4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
30 * Copyright (c) 2011, 2014, Intel Corporation.
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
36 * lustre/ptlrpc/pack_generic.c
38 * (Un)packing of OST requests
40 * Author: Peter J. Braam <braam@clusterfs.com>
41 * Author: Phil Schwan <phil@clusterfs.com>
42 * Author: Eric Barton <eeb@clusterfs.com>
45 #define DEBUG_SUBSYSTEM S_RPC
47 #include <libcfs/libcfs.h>
49 #include <obd_support.h>
50 #include <obd_class.h>
51 #include <lustre_net.h>
52 #include <obd_cksum.h>
53 #include <lustre/ll_fiemap.h>
55 #include "ptlrpc_internal.h"
57 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
59 return cfs_size_round(offsetof(struct lustre_msg_v2,
63 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
66 case LUSTRE_MSG_MAGIC_V2:
67 return lustre_msg_hdr_size_v2(count);
69 LASSERTF(0, "incorrect message magic: %08x\n", magic);
74 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
78 lustre_set_req_swabbed(req, index);
80 lustre_set_rep_swabbed(req, index);
83 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
87 return (ptlrpc_req_need_swab(req) &&
88 !lustre_req_swabbed(req, index));
90 return (ptlrpc_rep_need_swab(req) &&
91 !lustre_rep_swabbed(req, index));
94 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
97 __u32 ver = lustre_msg_get_version(msg);
98 return (ver & LUSTRE_VERSION_MASK) != version;
101 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version)
103 switch (msg->lm_magic) {
104 case LUSTRE_MSG_MAGIC_V1:
105 CERROR("msg v1 not supported - please upgrade you system\n");
107 case LUSTRE_MSG_MAGIC_V2:
108 return lustre_msg_check_version_v2(msg, version);
110 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
115 /* early reply size */
116 __u32 lustre_msg_early_size()
120 /* Always reply old ptlrpc_body_v2 to keep interoprability
121 * with the old client (< 2.3) which doesn't have pb_jobid
122 * in the ptlrpc_body.
124 * XXX Remove this whenever we dorp interoprability with such
127 __u32 pblen = sizeof(struct ptlrpc_body_v2);
128 size = lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
132 EXPORT_SYMBOL(lustre_msg_early_size);
134 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
139 size = lustre_msg_hdr_size_v2(count);
140 for (i = 0; i < count; i++)
141 size += cfs_size_round(lengths[i]);
145 EXPORT_SYMBOL(lustre_msg_size_v2);
147 /* This returns the size of the buffer that is required to hold a lustre_msg
148 * with the given sub-buffer lengths.
149 * NOTE: this should only be used for NEW requests, and should always be
150 * in the form of a v2 request. If this is a connection to a v1
151 * target then the first buffer will be stripped because the ptlrpc
152 * data is part of the lustre_msg_v1 header. b=14043 */
153 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
155 __u32 size[] = { sizeof(struct ptlrpc_body) };
163 LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
166 case LUSTRE_MSG_MAGIC_V2:
167 return lustre_msg_size_v2(count, lens);
169 LASSERTF(0, "incorrect message magic: %08x\n", magic);
174 /* This is used to determine the size of a buffer that was already packed
175 * and will correctly handle the different message formats. */
176 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
178 switch (msg->lm_magic) {
179 case LUSTRE_MSG_MAGIC_V2:
180 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
182 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
187 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
193 msg->lm_bufcount = count;
194 /* XXX: lm_secflvr uninitialized here */
195 msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
197 for (i = 0; i < count; i++)
198 msg->lm_buflens[i] = lens[i];
203 ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
204 for (i = 0; i < count; i++) {
206 LOGL(tmp, lens[i], ptr);
209 EXPORT_SYMBOL(lustre_init_msg_v2);
211 static int lustre_pack_request_v2(struct ptlrpc_request *req,
212 int count, __u32 *lens, char **bufs)
216 reqlen = lustre_msg_size_v2(count, lens);
218 rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
222 req->rq_reqlen = reqlen;
224 lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
225 lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
229 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
230 __u32 *lens, char **bufs)
232 __u32 size[] = { sizeof(struct ptlrpc_body) };
240 LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
242 /* only use new format, we don't need to be compatible with 1.4 */
243 magic = LUSTRE_MSG_MAGIC_V2;
246 case LUSTRE_MSG_MAGIC_V2:
247 return lustre_pack_request_v2(req, count, lens, bufs);
249 LASSERTF(0, "incorrect message magic: %08x\n", magic);
255 struct list_head ptlrpc_rs_debug_lru =
256 LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
257 spinlock_t ptlrpc_rs_debug_lock;
259 #define PTLRPC_RS_DEBUG_LRU_ADD(rs) \
261 spin_lock(&ptlrpc_rs_debug_lock); \
262 list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru); \
263 spin_unlock(&ptlrpc_rs_debug_lock); \
266 #define PTLRPC_RS_DEBUG_LRU_DEL(rs) \
268 spin_lock(&ptlrpc_rs_debug_lock); \
269 list_del(&(rs)->rs_debug_list); \
270 spin_unlock(&ptlrpc_rs_debug_lock); \
273 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
274 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
277 struct ptlrpc_reply_state *
278 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
280 struct ptlrpc_reply_state *rs = NULL;
282 spin_lock(&svcpt->scp_rep_lock);
284 /* See if we have anything in a pool, and wait if nothing */
285 while (list_empty(&svcpt->scp_rep_idle)) {
286 struct l_wait_info lwi;
289 spin_unlock(&svcpt->scp_rep_lock);
290 /* If we cannot get anything for some long time, we better
291 * bail out instead of waiting infinitely */
292 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
293 rc = l_wait_event(svcpt->scp_rep_waitq,
294 !list_empty(&svcpt->scp_rep_idle), &lwi);
297 spin_lock(&svcpt->scp_rep_lock);
300 rs = list_entry(svcpt->scp_rep_idle.next,
301 struct ptlrpc_reply_state, rs_list);
302 list_del(&rs->rs_list);
304 spin_unlock(&svcpt->scp_rep_lock);
306 memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
307 rs->rs_size = svcpt->scp_service->srv_max_reply_size;
308 rs->rs_svcpt = svcpt;
314 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
316 struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
318 spin_lock(&svcpt->scp_rep_lock);
319 list_add(&rs->rs_list, &svcpt->scp_rep_idle);
320 spin_unlock(&svcpt->scp_rep_lock);
321 wake_up(&svcpt->scp_rep_waitq);
324 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
325 __u32 *lens, char **bufs, int flags)
327 struct ptlrpc_reply_state *rs;
331 LASSERT(req->rq_reply_state == NULL);
333 if ((flags & LPRFL_EARLY_REPLY) == 0) {
334 spin_lock(&req->rq_lock);
335 req->rq_packed_final = 1;
336 spin_unlock(&req->rq_lock);
339 msg_len = lustre_msg_size_v2(count, lens);
340 rc = sptlrpc_svc_alloc_rs(req, msg_len);
344 rs = req->rq_reply_state;
345 atomic_set(&rs->rs_refcount, 1); /* 1 ref for rq_reply_state */
346 rs->rs_cb_id.cbid_fn = reply_out_callback;
347 rs->rs_cb_id.cbid_arg = rs;
348 rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
349 INIT_LIST_HEAD(&rs->rs_exp_list);
350 INIT_LIST_HEAD(&rs->rs_obd_list);
351 INIT_LIST_HEAD(&rs->rs_list);
352 spin_lock_init(&rs->rs_lock);
354 req->rq_replen = msg_len;
355 req->rq_reply_state = rs;
356 req->rq_repmsg = rs->rs_msg;
358 lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
359 lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
361 PTLRPC_RS_DEBUG_LRU_ADD(rs);
365 EXPORT_SYMBOL(lustre_pack_reply_v2);
367 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
368 char **bufs, int flags)
371 __u32 size[] = { sizeof(struct ptlrpc_body) };
379 LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
381 switch (req->rq_reqmsg->lm_magic) {
382 case LUSTRE_MSG_MAGIC_V2:
383 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
386 LASSERTF(0, "incorrect message magic: %08x\n",
387 req->rq_reqmsg->lm_magic);
391 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
392 lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
396 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
399 return lustre_pack_reply_flags(req, count, lens, bufs, 0);
401 EXPORT_SYMBOL(lustre_pack_reply);
403 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
405 __u32 i, offset, buflen, bufcount;
409 bufcount = m->lm_bufcount;
410 if (unlikely(n >= bufcount)) {
411 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
416 buflen = m->lm_buflens[n];
417 if (unlikely(buflen < min_size)) {
418 CERROR("msg %p buffer[%d] size %d too small "
419 "(required %d, opc=%d)\n", m, n, buflen, min_size,
420 n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
424 offset = lustre_msg_hdr_size_v2(bufcount);
425 for (i = 0; i < n; i++)
426 offset += cfs_size_round(m->lm_buflens[i]);
428 return (char *)m + offset;
431 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
433 switch (m->lm_magic) {
434 case LUSTRE_MSG_MAGIC_V2:
435 return lustre_msg_buf_v2(m, n, min_size);
437 LASSERTF(0, "incorrect message magic: %08x(msg:%p)\n", m->lm_magic, m);
441 EXPORT_SYMBOL(lustre_msg_buf);
443 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
444 unsigned int newlen, int move_data)
446 char *tail = NULL, *newpos;
450 LASSERT(msg->lm_bufcount > segment);
451 LASSERT(msg->lm_buflens[segment] >= newlen);
453 if (msg->lm_buflens[segment] == newlen)
456 if (move_data && msg->lm_bufcount > segment + 1) {
457 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
458 for (n = segment + 1; n < msg->lm_bufcount; n++)
459 tail_len += cfs_size_round(msg->lm_buflens[n]);
462 msg->lm_buflens[segment] = newlen;
464 if (tail && tail_len) {
465 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
466 LASSERT(newpos <= tail);
468 memmove(newpos, tail, tail_len);
471 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
475 * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
476 * we also move data forward from @segment + 1.
478 * if @newlen == 0, we remove the segment completely, but we still keep the
479 * totally bufcount the same to save possible data moving. this will leave a
480 * unused segment with size 0 at the tail, but that's ok.
482 * return new msg size after shrinking.
485 * + if any buffers higher than @segment has been filled in, must call shrink
486 * with non-zero @move_data.
487 * + caller should NOT keep pointers to msg buffers which higher than @segment
490 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
491 unsigned int newlen, int move_data)
493 switch (msg->lm_magic) {
494 case LUSTRE_MSG_MAGIC_V2:
495 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
497 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
500 EXPORT_SYMBOL(lustre_shrink_msg);
502 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
504 PTLRPC_RS_DEBUG_LRU_DEL(rs);
506 LASSERT(atomic_read(&rs->rs_refcount) == 0);
507 LASSERT(!rs->rs_difficult || rs->rs_handled);
508 LASSERT(!rs->rs_on_net);
509 LASSERT(!rs->rs_scheduled);
510 LASSERT(rs->rs_export == NULL);
511 LASSERT(rs->rs_nlocks == 0);
512 LASSERT(list_empty(&rs->rs_exp_list));
513 LASSERT(list_empty(&rs->rs_obd_list));
515 sptlrpc_svc_free_rs(rs);
518 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
520 int swabbed, required_len, i;
522 /* Now we know the sender speaks my language. */
523 required_len = lustre_msg_hdr_size_v2(0);
524 if (len < required_len) {
525 /* can't even look inside the message */
526 CERROR("message length %d too small for lustre_msg\n", len);
530 swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
533 __swab32s(&m->lm_magic);
534 __swab32s(&m->lm_bufcount);
535 __swab32s(&m->lm_secflvr);
536 __swab32s(&m->lm_repsize);
537 __swab32s(&m->lm_cksum);
538 __swab32s(&m->lm_flags);
539 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
540 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
543 required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
544 if (len < required_len) {
545 /* didn't receive all the buffer lengths */
546 CERROR ("message length %d too small for %d buflens\n",
547 len, m->lm_bufcount);
551 for (i = 0; i < m->lm_bufcount; i++) {
553 __swab32s(&m->lm_buflens[i]);
554 required_len += cfs_size_round(m->lm_buflens[i]);
557 if (len < required_len) {
558 CERROR("len: %d, required_len %d\n", len, required_len);
559 CERROR("bufcount: %d\n", m->lm_bufcount);
560 for (i = 0; i < m->lm_bufcount; i++)
561 CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
568 int __lustre_unpack_msg(struct lustre_msg *m, int len)
570 int required_len, rc;
573 /* We can provide a slightly better error log, if we check the
574 * message magic and version first. In the future, struct
575 * lustre_msg may grow, and we'd like to log a version mismatch,
576 * rather than a short message.
579 required_len = offsetof(struct lustre_msg, lm_magic) +
581 if (len < required_len) {
582 /* can't even look inside the message */
583 CERROR("message length %d too small for magic/version check\n",
588 rc = lustre_unpack_msg_v2(m, len);
592 EXPORT_SYMBOL(__lustre_unpack_msg);
594 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
597 rc = __lustre_unpack_msg(req->rq_reqmsg, len);
599 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
605 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
608 rc = __lustre_unpack_msg(req->rq_repmsg, len);
610 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
616 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
617 const int inout, int offset)
619 struct ptlrpc_body *pb;
620 struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
622 pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
624 CERROR("error unpacking ptlrpc body\n");
627 if (ptlrpc_buf_need_swab(req, inout, offset)) {
628 lustre_swab_ptlrpc_body(pb);
629 ptlrpc_buf_set_swabbed(req, inout, offset);
632 if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
633 CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
638 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
643 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
645 switch (req->rq_reqmsg->lm_magic) {
646 case LUSTRE_MSG_MAGIC_V2:
647 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
649 CERROR("bad lustre msg magic: %08x\n",
650 req->rq_reqmsg->lm_magic);
655 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
657 switch (req->rq_repmsg->lm_magic) {
658 case LUSTRE_MSG_MAGIC_V2:
659 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
661 CERROR("bad lustre msg magic: %08x\n",
662 req->rq_repmsg->lm_magic);
667 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
669 if (n >= m->lm_bufcount)
672 return m->lm_buflens[n];
676 * lustre_msg_buflen - return the length of buffer \a n in message \a m
677 * \param m lustre_msg (request or reply) to look at
678 * \param n message index (base 0)
680 * returns zero for non-existent message indices
682 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
684 switch (m->lm_magic) {
685 case LUSTRE_MSG_MAGIC_V2:
686 return lustre_msg_buflen_v2(m, n);
688 CERROR("incorrect message magic: %08x\n", m->lm_magic);
692 EXPORT_SYMBOL(lustre_msg_buflen);
695 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
697 if (n >= m->lm_bufcount)
700 m->lm_buflens[n] = len;
703 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
705 switch (m->lm_magic) {
706 case LUSTRE_MSG_MAGIC_V2:
707 lustre_msg_set_buflen_v2(m, n, len);
710 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
714 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
715 * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
716 __u32 lustre_msg_bufcount(struct lustre_msg *m)
718 switch (m->lm_magic) {
719 case LUSTRE_MSG_MAGIC_V2:
720 return m->lm_bufcount;
722 CERROR("incorrect message magic: %08x\n", m->lm_magic);
727 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
729 /* max_len == 0 means the string should fill the buffer */
733 switch (m->lm_magic) {
734 case LUSTRE_MSG_MAGIC_V2:
735 str = lustre_msg_buf_v2(m, index, 0);
736 blen = lustre_msg_buflen_v2(m, index);
739 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
743 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
747 slen = strnlen(str, blen);
749 if (slen == blen) { /* not NULL terminated */
750 CERROR("can't unpack non-NULL terminated string in "
751 "msg %p buffer[%d] len %d\n", m, index, blen);
756 if (slen != blen - 1) {
757 CERROR("can't unpack short string in msg %p "
758 "buffer[%d] len %d: strlen %d\n",
759 m, index, blen, slen);
762 } else if (slen > max_len) {
763 CERROR("can't unpack oversized string in msg %p "
764 "buffer[%d] len %d strlen %d: max %d expected\n",
765 m, index, blen, slen, max_len);
772 /* Wrap up the normal fixed length cases */
773 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
774 __u32 min_size, void *swabber)
778 LASSERT(msg != NULL);
779 switch (msg->lm_magic) {
780 case LUSTRE_MSG_MAGIC_V2:
781 ptr = lustre_msg_buf_v2(msg, index, min_size);
784 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
788 ((void (*)(void *))swabber)(ptr);
793 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
795 return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
796 sizeof(struct ptlrpc_body_v2));
799 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg)
801 switch (msg->lm_magic) {
802 case LUSTRE_MSG_MAGIC_V1:
803 case LUSTRE_MSG_MAGIC_V1_SWABBED:
805 case LUSTRE_MSG_MAGIC_V2:
806 /* already in host endian */
807 return msg->lm_flags;
809 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
813 EXPORT_SYMBOL(lustre_msghdr_get_flags);
815 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
817 switch (msg->lm_magic) {
818 case LUSTRE_MSG_MAGIC_V1:
820 case LUSTRE_MSG_MAGIC_V2:
821 msg->lm_flags = flags;
824 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
828 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
830 switch (msg->lm_magic) {
831 case LUSTRE_MSG_MAGIC_V2: {
832 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
834 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
840 /* flags might be printed in debug code while message
845 EXPORT_SYMBOL(lustre_msg_get_flags);
847 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
849 switch (msg->lm_magic) {
850 case LUSTRE_MSG_MAGIC_V2: {
851 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
852 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
853 pb->pb_flags |= flags;
857 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
860 EXPORT_SYMBOL(lustre_msg_add_flags);
862 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
864 switch (msg->lm_magic) {
865 case LUSTRE_MSG_MAGIC_V2: {
866 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
867 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
868 pb->pb_flags = flags;
872 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
876 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
878 switch (msg->lm_magic) {
879 case LUSTRE_MSG_MAGIC_V2: {
880 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
881 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
882 pb->pb_flags &= ~(MSG_GEN_FLAG_MASK & flags);
886 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
889 EXPORT_SYMBOL(lustre_msg_clear_flags);
891 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
893 switch (msg->lm_magic) {
894 case LUSTRE_MSG_MAGIC_V2: {
895 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
897 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
900 return pb->pb_op_flags;
907 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
909 switch (msg->lm_magic) {
910 case LUSTRE_MSG_MAGIC_V2: {
911 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
912 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
913 pb->pb_op_flags |= flags;
917 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
920 EXPORT_SYMBOL(lustre_msg_add_op_flags);
922 void lustre_msg_set_op_flags(struct lustre_msg *msg, __u32 flags)
924 switch (msg->lm_magic) {
925 case LUSTRE_MSG_MAGIC_V2: {
926 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
927 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
928 pb->pb_op_flags |= flags;
932 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
936 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
938 switch (msg->lm_magic) {
939 case LUSTRE_MSG_MAGIC_V2: {
940 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
942 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
945 return &pb->pb_handle;
948 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
953 __u32 lustre_msg_get_type(struct lustre_msg *msg)
955 switch (msg->lm_magic) {
956 case LUSTRE_MSG_MAGIC_V2: {
957 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
959 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
960 return PTL_RPC_MSG_ERR;
965 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
966 return PTL_RPC_MSG_ERR;
969 EXPORT_SYMBOL(lustre_msg_get_type);
971 __u32 lustre_msg_get_version(struct lustre_msg *msg)
973 switch (msg->lm_magic) {
974 case LUSTRE_MSG_MAGIC_V2: {
975 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
977 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
980 return pb->pb_version;
983 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
988 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
990 switch (msg->lm_magic) {
991 case LUSTRE_MSG_MAGIC_V2: {
992 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
993 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
994 pb->pb_version |= version;
998 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1002 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
1004 switch (msg->lm_magic) {
1005 case LUSTRE_MSG_MAGIC_V2: {
1006 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1008 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1014 CERROR("incorrect message magic: %08x(msg:%p)\n", msg->lm_magic, msg);
1019 EXPORT_SYMBOL(lustre_msg_get_opc);
1021 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1023 switch (msg->lm_magic) {
1024 case LUSTRE_MSG_MAGIC_V2: {
1025 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1027 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1030 return pb->pb_last_xid;
1033 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1037 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1039 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1041 switch (msg->lm_magic) {
1042 case LUSTRE_MSG_MAGIC_V2: {
1043 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1045 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1051 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1055 EXPORT_SYMBOL(lustre_msg_get_tag);
1057 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1059 switch (msg->lm_magic) {
1060 case LUSTRE_MSG_MAGIC_V2: {
1061 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1063 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1066 return pb->pb_last_committed;
1069 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1073 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1075 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1077 switch (msg->lm_magic) {
1078 case LUSTRE_MSG_MAGIC_V1:
1080 case LUSTRE_MSG_MAGIC_V2: {
1081 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1083 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1086 return pb->pb_pre_versions;
1089 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1093 EXPORT_SYMBOL(lustre_msg_get_versions);
1095 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1097 switch (msg->lm_magic) {
1098 case LUSTRE_MSG_MAGIC_V2: {
1099 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1101 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1104 return pb->pb_transno;
1107 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1111 EXPORT_SYMBOL(lustre_msg_get_transno);
1113 int lustre_msg_get_status(struct lustre_msg *msg)
1115 switch (msg->lm_magic) {
1116 case LUSTRE_MSG_MAGIC_V2: {
1117 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1119 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1122 return pb->pb_status;
1125 /* status might be printed in debug code while message
1130 EXPORT_SYMBOL(lustre_msg_get_status);
1132 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1134 switch (msg->lm_magic) {
1135 case LUSTRE_MSG_MAGIC_V2: {
1136 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1138 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1144 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1150 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1152 switch (msg->lm_magic) {
1153 case LUSTRE_MSG_MAGIC_V2: {
1154 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1156 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1163 CERROR("invalid msg magic %x\n", msg->lm_magic);
1168 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1170 switch (msg->lm_magic) {
1171 case LUSTRE_MSG_MAGIC_V2: {
1172 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1174 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1177 return pb->pb_limit;
1180 CERROR("invalid msg magic %x\n", msg->lm_magic);
1186 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1188 switch (msg->lm_magic) {
1189 case LUSTRE_MSG_MAGIC_V2: {
1190 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1192 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1195 pb->pb_limit = limit;
1199 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1204 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1206 switch (msg->lm_magic) {
1207 case LUSTRE_MSG_MAGIC_V2: {
1208 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1210 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1213 return pb->pb_conn_cnt;
1216 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1220 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1222 int lustre_msg_is_v1(struct lustre_msg *msg)
1224 switch (msg->lm_magic) {
1225 case LUSTRE_MSG_MAGIC_V1:
1226 case LUSTRE_MSG_MAGIC_V1_SWABBED:
1233 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1235 switch (msg->lm_magic) {
1236 case LUSTRE_MSG_MAGIC_V2:
1237 return msg->lm_magic;
1239 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1244 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1246 switch (msg->lm_magic) {
1247 case LUSTRE_MSG_MAGIC_V1:
1248 case LUSTRE_MSG_MAGIC_V1_SWABBED:
1250 case LUSTRE_MSG_MAGIC_V2: {
1251 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1253 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1257 return pb->pb_timeout;
1260 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1265 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1267 switch (msg->lm_magic) {
1268 case LUSTRE_MSG_MAGIC_V1:
1269 case LUSTRE_MSG_MAGIC_V1_SWABBED:
1271 case LUSTRE_MSG_MAGIC_V2: {
1272 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1274 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1278 return pb->pb_service_time;
1281 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1286 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1288 switch (msg->lm_magic) {
1289 case LUSTRE_MSG_MAGIC_V1:
1290 case LUSTRE_MSG_MAGIC_V1_SWABBED:
1292 case LUSTRE_MSG_MAGIC_V2: {
1293 struct ptlrpc_body *pb =
1294 lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1295 sizeof(struct ptlrpc_body));
1299 return pb->pb_jobid;
1302 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1306 EXPORT_SYMBOL(lustre_msg_get_jobid);
1308 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1310 switch (msg->lm_magic) {
1311 case LUSTRE_MSG_MAGIC_V2:
1312 return msg->lm_cksum;
1314 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1319 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 53, 0)
1321 * In 1.6 and 1.8 the checksum was computed only on struct ptlrpc_body as
1322 * it was in 1.6 (88 bytes, smaller than the full size in 1.8). It makes
1323 * more sense to compute the checksum on the full ptlrpc_body, regardless
1324 * of what size it is, but in order to keep interoperability with 1.8 we
1325 * can optionally also checksum only the first 88 bytes (caller decides). */
1326 # define ptlrpc_body_cksum_size_compat18 88
1328 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg, int compat18)
1330 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1333 switch (msg->lm_magic) {
1334 case LUSTRE_MSG_MAGIC_V2: {
1335 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1336 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 53, 0)
1337 __u32 len = compat18 ? ptlrpc_body_cksum_size_compat18 :
1338 lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1340 __u32 len = lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1342 unsigned int hsize = 4;
1345 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1346 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1347 len, NULL, 0, (unsigned char *)&crc,
1352 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1357 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1359 switch (msg->lm_magic) {
1360 case LUSTRE_MSG_MAGIC_V2: {
1361 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1362 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1363 pb->pb_handle = *handle;
1367 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1371 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1373 switch (msg->lm_magic) {
1374 case LUSTRE_MSG_MAGIC_V2: {
1375 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1376 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1381 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1385 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1387 switch (msg->lm_magic) {
1388 case LUSTRE_MSG_MAGIC_V2: {
1389 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1390 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1395 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1399 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1401 switch (msg->lm_magic) {
1402 case LUSTRE_MSG_MAGIC_V2: {
1403 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1404 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1405 pb->pb_last_xid = last_xid;
1409 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1412 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1414 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1416 switch (msg->lm_magic) {
1417 case LUSTRE_MSG_MAGIC_V2: {
1418 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1419 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1424 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1427 EXPORT_SYMBOL(lustre_msg_set_tag);
1429 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1431 switch (msg->lm_magic) {
1432 case LUSTRE_MSG_MAGIC_V2: {
1433 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1434 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1435 pb->pb_last_committed = last_committed;
1439 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1443 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1445 switch (msg->lm_magic) {
1446 case LUSTRE_MSG_MAGIC_V1:
1448 case LUSTRE_MSG_MAGIC_V2: {
1449 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1450 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1451 pb->pb_pre_versions[0] = versions[0];
1452 pb->pb_pre_versions[1] = versions[1];
1453 pb->pb_pre_versions[2] = versions[2];
1454 pb->pb_pre_versions[3] = versions[3];
1458 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1461 EXPORT_SYMBOL(lustre_msg_set_versions);
1463 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1465 switch (msg->lm_magic) {
1466 case LUSTRE_MSG_MAGIC_V2: {
1467 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1468 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1469 pb->pb_transno = transno;
1473 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1476 EXPORT_SYMBOL(lustre_msg_set_transno);
1478 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1480 switch (msg->lm_magic) {
1481 case LUSTRE_MSG_MAGIC_V2: {
1482 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1483 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1484 pb->pb_status = status;
1488 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1491 EXPORT_SYMBOL(lustre_msg_set_status);
1493 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1495 switch (msg->lm_magic) {
1496 case LUSTRE_MSG_MAGIC_V2: {
1497 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1498 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1499 pb->pb_conn_cnt = conn_cnt;
1503 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1507 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1509 switch (msg->lm_magic) {
1510 case LUSTRE_MSG_MAGIC_V1:
1512 case LUSTRE_MSG_MAGIC_V2: {
1513 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1514 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1515 pb->pb_timeout = timeout;
1519 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1523 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1525 switch (msg->lm_magic) {
1526 case LUSTRE_MSG_MAGIC_V1:
1528 case LUSTRE_MSG_MAGIC_V2: {
1529 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1530 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1531 pb->pb_service_time = service_time;
1535 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1539 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1541 switch (msg->lm_magic) {
1542 case LUSTRE_MSG_MAGIC_V1:
1544 case LUSTRE_MSG_MAGIC_V2: {
1545 __u32 opc = lustre_msg_get_opc(msg);
1546 struct ptlrpc_body *pb;
1548 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1549 * See the comment in ptlrpc_request_pack(). */
1550 if (!opc || opc == LDLM_BL_CALLBACK ||
1551 opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1554 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1555 sizeof(struct ptlrpc_body));
1556 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1559 memcpy(pb->pb_jobid, jobid, LUSTRE_JOBID_SIZE);
1560 else if (pb->pb_jobid[0] == '\0')
1561 lustre_get_jobid(pb->pb_jobid);
1565 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1568 EXPORT_SYMBOL(lustre_msg_set_jobid);
1570 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1572 switch (msg->lm_magic) {
1573 case LUSTRE_MSG_MAGIC_V1:
1575 case LUSTRE_MSG_MAGIC_V2:
1576 msg->lm_cksum = cksum;
1579 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1584 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1586 int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1588 req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1589 req->rq_pill.rc_area[RCL_SERVER]);
1590 if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1591 req->rq_reqmsg->lm_repsize = req->rq_replen;
1593 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1595 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1597 req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1598 if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1599 req->rq_reqmsg->lm_repsize = req->rq_replen;
1603 * Send a remote set_info_async.
1605 * This may go from client to server or server to client.
1607 int do_set_info_async(struct obd_import *imp,
1608 int opcode, int version,
1609 size_t keylen, void *key,
1610 size_t vallen, void *val,
1611 struct ptlrpc_request_set *set)
1613 struct ptlrpc_request *req;
1618 req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1622 req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1623 RCL_CLIENT, keylen);
1624 req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1625 RCL_CLIENT, vallen);
1626 rc = ptlrpc_request_pack(req, version, opcode);
1628 ptlrpc_request_free(req);
1632 tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1633 memcpy(tmp, key, keylen);
1634 tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1635 memcpy(tmp, val, vallen);
1637 ptlrpc_request_set_replen(req);
1640 ptlrpc_set_add_req(set, req);
1641 ptlrpc_check_set(NULL, set);
1643 rc = ptlrpc_queue_wait(req);
1644 ptlrpc_req_finished(req);
1649 EXPORT_SYMBOL(do_set_info_async);
1651 /* byte flipping routines for all wire types declared in
1652 * lustre_idl.h implemented here.
1654 void lustre_swab_ptlrpc_body(struct ptlrpc_body *b)
1656 __swab32s (&b->pb_type);
1657 __swab32s (&b->pb_version);
1658 __swab32s (&b->pb_opc);
1659 __swab32s (&b->pb_status);
1660 __swab64s (&b->pb_last_xid);
1661 __swab16s (&b->pb_tag);
1662 __swab64s (&b->pb_last_committed);
1663 __swab64s (&b->pb_transno);
1664 __swab32s (&b->pb_flags);
1665 __swab32s (&b->pb_op_flags);
1666 __swab32s (&b->pb_conn_cnt);
1667 __swab32s (&b->pb_timeout);
1668 __swab32s (&b->pb_service_time);
1669 __swab32s (&b->pb_limit);
1670 __swab64s (&b->pb_slv);
1671 __swab64s (&b->pb_pre_versions[0]);
1672 __swab64s (&b->pb_pre_versions[1]);
1673 __swab64s (&b->pb_pre_versions[2]);
1674 __swab64s (&b->pb_pre_versions[3]);
1675 CLASSERT(offsetof(typeof(*b), pb_padding0) != 0);
1676 CLASSERT(offsetof(typeof(*b), pb_padding1) != 0);
1677 CLASSERT(offsetof(typeof(*b), pb_padding) != 0);
1678 /* While we need to maintain compatibility between
1679 * clients and servers without ptlrpc_body_v2 (< 2.3)
1680 * do not swab any fields beyond pb_jobid, as we are
1681 * using this swab function for both ptlrpc_body
1682 * and ptlrpc_body_v2. */
1683 CLASSERT(offsetof(typeof(*b), pb_jobid) != 0);
1686 void lustre_swab_connect(struct obd_connect_data *ocd)
1688 __swab64s(&ocd->ocd_connect_flags);
1689 __swab32s(&ocd->ocd_version);
1690 __swab32s(&ocd->ocd_grant);
1691 __swab64s(&ocd->ocd_ibits_known);
1692 __swab32s(&ocd->ocd_index);
1693 __swab32s(&ocd->ocd_brw_size);
1694 /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1695 * they are 8-byte values */
1696 __swab16s(&ocd->ocd_grant_extent);
1697 __swab32s(&ocd->ocd_unused);
1698 __swab64s(&ocd->ocd_transno);
1699 __swab32s(&ocd->ocd_group);
1700 __swab32s(&ocd->ocd_cksum_types);
1701 __swab32s(&ocd->ocd_instance);
1702 /* Fields after ocd_cksum_types are only accessible by the receiver
1703 * if the corresponding flag in ocd_connect_flags is set. Accessing
1704 * any field after ocd_maxbytes on the receiver without a valid flag
1705 * may result in out-of-bound memory access and kernel oops. */
1706 if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1707 __swab32s(&ocd->ocd_max_easize);
1708 if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1709 __swab64s(&ocd->ocd_maxbytes);
1710 if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1711 __swab16s(&ocd->ocd_maxmodrpcs);
1712 CLASSERT(offsetof(typeof(*ocd), padding0) != 0);
1713 CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1714 CLASSERT(offsetof(typeof(*ocd), padding2) != 0);
1715 CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1716 CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1717 CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1718 CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1719 CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1720 CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1721 CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1722 CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1723 CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1724 CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1725 CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1726 CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1727 CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1730 void lustre_swab_obdo (struct obdo *o)
1732 __swab64s (&o->o_valid);
1733 lustre_swab_ost_id(&o->o_oi);
1734 __swab64s (&o->o_parent_seq);
1735 __swab64s (&o->o_size);
1736 __swab64s (&o->o_mtime);
1737 __swab64s (&o->o_atime);
1738 __swab64s (&o->o_ctime);
1739 __swab64s (&o->o_blocks);
1740 __swab64s (&o->o_grant);
1741 __swab32s (&o->o_blksize);
1742 __swab32s (&o->o_mode);
1743 __swab32s (&o->o_uid);
1744 __swab32s (&o->o_gid);
1745 __swab32s (&o->o_flags);
1746 __swab32s (&o->o_nlink);
1747 __swab32s (&o->o_parent_oid);
1748 __swab32s (&o->o_misc);
1749 __swab64s (&o->o_ioepoch);
1750 __swab32s (&o->o_stripe_idx);
1751 __swab32s (&o->o_parent_ver);
1752 /* o_handle is opaque */
1753 /* o_lcookie is swabbed elsewhere */
1754 __swab32s (&o->o_uid_h);
1755 __swab32s (&o->o_gid_h);
1756 __swab64s (&o->o_data_version);
1757 CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1758 CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1759 CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1762 EXPORT_SYMBOL(lustre_swab_obdo);
1764 void lustre_swab_obd_statfs (struct obd_statfs *os)
1766 __swab64s (&os->os_type);
1767 __swab64s (&os->os_blocks);
1768 __swab64s (&os->os_bfree);
1769 __swab64s (&os->os_bavail);
1770 __swab64s (&os->os_files);
1771 __swab64s (&os->os_ffree);
1772 /* no need to swab os_fsid */
1773 __swab32s (&os->os_bsize);
1774 __swab32s (&os->os_namelen);
1775 __swab64s (&os->os_maxbytes);
1776 __swab32s (&os->os_state);
1777 CLASSERT(offsetof(typeof(*os), os_fprecreated) != 0);
1778 CLASSERT(offsetof(typeof(*os), os_spare2) != 0);
1779 CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1780 CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1781 CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1782 CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1783 CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1784 CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1785 CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1788 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1790 lustre_swab_ost_id(&ioo->ioo_oid);
1791 __swab32s(&ioo->ioo_max_brw);
1792 __swab32s(&ioo->ioo_bufcnt);
1795 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1797 __swab64s(&nbr->rnb_offset);
1798 __swab32s(&nbr->rnb_len);
1799 __swab32s(&nbr->rnb_flags);
1802 void lustre_swab_ost_body (struct ost_body *b)
1804 lustre_swab_obdo (&b->oa);
1807 void lustre_swab_ost_last_id(u64 *id)
1812 void lustre_swab_generic_32s(__u32 *val)
1817 void lustre_swab_gl_desc(union ldlm_gl_desc *desc)
1819 lustre_swab_lu_fid(&desc->lquota_desc.gl_id.qid_fid);
1820 __swab64s(&desc->lquota_desc.gl_flags);
1821 __swab64s(&desc->lquota_desc.gl_ver);
1822 __swab64s(&desc->lquota_desc.gl_hardlimit);
1823 __swab64s(&desc->lquota_desc.gl_softlimit);
1824 __swab64s(&desc->lquota_desc.gl_time);
1825 CLASSERT(offsetof(typeof(desc->lquota_desc), gl_pad2) != 0);
1828 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1830 __swab64s(&lvb->lvb_size);
1831 __swab64s(&lvb->lvb_mtime);
1832 __swab64s(&lvb->lvb_atime);
1833 __swab64s(&lvb->lvb_ctime);
1834 __swab64s(&lvb->lvb_blocks);
1836 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1838 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1840 __swab64s(&lvb->lvb_size);
1841 __swab64s(&lvb->lvb_mtime);
1842 __swab64s(&lvb->lvb_atime);
1843 __swab64s(&lvb->lvb_ctime);
1844 __swab64s(&lvb->lvb_blocks);
1845 __swab32s(&lvb->lvb_mtime_ns);
1846 __swab32s(&lvb->lvb_atime_ns);
1847 __swab32s(&lvb->lvb_ctime_ns);
1848 __swab32s(&lvb->lvb_padding);
1850 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1852 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1854 __swab64s(&lvb->lvb_flags);
1855 __swab64s(&lvb->lvb_id_may_rel);
1856 __swab64s(&lvb->lvb_id_rel);
1857 __swab64s(&lvb->lvb_id_qunit);
1858 __swab64s(&lvb->lvb_pad1);
1860 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1862 void lustre_swab_mdt_body (struct mdt_body *b)
1864 lustre_swab_lu_fid(&b->mbo_fid1);
1865 lustre_swab_lu_fid(&b->mbo_fid2);
1866 /* handle is opaque */
1867 __swab64s(&b->mbo_valid);
1868 __swab64s(&b->mbo_size);
1869 __swab64s(&b->mbo_mtime);
1870 __swab64s(&b->mbo_atime);
1871 __swab64s(&b->mbo_ctime);
1872 __swab64s(&b->mbo_blocks);
1873 __swab64s(&b->mbo_ioepoch);
1874 __swab64s(&b->mbo_t_state);
1875 __swab32s(&b->mbo_fsuid);
1876 __swab32s(&b->mbo_fsgid);
1877 __swab32s(&b->mbo_capability);
1878 __swab32s(&b->mbo_mode);
1879 __swab32s(&b->mbo_uid);
1880 __swab32s(&b->mbo_gid);
1881 __swab32s(&b->mbo_flags);
1882 __swab32s(&b->mbo_rdev);
1883 __swab32s(&b->mbo_nlink);
1884 CLASSERT(offsetof(typeof(*b), mbo_unused2) != 0);
1885 __swab32s(&b->mbo_suppgid);
1886 __swab32s(&b->mbo_eadatasize);
1887 __swab32s(&b->mbo_aclsize);
1888 __swab32s(&b->mbo_max_mdsize);
1889 __swab32s(&b->mbo_max_cookiesize);
1890 __swab32s(&b->mbo_uid_h);
1891 __swab32s(&b->mbo_gid_h);
1892 CLASSERT(offsetof(typeof(*b), mbo_padding_5) != 0);
1895 void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b)
1897 /* handle is opaque */
1898 __swab64s (&b->ioepoch);
1899 __swab32s (&b->flags);
1900 CLASSERT(offsetof(typeof(*b), padding) != 0);
1903 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1906 __swab32s(&mti->mti_lustre_ver);
1907 __swab32s(&mti->mti_stripe_index);
1908 __swab32s(&mti->mti_config_ver);
1909 __swab32s(&mti->mti_flags);
1910 __swab32s(&mti->mti_instance);
1911 __swab32s(&mti->mti_nid_count);
1912 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1913 for (i = 0; i < MTI_NIDS_MAX; i++)
1914 __swab64s(&mti->mti_nids[i]);
1917 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1921 __swab64s(&entry->mne_version);
1922 __swab32s(&entry->mne_instance);
1923 __swab32s(&entry->mne_index);
1924 __swab32s(&entry->mne_length);
1926 /* mne_nid_(count|type) must be one byte size because we're gonna
1927 * access it w/o swapping. */
1928 CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
1929 CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
1931 /* remove this assertion if ipv6 is supported. */
1932 LASSERT(entry->mne_nid_type == 0);
1933 for (i = 0; i < entry->mne_nid_count; i++) {
1934 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1935 __swab64s(&entry->u.nids[i]);
1938 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
1940 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
1942 __swab64s(&body->mcb_offset);
1943 __swab32s(&body->mcb_units);
1944 __swab16s(&body->mcb_type);
1947 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
1949 __swab64s(&body->mcr_offset);
1950 __swab64s(&body->mcr_size);
1953 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
1955 __swab64s (&i->dqi_bgrace);
1956 __swab64s (&i->dqi_igrace);
1957 __swab32s (&i->dqi_flags);
1958 __swab32s (&i->dqi_valid);
1961 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
1963 __swab64s (&b->dqb_ihardlimit);
1964 __swab64s (&b->dqb_isoftlimit);
1965 __swab64s (&b->dqb_curinodes);
1966 __swab64s (&b->dqb_bhardlimit);
1967 __swab64s (&b->dqb_bsoftlimit);
1968 __swab64s (&b->dqb_curspace);
1969 __swab64s (&b->dqb_btime);
1970 __swab64s (&b->dqb_itime);
1971 __swab32s (&b->dqb_valid);
1972 CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
1975 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
1977 __swab32s (&q->qc_cmd);
1978 __swab32s (&q->qc_type);
1979 __swab32s (&q->qc_id);
1980 __swab32s (&q->qc_stat);
1981 lustre_swab_obd_dqinfo (&q->qc_dqinfo);
1982 lustre_swab_obd_dqblk (&q->qc_dqblk);
1985 void lustre_swab_mdt_remote_perm (struct mdt_remote_perm *p)
1987 __swab32s (&p->rp_uid);
1988 __swab32s (&p->rp_gid);
1989 __swab32s (&p->rp_fsuid);
1990 __swab32s (&p->rp_fsuid_h);
1991 __swab32s (&p->rp_fsgid);
1992 __swab32s (&p->rp_fsgid_h);
1993 __swab32s (&p->rp_access_perm);
1994 __swab32s (&p->rp_padding);
1996 EXPORT_SYMBOL(lustre_swab_mdt_remote_perm);
1998 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
2000 lustre_swab_lu_fid(&gf->gf_fid);
2001 __swab64s(&gf->gf_recno);
2002 __swab32s(&gf->gf_linkno);
2003 __swab32s(&gf->gf_pathlen);
2005 EXPORT_SYMBOL(lustre_swab_fid2path);
2007 static void lustre_swab_fiemap_extent(struct ll_fiemap_extent *fm_extent)
2009 __swab64s(&fm_extent->fe_logical);
2010 __swab64s(&fm_extent->fe_physical);
2011 __swab64s(&fm_extent->fe_length);
2012 __swab32s(&fm_extent->fe_flags);
2013 __swab32s(&fm_extent->fe_device);
2016 void lustre_swab_fiemap(struct ll_user_fiemap *fiemap)
2020 __swab64s(&fiemap->fm_start);
2021 __swab64s(&fiemap->fm_length);
2022 __swab32s(&fiemap->fm_flags);
2023 __swab32s(&fiemap->fm_mapped_extents);
2024 __swab32s(&fiemap->fm_extent_count);
2025 __swab32s(&fiemap->fm_reserved);
2027 for (i = 0; i < fiemap->fm_mapped_extents; i++)
2028 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
2031 void lustre_swab_idx_info(struct idx_info *ii)
2033 __swab32s(&ii->ii_magic);
2034 __swab32s(&ii->ii_flags);
2035 __swab16s(&ii->ii_count);
2036 __swab32s(&ii->ii_attrs);
2037 lustre_swab_lu_fid(&ii->ii_fid);
2038 __swab64s(&ii->ii_version);
2039 __swab64s(&ii->ii_hash_start);
2040 __swab64s(&ii->ii_hash_end);
2041 __swab16s(&ii->ii_keysize);
2042 __swab16s(&ii->ii_recsize);
2045 void lustre_swab_lip_header(struct lu_idxpage *lip)
2048 __swab32s(&lip->lip_magic);
2049 __swab16s(&lip->lip_flags);
2050 __swab16s(&lip->lip_nr);
2052 EXPORT_SYMBOL(lustre_swab_lip_header);
2054 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2056 __swab32s(&rr->rr_opcode);
2057 __swab32s(&rr->rr_cap);
2058 __swab32s(&rr->rr_fsuid);
2059 /* rr_fsuid_h is unused */
2060 __swab32s(&rr->rr_fsgid);
2061 /* rr_fsgid_h is unused */
2062 __swab32s(&rr->rr_suppgid1);
2063 /* rr_suppgid1_h is unused */
2064 __swab32s(&rr->rr_suppgid2);
2065 /* rr_suppgid2_h is unused */
2066 lustre_swab_lu_fid(&rr->rr_fid1);
2067 lustre_swab_lu_fid(&rr->rr_fid2);
2068 __swab64s(&rr->rr_mtime);
2069 __swab64s(&rr->rr_atime);
2070 __swab64s(&rr->rr_ctime);
2071 __swab64s(&rr->rr_size);
2072 __swab64s(&rr->rr_blocks);
2073 __swab32s(&rr->rr_bias);
2074 __swab32s(&rr->rr_mode);
2075 __swab32s(&rr->rr_flags);
2076 __swab32s(&rr->rr_flags_h);
2077 __swab32s(&rr->rr_umask);
2079 CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2082 void lustre_swab_lov_desc (struct lov_desc *ld)
2084 __swab32s (&ld->ld_tgt_count);
2085 __swab32s (&ld->ld_active_tgt_count);
2086 __swab32s (&ld->ld_default_stripe_count);
2087 __swab32s (&ld->ld_pattern);
2088 __swab64s (&ld->ld_default_stripe_size);
2089 __swab64s (&ld->ld_default_stripe_offset);
2090 __swab32s (&ld->ld_qos_maxage);
2091 /* uuid endian insensitive */
2093 EXPORT_SYMBOL(lustre_swab_lov_desc);
2095 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2097 __swab32s (&ld->ld_tgt_count);
2098 __swab32s (&ld->ld_active_tgt_count);
2099 __swab32s (&ld->ld_default_stripe_count);
2100 __swab32s (&ld->ld_pattern);
2101 __swab64s (&ld->ld_default_hash_size);
2102 __swab32s (&ld->ld_qos_maxage);
2103 /* uuid endian insensitive */
2106 /* This structure is always in little-endian */
2107 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2111 __swab32s(&lmm1->lmv_magic);
2112 __swab32s(&lmm1->lmv_stripe_count);
2113 __swab32s(&lmm1->lmv_master_mdt_index);
2114 __swab32s(&lmm1->lmv_hash_type);
2115 __swab32s(&lmm1->lmv_layout_version);
2116 for (i = 0; i < lmm1->lmv_stripe_count; i++)
2117 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2120 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2122 switch (lmm->lmv_magic) {
2124 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2131 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2133 __swab32s(&lum->lum_magic);
2134 __swab32s(&lum->lum_stripe_count);
2135 __swab32s(&lum->lum_stripe_offset);
2136 __swab32s(&lum->lum_hash_type);
2137 __swab32s(&lum->lum_type);
2138 CLASSERT(offsetof(typeof(*lum), lum_padding1) != 0);
2140 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2142 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2145 if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2148 CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2149 CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2150 CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2151 CDEBUG(lvl, "\tlmm_object_id: "LPU64"\n", lmm_oi_id(&lum->lmm_oi));
2152 CDEBUG(lvl, "\tlmm_object_gr: "LPU64"\n", lmm_oi_seq(&lum->lmm_oi));
2153 CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2154 CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2155 CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2156 lum->lmm_stripe_offset);
2157 if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2158 struct lov_user_md_v3 *v3 = (void *)lum;
2159 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2161 if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2162 struct lov_user_md_v3 *v3 = (void *)lum;
2165 if (v3->lmm_pool_name[0] != '\0')
2166 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2168 CDEBUG(lvl, "\ttarget list:\n");
2169 for (i = 0; i < v3->lmm_stripe_count; i++)
2170 CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2173 EXPORT_SYMBOL(lustre_print_user_md);
2175 static void lustre_swab_lmm_oi(struct ost_id *oi)
2177 __swab64s(&oi->oi.oi_id);
2178 __swab64s(&oi->oi.oi_seq);
2181 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2184 __swab32s(&lum->lmm_magic);
2185 __swab32s(&lum->lmm_pattern);
2186 lustre_swab_lmm_oi(&lum->lmm_oi);
2187 __swab32s(&lum->lmm_stripe_size);
2188 __swab16s(&lum->lmm_stripe_count);
2189 __swab16s(&lum->lmm_stripe_offset);
2193 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2196 CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2197 lustre_swab_lov_user_md_common(lum);
2200 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2202 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2205 CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2206 lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2207 /* lmm_pool_name nothing to do with char */
2210 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2212 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2215 CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2216 __swab32s(&lmm->lmm_magic);
2217 __swab32s(&lmm->lmm_pattern);
2218 lustre_swab_lmm_oi(&lmm->lmm_oi);
2219 __swab32s(&lmm->lmm_stripe_size);
2220 __swab16s(&lmm->lmm_stripe_count);
2221 __swab16s(&lmm->lmm_layout_gen);
2225 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2230 for (i = 0; i < stripe_count; i++) {
2231 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2232 __swab32s(&(lod[i].l_ost_gen));
2233 __swab32s(&(lod[i].l_ost_idx));
2237 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2239 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2243 for (i = 0; i < RES_NAME_SIZE; i++)
2244 __swab64s (&id->name[i]);
2247 void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d)
2249 /* the lock data is a union and the first two fields are always an
2250 * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2251 * data the same way. */
2252 __swab64s(&d->l_extent.start);
2253 __swab64s(&d->l_extent.end);
2254 __swab64s(&d->l_extent.gid);
2255 __swab64s(&d->l_flock.lfw_owner);
2256 __swab32s(&d->l_flock.lfw_pid);
2259 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2261 __swab64s (&i->opc);
2264 void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r)
2266 __swab32s (&r->lr_type);
2267 CLASSERT(offsetof(typeof(*r), lr_padding) != 0);
2268 lustre_swab_ldlm_res_id (&r->lr_name);
2271 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2273 lustre_swab_ldlm_resource_desc (&l->l_resource);
2274 __swab32s (&l->l_req_mode);
2275 __swab32s (&l->l_granted_mode);
2276 lustre_swab_ldlm_policy_data (&l->l_policy_data);
2279 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2281 __swab32s (&rq->lock_flags);
2282 lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2283 __swab32s (&rq->lock_count);
2284 /* lock_handle[] opaque */
2287 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2289 __swab32s (&r->lock_flags);
2290 CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2291 lustre_swab_ldlm_lock_desc (&r->lock_desc);
2292 /* lock_handle opaque */
2293 __swab64s (&r->lock_policy_res1);
2294 __swab64s (&r->lock_policy_res2);
2297 void lustre_swab_quota_body(struct quota_body *b)
2299 lustre_swab_lu_fid(&b->qb_fid);
2300 lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2301 __swab32s(&b->qb_flags);
2302 __swab64s(&b->qb_count);
2303 __swab64s(&b->qb_usage);
2304 __swab64s(&b->qb_slv_ver);
2307 /* Dump functions */
2308 void dump_ioo(struct obd_ioobj *ioo)
2311 "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2312 "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2316 void dump_rniobuf(struct niobuf_remote *nb)
2318 CDEBUG(D_RPCTRACE, "niobuf_remote: offset="LPU64", len=%d, flags=%x\n",
2319 nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2322 void dump_obdo(struct obdo *oa)
2324 u64 valid = oa->o_valid;
2326 CDEBUG(D_RPCTRACE, "obdo: o_valid = "LPX64"\n", valid);
2327 if (valid & OBD_MD_FLID)
2328 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2329 if (valid & OBD_MD_FLFID)
2330 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = "LPX64"\n",
2332 if (valid & OBD_MD_FLSIZE)
2333 CDEBUG(D_RPCTRACE, "obdo: o_size = "LPD64"\n", oa->o_size);
2334 if (valid & OBD_MD_FLMTIME)
2335 CDEBUG(D_RPCTRACE, "obdo: o_mtime = "LPD64"\n", oa->o_mtime);
2336 if (valid & OBD_MD_FLATIME)
2337 CDEBUG(D_RPCTRACE, "obdo: o_atime = "LPD64"\n", oa->o_atime);
2338 if (valid & OBD_MD_FLCTIME)
2339 CDEBUG(D_RPCTRACE, "obdo: o_ctime = "LPD64"\n", oa->o_ctime);
2340 if (valid & OBD_MD_FLBLOCKS) /* allocation of space */
2341 CDEBUG(D_RPCTRACE, "obdo: o_blocks = "LPD64"\n", oa->o_blocks);
2342 if (valid & OBD_MD_FLGRANT)
2343 CDEBUG(D_RPCTRACE, "obdo: o_grant = "LPD64"\n", oa->o_grant);
2344 if (valid & OBD_MD_FLBLKSZ)
2345 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2346 if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2347 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2348 oa->o_mode & ((valid & OBD_MD_FLTYPE ? S_IFMT : 0) |
2349 (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2350 if (valid & OBD_MD_FLUID)
2351 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2352 if (valid & OBD_MD_FLUID)
2353 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2354 if (valid & OBD_MD_FLGID)
2355 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2356 if (valid & OBD_MD_FLGID)
2357 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2358 if (valid & OBD_MD_FLFLAGS)
2359 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2360 if (valid & OBD_MD_FLNLINK)
2361 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2362 else if (valid & OBD_MD_FLCKSUM)
2363 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2365 if (valid & OBD_MD_FLGENER)
2366 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2368 if (valid & OBD_MD_FLEPOCH)
2369 CDEBUG(D_RPCTRACE, "obdo: o_ioepoch = "LPD64"\n",
2371 if (valid & OBD_MD_FLFID) {
2372 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2374 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2377 if (valid & OBD_MD_FLHANDLE)
2378 CDEBUG(D_RPCTRACE, "obdo: o_handle = "LPD64"\n",
2379 oa->o_handle.cookie);
2380 if (valid & OBD_MD_FLCOOKIE)
2381 CDEBUG(D_RPCTRACE, "obdo: o_lcookie = "
2382 "(llog_cookie dumping not yet implemented)\n");
2385 void dump_ost_body(struct ost_body *ob)
2390 void dump_rcs(__u32 *rc)
2392 CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2395 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2397 LASSERT(req->rq_reqmsg);
2399 switch (req->rq_reqmsg->lm_magic) {
2400 case LUSTRE_MSG_MAGIC_V2:
2401 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2403 CERROR("bad lustre msg magic: %#08X\n",
2404 req->rq_reqmsg->lm_magic);
2409 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2411 LASSERT(req->rq_repmsg);
2413 switch (req->rq_repmsg->lm_magic) {
2414 case LUSTRE_MSG_MAGIC_V2:
2415 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2417 /* uninitialized yet */
2422 void _debug_req(struct ptlrpc_request *req,
2423 struct libcfs_debug_msg_data *msgdata,
2424 const char *fmt, ... )
2426 int req_ok = req->rq_reqmsg != NULL;
2427 int rep_ok = req->rq_repmsg != NULL;
2428 lnet_nid_t nid = LNET_NID_ANY;
2431 if (ptlrpc_req_need_swab(req)) {
2432 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2433 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2436 if (req->rq_import && req->rq_import->imp_connection)
2437 nid = req->rq_import->imp_connection->c_peer.nid;
2438 else if (req->rq_export && req->rq_export->exp_connection)
2439 nid = req->rq_export->exp_connection->c_peer.nid;
2441 va_start(args, fmt);
2442 libcfs_debug_vmsg2(msgdata, fmt, args,
2443 " req@%p x"LPU64"/t"LPD64"("LPD64") o%d->%s@%s:%d/%d"
2444 " lens %d/%d e %d to %d dl "CFS_TIME_T" ref %d "
2445 "fl "REQ_FLAGS_FMT"/%x/%x rc %d/%d\n",
2446 req, req->rq_xid, req->rq_transno,
2447 req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2448 req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2450 req->rq_import->imp_obd->obd_name :
2452 req->rq_export->exp_client_uuid.uuid :
2454 libcfs_nid2str(nid),
2455 req->rq_request_portal, req->rq_reply_portal,
2456 req->rq_reqlen, req->rq_replen,
2457 req->rq_early_count, req->rq_timedout,
2459 atomic_read(&req->rq_refcount),
2460 DEBUG_REQ_FLAGS(req),
2461 req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2462 rep_ok ? lustre_msg_get_flags(req->rq_repmsg) : -1,
2464 rep_ok ? lustre_msg_get_status(req->rq_repmsg) : -1);
2467 EXPORT_SYMBOL(_debug_req);
2469 void lustre_swab_lustre_capa(struct lustre_capa *c)
2471 lustre_swab_lu_fid(&c->lc_fid);
2472 __swab64s (&c->lc_opc);
2473 __swab64s (&c->lc_uid);
2474 __swab64s (&c->lc_gid);
2475 __swab32s (&c->lc_flags);
2476 __swab32s (&c->lc_keyid);
2477 __swab32s (&c->lc_timeout);
2478 __swab32s (&c->lc_expiry);
2481 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2483 __swab64s (&k->lk_seq);
2484 __swab32s (&k->lk_keyid);
2485 CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2488 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2490 __swab32s(&state->hus_states);
2491 __swab32s(&state->hus_archive_id);
2494 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2496 __swab32s(&hss->hss_valid);
2497 __swab64s(&hss->hss_setmask);
2498 __swab64s(&hss->hss_clearmask);
2499 __swab32s(&hss->hss_archive_id);
2502 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2504 __swab64s(&extent->offset);
2505 __swab64s(&extent->length);
2508 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2510 __swab32s(&action->hca_state);
2511 __swab32s(&action->hca_action);
2512 lustre_swab_hsm_extent(&action->hca_location);
2515 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2517 lustre_swab_lu_fid(&hui->hui_fid);
2518 lustre_swab_hsm_extent(&hui->hui_extent);
2521 void lustre_swab_layout_intent(struct layout_intent *li)
2523 __swab32s(&li->li_opc);
2524 __swab32s(&li->li_flags);
2525 __swab64s(&li->li_start);
2526 __swab64s(&li->li_end);
2529 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2531 lustre_swab_lu_fid(&hpk->hpk_fid);
2532 __swab64s(&hpk->hpk_cookie);
2533 __swab64s(&hpk->hpk_extent.offset);
2534 __swab64s(&hpk->hpk_extent.length);
2535 __swab16s(&hpk->hpk_flags);
2536 __swab16s(&hpk->hpk_errval);
2539 void lustre_swab_hsm_request(struct hsm_request *hr)
2541 __swab32s(&hr->hr_action);
2542 __swab32s(&hr->hr_archive_id);
2543 __swab64s(&hr->hr_flags);
2544 __swab32s(&hr->hr_itemcount);
2545 __swab32s(&hr->hr_data_len);
2548 void lustre_swab_object_update(struct object_update *ou)
2550 struct object_update_param *param;
2553 __swab16s(&ou->ou_type);
2554 __swab16s(&ou->ou_params_count);
2555 __swab32s(&ou->ou_master_index);
2556 __swab32s(&ou->ou_flags);
2557 __swab32s(&ou->ou_padding1);
2558 __swab64s(&ou->ou_batchid);
2559 lustre_swab_lu_fid(&ou->ou_fid);
2560 param = &ou->ou_params[0];
2561 for (i = 0; i < ou->ou_params_count; i++) {
2562 __swab16s(¶m->oup_len);
2563 __swab16s(¶m->oup_padding);
2564 __swab32s(¶m->oup_padding2);
2565 param = (struct object_update_param *)((char *)param +
2566 object_update_param_size(param));
2570 void lustre_swab_object_update_request(struct object_update_request *our)
2573 __swab32s(&our->ourq_magic);
2574 __swab16s(&our->ourq_count);
2575 __swab16s(&our->ourq_padding);
2576 for (i = 0; i < our->ourq_count; i++) {
2577 struct object_update *ou;
2579 ou = object_update_request_get(our, i, NULL);
2582 lustre_swab_object_update(ou);
2586 void lustre_swab_object_update_result(struct object_update_result *our)
2588 __swab32s(&our->our_rc);
2589 __swab16s(&our->our_datalen);
2590 __swab16s(&our->our_padding);
2593 void lustre_swab_object_update_reply(struct object_update_reply *our)
2597 __swab32s(&our->ourp_magic);
2598 __swab16s(&our->ourp_count);
2599 __swab16s(&our->ourp_padding);
2600 for (i = 0; i < our->ourp_count; i++) {
2601 struct object_update_result *ourp;
2603 __swab16s(&our->ourp_lens[i]);
2604 ourp = object_update_result_get(our, i, NULL);
2607 lustre_swab_object_update_result(ourp);
2611 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2613 __swab64s(&msl->msl_flags);
2616 void lustre_swab_close_data(struct close_data *cd)
2618 lustre_swab_lu_fid(&cd->cd_fid);
2619 __swab64s(&cd->cd_data_version);
2622 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2624 __swab32s(&lr->lr_event);
2625 __swab32s(&lr->lr_index);
2626 __swab32s(&lr->lr_flags);
2627 __swab32s(&lr->lr_valid);
2628 __swab32s(&lr->lr_speed);
2629 __swab16s(&lr->lr_version);
2630 __swab16s(&lr->lr_active);
2631 __swab16s(&lr->lr_param);
2632 __swab16s(&lr->lr_async_windows);
2633 __swab32s(&lr->lr_flags);
2634 lustre_swab_lu_fid(&lr->lr_fid);
2635 lustre_swab_lu_fid(&lr->lr_fid2);
2636 lustre_swab_lu_fid(&lr->lr_fid3);
2637 CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2638 CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2641 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2643 __swab32s(&lr->lr_status);
2644 CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2645 CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2648 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2650 lustre_swab_lu_fid(&ent->loe_key);
2651 lustre_swab_lu_fid(&ent->loe_rec.lor_fid);
2652 __swab32s(&ent->loe_rec.lor_uid);
2653 __swab32s(&ent->loe_rec.lor_gid);
2655 EXPORT_SYMBOL(lustre_swab_orphan_ent);