRORS_TAG "Rx_Long_Length_Errors"
++#define RX_SHORT_ERRORS_TAG "Rx_Short_Length_Errors"
++#define RX_ALIGN_ERRORS_TAG "Rx_Align_Errors"
++#define RX_XON_TAG "Rx_Flow_Control_XON"
++#define RX_XOFF_TAG "Rx_Flow_Control_XOFF"
++#define TX_XON_TAG "Tx_Flow_Control_XON"
++#define TX_XOFF_TAG "Tx_Flow_Control_XOFF"
++#define RX_CSUM_GOOD_TAG "Rx_Csum_Offload_Good"
++#define RX_CSUM_ERROR_TAG "Rx_Csum_Offload_Errors"
++
++/* what is the cable length (only for 100/1000 modes)? - 50, 50-80, 80-110, 110-140 and > 140 meters */
++#define CABLE_LENGTH_TAG "PHY_Cable_Length"
++
++/* Media Type Copper/Fiber */
++#define MEDIA_TYPE_TAG "PHY_Media_Type"
++
++/* Is extended 10 Base-T distance feature enabled? This is done by lowering the receive threshold - enabled/disabled */
++#define EXTENDED_10BASE_T_DISTANCE_TAG "PHY_Extended_10Base_T_Distance"
++
++/* Cable polarity Normal/Reversed */
++#define CABLE_POLARITY_TAG "PHY_Cable_Polarity"
++
++/* Is Polarity reversal enabled? Enabled/Disabled */
++#define CABLE_POLARITY_CORRECTION_TAG "PHY_Disable_Polarity_Correction"
++
++/* Number of IDLE Errors */
++#define IDLE_ERRORS_TAG "PHY_Idle_Errors"
++
++/* Should the link be brought down if an IDLE is not seen within 1 msec while in 1000mbps mode? Enabled/Disabled */
++#define LINK_RESET_ENABLED_TAG "PHY_Link_Reset_Enabled"
++
++/* Number of receive errors */
++#define RECEIVE_ERRORS_TAG "PHY_Receive_Errors"
++
++/* MDI-X Support Enabled? Auto, Manual(MDI) or Manual(MDI-X) */
++#define MDI_X_ENABLED_TAG "PHY_MDI_X_Enabled"
++
++/* Local Receiver OK? OK/NOT_OK */
++#define LOCAL_RECEIVER_STATUS_TAG "PHY_Local_Receiver_Status"
++
++/* Remote Receiver OK? OK/NOT_OK */
++#define REMOTE_RECEIVER_STATUS_TAG "PHY_Remote_Receiver_Status"
++
++/* symbols exported to e1000_main */
++extern struct proc_dir_entry *e1000_proc_dir;
++extern int e1000_create_proc_dev(struct e1000_adapter * Adapter);
++extern void e1000_remove_proc_dev(struct net_device *dev);
+--- /dev/null 2002-08-30 16:31:37.000000000 -0700
++++ linux-2.4.18-14-root/drivers/e1000/Makefile 2003-01-02 16:22:31.000000000 -0800
+@@ -0,0 +1,92 @@
++################################################################################
++#
++# This software program is available to you under a choice of one of two
++# licenses. You may choose to be licensed under either the GNU General Public
++# License (GPL) Version 2, June 1991, available at
++# http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
++# text of which follows:
++#
++# Recipient has requested a license and Intel Corporation ("Intel") is willing
++# to grant a license for the software entitled Linux Base Driver for the
++# Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
++# by Intel Corporation. The following definitions apply to this license:
++#
++# "Licensed Patents" means patent claims licensable by Intel Corporation which
++# are necessarily infringed by the use of sale of the Software alone or when
++# combined with the operating system referred to below.
++#
++# "Recipient" means the party to whom Intel delivers this Software.
++#
++# "Licensee" means Recipient and those third parties that receive a license to
++# any operating system available under the GNU Public License version 2.0 or
++# later.
++#
++# Copyright (c) 1999 - 2002 Intel Corporation.
++# All rights reserved.
++#
++# The license is provided to Recipient and Recipient's Licensees under the
++# following terms.
++#
++# Redistribution and use in source and binary forms of the Software, with or
++# without modification, are permitted provided that the following conditions
++# are met:
++#
++# Redistributions of source code of the Software may retain the above
++# copyright notice, this list of conditions and the following disclaimer.
++#
++# Redistributions in binary form of the Software may reproduce the above
++# copyright notice, this list of conditions and the following disclaimer in
++# the documentation and/or materials provided with the distribution.
++#
++# Neither the name of Intel Corporation nor the names of its contributors
++# shall be used to endorse or promote products derived from this Software
++# without specific prior written permission.
++#
++# Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
++# royalty-free patent license under Licensed Patents to make, use, sell, offer
++# to sell, import and otherwise transfer the Software, if any, in source code
++# and object code form. This license shall include changes to the Software
++# that are error corrections or other minor changes to the Software that do
++# not add functionality or features when the Software is incorporated in any
++# version of an operating system that has been distributed under the GNU
++# General Public License 2.0 or later. This patent license shall apply to the
++# combination of the Software and any operating system licensed under the GNU
++# Public License version 2.0 or later if, at the time Intel provides the
++# Software to Recipient, such addition of the Software to the then publicly
++# available versions of such operating systems available under the GNU Public
++# License version 2.0 or later (whether in gold, beta or alpha form) causes
++# such combination to be covered by the Licensed Patents. The patent license
++# shall not apply to any other combinations which include the Software. NO
++# hardware per se is licensed hereunder.
++#
++# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
++# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++# IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++# ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
++# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++# (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
++# ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
++# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
++# TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
++# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++#
++################################################################################
++
++###########################################################################
++# Configuration Section
++
++# Optional features - set to 'y' for on, anything else for off
++# Intel(R) Advanced Network Services
++IANS := n
++# Intel(R) PRO Diagnostics
++IDIAG := n
++
++###########################################################################
++# Driver files
++
++# core driver files
++O_TARGET := e1000.o
++obj-y := e1000_main.o e1000_mac.o e1000_phy.o e1000_proc.o
++obj-m := $(O_TARGET)
++
++include $(TOPDIR)/Rules.make
+--- linux-2.4.18-14/drivers/Makefile~e1000 2003-01-02 16:20:41.000000000 -0800
++++ linux-2.4.18-14-root/drivers/Makefile 2003-01-02 16:22:31.000000000 -0800
+@@ -6,14 +6,15 @@
+ #
+
+
+-mod-subdirs := addon dio mtd sbus video macintosh usb input telephony sgi ide \
++mod-subdirs := e1000 addon dio mtd sbus video macintosh usb input telephony sgi ide \
+ message/i2o message/fusion scsi md ieee1394 pnp isdn atm \
+ fc4 net/hamradio i2c acpi bluetooth sensors
+
+-subdir-y := addon parport char block net sound misc media cdrom hotplug
++subdir-y := e1000 addon parport char block net sound misc media cdrom hotplug
+ subdir-m := $(subdir-y)
+
+
++subdir-$(CONFIG_E1000) += e1000
+ subdir-$(CONFIG_DIO) += dio
+ subdir-$(CONFIG_PCI) += pci
+ subdir-$(CONFIG_PCMCIA) += pcmcia
+--- linux-2.4.18-14/Makefile~e1000 2003-01-02 16:20:51.000000000 -0800
++++ linux-2.4.18-14-root/Makefile 2003-01-02 16:22:31.000000000 -0800
+@@ -178,6 +178,7 @@ DRIVERS-$(CONFIG_PCMCIA) += drivers/pcmc
+ DRIVERS-$(CONFIG_NET_PCMCIA) += drivers/net/pcmcia/pcmcia_net.o
+ DRIVERS-$(CONFIG_NET_WIRELESS) += drivers/net/wireless/wireless_net.o
+ DRIVERS-$(CONFIG_PCMCIA_CHRDEV) += drivers/char/pcmcia/pcmcia_char.o
++DRIVERS-$(CONFIG_E1000) += drivers/e1000/e1000.o
+ DRIVERS-$(CONFIG_DIO) += drivers/dio/dio.a
+ DRIVERS-$(CONFIG_SBUS) += drivers/sbus/sbus_all.o
+ DRIVERS-$(CONFIG_ZORRO) += drivers/zorro/driver.o
+
+_