/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2014, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * cl code shared between vvp and liblustre (and other Lustre clients in the * future). * * Author: Nikita Danilov */ #define DEBUG_SUBSYSTEM S_LLITE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "llite_internal.h" static const struct cl_req_operations ccc_req_ops; /* * ccc_ prefix stands for "Common Client Code". */ static struct kmem_cache *ccc_thread_kmem; static struct kmem_cache *ccc_session_kmem; static struct kmem_cache *ccc_req_kmem; static struct lu_kmem_descr ccc_caches[] = { { .ckd_cache = &ccc_thread_kmem, .ckd_name = "ccc_thread_kmem", .ckd_size = sizeof (struct ccc_thread_info), }, { .ckd_cache = &ccc_session_kmem, .ckd_name = "ccc_session_kmem", .ckd_size = sizeof (struct ccc_session) }, { .ckd_cache = &ccc_req_kmem, .ckd_name = "ccc_req_kmem", .ckd_size = sizeof (struct ccc_req) }, { .ckd_cache = NULL } }; /***************************************************************************** * * Vvp device and device type functions. * */ void *ccc_key_init(const struct lu_context *ctx, struct lu_context_key *key) { struct ccc_thread_info *info; OBD_SLAB_ALLOC_PTR_GFP(info, ccc_thread_kmem, GFP_NOFS); if (info == NULL) info = ERR_PTR(-ENOMEM); return info; } void ccc_key_fini(const struct lu_context *ctx, struct lu_context_key *key, void *data) { struct ccc_thread_info *info = data; OBD_SLAB_FREE_PTR(info, ccc_thread_kmem); } void *ccc_session_key_init(const struct lu_context *ctx, struct lu_context_key *key) { struct ccc_session *session; OBD_SLAB_ALLOC_PTR_GFP(session, ccc_session_kmem, GFP_NOFS); if (session == NULL) session = ERR_PTR(-ENOMEM); return session; } void ccc_session_key_fini(const struct lu_context *ctx, struct lu_context_key *key, void *data) { struct ccc_session *session = data; OBD_SLAB_FREE_PTR(session, ccc_session_kmem); } struct lu_context_key ccc_key = { .lct_tags = LCT_CL_THREAD, .lct_init = ccc_key_init, .lct_fini = ccc_key_fini }; struct lu_context_key ccc_session_key = { .lct_tags = LCT_SESSION, .lct_init = ccc_session_key_init, .lct_fini = ccc_session_key_fini }; int ccc_req_init(const struct lu_env *env, struct cl_device *dev, struct cl_req *req) { struct ccc_req *vrq; int result; OBD_SLAB_ALLOC_PTR_GFP(vrq, ccc_req_kmem, GFP_NOFS); if (vrq != NULL) { cl_req_slice_add(req, &vrq->crq_cl, dev, &ccc_req_ops); result = 0; } else result = -ENOMEM; return result; } /** * An `emergency' environment used by ccc_inode_fini() when cl_env_get() * fails. Access to this environment is serialized by ccc_inode_fini_guard * mutex. */ static struct lu_env *ccc_inode_fini_env = NULL; /** * A mutex serializing calls to slp_inode_fini() under extreme memory * pressure, when environments cannot be allocated. */ static DEFINE_MUTEX(ccc_inode_fini_guard); static int dummy_refcheck; int ccc_global_init(struct lu_device_type *device_type) { int result; result = lu_kmem_init(ccc_caches); if (result) return result; result = lu_device_type_init(device_type); if (result) goto out_kmem; ccc_inode_fini_env = cl_env_alloc(&dummy_refcheck, LCT_REMEMBER|LCT_NOREF); if (IS_ERR(ccc_inode_fini_env)) { result = PTR_ERR(ccc_inode_fini_env); goto out_device; } ccc_inode_fini_env->le_ctx.lc_cookie = 0x4; return 0; out_device: lu_device_type_fini(device_type); out_kmem: lu_kmem_fini(ccc_caches); return result; } void ccc_global_fini(struct lu_device_type *device_type) { if (ccc_inode_fini_env != NULL) { cl_env_put(ccc_inode_fini_env, &dummy_refcheck); ccc_inode_fini_env = NULL; } lu_device_type_fini(device_type); lu_kmem_fini(ccc_caches); } static void vvp_object_size_lock(struct cl_object *obj) { struct inode *inode = vvp_object_inode(obj); ll_inode_size_lock(inode); cl_object_attr_lock(obj); } static void vvp_object_size_unlock(struct cl_object *obj) { struct inode *inode = vvp_object_inode(obj); cl_object_attr_unlock(obj); ll_inode_size_unlock(inode); } /***************************************************************************** * * io operations. * */ void ccc_io_fini(const struct lu_env *env, const struct cl_io_slice *ios) { struct cl_io *io = ios->cis_io; CLOBINVRNT(env, io->ci_obj, vvp_object_invariant(io->ci_obj)); } int ccc_io_one_lock_index(const struct lu_env *env, struct cl_io *io, __u32 enqflags, enum cl_lock_mode mode, pgoff_t start, pgoff_t end) { struct ccc_io *cio = ccc_env_io(env); struct cl_lock_descr *descr = &cio->cui_link.cill_descr; struct cl_object *obj = io->ci_obj; CLOBINVRNT(env, obj, vvp_object_invariant(obj)); ENTRY; CDEBUG(D_VFSTRACE, "lock: %d [%lu, %lu]\n", mode, start, end); memset(&cio->cui_link, 0, sizeof cio->cui_link); if (cio->cui_fd && (cio->cui_fd->fd_flags & LL_FILE_GROUP_LOCKED)) { descr->cld_mode = CLM_GROUP; descr->cld_gid = cio->cui_fd->fd_grouplock.cg_gid; } else { descr->cld_mode = mode; } descr->cld_obj = obj; descr->cld_start = start; descr->cld_end = end; descr->cld_enq_flags = enqflags; cl_io_lock_add(env, io, &cio->cui_link); RETURN(0); } void ccc_io_update_iov(const struct lu_env *env, struct ccc_io *cio, struct cl_io *io) { int i; size_t size = io->u.ci_rw.crw_count; cio->cui_iov_olen = 0; if (!cl_is_normalio(env, io) || cio->cui_tot_nrsegs == 0) return; for (i = 0; i < cio->cui_tot_nrsegs; i++) { struct iovec *iv = &cio->cui_iov[i]; if (iv->iov_len < size) size -= iv->iov_len; else { if (iv->iov_len > size) { cio->cui_iov_olen = iv->iov_len; iv->iov_len = size; } break; } } cio->cui_nrsegs = i + 1; LASSERTF(cio->cui_tot_nrsegs >= cio->cui_nrsegs, "tot_nrsegs: %lu, nrsegs: %lu\n", cio->cui_tot_nrsegs, cio->cui_nrsegs); } int ccc_io_one_lock(const struct lu_env *env, struct cl_io *io, __u32 enqflags, enum cl_lock_mode mode, loff_t start, loff_t end) { struct cl_object *obj = io->ci_obj; return ccc_io_one_lock_index(env, io, enqflags, mode, cl_index(obj, start), cl_index(obj, end)); } void ccc_io_end(const struct lu_env *env, const struct cl_io_slice *ios) { CLOBINVRNT(env, ios->cis_io->ci_obj, vvp_object_invariant(ios->cis_io->ci_obj)); } void ccc_io_advance(const struct lu_env *env, const struct cl_io_slice *ios, size_t nob) { struct ccc_io *cio = cl2ccc_io(env, ios); struct cl_io *io = ios->cis_io; struct cl_object *obj = ios->cis_io->ci_obj; CLOBINVRNT(env, obj, vvp_object_invariant(obj)); if (!cl_is_normalio(env, io)) return; LASSERT(cio->cui_tot_nrsegs >= cio->cui_nrsegs); LASSERT(cio->cui_tot_count >= nob); cio->cui_iov += cio->cui_nrsegs; cio->cui_tot_nrsegs -= cio->cui_nrsegs; cio->cui_tot_count -= nob; /* update the iov */ if (cio->cui_iov_olen > 0) { struct iovec *iv; cio->cui_iov--; cio->cui_tot_nrsegs++; iv = &cio->cui_iov[0]; if (io->ci_continue) { iv->iov_base += iv->iov_len; LASSERT(cio->cui_iov_olen > iv->iov_len); iv->iov_len = cio->cui_iov_olen - iv->iov_len; } else { /* restore the iov_len, in case of restart io. */ iv->iov_len = cio->cui_iov_olen; } cio->cui_iov_olen = 0; } } /** * Helper function that if necessary adjusts file size (inode->i_size), when * position at the offset \a pos is accessed. File size can be arbitrary stale * on a Lustre client, but client at least knows KMS. If accessed area is * inside [0, KMS], set file size to KMS, otherwise glimpse file size. * * Locking: cl_isize_lock is used to serialize changes to inode size and to * protect consistency between inode size and cl_object * attributes. cl_object_size_lock() protects consistency between cl_attr's of * top-object and sub-objects. */ int ccc_prep_size(const struct lu_env *env, struct cl_object *obj, struct cl_io *io, loff_t start, size_t count, int *exceed) { struct cl_attr *attr = ccc_env_thread_attr(env); struct inode *inode = vvp_object_inode(obj); loff_t pos = start + count - 1; loff_t kms; int result; /* * Consistency guarantees: following possibilities exist for the * relation between region being accessed and real file size at this * moment: * * (A): the region is completely inside of the file; * * (B-x): x bytes of region are inside of the file, the rest is * outside; * * (C): the region is completely outside of the file. * * This classification is stable under DLM lock already acquired by * the caller, because to change the class, other client has to take * DLM lock conflicting with our lock. Also, any updates to ->i_size * by other threads on this client are serialized by * ll_inode_size_lock(). This guarantees that short reads are handled * correctly in the face of concurrent writes and truncates. */ vvp_object_size_lock(obj); result = cl_object_attr_get(env, obj, attr); if (result == 0) { kms = attr->cat_kms; if (pos > kms) { /* * A glimpse is necessary to determine whether we * return a short read (B) or some zeroes at the end * of the buffer (C) */ vvp_object_size_unlock(obj); result = cl_glimpse_lock(env, io, inode, obj, 0); if (result == 0 && exceed != NULL) { /* If objective page index exceed end-of-file * page index, return directly. Do not expect * kernel will check such case correctly. * linux-2.6.18-128.1.1 miss to do that. * --bug 17336 */ loff_t size = i_size_read(inode); unsigned long cur_index = start >> PAGE_CACHE_SHIFT; if ((size == 0 && cur_index != 0) || (((size - 1) >> PAGE_CACHE_SHIFT) < cur_index)) *exceed = 1; } return result; } else { /* * region is within kms and, hence, within real file * size (A). We need to increase i_size to cover the * read region so that generic_file_read() will do its * job, but that doesn't mean the kms size is * _correct_, it is only the _minimum_ size. If * someone does a stat they will get the correct size * which will always be >= the kms value here. * b=11081 */ if (i_size_read(inode) < kms) { i_size_write(inode, kms); CDEBUG(D_VFSTRACE, DFID" updating i_size "LPU64"\n", PFID(lu_object_fid(&obj->co_lu)), (__u64)i_size_read(inode)); } } } vvp_object_size_unlock(obj); return result; } /***************************************************************************** * * Transfer operations. * */ void ccc_req_completion(const struct lu_env *env, const struct cl_req_slice *slice, int ioret) { struct ccc_req *vrq; if (ioret > 0) cl_stats_tally(slice->crs_dev, slice->crs_req->crq_type, ioret); vrq = cl2ccc_req(slice); OBD_SLAB_FREE_PTR(vrq, ccc_req_kmem); } /** * Implementation of struct cl_req_operations::cro_attr_set() for ccc * layer. ccc is responsible for * * - o_[mac]time * * - o_mode * * - o_parent_seq * * - o_[ug]id * * - o_parent_oid * * - o_parent_ver * * - o_ioepoch, * * and capability. */ void ccc_req_attr_set(const struct lu_env *env, const struct cl_req_slice *slice, const struct cl_object *obj, struct cl_req_attr *attr, obd_valid flags) { struct inode *inode; struct obdo *oa; obd_flag valid_flags; oa = attr->cra_oa; inode = vvp_object_inode(obj); valid_flags = OBD_MD_FLTYPE; if ((flags & OBD_MD_FLOSSCAPA) != 0) { LASSERT(attr->cra_capa == NULL); attr->cra_capa = cl_capa_lookup(inode, slice->crs_req->crq_type); } if (slice->crs_req->crq_type == CRT_WRITE) { if (flags & OBD_MD_FLEPOCH) { oa->o_valid |= OBD_MD_FLEPOCH; oa->o_ioepoch = ll_i2info(inode)->lli_ioepoch; valid_flags |= OBD_MD_FLMTIME | OBD_MD_FLCTIME | OBD_MD_FLUID | OBD_MD_FLGID; } } obdo_from_inode(oa, inode, valid_flags & flags); obdo_set_parent_fid(oa, &ll_i2info(inode)->lli_fid); if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_INVALID_PFID)) oa->o_parent_oid++; memcpy(attr->cra_jobid, ll_i2info(inode)->lli_jobid, LUSTRE_JOBID_SIZE); } static const struct cl_req_operations ccc_req_ops = { .cro_attr_set = ccc_req_attr_set, .cro_completion = ccc_req_completion }; int cl_setattr_ost(struct inode *inode, const struct iattr *attr, struct obd_capa *capa) { struct lu_env *env; struct cl_io *io; int result; int refcheck; ENTRY; env = cl_env_get(&refcheck); if (IS_ERR(env)) RETURN(PTR_ERR(env)); io = ccc_env_thread_io(env); io->ci_obj = ll_i2info(inode)->lli_clob; io->u.ci_setattr.sa_attr.lvb_atime = LTIME_S(attr->ia_atime); io->u.ci_setattr.sa_attr.lvb_mtime = LTIME_S(attr->ia_mtime); io->u.ci_setattr.sa_attr.lvb_ctime = LTIME_S(attr->ia_ctime); io->u.ci_setattr.sa_attr.lvb_size = attr->ia_size; io->u.ci_setattr.sa_valid = attr->ia_valid; io->u.ci_setattr.sa_capa = capa; again: if (cl_io_init(env, io, CIT_SETATTR, io->ci_obj) == 0) { struct ccc_io *cio = ccc_env_io(env); if (attr->ia_valid & ATTR_FILE) /* populate the file descriptor for ftruncate to honor * group lock - see LU-787 */ cio->cui_fd = LUSTRE_FPRIVATE(attr->ia_file); result = cl_io_loop(env, io); } else { result = io->ci_result; } cl_io_fini(env, io); if (unlikely(io->ci_need_restart)) goto again; /* HSM import case: file is released, cannot be restored * no need to fail except if restore registration failed * with -ENODATA */ if (result == -ENODATA && io->ci_restore_needed && io->ci_result != -ENODATA) result = 0; cl_env_put(env, &refcheck); RETURN(result); } /***************************************************************************** * * Type conversions. * */ struct ccc_io *cl2ccc_io(const struct lu_env *env, const struct cl_io_slice *slice) { struct ccc_io *cio; cio = container_of(slice, struct ccc_io, cui_cl); LASSERT(cio == ccc_env_io(env)); return cio; } struct ccc_req *cl2ccc_req(const struct cl_req_slice *slice) { return container_of0(slice, struct ccc_req, crq_cl); } /** * Initialize or update CLIO structures for regular files when new * meta-data arrives from the server. * * \param inode regular file inode * \param md new file metadata from MDS * - allocates cl_object if necessary, * - updated layout, if object was already here. */ int cl_file_inode_init(struct inode *inode, struct lustre_md *md) { struct lu_env *env; struct ll_inode_info *lli; struct cl_object *clob; struct lu_site *site; struct lu_fid *fid; struct cl_object_conf conf = { .coc_inode = inode, .u = { .coc_md = md } }; int result = 0; int refcheck; LASSERT(md->body->mbo_valid & OBD_MD_FLID); LASSERT(S_ISREG(inode->i_mode)); env = cl_env_get(&refcheck); if (IS_ERR(env)) return PTR_ERR(env); site = ll_i2sbi(inode)->ll_site; lli = ll_i2info(inode); fid = &lli->lli_fid; LASSERT(fid_is_sane(fid)); if (lli->lli_clob == NULL) { /* clob is slave of inode, empty lli_clob means for new inode, * there is no clob in cache with the given fid, so it is * unnecessary to perform lookup-alloc-lookup-insert, just * alloc and insert directly. */ LASSERT(inode->i_state & I_NEW); conf.coc_lu.loc_flags = LOC_F_NEW; clob = cl_object_find(env, lu2cl_dev(site->ls_top_dev), fid, &conf); if (!IS_ERR(clob)) { /* * No locking is necessary, as new inode is * locked by I_NEW bit. */ lli->lli_clob = clob; lli->lli_has_smd = lsm_has_objects(md->lsm); lu_object_ref_add(&clob->co_lu, "inode", inode); } else result = PTR_ERR(clob); } else { result = cl_conf_set(env, lli->lli_clob, &conf); } cl_env_put(env, &refcheck); if (result != 0) CERROR("Failure to initialize cl object "DFID": %d\n", PFID(fid), result); return result; } /** * Wait for others drop their references of the object at first, then we drop * the last one, which will lead to the object be destroyed immediately. * Must be called after cl_object_kill() against this object. * * The reason we want to do this is: destroying top object will wait for sub * objects being destroyed first, so we can't let bottom layer (e.g. from ASTs) * to initiate top object destroying which may deadlock. See bz22520. */ static void cl_object_put_last(struct lu_env *env, struct cl_object *obj) { struct lu_object_header *header = obj->co_lu.lo_header; wait_queue_t waiter; if (unlikely(atomic_read(&header->loh_ref) != 1)) { struct lu_site *site = obj->co_lu.lo_dev->ld_site; struct lu_site_bkt_data *bkt; bkt = lu_site_bkt_from_fid(site, &header->loh_fid); init_waitqueue_entry_current(&waiter); add_wait_queue(&bkt->lsb_marche_funebre, &waiter); while (1) { set_current_state(TASK_UNINTERRUPTIBLE); if (atomic_read(&header->loh_ref) == 1) break; waitq_wait(&waiter, TASK_UNINTERRUPTIBLE); } set_current_state(TASK_RUNNING); remove_wait_queue(&bkt->lsb_marche_funebre, &waiter); } cl_object_put(env, obj); } void cl_inode_fini(struct inode *inode) { struct lu_env *env; struct ll_inode_info *lli = ll_i2info(inode); struct cl_object *clob = lli->lli_clob; int refcheck; int emergency; if (clob != NULL) { void *cookie; cookie = cl_env_reenter(); env = cl_env_get(&refcheck); emergency = IS_ERR(env); if (emergency) { mutex_lock(&ccc_inode_fini_guard); LASSERT(ccc_inode_fini_env != NULL); cl_env_implant(ccc_inode_fini_env, &refcheck); env = ccc_inode_fini_env; } /* * cl_object cache is a slave to inode cache (which, in turn * is a slave to dentry cache), don't keep cl_object in memory * when its master is evicted. */ cl_object_kill(env, clob); lu_object_ref_del(&clob->co_lu, "inode", inode); cl_object_put_last(env, clob); lli->lli_clob = NULL; if (emergency) { cl_env_unplant(ccc_inode_fini_env, &refcheck); mutex_unlock(&ccc_inode_fini_guard); } else cl_env_put(env, &refcheck); cl_env_reexit(cookie); } } /** * return IF_* type for given lu_dirent entry. * IF_* flag shld be converted to particular OS file type in * platform llite module. */ __u16 ll_dirent_type_get(struct lu_dirent *ent) { __u16 type = 0; struct luda_type *lt; int len = 0; if (le32_to_cpu(ent->lde_attrs) & LUDA_TYPE) { const unsigned align = sizeof(struct luda_type) - 1; len = le16_to_cpu(ent->lde_namelen); len = (len + align) & ~align; lt = (void *)ent->lde_name + len; type = IFTODT(le16_to_cpu(lt->lt_type)); } return type; } /** * build inode number from passed @fid */ __u64 cl_fid_build_ino(const struct lu_fid *fid, int api32) { if (BITS_PER_LONG == 32 || api32) RETURN(fid_flatten32(fid)); else RETURN(fid_flatten(fid)); } /** * build inode generation from passed @fid. If our FID overflows the 32-bit * inode number then return a non-zero generation to distinguish them. */ __u32 cl_fid_build_gen(const struct lu_fid *fid) { __u32 gen; ENTRY; if (fid_is_igif(fid)) { gen = lu_igif_gen(fid); RETURN(gen); } gen = (fid_flatten(fid) >> 32); RETURN(gen); } /* lsm is unreliable after hsm implementation as layout can be changed at * any time. This is only to support old, non-clio-ized interfaces. It will * cause deadlock if clio operations are called with this extra layout refcount * because in case the layout changed during the IO, ll_layout_refresh() will * have to wait for the refcount to become zero to destroy the older layout. * * Notice that the lsm returned by this function may not be valid unless called * inside layout lock - MDS_INODELOCK_LAYOUT. */ struct lov_stripe_md *ccc_inode_lsm_get(struct inode *inode) { return lov_lsm_get(ll_i2info(inode)->lli_clob); } void inline ccc_inode_lsm_put(struct inode *inode, struct lov_stripe_md *lsm) { lov_lsm_put(ll_i2info(inode)->lli_clob, lsm); }