/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved * Use is subject to license terms. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. */ #ifndef EXPORT_SYMTAB # define EXPORT_SYMTAB #endif #define DEBUG_SUBSYSTEM S_MDC #ifdef __KERNEL__ # include # include # include # include #else # include #endif #include #include #include #include "mdc_internal.h" int it_open_error(int phase, struct lookup_intent *it) { if (it_disposition(it, DISP_OPEN_OPEN)) { if (phase >= DISP_OPEN_OPEN) return it->d.lustre.it_status; else return 0; } if (it_disposition(it, DISP_OPEN_CREATE)) { if (phase >= DISP_OPEN_CREATE) return it->d.lustre.it_status; else return 0; } if (it_disposition(it, DISP_LOOKUP_EXECD)) { if (phase >= DISP_LOOKUP_EXECD) return it->d.lustre.it_status; else return 0; } if (it_disposition(it, DISP_IT_EXECD)) { if (phase >= DISP_IT_EXECD) return it->d.lustre.it_status; else return 0; } CERROR("it disp: %X, status: %d\n", it->d.lustre.it_disposition, it->d.lustre.it_status); LBUG(); return 0; } EXPORT_SYMBOL(it_open_error); /* this must be called on a lockh that is known to have a referenced lock */ void mdc_set_lock_data(__u64 *l, void *data, __u32 *bits) { struct ldlm_lock *lock; struct lustre_handle *lockh = (struct lustre_handle *)l; ENTRY; if(bits) *bits = 0; if (!*l) { EXIT; return; } lock = ldlm_handle2lock(lockh); LASSERT(lock != NULL); lock_res_and_lock(lock); #ifdef __KERNEL__ if (lock->l_ast_data && lock->l_ast_data != data) { struct inode *new_inode = data; struct inode *old_inode = lock->l_ast_data; LASSERTF(old_inode->i_state & I_FREEING, "Found existing inode %p/%lu/%u state %lu in lock: " "setting data to %p/%lu/%u\n", old_inode, old_inode->i_ino, old_inode->i_generation, old_inode->i_state, new_inode, new_inode->i_ino, new_inode->i_generation); } #endif lock->l_ast_data = data; if (bits) *bits = lock->l_policy_data.l_inodebits.bits; unlock_res_and_lock(lock); LDLM_LOCK_PUT(lock); EXIT; } EXPORT_SYMBOL(mdc_set_lock_data); int mdc_change_cbdata(struct obd_export *exp, struct ll_fid *fid, ldlm_iterator_t it, void *data) { struct ldlm_res_id res_id; ENTRY; fid_build_reg_res_name((struct lu_fid*)fid, &res_id); ldlm_resource_iterate(class_exp2obd(exp)->obd_namespace, &res_id, it, data); EXIT; return 0; } /* find any ldlm lock of the inode in mdc * return 0 not find * 1 find one * < 0 error */ int mdc_find_cbdata(struct obd_export *exp, struct ll_fid *fid, ldlm_iterator_t it, void *data) { struct ldlm_res_id res_id; int rc = 0; ENTRY; fid_build_reg_res_name((struct lu_fid*)fid, &res_id); rc = ldlm_resource_iterate(class_exp2obd(exp)->obd_namespace, &res_id, it, data); if (rc == LDLM_ITER_STOP) RETURN(1); else if (rc == LDLM_ITER_CONTINUE) RETURN(0); RETURN(rc); } static inline void mdc_clear_replay_flag(struct ptlrpc_request *req, int rc) { /* Don't hold error requests for replay. */ if (req->rq_replay) { spin_lock(&req->rq_lock); req->rq_replay = 0; spin_unlock(&req->rq_lock); } if (rc && req->rq_transno != 0) { DEBUG_REQ(D_ERROR, req, "transno returned on error rc %d", rc); LBUG(); } } static int round_up(int val) { int ret = 1; while (val) { val >>= 1; ret <<= 1; } return ret; } /* Save a large LOV EA into the request buffer so that it is available * for replay. We don't do this in the initial request because the * original request doesn't need this buffer (at most it sends just the * lov_mds_md) and it is a waste of RAM/bandwidth to send the empty * buffer and may also be difficult to allocate and save a very large * request buffer for each open. (bug 5707) * * OOM here may cause recovery failure if lmm is needed (only for the * original open if the MDS crashed just when this client also OOM'd) * but this is incredibly unlikely, and questionable whether the client * could do MDS recovery under OOM anyways... */ static void mdc_realloc_openmsg(struct ptlrpc_request *req, struct mds_body *body) { int old_len, new_size, old_size; struct lustre_msg *old_msg = req->rq_reqmsg; struct lustre_msg *new_msg; int offset; if (mdc_req_is_2_0_server(req)) offset = 4; else offset = 2; old_len = lustre_msg_buflen(old_msg, DLM_INTENT_REC_OFF + offset); old_size = lustre_packed_msg_size(old_msg); lustre_msg_set_buflen(old_msg, DLM_INTENT_REC_OFF + offset, body->eadatasize); /* old buffer is more then need */ if (old_len > body->eadatasize) return; new_size = lustre_packed_msg_size(old_msg); OBD_ALLOC(new_msg, new_size); if (new_msg != NULL) { DEBUG_REQ(D_INFO, req, "replace reqmsg for larger EA %u", body->eadatasize); memcpy(new_msg, old_msg, old_size); spin_lock(&req->rq_lock); req->rq_reqmsg = new_msg; req->rq_reqlen = new_size; spin_unlock(&req->rq_lock); OBD_FREE(old_msg, old_size); } else { lustre_msg_set_buflen(old_msg, DLM_INTENT_REC_OFF + offset, old_len); body->valid &= ~OBD_MD_FLEASIZE; body->eadatasize = 0; } } static struct ptlrpc_request *mdc_intent_open_pack(struct obd_export *exp, struct lookup_intent *it, struct mdc_op_data *data, void *lmm, __u32 lmmsize) { struct ptlrpc_request *req; struct ldlm_intent *lit; struct obd_device *obddev = class_exp2obd(exp); __u32 size[9] = { [MSG_PTLRPC_BODY_OFF] = sizeof(struct ptlrpc_body), [DLM_LOCKREQ_OFF] = sizeof(struct ldlm_request), [DLM_INTENT_IT_OFF] = sizeof(*lit), [DLM_INTENT_REC_OFF] = sizeof(struct mds_rec_create), [DLM_INTENT_REC_OFF+1]= data->namelen + 1, /* As an optimization, we allocate an RPC request buffer * for at least a default-sized LOV EA even if we aren't * sending one. We grow the whole request to the next * power-of-two size since we get that much from a slab * allocation anyways. This avoids an allocation below * in the common case where we need to save a * default-sized LOV EA for open replay. */ [DLM_INTENT_REC_OFF+2]= max(lmmsize, obddev->u.cli.cl_default_mds_easize) }; __u32 repsize[7] = { [MSG_PTLRPC_BODY_OFF] = sizeof(struct ptlrpc_body), [DLM_LOCKREPLY_OFF] = sizeof(struct ldlm_reply), [DLM_REPLY_REC_OFF] = sizeof(struct mdt_body), [DLM_REPLY_REC_OFF+1] = obddev->u.cli. cl_max_mds_easize, [DLM_REPLY_REC_OFF+2] = LUSTRE_POSIX_ACL_MAX_SIZE }; CFS_LIST_HEAD(cancels); int do_join = (it->it_create_mode & M_JOIN_FILE) && data->data; int count = 0; int bufcount = 6; int repbufcount = 5; int mode; int rc; ENTRY; it->it_create_mode = (it->it_create_mode & ~S_IFMT) | S_IFREG; if (mdc_exp_is_2_0_server(exp)) { size[DLM_INTENT_REC_OFF] = sizeof(struct mdt_rec_create); size[DLM_INTENT_REC_OFF+4] = size[DLM_INTENT_REC_OFF+2]; size[DLM_INTENT_REC_OFF+3] = size[DLM_INTENT_REC_OFF+1]; size[DLM_INTENT_REC_OFF+2] = 0; /* capa */ size[DLM_INTENT_REC_OFF+1] = 0; /* capa */ bufcount = 8; repsize[DLM_REPLY_REC_OFF+3]=sizeof(struct lustre_capa); repsize[DLM_REPLY_REC_OFF+4]=sizeof(struct lustre_capa); repbufcount = 7; } rc = lustre_msg_size(class_exp2cliimp(exp)->imp_msg_magic, bufcount, size); if (rc & (rc - 1)) size[bufcount - 1] = min(size[bufcount - 1] + round_up(rc) - rc, (__u32)obddev->u.cli.cl_max_mds_easize); /* If inode is known, cancel conflicting OPEN locks. */ if (data->fid2.id) { if (it->it_flags & (FMODE_WRITE|MDS_OPEN_TRUNC)) mode = LCK_CW; #ifdef FMODE_EXEC else if (it->it_flags & FMODE_EXEC) mode = LCK_PR; #endif else mode = LCK_CR; count = mdc_resource_get_unused(exp, &data->fid2, &cancels, mode, MDS_INODELOCK_OPEN); } /* If CREATE or JOIN_FILE, cancel parent's UPDATE lock. */ if (it->it_op & IT_CREAT || do_join) mode = LCK_EX; else mode = LCK_CR; count += mdc_resource_get_unused(exp, &data->fid1, &cancels, mode, MDS_INODELOCK_UPDATE); if (do_join) { __u64 head_size = (*(__u64 *)data->data); /* join is like an unlink of the tail */ if (mdc_exp_is_2_0_server(exp)) { size[DLM_INTENT_REC_OFF+5]=sizeof(struct mdt_rec_join); } else { size[DLM_INTENT_REC_OFF+3]=sizeof(struct mds_rec_join); } bufcount++; req = ldlm_prep_enqueue_req(exp, bufcount, size,&cancels,count); if (req) mdc_join_pack(req, bufcount - 1, data, head_size); } else { req = ldlm_prep_enqueue_req(exp, bufcount, size,&cancels,count); it->it_create_mode &= ~M_JOIN_FILE; } if (req) { spin_lock(&req->rq_lock); req->rq_replay = req->rq_import->imp_replayable; spin_unlock(&req->rq_lock); /* pack the intent */ lit = lustre_msg_buf(req->rq_reqmsg, DLM_INTENT_IT_OFF, sizeof(*lit)); lit->opc = (__u64)it->it_op; /* pack the intended request */ mdc_open_pack(req, DLM_INTENT_REC_OFF, data, it->it_create_mode, 0, it->it_flags, lmm, lmmsize); ptlrpc_req_set_repsize(req, repbufcount, repsize); } RETURN(req); } static struct ptlrpc_request *mdc_intent_unlink_pack(struct obd_export *exp, struct lookup_intent *it, struct mdc_op_data *data) { struct ptlrpc_request *req; struct ldlm_intent *lit; struct obd_device *obddev = class_exp2obd(exp); __u32 size[5] = { [MSG_PTLRPC_BODY_OFF] = sizeof(struct ptlrpc_body), [DLM_LOCKREQ_OFF] = sizeof(struct ldlm_request), [DLM_INTENT_IT_OFF] = sizeof(*lit), [DLM_INTENT_REC_OFF] = mdc_exp_is_2_0_server(exp) ? sizeof(struct mdt_rec_unlink) : sizeof(struct mds_rec_unlink), [DLM_INTENT_REC_OFF+1]= data->namelen + 1 }; __u32 repsize[5] = { [MSG_PTLRPC_BODY_OFF] = sizeof(struct ptlrpc_body), [DLM_LOCKREPLY_OFF] = sizeof(struct ldlm_reply), [DLM_REPLY_REC_OFF] = sizeof(struct mdt_body), [DLM_REPLY_REC_OFF+1] = obddev->u.cli. cl_max_mds_easize, [DLM_REPLY_REC_OFF+2] = obddev->u.cli. cl_max_mds_cookiesize }; ENTRY; req = ldlm_prep_enqueue_req(exp, 5, size, NULL, 0); if (req) { /* pack the intent */ lit = lustre_msg_buf(req->rq_reqmsg, DLM_INTENT_IT_OFF, sizeof(*lit)); lit->opc = (__u64)it->it_op; /* pack the intended request */ mdc_unlink_pack(req, DLM_INTENT_REC_OFF, data); ptlrpc_req_set_repsize(req, 5, repsize); } RETURN(req); } static struct ptlrpc_request *mdc_intent_lookup_pack(struct obd_export *exp, struct lookup_intent *it, struct mdc_op_data *data) { struct ptlrpc_request *req; struct ldlm_intent *lit; struct obd_device *obddev = class_exp2obd(exp); __u32 size[6] = { [MSG_PTLRPC_BODY_OFF] = sizeof(struct ptlrpc_body), [DLM_LOCKREQ_OFF] = sizeof(struct ldlm_request), [DLM_INTENT_IT_OFF] = sizeof(*lit), [DLM_INTENT_REC_OFF] = sizeof(struct mdt_body), [DLM_INTENT_REC_OFF+1]= data->namelen + 1, [DLM_INTENT_REC_OFF+2]= 0 }; __u32 repsize[6] = { [MSG_PTLRPC_BODY_OFF] = sizeof(struct ptlrpc_body), [DLM_LOCKREPLY_OFF] = sizeof(struct ldlm_reply), [DLM_REPLY_REC_OFF] = sizeof(struct mdt_body), [DLM_REPLY_REC_OFF+1] = obddev->u.cli. cl_max_mds_easize, [DLM_REPLY_REC_OFF+2] = LUSTRE_POSIX_ACL_MAX_SIZE, [DLM_REPLY_REC_OFF+3] = 0 }; obd_valid valid = OBD_MD_FLGETATTR | OBD_MD_FLEASIZE | OBD_MD_FLACL | OBD_MD_FLMODEASIZE | OBD_MD_FLDIREA; int bufcount = 5; ENTRY; if (mdc_exp_is_2_0_server(exp)) { size[DLM_INTENT_REC_OFF+1] = 0; /* capa */ size[DLM_INTENT_REC_OFF+2] = data->namelen + 1; bufcount = 6; } req = ldlm_prep_enqueue_req(exp, bufcount, size, NULL, 0); if (req) { /* pack the intent */ lit = lustre_msg_buf(req->rq_reqmsg, DLM_INTENT_IT_OFF, sizeof(*lit)); lit->opc = (__u64)it->it_op; /* pack the intended request */ mdc_getattr_pack(req, DLM_INTENT_REC_OFF, valid, it->it_flags, data); ptlrpc_req_set_repsize(req, bufcount, repsize); } RETURN(req); } static struct ptlrpc_request *mdc_intent_readdir_pack(struct obd_export *exp) { struct ptlrpc_request *req; __u32 size[2] = { [MSG_PTLRPC_BODY_OFF] = sizeof(struct ptlrpc_body), [DLM_LOCKREQ_OFF] = sizeof(struct ldlm_request) }; __u32 repsize[3] = { [MSG_PTLRPC_BODY_OFF] = sizeof(struct ptlrpc_body), [DLM_LOCKREPLY_OFF] = sizeof(struct ldlm_reply), [DLM_REPLY_REC_OFF] = sizeof(struct ost_lvb) }; ENTRY; req = ldlm_prep_enqueue_req(exp, 2, size, NULL, 0); if (req) ptlrpc_req_set_repsize(req, 3, repsize); RETURN(req); } static int mdc_finish_enqueue(struct obd_export *exp, struct ptlrpc_request *req, struct ldlm_enqueue_info *einfo, struct lookup_intent *it, struct lustre_handle *lockh, int rc) { struct ldlm_request *lockreq; struct ldlm_reply *lockrep; ENTRY; LASSERT(rc >= 0); /* Similarly, if we're going to replay this request, we don't want to * actually get a lock, just perform the intent. */ if (req->rq_transno || req->rq_replay) { lockreq = lustre_msg_buf(req->rq_reqmsg, DLM_LOCKREQ_OFF, sizeof(*lockreq)); lockreq->lock_flags |= LDLM_FL_INTENT_ONLY; } if (rc == ELDLM_LOCK_ABORTED) { einfo->ei_mode = 0; memset(lockh, 0, sizeof(*lockh)); rc = 0; } else { /* rc = 0 */ struct ldlm_lock *lock = ldlm_handle2lock(lockh); LASSERT(lock); /* If the server gave us back a different lock mode, we should * fix up our variables. */ if (lock->l_req_mode != einfo->ei_mode) { ldlm_lock_addref(lockh, lock->l_req_mode); ldlm_lock_decref(lockh, einfo->ei_mode); einfo->ei_mode = lock->l_req_mode; } LDLM_LOCK_PUT(lock); } lockrep = lustre_msg_buf(req->rq_repmsg, DLM_LOCKREPLY_OFF, sizeof(*lockrep)); LASSERT(lockrep != NULL); /* checked by ldlm_cli_enqueue() */ /* swabbed by ldlm_cli_enqueue() */ LASSERT(lustre_rep_swabbed(req, DLM_LOCKREPLY_OFF)); it->d.lustre.it_disposition = (int)lockrep->lock_policy_res1; it->d.lustre.it_status = (int)lockrep->lock_policy_res2; it->d.lustre.it_lock_mode = einfo->ei_mode; it->d.lustre.it_lock_handle = lockh->cookie; it->d.lustre.it_data = req; if (it->d.lustre.it_status < 0 && req->rq_replay) mdc_clear_replay_flag(req, it->d.lustre.it_status); /* If we're doing an IT_OPEN which did not result in an actual * successful open, then we need to remove the bit which saves * this request for unconditional replay. * * It's important that we do this first! Otherwise we might exit the * function without doing so, and try to replay a failed create * (bug 3440) */ if ((it->it_op & IT_OPEN) && req->rq_replay && (!it_disposition(it, DISP_OPEN_OPEN) || it->d.lustre.it_status != 0)) mdc_clear_replay_flag(req, it->d.lustre.it_status); DEBUG_REQ(D_RPCTRACE, req, "op: %d disposition: %x, status: %d", it->it_op,it->d.lustre.it_disposition,it->d.lustre.it_status); /* We know what to expect, so we do any byte flipping required here */ if (it->it_op & (IT_OPEN | IT_UNLINK | IT_LOOKUP | IT_GETATTR)) { struct mds_body *body; body = lustre_swab_repbuf(req, DLM_REPLY_REC_OFF, sizeof(*body), lustre_swab_mds_body); if (body == NULL) { CERROR ("Can't swab mds_body\n"); RETURN (-EPROTO); } /* If this is a successful OPEN request, we need to set replay handler and data early, so that if replay happens immediately after swabbing below, new reply is swabbed by that handler correctly */ if (it_disposition(it, DISP_OPEN_OPEN) && !it_open_error(DISP_OPEN_OPEN, it)) mdc_set_open_replay_data(NULL, req); if ((body->valid & OBD_MD_FLEASIZE) != 0) { void *eadata; mdc_update_max_ea_from_body(exp, body); /* The eadata is opaque; just check that it is there. * Eventually, obd_unpackmd() will check the contents */ eadata = lustre_swab_repbuf(req, DLM_REPLY_REC_OFF + 1, body->eadatasize, NULL); if (eadata == NULL) { CERROR ("Missing/short eadata\n"); RETURN (-EPROTO); } /* We save the reply LOV EA in case we have to replay * a create for recovery. If we didn't allocate a * large enough request buffer above we need to * reallocate it here to hold the actual LOV EA. */ if (it->it_op & IT_OPEN) { int offset = DLM_INTENT_REC_OFF; void *lmm; if (mdc_req_is_2_0_server(req)) offset += 4; else offset += 2; if (lustre_msg_buflen(req->rq_reqmsg, offset) != body->eadatasize) mdc_realloc_openmsg(req, body); lmm = lustre_msg_buf(req->rq_reqmsg, offset, body->eadatasize); if (lmm) memcpy(lmm, eadata, body->eadatasize); } } } RETURN(rc); } /* We always reserve enough space in the reply packet for a stripe MD, because * we don't know in advance the file type. */ int mdc_enqueue(struct obd_export *exp, struct ldlm_enqueue_info *einfo, struct lookup_intent *it, struct mdc_op_data *data, struct lustre_handle *lockh, void *lmm, int lmmsize, int extra_lock_flags) { struct ptlrpc_request *req; struct obd_device *obddev = class_exp2obd(exp); struct ldlm_res_id res_id; ldlm_policy_data_t policy = { .l_inodebits = { MDS_INODELOCK_LOOKUP } }; int flags = extra_lock_flags | LDLM_FL_HAS_INTENT; int rc; ENTRY; fid_build_reg_res_name((void *)&data->fid1, &res_id); LASSERTF(einfo->ei_type == LDLM_IBITS,"lock type %d\n", einfo->ei_type); if (it->it_op & (IT_UNLINK | IT_GETATTR | IT_READDIR)) policy.l_inodebits.bits = MDS_INODELOCK_UPDATE; if (it->it_op & IT_OPEN) { if ((it->it_op & IT_CREAT) && mdc_exp_is_2_0_server(exp)) { struct client_obd *cli = &obddev->u.cli; data->fid3 = data->fid2; rc = mdc_fid_alloc(cli->cl_seq, (void *)&data->fid2); if (rc) { CERROR("fid allocation result: %d\n", rc); RETURN(rc); } } req = mdc_intent_open_pack(exp, it, data, lmm, lmmsize); if (it->it_create_mode & M_JOIN_FILE) { policy.l_inodebits.bits = MDS_INODELOCK_UPDATE; } } else if (it->it_op & IT_UNLINK) { req = mdc_intent_unlink_pack(exp, it, data); } else if (it->it_op & (IT_GETATTR | IT_LOOKUP)) { req = mdc_intent_lookup_pack(exp, it, data); } else if (it->it_op == IT_READDIR) { req = mdc_intent_readdir_pack(exp); } else { CERROR("bad it_op %x\n", it->it_op); RETURN(-EINVAL); } if (!req) RETURN(-ENOMEM); /* It is important to obtain rpc_lock first (if applicable), so that * threads that are serialised with rpc_lock are not polluting our * rpcs in flight counter */ mdc_get_rpc_lock(obddev->u.cli.cl_rpc_lock, it); mdc_enter_request(&obddev->u.cli); rc = ldlm_cli_enqueue(exp, &req, einfo, res_id, &policy, &flags, NULL, 0, NULL, lockh, 0); mdc_exit_request(&obddev->u.cli); mdc_put_rpc_lock(obddev->u.cli.cl_rpc_lock, it); if (rc < 0) { CERROR("ldlm_cli_enqueue: %d\n", rc); mdc_clear_replay_flag(req, rc); ptlrpc_req_finished(req); RETURN(rc); } rc = mdc_finish_enqueue(exp, req, einfo, it, lockh, rc); RETURN(rc); } EXPORT_SYMBOL(mdc_enqueue); int mdc_revalidate_lock(struct obd_export *exp, struct lookup_intent *it, struct ll_fid *fid) { /* We could just return 1 immediately, but since we should only * be called in revalidate_it if we already have a lock, let's * verify that. */ struct ldlm_res_id res_id; struct lustre_handle lockh; ldlm_policy_data_t policy; ldlm_mode_t mode; ENTRY; fid_build_reg_res_name((struct lu_fid*)fid, &res_id); /* As not all attributes are kept under update lock, e.g. owner/group/acls are under lookup lock, we need both ibits for GETATTR. */ policy.l_inodebits.bits = (it->it_op == IT_GETATTR) ? MDS_INODELOCK_UPDATE | MDS_INODELOCK_LOOKUP : MDS_INODELOCK_LOOKUP; mode = ldlm_lock_match(exp->exp_obd->obd_namespace, LDLM_FL_BLOCK_GRANTED, &res_id, LDLM_IBITS, &policy, LCK_CR|LCK_CW|LCK_PR|LCK_PW, &lockh); if (mode) { memcpy(&it->d.lustre.it_lock_handle, &lockh, sizeof(lockh)); it->d.lustre.it_lock_mode = mode; } RETURN(!!mode); } EXPORT_SYMBOL(mdc_revalidate_lock); static int mdc_finish_intent_lock(struct obd_export *exp, struct ptlrpc_request *req, struct mdc_op_data *data, struct lookup_intent *it, struct lustre_handle *lockh) { struct mds_body *mds_body; struct lustre_handle old_lock; struct ldlm_lock *lock; int rc; ENTRY; LASSERT(req != NULL); LASSERT(req != LP_POISON); LASSERT(req->rq_repmsg != LP_POISON); if (!it_disposition(it, DISP_IT_EXECD)) { /* The server failed before it even started executing the * intent, i.e. because it couldn't unpack the request. */ LASSERT(it->d.lustre.it_status != 0); RETURN(it->d.lustre.it_status); } rc = it_open_error(DISP_IT_EXECD, it); if (rc) RETURN(rc); mds_body = lustre_msg_buf(req->rq_repmsg, DLM_REPLY_REC_OFF, sizeof(*mds_body)); /* mdc_enqueue checked */ LASSERT(mds_body != NULL); /* mdc_enqueue swabbed */ LASSERT(lustre_rep_swabbed(req, DLM_REPLY_REC_OFF)); /* If we were revalidating a fid/name pair, mark the intent in * case we fail and get called again from lookup */ if (data->fid2.id && (it->it_op != IT_GETATTR) && ( !mdc_exp_is_2_0_server(exp) || (mdc_exp_is_2_0_server(exp) && (it->it_create_mode & M_CHECK_STALE)))) { it_set_disposition(it, DISP_ENQ_COMPLETE); /* Also: did we find the same inode? */ if (memcmp(&data->fid2, &mds_body->fid1, sizeof(data->fid2)) && memcmp(&data->fid3, &mds_body->fid1, sizeof(data->fid3))) RETURN(-ESTALE); } rc = it_open_error(DISP_LOOKUP_EXECD, it); if (rc) RETURN(rc); /* keep requests around for the multiple phases of the call * this shows the DISP_XX must guarantee we make it into the call */ if (!it_disposition(it, DISP_ENQ_CREATE_REF) && it_disposition(it, DISP_OPEN_CREATE) && !it_open_error(DISP_OPEN_CREATE, it)) { it_set_disposition(it, DISP_ENQ_CREATE_REF); ptlrpc_request_addref(req); /* balanced in ll_create_node */ } if (!it_disposition(it, DISP_ENQ_OPEN_REF) && it_disposition(it, DISP_OPEN_OPEN) && !it_open_error(DISP_OPEN_OPEN, it)) { it_set_disposition(it, DISP_ENQ_OPEN_REF); ptlrpc_request_addref(req); /* balanced in ll_file_open */ /* BUG 11546 - eviction in the middle of open rpc processing */ OBD_FAIL_TIMEOUT(OBD_FAIL_MDC_ENQUEUE_PAUSE, obd_timeout); } if (it->it_op & IT_CREAT) { /* XXX this belongs in ll_create_it */ } else if (it->it_op == IT_OPEN) { LASSERT(!it_disposition(it, DISP_OPEN_CREATE)); } else { LASSERT(it->it_op & (IT_GETATTR | IT_LOOKUP)); } /* If we already have a matching lock, then cancel the new * one. We have to set the data here instead of in * mdc_enqueue, because we need to use the child's inode as * the l_ast_data to match, and that's not available until * intent_finish has performed the iget().) */ lock = ldlm_handle2lock(lockh); if (lock) { ldlm_policy_data_t policy = lock->l_policy_data; LDLM_DEBUG(lock, "matching against this"); LDLM_LOCK_PUT(lock); memcpy(&old_lock, lockh, sizeof(*lockh)); if (ldlm_lock_match(NULL, LDLM_FL_BLOCK_GRANTED, NULL, LDLM_IBITS, &policy, LCK_NL, &old_lock)) { ldlm_lock_decref_and_cancel(lockh, it->d.lustre.it_lock_mode); memcpy(lockh, &old_lock, sizeof(old_lock)); memcpy(&it->d.lustre.it_lock_handle, lockh, sizeof(*lockh)); } } CDEBUG(D_DENTRY,"D_IT dentry %.*s intent: %s status %d disp %x rc %d\n", data->namelen, data->name, ldlm_it2str(it->it_op), it->d.lustre.it_status, it->d.lustre.it_disposition, rc); RETURN(rc); } /* * This long block is all about fixing up the lock and request state * so that it is correct as of the moment _before_ the operation was * applied; that way, the VFS will think that everything is normal and * call Lustre's regular VFS methods. * * If we're performing a creation, that means that unless the creation * failed with EEXIST, we should fake up a negative dentry. * * For everything else, we want to lookup to succeed. * * One additional note: if CREATE or OPEN succeeded, we add an extra * reference to the request because we need to keep it around until * ll_create/ll_open gets called. * * The server will return to us, in it_disposition, an indication of * exactly what d.lustre.it_status refers to. * * If DISP_OPEN_OPEN is set, then d.lustre.it_status refers to the open() call, * otherwise if DISP_OPEN_CREATE is set, then it status is the * creation failure mode. In either case, one of DISP_LOOKUP_NEG or * DISP_LOOKUP_POS will be set, indicating whether the child lookup * was successful. * * Else, if DISP_LOOKUP_EXECD then d.lustre.it_status is the rc of the * child lookup. */ int mdc_intent_lock(struct obd_export *exp, struct mdc_op_data *op_data, void *lmm, int lmmsize, struct lookup_intent *it, int lookup_flags, struct ptlrpc_request **reqp, ldlm_blocking_callback cb_blocking, int extra_lock_flags) { struct lustre_handle lockh; int rc; ENTRY; LASSERT(it); CDEBUG(D_DLMTRACE,"name: %.*s("DFID") in inode ("DFID"), " "intent: %s flags %#o\n", op_data->namelen, op_data->name, PFID(((void *)&op_data->fid2)), PFID(((void *)&op_data->fid1)), ldlm_it2str(it->it_op), it->it_flags); lockh.cookie = 0; if (op_data->fid2.id && (it->it_op == IT_LOOKUP || it->it_op == IT_GETATTR)) { rc = mdc_revalidate_lock(exp, it, &op_data->fid2); /* Only return failure if it was not GETATTR by cfid (from inode_revalidate) */ if (rc || op_data->namelen != 0) RETURN(rc); } /* lookup_it may be called only after revalidate_it has run, because * revalidate_it cannot return errors, only zero. Returning zero causes * this call to lookup, which *can* return an error. * * We only want to execute the request associated with the intent one * time, however, so don't send the request again. Instead, skip past * this and use the request from revalidate. In this case, revalidate * never dropped its reference, so the refcounts are all OK */ if (!it_disposition(it, DISP_ENQ_COMPLETE)) { struct ldlm_enqueue_info einfo = { LDLM_IBITS, it_to_lock_mode(it), cb_blocking, ldlm_completion_ast, NULL, NULL }; rc = mdc_enqueue(exp, &einfo, it, op_data, &lockh, lmm, lmmsize, extra_lock_flags); if (rc < 0) RETURN(rc); } else if (!op_data->fid2.id) { /* DISP_ENQ_COMPLETE set means there is extra reference on * request referenced from this intent, saved for subsequent * lookup. This path is executed when we proceed to this * lookup, so we clear DISP_ENQ_COMPLETE */ it_clear_disposition(it, DISP_ENQ_COMPLETE); } *reqp = it->d.lustre.it_data; rc = mdc_finish_intent_lock(exp, *reqp, op_data, it, &lockh); RETURN(rc); } EXPORT_SYMBOL(mdc_intent_lock); static int mdc_intent_getattr_async_interpret(struct ptlrpc_request *req, void *unused, int rc) { struct obd_export *exp = req->rq_async_args.pointer_arg[0]; struct md_enqueue_info *minfo = req->rq_async_args.pointer_arg[1]; struct ldlm_enqueue_info *einfo = req->rq_async_args.pointer_arg[2]; struct lookup_intent *it; struct lustre_handle *lockh; struct obd_device *obddev; int flags = LDLM_FL_HAS_INTENT; ENTRY; it = &minfo->mi_it; lockh = &minfo->mi_lockh; obddev = class_exp2obd(exp); mdc_exit_request(&obddev->u.cli); if (OBD_FAIL_CHECK(OBD_FAIL_MDC_GETATTR_ENQUEUE)) rc = -ETIMEDOUT; rc = ldlm_cli_enqueue_fini(exp, req, einfo->ei_type, 1, einfo->ei_mode, &flags, NULL, 0, NULL, lockh, rc); if (rc < 0) { CERROR("ldlm_cli_enqueue_fini: %d\n", rc); mdc_clear_replay_flag(req, rc); GOTO(out, rc); } rc = mdc_finish_enqueue(exp, req, einfo, it, lockh, rc); if (rc) GOTO(out, rc); rc = mdc_finish_intent_lock(exp, req, &minfo->mi_data, it, lockh); GOTO(out, rc); out: OBD_FREE_PTR(einfo); minfo->mi_cb(exp, req, minfo, rc); return 0; } int mdc_intent_getattr_async(struct obd_export *exp, struct md_enqueue_info *minfo, struct ldlm_enqueue_info *einfo) { struct mdc_op_data *op_data = &minfo->mi_data; struct lookup_intent *it = &minfo->mi_it; struct ptlrpc_request *req; struct obd_device *obddev = class_exp2obd(exp); struct ldlm_res_id res_id; ldlm_policy_data_t policy = { .l_inodebits = { MDS_INODELOCK_LOOKUP } }; int rc; int flags = LDLM_FL_HAS_INTENT; ENTRY; CDEBUG(D_DLMTRACE,"name: %.*s in inode "LPU64", intent: %s flags %#o\n", op_data->namelen, op_data->name, op_data->fid1.id, ldlm_it2str(it->it_op), it->it_flags); fid_build_reg_res_name((void *)&op_data->fid1, &res_id); req = mdc_intent_lookup_pack(exp, it, op_data); if (!req) RETURN(-ENOMEM); mdc_enter_request(&obddev->u.cli); rc = ldlm_cli_enqueue(exp, &req, einfo, res_id, &policy, &flags, NULL, 0, NULL, &minfo->mi_lockh, 1); if (rc < 0) { mdc_exit_request(&obddev->u.cli); RETURN(rc); } req->rq_async_args.pointer_arg[0] = exp; req->rq_async_args.pointer_arg[1] = minfo; req->rq_async_args.pointer_arg[2] = einfo; req->rq_interpret_reply = mdc_intent_getattr_async_interpret; ptlrpcd_add_req(req); RETURN(0); } EXPORT_SYMBOL(mdc_intent_getattr_async);