Whamcloud - gitweb
LU-10157 ptlrpc: separate number MD and refrences for bulk
[fs/lustre-release.git] / lustre / ptlrpc / client.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  */
32
33 /** Implementation of client-side PortalRPC interfaces */
34
35 #define DEBUG_SUBSYSTEM S_RPC
36
37 #include <linux/delay.h>
38 #include <obd_support.h>
39 #include <obd_class.h>
40 #include <lustre_lib.h>
41 #include <lustre_ha.h>
42 #include <lustre_import.h>
43 #include <lustre_req_layout.h>
44
45 #include "ptlrpc_internal.h"
46
47 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_pin_ops = {
48         .add_kiov_frag  = ptlrpc_prep_bulk_page_pin,
49         .release_frags  = ptlrpc_release_bulk_page_pin,
50 };
51 EXPORT_SYMBOL(ptlrpc_bulk_kiov_pin_ops);
52
53 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_nopin_ops = {
54         .add_kiov_frag  = ptlrpc_prep_bulk_page_nopin,
55         .release_frags  = ptlrpc_release_bulk_noop,
56 };
57 EXPORT_SYMBOL(ptlrpc_bulk_kiov_nopin_ops);
58
59 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kvec_ops = {
60         .add_iov_frag = ptlrpc_prep_bulk_frag,
61 };
62 EXPORT_SYMBOL(ptlrpc_bulk_kvec_ops);
63
64 static int ptlrpc_send_new_req(struct ptlrpc_request *req);
65 static int ptlrpcd_check_work(struct ptlrpc_request *req);
66 static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async);
67
68 /**
69  * Initialize passed in client structure \a cl.
70  */
71 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
72                         struct ptlrpc_client *cl)
73 {
74         cl->cli_request_portal = req_portal;
75         cl->cli_reply_portal   = rep_portal;
76         cl->cli_name           = name;
77 }
78 EXPORT_SYMBOL(ptlrpc_init_client);
79
80 /**
81  * Return PortalRPC connection for remore uud \a uuid
82  */
83 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid,
84                                                     lnet_nid_t nid4refnet)
85 {
86         struct ptlrpc_connection *c;
87         lnet_nid_t                self;
88         struct lnet_process_id peer;
89         int                       err;
90
91         /* ptlrpc_uuid_to_peer() initializes its 2nd parameter
92          * before accessing its values. */
93         /* coverity[uninit_use_in_call] */
94         peer.nid = nid4refnet;
95         err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
96         if (err != 0) {
97                 CNETERR("cannot find peer %s!\n", uuid->uuid);
98                 return NULL;
99         }
100
101         c = ptlrpc_connection_get(peer, self, uuid);
102         if (c) {
103                 memcpy(c->c_remote_uuid.uuid,
104                        uuid->uuid, sizeof(c->c_remote_uuid.uuid));
105         }
106
107         CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
108
109         return c;
110 }
111
112 /**
113  * Allocate and initialize new bulk descriptor on the sender.
114  * Returns pointer to the descriptor or NULL on error.
115  */
116 struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned nfrags, unsigned max_brw,
117                                          enum ptlrpc_bulk_op_type type,
118                                          unsigned portal,
119                                          const struct ptlrpc_bulk_frag_ops *ops)
120 {
121         struct ptlrpc_bulk_desc *desc;
122         int i;
123
124         /* ensure that only one of KIOV or IOVEC is set but not both */
125         LASSERT((ptlrpc_is_bulk_desc_kiov(type) &&
126                  ops->add_kiov_frag != NULL) ||
127                 (ptlrpc_is_bulk_desc_kvec(type) &&
128                  ops->add_iov_frag != NULL));
129
130         OBD_ALLOC_PTR(desc);
131         if (desc == NULL)
132                 return NULL;
133         if (type & PTLRPC_BULK_BUF_KIOV) {
134                 OBD_ALLOC_LARGE(GET_KIOV(desc),
135                                 nfrags * sizeof(*GET_KIOV(desc)));
136                 if (GET_KIOV(desc) == NULL)
137                         goto out;
138         } else {
139                 OBD_ALLOC_LARGE(GET_KVEC(desc),
140                                 nfrags * sizeof(*GET_KVEC(desc)));
141                 if (GET_KVEC(desc) == NULL)
142                         goto out;
143         }
144
145         spin_lock_init(&desc->bd_lock);
146         init_waitqueue_head(&desc->bd_waitq);
147         desc->bd_max_iov = nfrags;
148         desc->bd_iov_count = 0;
149         desc->bd_portal = portal;
150         desc->bd_type = type;
151         desc->bd_md_count = 0;
152         desc->bd_frag_ops = (struct ptlrpc_bulk_frag_ops *) ops;
153         LASSERT(max_brw > 0);
154         desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
155         /* PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
156          * node. Negotiated ocd_brw_size will always be <= this number. */
157         for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
158                 LNetInvalidateMDHandle(&desc->bd_mds[i]);
159
160         return desc;
161 out:
162         OBD_FREE_PTR(desc);
163         return NULL;
164 }
165
166 /**
167  * Prepare bulk descriptor for specified outgoing request \a req that
168  * can fit \a nfrags * pages. \a type is bulk type. \a portal is where
169  * the bulk to be sent. Used on client-side.
170  * Returns pointer to newly allocatrd initialized bulk descriptor or NULL on
171  * error.
172  */
173 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
174                                               unsigned nfrags, unsigned max_brw,
175                                               unsigned int type,
176                                               unsigned portal,
177                                               const struct ptlrpc_bulk_frag_ops
178                                                 *ops)
179 {
180         struct obd_import *imp = req->rq_import;
181         struct ptlrpc_bulk_desc *desc;
182
183         ENTRY;
184         LASSERT(ptlrpc_is_bulk_op_passive(type));
185
186         desc = ptlrpc_new_bulk(nfrags, max_brw, type, portal, ops);
187         if (desc == NULL)
188                 RETURN(NULL);
189
190         desc->bd_import_generation = req->rq_import_generation;
191         desc->bd_import = class_import_get(imp);
192         desc->bd_req = req;
193
194         desc->bd_cbid.cbid_fn  = client_bulk_callback;
195         desc->bd_cbid.cbid_arg = desc;
196
197         /* This makes req own desc, and free it when she frees herself */
198         req->rq_bulk = desc;
199
200         return desc;
201 }
202 EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
203
204 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
205                              struct page *page, int pageoffset, int len,
206                              int pin)
207 {
208         lnet_kiov_t *kiov;
209
210         LASSERT(desc->bd_iov_count < desc->bd_max_iov);
211         LASSERT(page != NULL);
212         LASSERT(pageoffset >= 0);
213         LASSERT(len > 0);
214         LASSERT(pageoffset + len <= PAGE_SIZE);
215         LASSERT(ptlrpc_is_bulk_desc_kiov(desc->bd_type));
216
217         kiov = &BD_GET_KIOV(desc, desc->bd_iov_count);
218
219         desc->bd_nob += len;
220
221         if (pin)
222                 get_page(page);
223
224         kiov->kiov_page = page;
225         kiov->kiov_offset = pageoffset;
226         kiov->kiov_len = len;
227
228         desc->bd_iov_count++;
229 }
230 EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
231
232 int ptlrpc_prep_bulk_frag(struct ptlrpc_bulk_desc *desc,
233                           void *frag, int len)
234 {
235         struct kvec *iovec;
236         ENTRY;
237
238         LASSERT(desc->bd_iov_count < desc->bd_max_iov);
239         LASSERT(frag != NULL);
240         LASSERT(len > 0);
241         LASSERT(ptlrpc_is_bulk_desc_kvec(desc->bd_type));
242
243         iovec = &BD_GET_KVEC(desc, desc->bd_iov_count);
244
245         desc->bd_nob += len;
246
247         iovec->iov_base = frag;
248         iovec->iov_len = len;
249
250         desc->bd_iov_count++;
251
252         RETURN(desc->bd_nob);
253 }
254 EXPORT_SYMBOL(ptlrpc_prep_bulk_frag);
255
256 void ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc)
257 {
258         ENTRY;
259
260         LASSERT(desc != NULL);
261         LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
262         LASSERT(desc->bd_refs == 0);         /* network hands off */
263         LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
264         LASSERT(desc->bd_frag_ops != NULL);
265
266         if (ptlrpc_is_bulk_desc_kiov(desc->bd_type))
267                 sptlrpc_enc_pool_put_pages(desc);
268
269         if (desc->bd_export)
270                 class_export_put(desc->bd_export);
271         else
272                 class_import_put(desc->bd_import);
273
274         if (desc->bd_frag_ops->release_frags != NULL)
275                 desc->bd_frag_ops->release_frags(desc);
276
277         if (ptlrpc_is_bulk_desc_kiov(desc->bd_type))
278                 OBD_FREE_LARGE(GET_KIOV(desc),
279                         desc->bd_max_iov * sizeof(*GET_KIOV(desc)));
280         else
281                 OBD_FREE_LARGE(GET_KVEC(desc),
282                         desc->bd_max_iov * sizeof(*GET_KVEC(desc)));
283         OBD_FREE_PTR(desc);
284         EXIT;
285 }
286 EXPORT_SYMBOL(ptlrpc_free_bulk);
287
288 /**
289  * Set server timelimit for this req, i.e. how long are we willing to wait
290  * for reply before timing out this request.
291  */
292 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
293 {
294         __u32 serv_est;
295         int idx;
296         struct imp_at *at;
297
298         LASSERT(req->rq_import);
299
300         if (AT_OFF) {
301                 /* non-AT settings */
302                 /**
303                  * \a imp_server_timeout means this is reverse import and
304                  * we send (currently only) ASTs to the client and cannot afford
305                  * to wait too long for the reply, otherwise the other client
306                  * (because of which we are sending this request) would
307                  * timeout waiting for us
308                  */
309                 req->rq_timeout = req->rq_import->imp_server_timeout ?
310                                   obd_timeout / 2 : obd_timeout;
311         } else {
312                 at = &req->rq_import->imp_at;
313                 idx = import_at_get_index(req->rq_import,
314                                           req->rq_request_portal);
315                 serv_est = at_get(&at->iat_service_estimate[idx]);
316                 req->rq_timeout = at_est2timeout(serv_est);
317         }
318         /* We could get even fancier here, using history to predict increased
319            loading... */
320
321         /* Let the server know what this RPC timeout is by putting it in the
322            reqmsg*/
323         lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
324 }
325 EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
326
327 /* Adjust max service estimate based on server value */
328 static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
329                                   unsigned int serv_est)
330 {
331         int idx;
332         unsigned int oldse;
333         struct imp_at *at;
334
335         LASSERT(req->rq_import);
336         at = &req->rq_import->imp_at;
337
338         idx = import_at_get_index(req->rq_import, req->rq_request_portal);
339         /* max service estimates are tracked on the server side,
340            so just keep minimal history here */
341         oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
342         if (oldse != 0)
343                 CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d "
344                        "has changed from %d to %d\n",
345                        req->rq_import->imp_obd->obd_name,req->rq_request_portal,
346                        oldse, at_get(&at->iat_service_estimate[idx]));
347 }
348
349 /* Expected network latency per remote node (secs) */
350 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
351 {
352         return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
353 }
354
355 /* Adjust expected network latency */
356 void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
357                                unsigned int service_time)
358 {
359         unsigned int nl, oldnl;
360         struct imp_at *at;
361         time64_t now = ktime_get_real_seconds();
362
363         LASSERT(req->rq_import);
364
365         if (service_time > now - req->rq_sent + 3) {
366                 /* bz16408, however, this can also happen if early reply
367                  * is lost and client RPC is expired and resent, early reply
368                  * or reply of original RPC can still be fit in reply buffer
369                  * of resent RPC, now client is measuring time from the
370                  * resent time, but server sent back service time of original
371                  * RPC.
372                  */
373                 CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ?
374                        D_ADAPTTO : D_WARNING,
375                        "Reported service time %u > total measured time %lld\n",
376                        service_time, now - req->rq_sent);
377                 return;
378         }
379
380         /* Network latency is total time less server processing time */
381         nl = max_t(int, now - req->rq_sent -
382                         service_time, 0) + 1; /* st rounding */
383         at = &req->rq_import->imp_at;
384
385         oldnl = at_measured(&at->iat_net_latency, nl);
386         if (oldnl != 0)
387                 CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) "
388                        "has changed from %d to %d\n",
389                        req->rq_import->imp_obd->obd_name,
390                        obd_uuid2str(
391                                &req->rq_import->imp_connection->c_remote_uuid),
392                        oldnl, at_get(&at->iat_net_latency));
393 }
394
395 static int unpack_reply(struct ptlrpc_request *req)
396 {
397         int rc;
398
399         if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
400                 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
401                 if (rc) {
402                         DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
403                         return(-EPROTO);
404                 }
405         }
406
407         rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
408         if (rc) {
409                 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
410                 return(-EPROTO);
411         }
412         return 0;
413 }
414
415 /**
416  * Handle an early reply message, called with the rq_lock held.
417  * If anything goes wrong just ignore it - same as if it never happened
418  */
419 static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
420 __must_hold(&req->rq_lock)
421 {
422         struct ptlrpc_request *early_req;
423         time64_t olddl;
424         int rc;
425
426         ENTRY;
427         req->rq_early = 0;
428         spin_unlock(&req->rq_lock);
429
430         rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
431         if (rc) {
432                 spin_lock(&req->rq_lock);
433                 RETURN(rc);
434         }
435
436         rc = unpack_reply(early_req);
437         if (rc != 0) {
438                 sptlrpc_cli_finish_early_reply(early_req);
439                 spin_lock(&req->rq_lock);
440                 RETURN(rc);
441         }
442
443         /* Use new timeout value just to adjust the local value for this
444          * request, don't include it into at_history. It is unclear yet why
445          * service time increased and should it be counted or skipped, e.g.
446          * that can be recovery case or some error or server, the real reply
447          * will add all new data if it is worth to add. */
448         req->rq_timeout = lustre_msg_get_timeout(early_req->rq_repmsg);
449         lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
450
451         /* Network latency can be adjusted, it is pure network delays */
452         ptlrpc_at_adj_net_latency(req,
453                         lustre_msg_get_service_time(early_req->rq_repmsg));
454
455         sptlrpc_cli_finish_early_reply(early_req);
456
457         spin_lock(&req->rq_lock);
458         olddl = req->rq_deadline;
459         /* server assumes it now has rq_timeout from when the request
460          * arrived, so the client should give it at least that long.
461          * since we don't know the arrival time we'll use the original
462          * sent time */
463         req->rq_deadline = req->rq_sent + req->rq_timeout +
464                            ptlrpc_at_get_net_latency(req);
465
466         DEBUG_REQ(D_ADAPTTO, req,
467                   "Early reply #%d, new deadline in %llds (%llds)",
468                   req->rq_early_count,
469                   req->rq_deadline - ktime_get_real_seconds(),
470                   req->rq_deadline - olddl);
471
472         RETURN(rc);
473 }
474
475 static struct kmem_cache *request_cache;
476
477 int ptlrpc_request_cache_init(void)
478 {
479         request_cache = kmem_cache_create("ptlrpc_cache",
480                                           sizeof(struct ptlrpc_request),
481                                           0, SLAB_HWCACHE_ALIGN, NULL);
482         return request_cache == NULL ? -ENOMEM : 0;
483 }
484
485 void ptlrpc_request_cache_fini(void)
486 {
487         kmem_cache_destroy(request_cache);
488 }
489
490 struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
491 {
492         struct ptlrpc_request *req;
493
494         OBD_SLAB_ALLOC_PTR_GFP(req, request_cache, flags);
495         return req;
496 }
497
498 void ptlrpc_request_cache_free(struct ptlrpc_request *req)
499 {
500         OBD_SLAB_FREE_PTR(req, request_cache);
501 }
502
503 /**
504  * Wind down request pool \a pool.
505  * Frees all requests from the pool too
506  */
507 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
508 {
509         struct list_head *l, *tmp;
510         struct ptlrpc_request *req;
511
512         LASSERT(pool != NULL);
513
514         spin_lock(&pool->prp_lock);
515         list_for_each_safe(l, tmp, &pool->prp_req_list) {
516                 req = list_entry(l, struct ptlrpc_request, rq_list);
517                 list_del(&req->rq_list);
518                 LASSERT(req->rq_reqbuf);
519                 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
520                 OBD_FREE_LARGE(req->rq_reqbuf, pool->prp_rq_size);
521                 ptlrpc_request_cache_free(req);
522         }
523         spin_unlock(&pool->prp_lock);
524         OBD_FREE(pool, sizeof(*pool));
525 }
526 EXPORT_SYMBOL(ptlrpc_free_rq_pool);
527
528 /**
529  * Allocates, initializes and adds \a num_rq requests to the pool \a pool
530  */
531 int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
532 {
533         int i;
534         int size = 1;
535
536         while (size < pool->prp_rq_size)
537                 size <<= 1;
538
539         LASSERTF(list_empty(&pool->prp_req_list) ||
540                  size == pool->prp_rq_size,
541                  "Trying to change pool size with nonempty pool "
542                  "from %d to %d bytes\n", pool->prp_rq_size, size);
543
544         spin_lock(&pool->prp_lock);
545         pool->prp_rq_size = size;
546         for (i = 0; i < num_rq; i++) {
547                 struct ptlrpc_request *req;
548                 struct lustre_msg *msg;
549
550                 spin_unlock(&pool->prp_lock);
551                 req = ptlrpc_request_cache_alloc(GFP_NOFS);
552                 if (!req)
553                         return i;
554                 OBD_ALLOC_LARGE(msg, size);
555                 if (!msg) {
556                         ptlrpc_request_cache_free(req);
557                         return i;
558                 }
559                 req->rq_reqbuf = msg;
560                 req->rq_reqbuf_len = size;
561                 req->rq_pool = pool;
562                 spin_lock(&pool->prp_lock);
563                 list_add_tail(&req->rq_list, &pool->prp_req_list);
564         }
565         spin_unlock(&pool->prp_lock);
566         return num_rq;
567 }
568 EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
569
570 /**
571  * Create and initialize new request pool with given attributes:
572  * \a num_rq - initial number of requests to create for the pool
573  * \a msgsize - maximum message size possible for requests in thid pool
574  * \a populate_pool - function to be called when more requests need to be added
575  *                    to the pool
576  * Returns pointer to newly created pool or NULL on error.
577  */
578 struct ptlrpc_request_pool *
579 ptlrpc_init_rq_pool(int num_rq, int msgsize,
580                     int (*populate_pool)(struct ptlrpc_request_pool *, int))
581 {
582         struct ptlrpc_request_pool *pool;
583
584         OBD_ALLOC(pool, sizeof(struct ptlrpc_request_pool));
585         if (!pool)
586                 return NULL;
587
588         /* Request next power of two for the allocation, because internally
589            kernel would do exactly this */
590
591         spin_lock_init(&pool->prp_lock);
592         INIT_LIST_HEAD(&pool->prp_req_list);
593         pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
594         pool->prp_populate = populate_pool;
595
596         populate_pool(pool, num_rq);
597
598         return pool;
599 }
600 EXPORT_SYMBOL(ptlrpc_init_rq_pool);
601
602 /**
603  * Fetches one request from pool \a pool
604  */
605 static struct ptlrpc_request *
606 ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
607 {
608         struct ptlrpc_request *request;
609         struct lustre_msg *reqbuf;
610
611         if (!pool)
612                 return NULL;
613
614         spin_lock(&pool->prp_lock);
615
616         /* See if we have anything in a pool, and bail out if nothing,
617          * in writeout path, where this matters, this is safe to do, because
618          * nothing is lost in this case, and when some in-flight requests
619          * complete, this code will be called again. */
620         if (unlikely(list_empty(&pool->prp_req_list))) {
621                 spin_unlock(&pool->prp_lock);
622                 return NULL;
623         }
624
625         request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
626                              rq_list);
627         list_del_init(&request->rq_list);
628         spin_unlock(&pool->prp_lock);
629
630         LASSERT(request->rq_reqbuf);
631         LASSERT(request->rq_pool);
632
633         reqbuf = request->rq_reqbuf;
634         memset(request, 0, sizeof(*request));
635         request->rq_reqbuf = reqbuf;
636         request->rq_reqbuf_len = pool->prp_rq_size;
637         request->rq_pool = pool;
638
639         return request;
640 }
641
642 /**
643  * Returns freed \a request to pool.
644  */
645 static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
646 {
647         struct ptlrpc_request_pool *pool = request->rq_pool;
648
649         spin_lock(&pool->prp_lock);
650         LASSERT(list_empty(&request->rq_list));
651         LASSERT(!request->rq_receiving_reply);
652         list_add_tail(&request->rq_list, &pool->prp_req_list);
653         spin_unlock(&pool->prp_lock);
654 }
655
656 void ptlrpc_add_unreplied(struct ptlrpc_request *req)
657 {
658         struct obd_import       *imp = req->rq_import;
659         struct list_head        *tmp;
660         struct ptlrpc_request   *iter;
661
662         assert_spin_locked(&imp->imp_lock);
663         LASSERT(list_empty(&req->rq_unreplied_list));
664
665         /* unreplied list is sorted by xid in ascending order */
666         list_for_each_prev(tmp, &imp->imp_unreplied_list) {
667                 iter = list_entry(tmp, struct ptlrpc_request,
668                                   rq_unreplied_list);
669
670                 LASSERT(req->rq_xid != iter->rq_xid);
671                 if (req->rq_xid < iter->rq_xid)
672                         continue;
673                 list_add(&req->rq_unreplied_list, &iter->rq_unreplied_list);
674                 return;
675         }
676         list_add(&req->rq_unreplied_list, &imp->imp_unreplied_list);
677 }
678
679 void ptlrpc_assign_next_xid_nolock(struct ptlrpc_request *req)
680 {
681         req->rq_xid = ptlrpc_next_xid();
682         ptlrpc_add_unreplied(req);
683 }
684
685 static inline void ptlrpc_assign_next_xid(struct ptlrpc_request *req)
686 {
687         spin_lock(&req->rq_import->imp_lock);
688         ptlrpc_assign_next_xid_nolock(req);
689         spin_unlock(&req->rq_import->imp_lock);
690 }
691
692 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
693                              __u32 version, int opcode, char **bufs,
694                              struct ptlrpc_cli_ctx *ctx)
695 {
696         int count;
697         struct obd_import *imp;
698         __u32 *lengths;
699         int rc;
700
701         ENTRY;
702
703         count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
704         imp = request->rq_import;
705         lengths = request->rq_pill.rc_area[RCL_CLIENT];
706
707         if (ctx != NULL) {
708                 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
709         } else {
710                 rc = sptlrpc_req_get_ctx(request);
711                 if (rc)
712                         GOTO(out_free, rc);
713         }
714         sptlrpc_req_set_flavor(request, opcode);
715
716         rc = lustre_pack_request(request, imp->imp_msg_magic, count,
717                                  lengths, bufs);
718         if (rc)
719                 GOTO(out_ctx, rc);
720
721         lustre_msg_add_version(request->rq_reqmsg, version);
722         request->rq_send_state = LUSTRE_IMP_FULL;
723         request->rq_type = PTL_RPC_MSG_REQUEST;
724
725         request->rq_req_cbid.cbid_fn  = request_out_callback;
726         request->rq_req_cbid.cbid_arg = request;
727
728         request->rq_reply_cbid.cbid_fn  = reply_in_callback;
729         request->rq_reply_cbid.cbid_arg = request;
730
731         request->rq_reply_deadline = 0;
732         request->rq_bulk_deadline = 0;
733         request->rq_req_deadline = 0;
734         request->rq_phase = RQ_PHASE_NEW;
735         request->rq_next_phase = RQ_PHASE_UNDEFINED;
736
737         request->rq_request_portal = imp->imp_client->cli_request_portal;
738         request->rq_reply_portal = imp->imp_client->cli_reply_portal;
739
740         ptlrpc_at_set_req_timeout(request);
741
742         lustre_msg_set_opc(request->rq_reqmsg, opcode);
743         ptlrpc_assign_next_xid(request);
744
745         /* Let's setup deadline for req/reply/bulk unlink for opcode. */
746         if (cfs_fail_val == opcode) {
747                 time64_t *fail_t = NULL, *fail2_t = NULL;
748
749                 if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK))
750                         fail_t = &request->rq_bulk_deadline;
751                 else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK))
752                         fail_t = &request->rq_reply_deadline;
753                 else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK))
754                         fail_t = &request->rq_req_deadline;
755                 else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BOTH_UNLINK)) {
756                         fail_t = &request->rq_reply_deadline;
757                         fail2_t = &request->rq_bulk_deadline;
758                 }
759
760                 if (fail_t) {
761                         *fail_t = ktime_get_real_seconds() + LONG_UNLINK;
762
763                         if (fail2_t)
764                                 *fail2_t = ktime_get_real_seconds() +
765                                            LONG_UNLINK;
766
767                         /*
768                          * The RPC is infected, let the test to change the
769                          * fail_loc
770                          */
771                         msleep(4 * MSEC_PER_SEC);
772                 }
773         }
774
775         RETURN(0);
776
777 out_ctx:
778         LASSERT(!request->rq_pool);
779         sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
780 out_free:
781         atomic_dec(&imp->imp_reqs);
782         class_import_put(imp);
783
784         return rc;
785
786 }
787 EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
788
789 /**
790  * Pack request buffers for network transfer, performing necessary encryption
791  * steps if necessary.
792  */
793 int ptlrpc_request_pack(struct ptlrpc_request *request,
794                         __u32 version, int opcode)
795 {
796         int rc;
797         rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
798         if (rc)
799                 return rc;
800
801         /* For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
802          * ptlrpc_body sent from server equal to local ptlrpc_body size, so we
803          * have to send old ptlrpc_body to keep interoprability with these
804          * clients.
805          *
806          * Only three kinds of server->client RPCs so far:
807          *  - LDLM_BL_CALLBACK
808          *  - LDLM_CP_CALLBACK
809          *  - LDLM_GL_CALLBACK
810          *
811          * XXX This should be removed whenever we drop the interoprability with
812          *     the these old clients.
813          */
814         if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
815             opcode == LDLM_GL_CALLBACK)
816                 req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
817                                    sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
818
819         return rc;
820 }
821 EXPORT_SYMBOL(ptlrpc_request_pack);
822
823 /**
824  * Helper function to allocate new request on import \a imp
825  * and possibly using existing request from pool \a pool if provided.
826  * Returns allocated request structure with import field filled or
827  * NULL on error.
828  */
829 static inline
830 struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
831                                               struct ptlrpc_request_pool *pool)
832 {
833         struct ptlrpc_request *request = NULL;
834
835         request = ptlrpc_request_cache_alloc(GFP_NOFS);
836
837         if (!request && pool)
838                 request = ptlrpc_prep_req_from_pool(pool);
839
840         if (request) {
841                 ptlrpc_cli_req_init(request);
842
843                 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
844                 LASSERT(imp != LP_POISON);
845                 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p\n",
846                         imp->imp_client);
847                 LASSERT(imp->imp_client != LP_POISON);
848
849                 request->rq_import = class_import_get(imp);
850                 atomic_inc(&imp->imp_reqs);
851         } else {
852                 CERROR("request allocation out of memory\n");
853         }
854
855         return request;
856 }
857
858 static int ptlrpc_reconnect_if_idle(struct obd_import *imp)
859 {
860         int rc;
861
862         /*
863          * initiate connection if needed when the import has been
864          * referenced by the new request to avoid races with disconnect.
865          * serialize this check against conditional state=IDLE
866          * in ptlrpc_disconnect_idle_interpret()
867          */
868         spin_lock(&imp->imp_lock);
869         if (imp->imp_state == LUSTRE_IMP_IDLE) {
870                 imp->imp_generation++;
871                 imp->imp_initiated_at = imp->imp_generation;
872                 imp->imp_state = LUSTRE_IMP_NEW;
873
874                 /* connect_import_locked releases imp_lock */
875                 rc = ptlrpc_connect_import_locked(imp);
876                 if (rc)
877                         return rc;
878                 ptlrpc_pinger_add_import(imp);
879         } else {
880                 spin_unlock(&imp->imp_lock);
881         }
882         return 0;
883 }
884
885 /**
886  * Helper function for creating a request.
887  * Calls __ptlrpc_request_alloc to allocate new request sturcture and inits
888  * buffer structures according to capsule template \a format.
889  * Returns allocated request structure pointer or NULL on error.
890  */
891 static struct ptlrpc_request *
892 ptlrpc_request_alloc_internal(struct obd_import *imp,
893                               struct ptlrpc_request_pool * pool,
894                               const struct req_format *format)
895 {
896         struct ptlrpc_request *request;
897
898         request = __ptlrpc_request_alloc(imp, pool);
899         if (request == NULL)
900                 return NULL;
901
902         /* don't make expensive check for idling connection
903          * if it's already connected */
904         if (unlikely(imp->imp_state != LUSTRE_IMP_FULL)) {
905                 if (ptlrpc_reconnect_if_idle(imp) < 0) {
906                         atomic_dec(&imp->imp_reqs);
907                         ptlrpc_request_free(request);
908                         return NULL;
909                 }
910         }
911
912         req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
913         req_capsule_set(&request->rq_pill, format);
914         return request;
915 }
916
917 /**
918  * Allocate new request structure for import \a imp and initialize its
919  * buffer structure according to capsule template \a format.
920  */
921 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
922                                             const struct req_format *format)
923 {
924         return ptlrpc_request_alloc_internal(imp, NULL, format);
925 }
926 EXPORT_SYMBOL(ptlrpc_request_alloc);
927
928 /**
929  * Allocate new request structure for import \a imp from pool \a pool and
930  * initialize its buffer structure according to capsule template \a format.
931  */
932 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
933                                             struct ptlrpc_request_pool * pool,
934                                             const struct req_format *format)
935 {
936         return ptlrpc_request_alloc_internal(imp, pool, format);
937 }
938 EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
939
940 /**
941  * For requests not from pool, free memory of the request structure.
942  * For requests obtained from a pool earlier, return request back to pool.
943  */
944 void ptlrpc_request_free(struct ptlrpc_request *request)
945 {
946         if (request->rq_pool)
947                 __ptlrpc_free_req_to_pool(request);
948         else
949                 ptlrpc_request_cache_free(request);
950 }
951 EXPORT_SYMBOL(ptlrpc_request_free);
952
953 /**
954  * Allocate new request for operatione \a opcode and immediatelly pack it for
955  * network transfer.
956  * Only used for simple requests like OBD_PING where the only important
957  * part of the request is operation itself.
958  * Returns allocated request or NULL on error.
959  */
960 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
961                                                 const struct req_format *format,
962                                                 __u32 version, int opcode)
963 {
964         struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
965         int                    rc;
966
967         if (req) {
968                 rc = ptlrpc_request_pack(req, version, opcode);
969                 if (rc) {
970                         ptlrpc_request_free(req);
971                         req = NULL;
972                 }
973         }
974         return req;
975 }
976 EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
977
978 /**
979  * Allocate and initialize new request set structure on the current CPT.
980  * Returns a pointer to the newly allocated set structure or NULL on error.
981  */
982 struct ptlrpc_request_set *ptlrpc_prep_set(void)
983 {
984         struct ptlrpc_request_set       *set;
985         int                             cpt;
986
987         ENTRY;
988         cpt = cfs_cpt_current(cfs_cpt_table, 0);
989         OBD_CPT_ALLOC(set, cfs_cpt_table, cpt, sizeof *set);
990         if (!set)
991                 RETURN(NULL);
992         atomic_set(&set->set_refcount, 1);
993         INIT_LIST_HEAD(&set->set_requests);
994         init_waitqueue_head(&set->set_waitq);
995         atomic_set(&set->set_new_count, 0);
996         atomic_set(&set->set_remaining, 0);
997         spin_lock_init(&set->set_new_req_lock);
998         INIT_LIST_HEAD(&set->set_new_requests);
999         set->set_max_inflight = UINT_MAX;
1000         set->set_producer     = NULL;
1001         set->set_producer_arg = NULL;
1002         set->set_rc           = 0;
1003
1004         RETURN(set);
1005 }
1006 EXPORT_SYMBOL(ptlrpc_prep_set);
1007
1008 /**
1009  * Allocate and initialize new request set structure with flow control
1010  * extension. This extension allows to control the number of requests in-flight
1011  * for the whole set. A callback function to generate requests must be provided
1012  * and the request set will keep the number of requests sent over the wire to
1013  * @max_inflight.
1014  * Returns a pointer to the newly allocated set structure or NULL on error.
1015  */
1016 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
1017                                              void *arg)
1018
1019 {
1020         struct ptlrpc_request_set *set;
1021
1022         set = ptlrpc_prep_set();
1023         if (!set)
1024                 RETURN(NULL);
1025
1026         set->set_max_inflight  = max;
1027         set->set_producer      = func;
1028         set->set_producer_arg  = arg;
1029
1030         RETURN(set);
1031 }
1032
1033 /**
1034  * Wind down and free request set structure previously allocated with
1035  * ptlrpc_prep_set.
1036  * Ensures that all requests on the set have completed and removes
1037  * all requests from the request list in a set.
1038  * If any unsent request happen to be on the list, pretends that they got
1039  * an error in flight and calls their completion handler.
1040  */
1041 void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
1042 {
1043         struct list_head        *tmp;
1044         struct list_head        *next;
1045         int                      expected_phase;
1046         int                      n = 0;
1047         ENTRY;
1048
1049         /* Requests on the set should either all be completed, or all be new */
1050         expected_phase = (atomic_read(&set->set_remaining) == 0) ?
1051                          RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
1052         list_for_each(tmp, &set->set_requests) {
1053                 struct ptlrpc_request *req =
1054                         list_entry(tmp, struct ptlrpc_request,
1055                                    rq_set_chain);
1056
1057                 LASSERT(req->rq_phase == expected_phase);
1058                 n++;
1059         }
1060
1061         LASSERTF(atomic_read(&set->set_remaining) == 0 ||
1062                  atomic_read(&set->set_remaining) == n, "%d / %d\n",
1063                  atomic_read(&set->set_remaining), n);
1064
1065         list_for_each_safe(tmp, next, &set->set_requests) {
1066                 struct ptlrpc_request *req =
1067                         list_entry(tmp, struct ptlrpc_request,
1068                                    rq_set_chain);
1069                 list_del_init(&req->rq_set_chain);
1070
1071                 LASSERT(req->rq_phase == expected_phase);
1072
1073                 if (req->rq_phase == RQ_PHASE_NEW) {
1074                         ptlrpc_req_interpret(NULL, req, -EBADR);
1075                         atomic_dec(&set->set_remaining);
1076                 }
1077
1078                 spin_lock(&req->rq_lock);
1079                 req->rq_set = NULL;
1080                 req->rq_invalid_rqset = 0;
1081                 spin_unlock(&req->rq_lock);
1082
1083                 ptlrpc_req_finished (req);
1084         }
1085
1086         LASSERT(atomic_read(&set->set_remaining) == 0);
1087
1088         ptlrpc_reqset_put(set);
1089         EXIT;
1090 }
1091 EXPORT_SYMBOL(ptlrpc_set_destroy);
1092
1093 /**
1094  * Add a new request to the general purpose request set.
1095  * Assumes request reference from the caller.
1096  */
1097 void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
1098                         struct ptlrpc_request *req)
1099 {
1100         LASSERT(req->rq_import->imp_state != LUSTRE_IMP_IDLE);
1101         LASSERT(list_empty(&req->rq_set_chain));
1102
1103         if (req->rq_allow_intr)
1104                 set->set_allow_intr = 1;
1105
1106         /* The set takes over the caller's request reference */
1107         list_add_tail(&req->rq_set_chain, &set->set_requests);
1108         req->rq_set = set;
1109         atomic_inc(&set->set_remaining);
1110         req->rq_queued_time = ktime_get_seconds();
1111
1112         if (req->rq_reqmsg != NULL)
1113                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
1114
1115         if (set->set_producer != NULL)
1116                 /* If the request set has a producer callback, the RPC must be
1117                  * sent straight away */
1118                 ptlrpc_send_new_req(req);
1119 }
1120 EXPORT_SYMBOL(ptlrpc_set_add_req);
1121
1122 /**
1123  * Add a request to a request with dedicated server thread
1124  * and wake the thread to make any necessary processing.
1125  * Currently only used for ptlrpcd.
1126  */
1127 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
1128                            struct ptlrpc_request *req)
1129 {
1130         struct ptlrpc_request_set *set = pc->pc_set;
1131         int count, i;
1132
1133         LASSERT(req->rq_set == NULL);
1134         LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
1135
1136         spin_lock(&set->set_new_req_lock);
1137         /*
1138          * The set takes over the caller's request reference.
1139          */
1140         req->rq_set = set;
1141         req->rq_queued_time = ktime_get_seconds();
1142         list_add_tail(&req->rq_set_chain, &set->set_new_requests);
1143         count = atomic_inc_return(&set->set_new_count);
1144         spin_unlock(&set->set_new_req_lock);
1145
1146         /* Only need to call wakeup once for the first entry. */
1147         if (count == 1) {
1148                 wake_up(&set->set_waitq);
1149
1150                 /* XXX: It maybe unnecessary to wakeup all the partners. But to
1151                  *      guarantee the async RPC can be processed ASAP, we have
1152                  *      no other better choice. It maybe fixed in future. */
1153                 for (i = 0; i < pc->pc_npartners; i++)
1154                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
1155         }
1156 }
1157
1158 /**
1159  * Based on the current state of the import, determine if the request
1160  * can be sent, is an error, or should be delayed.
1161  *
1162  * Returns true if this request should be delayed. If false, and
1163  * *status is set, then the request can not be sent and *status is the
1164  * error code.  If false and status is 0, then request can be sent.
1165  *
1166  * The imp->imp_lock must be held.
1167  */
1168 static int ptlrpc_import_delay_req(struct obd_import *imp,
1169                                    struct ptlrpc_request *req, int *status)
1170 {
1171         int delay = 0;
1172         ENTRY;
1173
1174         LASSERT (status != NULL);
1175         *status = 0;
1176
1177         if (req->rq_ctx_init || req->rq_ctx_fini) {
1178                 /* always allow ctx init/fini rpc go through */
1179         } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1180                 DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
1181                 *status = -EIO;
1182         } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1183                 unsigned int opc = lustre_msg_get_opc(req->rq_reqmsg);
1184
1185                 /* pings or MDS-equivalent STATFS may safely race with umount */
1186                 DEBUG_REQ((opc == OBD_PING || opc == OST_STATFS) ?
1187                           D_HA : D_ERROR, req, "IMP_CLOSED ");
1188                 *status = -EIO;
1189         } else if (ptlrpc_send_limit_expired(req)) {
1190                 /* probably doesn't need to be a D_ERROR after initial testing*/
1191                 DEBUG_REQ(D_HA, req, "send limit expired ");
1192                 *status = -ETIMEDOUT;
1193         } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1194                    imp->imp_state == LUSTRE_IMP_CONNECTING) {
1195                 /* allow CONNECT even if import is invalid */ ;
1196                 if (atomic_read(&imp->imp_inval_count) != 0) {
1197                         DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1198                         *status = -EIO;
1199                 }
1200         } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1201                 if (!imp->imp_deactive)
1202                         DEBUG_REQ(D_NET, req, "IMP_INVALID");
1203                 *status = -ESHUTDOWN; /* bz 12940 */
1204         } else if (req->rq_import_generation != imp->imp_generation) {
1205                 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1206                 *status = -EIO;
1207         } else if (req->rq_send_state != imp->imp_state) {
1208                 /* invalidate in progress - any requests should be drop */
1209                 if (atomic_read(&imp->imp_inval_count) != 0) {
1210                         DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1211                         *status = -EIO;
1212                 } else if (req->rq_no_delay &&
1213                            imp->imp_generation != imp->imp_initiated_at) {
1214                         /* ignore nodelay for requests initiating connections */
1215                         *status = -EWOULDBLOCK;
1216                 } else if (req->rq_allow_replay &&
1217                           (imp->imp_state == LUSTRE_IMP_REPLAY ||
1218                            imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1219                            imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1220                            imp->imp_state == LUSTRE_IMP_RECOVER)) {
1221                         DEBUG_REQ(D_HA, req, "allow during recovery.\n");
1222                 } else {
1223                         delay = 1;
1224                 }
1225         }
1226
1227         RETURN(delay);
1228 }
1229
1230 /**
1231  * Decide if the error message should be printed to the console or not.
1232  * Makes its decision based on request type, status, and failure frequency.
1233  *
1234  * \param[in] req  request that failed and may need a console message
1235  *
1236  * \retval false if no message should be printed
1237  * \retval true  if console message should be printed
1238  */
1239 static bool ptlrpc_console_allow(struct ptlrpc_request *req, __u32 opc, int err)
1240 {
1241         LASSERT(req->rq_reqmsg != NULL);
1242
1243         /* Suppress particular reconnect errors which are to be expected. */
1244         if (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT) {
1245
1246                 /* Suppress timed out reconnect requests */
1247                 if (lustre_handle_is_used(&req->rq_import->imp_remote_handle) ||
1248                     req->rq_timedout)
1249                         return false;
1250
1251                 /* Suppress most unavailable/again reconnect requests, but
1252                  * print occasionally so it is clear client is trying to
1253                  * connect to a server where no target is running. */
1254                 if ((err == -ENODEV || err == -EAGAIN) &&
1255                     req->rq_import->imp_conn_cnt % 30 != 20)
1256                         return false;
1257         }
1258
1259         if (opc == LDLM_ENQUEUE && err == -EAGAIN)
1260                 /* -EAGAIN is normal when using POSIX flocks */
1261                 return false;
1262
1263         if (opc == OBD_PING && (err == -ENODEV || err == -ENOTCONN) &&
1264             (req->rq_xid & 0xf) != 10)
1265                 /* Suppress most ping requests, they may fail occasionally */
1266                 return false;
1267
1268         return true;
1269 }
1270
1271 /**
1272  * Check request processing status.
1273  * Returns the status.
1274  */
1275 static int ptlrpc_check_status(struct ptlrpc_request *req)
1276 {
1277         int err;
1278         ENTRY;
1279
1280         err = lustre_msg_get_status(req->rq_repmsg);
1281         if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1282                 struct obd_import *imp = req->rq_import;
1283                 lnet_nid_t nid = imp->imp_connection->c_peer.nid;
1284                 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1285
1286                 if (ptlrpc_console_allow(req, opc, err))
1287                         LCONSOLE_ERROR_MSG(0x11, "%s: operation %s to node %s "
1288                                            "failed: rc = %d\n",
1289                                            imp->imp_obd->obd_name,
1290                                            ll_opcode2str(opc),
1291                                            libcfs_nid2str(nid), err);
1292                 RETURN(err < 0 ? err : -EINVAL);
1293         }
1294
1295         if (err < 0) {
1296                 DEBUG_REQ(D_INFO, req, "status is %d", err);
1297         } else if (err > 0) {
1298                 /* XXX: translate this error from net to host */
1299                 DEBUG_REQ(D_INFO, req, "status is %d", err);
1300         }
1301
1302         RETURN(err);
1303 }
1304
1305 /**
1306  * save pre-versions of objects into request for replay.
1307  * Versions are obtained from server reply.
1308  * used for VBR.
1309  */
1310 static void ptlrpc_save_versions(struct ptlrpc_request *req)
1311 {
1312         struct lustre_msg *repmsg = req->rq_repmsg;
1313         struct lustre_msg *reqmsg = req->rq_reqmsg;
1314         __u64 *versions = lustre_msg_get_versions(repmsg);
1315         ENTRY;
1316
1317         if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1318                 return;
1319
1320         LASSERT(versions);
1321         lustre_msg_set_versions(reqmsg, versions);
1322         CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
1323                versions[0], versions[1]);
1324
1325         EXIT;
1326 }
1327
1328 __u64 ptlrpc_known_replied_xid(struct obd_import *imp)
1329 {
1330         struct ptlrpc_request *req;
1331
1332         assert_spin_locked(&imp->imp_lock);
1333         if (list_empty(&imp->imp_unreplied_list))
1334                 return 0;
1335
1336         req = list_entry(imp->imp_unreplied_list.next, struct ptlrpc_request,
1337                          rq_unreplied_list);
1338         LASSERTF(req->rq_xid >= 1, "XID:%llu\n", req->rq_xid);
1339
1340         if (imp->imp_known_replied_xid < req->rq_xid - 1)
1341                 imp->imp_known_replied_xid = req->rq_xid - 1;
1342
1343         return req->rq_xid - 1;
1344 }
1345
1346 /**
1347  * Callback function called when client receives RPC reply for \a req.
1348  * Returns 0 on success or error code.
1349  * The return alue would be assigned to req->rq_status by the caller
1350  * as request processing status.
1351  * This function also decides if the request needs to be saved for later replay.
1352  */
1353 static int after_reply(struct ptlrpc_request *req)
1354 {
1355         struct obd_import *imp = req->rq_import;
1356         struct obd_device *obd = req->rq_import->imp_obd;
1357         ktime_t work_start;
1358         u64 committed;
1359         s64 timediff;
1360         int rc;
1361
1362         ENTRY;
1363         LASSERT(obd != NULL);
1364         /* repbuf must be unlinked */
1365         LASSERT(!req->rq_receiving_reply && req->rq_reply_unlinked);
1366
1367         if (req->rq_reply_truncated) {
1368                 if (ptlrpc_no_resend(req)) {
1369                         DEBUG_REQ(D_ERROR, req, "reply buffer overflow,"
1370                                   " expected: %d, actual size: %d",
1371                                   req->rq_nob_received, req->rq_repbuf_len);
1372                         RETURN(-EOVERFLOW);
1373                 }
1374
1375                 sptlrpc_cli_free_repbuf(req);
1376                 /* Pass the required reply buffer size (include
1377                  * space for early reply).
1378                  * NB: no need to roundup because alloc_repbuf
1379                  * will roundup it */
1380                 req->rq_replen       = req->rq_nob_received;
1381                 req->rq_nob_received = 0;
1382                 spin_lock(&req->rq_lock);
1383                 req->rq_resend       = 1;
1384                 spin_unlock(&req->rq_lock);
1385                 RETURN(0);
1386         }
1387
1388         work_start = ktime_get_real();
1389         timediff = ktime_us_delta(work_start, req->rq_sent_ns);
1390
1391         /*
1392          * NB Until this point, the whole of the incoming message,
1393          * including buflens, status etc is in the sender's byte order.
1394          */
1395         rc = sptlrpc_cli_unwrap_reply(req);
1396         if (rc) {
1397                 DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
1398                 RETURN(rc);
1399         }
1400
1401         /*
1402          * Security layer unwrap might ask resend this request.
1403          */
1404         if (req->rq_resend)
1405                 RETURN(0);
1406
1407         rc = unpack_reply(req);
1408         if (rc)
1409                 RETURN(rc);
1410
1411         /* retry indefinitely on EINPROGRESS */
1412         if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1413             ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
1414                 time64_t now = ktime_get_real_seconds();
1415
1416                 DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
1417                 spin_lock(&req->rq_lock);
1418                 req->rq_resend = 1;
1419                 spin_unlock(&req->rq_lock);
1420                 req->rq_nr_resend++;
1421
1422                 /* Readjust the timeout for current conditions */
1423                 ptlrpc_at_set_req_timeout(req);
1424                 /* delay resend to give a chance to the server to get ready.
1425                  * The delay is increased by 1s on every resend and is capped to
1426                  * the current request timeout (i.e. obd_timeout if AT is off,
1427                  * or AT service time x 125% + 5s, see at_est2timeout) */
1428                 if (req->rq_nr_resend > req->rq_timeout)
1429                         req->rq_sent = now + req->rq_timeout;
1430                 else
1431                         req->rq_sent = now + req->rq_nr_resend;
1432
1433                 /* Resend for EINPROGRESS will use a new XID */
1434                 spin_lock(&imp->imp_lock);
1435                 list_del_init(&req->rq_unreplied_list);
1436                 spin_unlock(&imp->imp_lock);
1437
1438                 RETURN(0);
1439         }
1440
1441         if (obd->obd_svc_stats != NULL) {
1442                 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1443                                     timediff);
1444                 ptlrpc_lprocfs_rpc_sent(req, timediff);
1445         }
1446
1447         if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1448             lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1449                 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1450                           lustre_msg_get_type(req->rq_repmsg));
1451                 RETURN(-EPROTO);
1452         }
1453
1454         if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1455                 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1456         ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1457         ptlrpc_at_adj_net_latency(req,
1458                                   lustre_msg_get_service_time(req->rq_repmsg));
1459
1460         rc = ptlrpc_check_status(req);
1461         imp->imp_connect_error = rc;
1462
1463         if (rc) {
1464                 /*
1465                  * Either we've been evicted, or the server has failed for
1466                  * some reason. Try to reconnect, and if that fails, punt to
1467                  * the upcall.
1468                  */
1469                 if (ptlrpc_recoverable_error(rc)) {
1470                         if (req->rq_send_state != LUSTRE_IMP_FULL ||
1471                             imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
1472                                 RETURN(rc);
1473                         }
1474                         ptlrpc_request_handle_notconn(req);
1475                         RETURN(rc);
1476                 }
1477         } else {
1478                 /*
1479                  * Let's look if server sent slv. Do it only for RPC with
1480                  * rc == 0.
1481                  */
1482                 ldlm_cli_update_pool(req);
1483         }
1484
1485         /*
1486          * Store transno in reqmsg for replay.
1487          */
1488         if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1489                 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1490                 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1491         }
1492
1493         if (imp->imp_replayable) {
1494                 spin_lock(&imp->imp_lock);
1495                 /*
1496                  * No point in adding already-committed requests to the replay
1497                  * list, we will just remove them immediately. b=9829
1498                  */
1499                 if (req->rq_transno != 0 &&
1500                     (req->rq_transno >
1501                      lustre_msg_get_last_committed(req->rq_repmsg) ||
1502                      req->rq_replay)) {
1503                         /** version recovery */
1504                         ptlrpc_save_versions(req);
1505                         ptlrpc_retain_replayable_request(req, imp);
1506                 } else if (req->rq_commit_cb != NULL &&
1507                            list_empty(&req->rq_replay_list)) {
1508                         /* NB: don't call rq_commit_cb if it's already on
1509                          * rq_replay_list, ptlrpc_free_committed() will call
1510                          * it later, see LU-3618 for details */
1511                         spin_unlock(&imp->imp_lock);
1512                         req->rq_commit_cb(req);
1513                         spin_lock(&imp->imp_lock);
1514                 }
1515
1516                 /*
1517                  * Replay-enabled imports return commit-status information.
1518                  */
1519                 committed = lustre_msg_get_last_committed(req->rq_repmsg);
1520                 if (likely(committed > imp->imp_peer_committed_transno))
1521                         imp->imp_peer_committed_transno = committed;
1522
1523                 ptlrpc_free_committed(imp);
1524
1525                 if (!list_empty(&imp->imp_replay_list)) {
1526                         struct ptlrpc_request *last;
1527
1528                         last = list_entry(imp->imp_replay_list.prev,
1529                                           struct ptlrpc_request,
1530                                           rq_replay_list);
1531                         /*
1532                          * Requests with rq_replay stay on the list even if no
1533                          * commit is expected.
1534                          */
1535                         if (last->rq_transno > imp->imp_peer_committed_transno)
1536                                 ptlrpc_pinger_commit_expected(imp);
1537                 }
1538
1539                 spin_unlock(&imp->imp_lock);
1540         }
1541
1542         RETURN(rc);
1543 }
1544
1545 /**
1546  * Helper function to send request \a req over the network for the first time
1547  * Also adjusts request phase.
1548  * Returns 0 on success or error code.
1549  */
1550 static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1551 {
1552         struct obd_import     *imp = req->rq_import;
1553         __u64                  min_xid = 0;
1554         int rc;
1555         ENTRY;
1556
1557         LASSERT(req->rq_phase == RQ_PHASE_NEW);
1558
1559         /* do not try to go further if there is not enough memory in enc_pool */
1560         if (req->rq_sent && req->rq_bulk != NULL)
1561                 if (req->rq_bulk->bd_iov_count > get_free_pages_in_pool() &&
1562                     pool_is_at_full_capacity())
1563                         RETURN(-ENOMEM);
1564
1565         if (req->rq_sent && (req->rq_sent > ktime_get_real_seconds()) &&
1566             (!req->rq_generation_set ||
1567              req->rq_import_generation == imp->imp_generation))
1568                 RETURN (0);
1569
1570         ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1571
1572         spin_lock(&imp->imp_lock);
1573
1574         LASSERT(req->rq_xid != 0);
1575         LASSERT(!list_empty(&req->rq_unreplied_list));
1576
1577         if (!req->rq_generation_set)
1578                 req->rq_import_generation = imp->imp_generation;
1579
1580         if (ptlrpc_import_delay_req(imp, req, &rc)) {
1581                 spin_lock(&req->rq_lock);
1582                 req->rq_waiting = 1;
1583                 spin_unlock(&req->rq_lock);
1584
1585                 DEBUG_REQ(D_HA, req, "req waiting for recovery: (%s != %s)",
1586                           ptlrpc_import_state_name(req->rq_send_state),
1587                           ptlrpc_import_state_name(imp->imp_state));
1588                 LASSERT(list_empty(&req->rq_list));
1589                 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1590                 atomic_inc(&req->rq_import->imp_inflight);
1591                 spin_unlock(&imp->imp_lock);
1592                 RETURN(0);
1593         }
1594
1595         if (rc != 0) {
1596                 spin_unlock(&imp->imp_lock);
1597                 req->rq_status = rc;
1598                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1599                 RETURN(rc);
1600         }
1601
1602         LASSERT(list_empty(&req->rq_list));
1603         list_add_tail(&req->rq_list, &imp->imp_sending_list);
1604         atomic_inc(&req->rq_import->imp_inflight);
1605
1606         /* find the known replied XID from the unreplied list, CONNECT
1607          * and DISCONNECT requests are skipped to make the sanity check
1608          * on server side happy. see process_req_last_xid().
1609          *
1610          * For CONNECT: Because replay requests have lower XID, it'll
1611          * break the sanity check if CONNECT bump the exp_last_xid on
1612          * server.
1613          *
1614          * For DISCONNECT: Since client will abort inflight RPC before
1615          * sending DISCONNECT, DISCONNECT may carry an XID which higher
1616          * than the inflight RPC.
1617          */
1618         if (!ptlrpc_req_is_connect(req) && !ptlrpc_req_is_disconnect(req))
1619                 min_xid = ptlrpc_known_replied_xid(imp);
1620         spin_unlock(&imp->imp_lock);
1621
1622         lustre_msg_set_last_xid(req->rq_reqmsg, min_xid);
1623
1624         lustre_msg_set_status(req->rq_reqmsg, current_pid());
1625
1626         rc = sptlrpc_req_refresh_ctx(req, -1);
1627         if (rc) {
1628                 if (req->rq_err) {
1629                         req->rq_status = rc;
1630                         RETURN(1);
1631                 } else {
1632                         spin_lock(&req->rq_lock);
1633                         req->rq_wait_ctx = 1;
1634                         spin_unlock(&req->rq_lock);
1635                         RETURN(0);
1636                 }
1637         }
1638
1639         CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc"
1640                " %s:%s:%d:%llu:%s:%d\n", current_comm(),
1641                imp->imp_obd->obd_uuid.uuid,
1642                lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1643                obd_import_nid2str(imp), lustre_msg_get_opc(req->rq_reqmsg));
1644
1645         rc = ptl_send_rpc(req, 0);
1646         if (rc == -ENOMEM) {
1647                 spin_lock(&imp->imp_lock);
1648                 if (!list_empty(&req->rq_list)) {
1649                         list_del_init(&req->rq_list);
1650                         atomic_dec(&req->rq_import->imp_inflight);
1651                 }
1652                 spin_unlock(&imp->imp_lock);
1653                 ptlrpc_rqphase_move(req, RQ_PHASE_NEW);
1654                 RETURN(rc);
1655         }
1656         if (rc) {
1657                 DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
1658                 spin_lock(&req->rq_lock);
1659                 req->rq_net_err = 1;
1660                 spin_unlock(&req->rq_lock);
1661                 RETURN(rc);
1662         }
1663         RETURN(0);
1664 }
1665
1666 static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1667 {
1668         int remaining, rc;
1669         ENTRY;
1670
1671         LASSERT(set->set_producer != NULL);
1672
1673         remaining = atomic_read(&set->set_remaining);
1674
1675         /* populate the ->set_requests list with requests until we
1676          * reach the maximum number of RPCs in flight for this set */
1677         while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1678                 rc = set->set_producer(set, set->set_producer_arg);
1679                 if (rc == -ENOENT) {
1680                         /* no more RPC to produce */
1681                         set->set_producer     = NULL;
1682                         set->set_producer_arg = NULL;
1683                         RETURN(0);
1684                 }
1685         }
1686
1687         RETURN((atomic_read(&set->set_remaining) - remaining));
1688 }
1689
1690 /**
1691  * this sends any unsent RPCs in \a set and returns 1 if all are sent
1692  * and no more replies are expected.
1693  * (it is possible to get less replies than requests sent e.g. due to timed out
1694  * requests or requests that we had trouble to send out)
1695  *
1696  * NOTE: This function contains a potential schedule point (cond_resched()).
1697  */
1698 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1699 {
1700         struct list_head *tmp, *next;
1701         struct list_head  comp_reqs;
1702         int force_timer_recalc = 0;
1703         ENTRY;
1704
1705         if (atomic_read(&set->set_remaining) == 0)
1706                 RETURN(1);
1707
1708         INIT_LIST_HEAD(&comp_reqs);
1709         list_for_each_safe(tmp, next, &set->set_requests) {
1710                 struct ptlrpc_request *req =
1711                         list_entry(tmp, struct ptlrpc_request,
1712                                    rq_set_chain);
1713                 struct obd_import *imp = req->rq_import;
1714                 int unregistered = 0;
1715                 int async = 1;
1716                 int rc = 0;
1717
1718                 if (req->rq_phase == RQ_PHASE_COMPLETE) {
1719                         list_move_tail(&req->rq_set_chain, &comp_reqs);
1720                         continue;
1721                 }
1722
1723                 /* This schedule point is mainly for the ptlrpcd caller of this
1724                  * function.  Most ptlrpc sets are not long-lived and unbounded
1725                  * in length, but at the least the set used by the ptlrpcd is.
1726                  * Since the processing time is unbounded, we need to insert an
1727                  * explicit schedule point to make the thread well-behaved.
1728                  */
1729                 cond_resched();
1730
1731                 /* If the caller requires to allow to be interpreted by force
1732                  * and it has really been interpreted, then move the request
1733                  * to RQ_PHASE_INTERPRET phase in spite of what the current
1734                  * phase is. */
1735                 if (unlikely(req->rq_allow_intr && req->rq_intr)) {
1736                         req->rq_status = -EINTR;
1737                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1738
1739                         /* Since it is interpreted and we have to wait for
1740                          * the reply to be unlinked, then use sync mode. */
1741                         async = 0;
1742
1743                         GOTO(interpret, req->rq_status);
1744                 }
1745
1746                 if (req->rq_phase == RQ_PHASE_NEW && ptlrpc_send_new_req(req))
1747                         force_timer_recalc = 1;
1748
1749                 /* delayed send - skip */
1750                 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1751                         continue;
1752
1753                 /* delayed resend - skip */
1754                 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
1755                     req->rq_sent > ktime_get_real_seconds())
1756                         continue;
1757
1758                 if (!(req->rq_phase == RQ_PHASE_RPC ||
1759                       req->rq_phase == RQ_PHASE_BULK ||
1760                       req->rq_phase == RQ_PHASE_INTERPRET ||
1761                       req->rq_phase == RQ_PHASE_UNREG_RPC ||
1762                       req->rq_phase == RQ_PHASE_UNREG_BULK)) {
1763                         DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1764                         LBUG();
1765                 }
1766
1767                 if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
1768                     req->rq_phase == RQ_PHASE_UNREG_BULK) {
1769                         LASSERT(req->rq_next_phase != req->rq_phase);
1770                         LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1771
1772                         if (req->rq_req_deadline &&
1773                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK))
1774                                 req->rq_req_deadline = 0;
1775                         if (req->rq_reply_deadline &&
1776                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK))
1777                                 req->rq_reply_deadline = 0;
1778                         if (req->rq_bulk_deadline &&
1779                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK))
1780                                 req->rq_bulk_deadline = 0;
1781
1782                         /*
1783                          * Skip processing until reply is unlinked. We
1784                          * can't return to pool before that and we can't
1785                          * call interpret before that. We need to make
1786                          * sure that all rdma transfers finished and will
1787                          * not corrupt any data.
1788                          */
1789                         if (req->rq_phase == RQ_PHASE_UNREG_RPC &&
1790                             ptlrpc_client_recv_or_unlink(req))
1791                                 continue;
1792                         if (req->rq_phase == RQ_PHASE_UNREG_BULK &&
1793                             ptlrpc_client_bulk_active(req))
1794                                 continue;
1795
1796                         /*
1797                          * Turn fail_loc off to prevent it from looping
1798                          * forever.
1799                          */
1800                         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1801                                 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1802                                                      OBD_FAIL_ONCE);
1803                         }
1804                         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1805                                 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1806                                                      OBD_FAIL_ONCE);
1807                         }
1808
1809                         /*
1810                          * Move to next phase if reply was successfully
1811                          * unlinked.
1812                          */
1813                         ptlrpc_rqphase_move(req, req->rq_next_phase);
1814                 }
1815
1816                 if (req->rq_phase == RQ_PHASE_INTERPRET)
1817                         GOTO(interpret, req->rq_status);
1818
1819                 /*
1820                  * Note that this also will start async reply unlink.
1821                  */
1822                 if (req->rq_net_err && !req->rq_timedout) {
1823                         ptlrpc_expire_one_request(req, 1);
1824
1825                         /*
1826                          * Check if we still need to wait for unlink.
1827                          */
1828                         if (ptlrpc_client_recv_or_unlink(req) ||
1829                             ptlrpc_client_bulk_active(req))
1830                                 continue;
1831                         /* If there is no need to resend, fail it now. */
1832                         if (req->rq_no_resend) {
1833                                 if (req->rq_status == 0)
1834                                         req->rq_status = -EIO;
1835                                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1836                                 GOTO(interpret, req->rq_status);
1837                         } else {
1838                                 continue;
1839                         }
1840                 }
1841
1842                 if (req->rq_err) {
1843                         spin_lock(&req->rq_lock);
1844                         req->rq_replied = 0;
1845                         spin_unlock(&req->rq_lock);
1846                         if (req->rq_status == 0)
1847                                 req->rq_status = -EIO;
1848                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1849                         GOTO(interpret, req->rq_status);
1850                 }
1851
1852                 /* ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1853                  * so it sets rq_intr regardless of individual rpc
1854                  * timeouts. The synchronous IO waiting path sets
1855                  * rq_intr irrespective of whether ptlrpcd
1856                  * has seen a timeout.  Our policy is to only interpret
1857                  * interrupted rpcs after they have timed out, so we
1858                  * need to enforce that here.
1859                  */
1860
1861                 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1862                                      req->rq_wait_ctx)) {
1863                         req->rq_status = -EINTR;
1864                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1865                         GOTO(interpret, req->rq_status);
1866                 }
1867
1868                 if (req->rq_phase == RQ_PHASE_RPC) {
1869                         if (req->rq_timedout || req->rq_resend ||
1870                             req->rq_waiting || req->rq_wait_ctx) {
1871                                 int status;
1872
1873                                 if (!ptlrpc_unregister_reply(req, 1)) {
1874                                         ptlrpc_unregister_bulk(req, 1);
1875                                         continue;
1876                                 }
1877
1878                                 spin_lock(&imp->imp_lock);
1879                                 if (ptlrpc_import_delay_req(imp, req, &status)){
1880                                         /* put on delay list - only if we wait
1881                                          * recovery finished - before send */
1882                                         list_del_init(&req->rq_list);
1883                                         list_add_tail(&req->rq_list,
1884                                                           &imp->
1885                                                           imp_delayed_list);
1886                                         spin_unlock(&imp->imp_lock);
1887                                         continue;
1888                                 }
1889
1890                                 if (status != 0)  {
1891                                         req->rq_status = status;
1892                                         ptlrpc_rqphase_move(req,
1893                                                 RQ_PHASE_INTERPRET);
1894                                         spin_unlock(&imp->imp_lock);
1895                                         GOTO(interpret, req->rq_status);
1896                                 }
1897                                 /* ignore on just initiated connections */
1898                                 if (ptlrpc_no_resend(req) &&
1899                                     !req->rq_wait_ctx &&
1900                                     imp->imp_generation !=
1901                                     imp->imp_initiated_at) {
1902                                         req->rq_status = -ENOTCONN;
1903                                         ptlrpc_rqphase_move(req,
1904                                                             RQ_PHASE_INTERPRET);
1905                                         spin_unlock(&imp->imp_lock);
1906                                         GOTO(interpret, req->rq_status);
1907                                 }
1908
1909                                 list_del_init(&req->rq_list);
1910                                 list_add_tail(&req->rq_list,
1911                                                   &imp->imp_sending_list);
1912
1913                                 spin_unlock(&imp->imp_lock);
1914
1915                                 spin_lock(&req->rq_lock);
1916                                 req->rq_waiting = 0;
1917                                 spin_unlock(&req->rq_lock);
1918
1919                                 if (req->rq_timedout || req->rq_resend) {
1920                                         /* This is re-sending anyways,
1921                                          * let's mark req as resend. */
1922                                         spin_lock(&req->rq_lock);
1923                                         req->rq_resend = 1;
1924                                         spin_unlock(&req->rq_lock);
1925                                 }
1926                                 /*
1927                                  * rq_wait_ctx is only touched by ptlrpcd,
1928                                  * so no lock is needed here.
1929                                  */
1930                                 status = sptlrpc_req_refresh_ctx(req, -1);
1931                                 if (status) {
1932                                         if (req->rq_err) {
1933                                                 req->rq_status = status;
1934                                                 spin_lock(&req->rq_lock);
1935                                                 req->rq_wait_ctx = 0;
1936                                                 spin_unlock(&req->rq_lock);
1937                                                 force_timer_recalc = 1;
1938                                         } else {
1939                                                 spin_lock(&req->rq_lock);
1940                                                 req->rq_wait_ctx = 1;
1941                                                 spin_unlock(&req->rq_lock);
1942                                         }
1943
1944                                         continue;
1945                                 } else {
1946                                         spin_lock(&req->rq_lock);
1947                                         req->rq_wait_ctx = 0;
1948                                         spin_unlock(&req->rq_lock);
1949                                 }
1950
1951                                 /* In any case, the previous bulk should be
1952                                  * cleaned up to prepare for the new sending */
1953                                 if (req->rq_bulk != NULL &&
1954                                     !ptlrpc_unregister_bulk(req, 1))
1955                                         continue;
1956
1957                                 rc = ptl_send_rpc(req, 0);
1958                                 if (rc == -ENOMEM) {
1959                                         spin_lock(&imp->imp_lock);
1960                                         if (!list_empty(&req->rq_list))
1961                                                 list_del_init(&req->rq_list);
1962                                         spin_unlock(&imp->imp_lock);
1963                                         ptlrpc_rqphase_move(req, RQ_PHASE_NEW);
1964                                         continue;
1965                                 }
1966                                 if (rc) {
1967                                         DEBUG_REQ(D_HA, req,
1968                                                   "send failed: rc = %d", rc);
1969                                         force_timer_recalc = 1;
1970                                         spin_lock(&req->rq_lock);
1971                                         req->rq_net_err = 1;
1972                                         spin_unlock(&req->rq_lock);
1973                                         continue;
1974                                 }
1975                                 /* need to reset the timeout */
1976                                 force_timer_recalc = 1;
1977                         }
1978
1979                         spin_lock(&req->rq_lock);
1980
1981                         if (ptlrpc_client_early(req)) {
1982                                 ptlrpc_at_recv_early_reply(req);
1983                                 spin_unlock(&req->rq_lock);
1984                                 continue;
1985                         }
1986
1987                         /* Still waiting for a reply? */
1988                         if (ptlrpc_client_recv(req)) {
1989                                 spin_unlock(&req->rq_lock);
1990                                 continue;
1991                         }
1992
1993                         /* Did we actually receive a reply? */
1994                         if (!ptlrpc_client_replied(req)) {
1995                                 spin_unlock(&req->rq_lock);
1996                                 continue;
1997                         }
1998
1999                         spin_unlock(&req->rq_lock);
2000
2001                         /* unlink from net because we are going to
2002                          * swab in-place of reply buffer */
2003                         unregistered = ptlrpc_unregister_reply(req, 1);
2004                         if (!unregistered)
2005                                 continue;
2006
2007                         req->rq_status = after_reply(req);
2008                         if (req->rq_resend)
2009                                 continue;
2010
2011                         /* If there is no bulk associated with this request,
2012                          * then we're done and should let the interpreter
2013                          * process the reply. Similarly if the RPC returned
2014                          * an error, and therefore the bulk will never arrive.
2015                          */
2016                         if (req->rq_bulk == NULL || req->rq_status < 0) {
2017                                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
2018                                 GOTO(interpret, req->rq_status);
2019                         }
2020
2021                         ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
2022                 }
2023
2024                 LASSERT(req->rq_phase == RQ_PHASE_BULK);
2025                 if (ptlrpc_client_bulk_active(req))
2026                         continue;
2027
2028                 if (req->rq_bulk->bd_failure) {
2029                         /* The RPC reply arrived OK, but the bulk screwed
2030                          * up!  Dead weird since the server told us the RPC
2031                          * was good after getting the REPLY for her GET or
2032                          * the ACK for her PUT. */
2033                         DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
2034                         req->rq_status = -EIO;
2035                 }
2036
2037                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
2038
2039         interpret:
2040                 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
2041
2042                 /* This moves to "unregistering" phase we need to wait for
2043                  * reply unlink. */
2044                 if (!unregistered && !ptlrpc_unregister_reply(req, async)) {
2045                         /* start async bulk unlink too */
2046                         ptlrpc_unregister_bulk(req, 1);
2047                         continue;
2048                 }
2049
2050                 if (!ptlrpc_unregister_bulk(req, async))
2051                         continue;
2052
2053                 /* When calling interpret receiving already should be
2054                  * finished. */
2055                 LASSERT(!req->rq_receiving_reply);
2056
2057                 ptlrpc_req_interpret(env, req, req->rq_status);
2058
2059                 if (ptlrpcd_check_work(req)) {
2060                         atomic_dec(&set->set_remaining);
2061                         continue;
2062                 }
2063                 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
2064
2065                 if (req->rq_reqmsg != NULL)
2066                         CDEBUG(D_RPCTRACE,
2067                                "Completed RPC pname:cluuid:pid:xid:nid:"
2068                                "opc %s:%s:%d:%llu:%s:%d\n", current_comm(),
2069                                imp->imp_obd->obd_uuid.uuid,
2070                                lustre_msg_get_status(req->rq_reqmsg),
2071                                req->rq_xid,
2072                                obd_import_nid2str(imp),
2073                                lustre_msg_get_opc(req->rq_reqmsg));
2074
2075                 spin_lock(&imp->imp_lock);
2076                 /* Request already may be not on sending or delaying list. This
2077                  * may happen in the case of marking it erroneous for the case
2078                  * ptlrpc_import_delay_req(req, status) find it impossible to
2079                  * allow sending this rpc and returns *status != 0. */
2080                 if (!list_empty(&req->rq_list)) {
2081                         list_del_init(&req->rq_list);
2082                         atomic_dec(&imp->imp_inflight);
2083                 }
2084                 list_del_init(&req->rq_unreplied_list);
2085                 spin_unlock(&imp->imp_lock);
2086
2087                 atomic_dec(&set->set_remaining);
2088                 wake_up_all(&imp->imp_recovery_waitq);
2089
2090                 if (set->set_producer) {
2091                         /* produce a new request if possible */
2092                         if (ptlrpc_set_producer(set) > 0)
2093                                 force_timer_recalc = 1;
2094
2095                         /* free the request that has just been completed
2096                          * in order not to pollute set->set_requests */
2097                         list_del_init(&req->rq_set_chain);
2098                         spin_lock(&req->rq_lock);
2099                         req->rq_set = NULL;
2100                         req->rq_invalid_rqset = 0;
2101                         spin_unlock(&req->rq_lock);
2102
2103                         /* record rq_status to compute the final status later */
2104                         if (req->rq_status != 0)
2105                                 set->set_rc = req->rq_status;
2106                         ptlrpc_req_finished(req);
2107                 } else {
2108                         list_move_tail(&req->rq_set_chain, &comp_reqs);
2109                 }
2110         }
2111
2112         /* move completed request at the head of list so it's easier for
2113          * caller to find them */
2114         list_splice(&comp_reqs, &set->set_requests);
2115
2116         /* If we hit an error, we want to recover promptly. */
2117         RETURN(atomic_read(&set->set_remaining) == 0 || force_timer_recalc);
2118 }
2119 EXPORT_SYMBOL(ptlrpc_check_set);
2120
2121 /**
2122  * Time out request \a req. is \a async_unlink is set, that means do not wait
2123  * until LNet actually confirms network buffer unlinking.
2124  * Return 1 if we should give up further retrying attempts or 0 otherwise.
2125  */
2126 int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
2127 {
2128         struct obd_import *imp = req->rq_import;
2129         unsigned int debug_mask = D_RPCTRACE;
2130         int rc = 0;
2131         ENTRY;
2132
2133         spin_lock(&req->rq_lock);
2134         req->rq_timedout = 1;
2135         spin_unlock(&req->rq_lock);
2136
2137         if (ptlrpc_console_allow(req, lustre_msg_get_opc(req->rq_reqmsg),
2138                                   lustre_msg_get_status(req->rq_reqmsg)))
2139                 debug_mask = D_WARNING;
2140         DEBUG_REQ(debug_mask, req, "Request sent has %s: [sent %lld/real %lld]",
2141                   req->rq_net_err ? "failed due to network error" :
2142                      ((req->rq_real_sent == 0 ||
2143                        req->rq_real_sent < req->rq_sent ||
2144                        req->rq_real_sent >= req->rq_deadline) ?
2145                       "timed out for sent delay" : "timed out for slow reply"),
2146                   (s64)req->rq_sent, (s64)req->rq_real_sent);
2147
2148         if (imp != NULL && obd_debug_peer_on_timeout)
2149                 LNetDebugPeer(imp->imp_connection->c_peer);
2150
2151         ptlrpc_unregister_reply(req, async_unlink);
2152         ptlrpc_unregister_bulk(req, async_unlink);
2153
2154         if (obd_dump_on_timeout)
2155                 libcfs_debug_dumplog();
2156
2157         if (imp == NULL) {
2158                 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
2159                 RETURN(1);
2160         }
2161
2162         atomic_inc(&imp->imp_timeouts);
2163
2164         /* The DLM server doesn't want recovery run on its imports. */
2165         if (imp->imp_dlm_fake)
2166                 RETURN(1);
2167
2168         /* If this request is for recovery or other primordial tasks,
2169          * then error it out here. */
2170         if (req->rq_ctx_init || req->rq_ctx_fini ||
2171             req->rq_send_state != LUSTRE_IMP_FULL ||
2172             imp->imp_obd->obd_no_recov) {
2173                 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
2174                           ptlrpc_import_state_name(req->rq_send_state),
2175                           ptlrpc_import_state_name(imp->imp_state));
2176                 spin_lock(&req->rq_lock);
2177                 req->rq_status = -ETIMEDOUT;
2178                 req->rq_err = 1;
2179                 spin_unlock(&req->rq_lock);
2180                 RETURN(1);
2181         }
2182
2183         /* if a request can't be resent we can't wait for an answer after
2184            the timeout */
2185         if (ptlrpc_no_resend(req)) {
2186                 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
2187                 rc = 1;
2188         }
2189
2190         ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
2191
2192         RETURN(rc);
2193 }
2194
2195 /**
2196  * Time out all uncompleted requests in request set pointed by \a data
2197  * Callback used when waiting on sets with l_wait_event.
2198  * Always returns 1.
2199  */
2200 int ptlrpc_expired_set(void *data)
2201 {
2202         struct ptlrpc_request_set *set = data;
2203         struct list_head *tmp;
2204         time64_t now = ktime_get_real_seconds();
2205
2206         ENTRY;
2207         LASSERT(set != NULL);
2208
2209         /*
2210          * A timeout expired. See which reqs it applies to...
2211          */
2212         list_for_each(tmp, &set->set_requests) {
2213                 struct ptlrpc_request *req =
2214                         list_entry(tmp, struct ptlrpc_request,
2215                                    rq_set_chain);
2216
2217                 /* don't expire request waiting for context */
2218                 if (req->rq_wait_ctx)
2219                         continue;
2220
2221                 /* Request in-flight? */
2222                 if (!((req->rq_phase == RQ_PHASE_RPC &&
2223                        !req->rq_waiting && !req->rq_resend) ||
2224                       (req->rq_phase == RQ_PHASE_BULK)))
2225                         continue;
2226
2227                 if (req->rq_timedout ||     /* already dealt with */
2228                     req->rq_deadline > now) /* not expired */
2229                         continue;
2230
2231                 /* Deal with this guy. Do it asynchronously to not block
2232                  * ptlrpcd thread. */
2233                 ptlrpc_expire_one_request(req, 1);
2234         }
2235
2236         /*
2237          * When waiting for a whole set, we always break out of the
2238          * sleep so we can recalculate the timeout, or enable interrupts
2239          * if everyone's timed out.
2240          */
2241         RETURN(1);
2242 }
2243
2244 /**
2245  * Sets rq_intr flag in \a req under spinlock.
2246  */
2247 void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
2248 {
2249         spin_lock(&req->rq_lock);
2250         req->rq_intr = 1;
2251         spin_unlock(&req->rq_lock);
2252 }
2253 EXPORT_SYMBOL(ptlrpc_mark_interrupted);
2254
2255 /**
2256  * Interrupts (sets interrupted flag) all uncompleted requests in
2257  * a set \a data. Callback for l_wait_event for interruptible waits.
2258  */
2259 static void ptlrpc_interrupted_set(void *data)
2260 {
2261         struct ptlrpc_request_set *set = data;
2262         struct list_head *tmp;
2263
2264         LASSERT(set != NULL);
2265         CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2266
2267         list_for_each(tmp, &set->set_requests) {
2268                 struct ptlrpc_request *req =
2269                         list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2270
2271                 if (req->rq_intr)
2272                         continue;
2273
2274                 if (req->rq_phase != RQ_PHASE_RPC &&
2275                     req->rq_phase != RQ_PHASE_UNREG_RPC &&
2276                     !req->rq_allow_intr)
2277                         continue;
2278
2279                 ptlrpc_mark_interrupted(req);
2280         }
2281 }
2282
2283 /**
2284  * Get the smallest timeout in the set; this does NOT set a timeout.
2285  */
2286 time64_t ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2287 {
2288         struct list_head *tmp;
2289         time64_t now = ktime_get_real_seconds();
2290         int timeout = 0;
2291         struct ptlrpc_request *req;
2292         time64_t deadline;
2293
2294         ENTRY;
2295         list_for_each(tmp, &set->set_requests) {
2296                 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2297
2298                 /*
2299                  * Request in-flight?
2300                  */
2301                 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2302                       (req->rq_phase == RQ_PHASE_BULK) ||
2303                       (req->rq_phase == RQ_PHASE_NEW)))
2304                         continue;
2305
2306                 /*
2307                  * Already timed out.
2308                  */
2309                 if (req->rq_timedout)
2310                         continue;
2311
2312                 /*
2313                  * Waiting for ctx.
2314                  */
2315                 if (req->rq_wait_ctx)
2316                         continue;
2317
2318                 if (req->rq_phase == RQ_PHASE_NEW)
2319                         deadline = req->rq_sent;
2320                 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2321                         deadline = req->rq_sent;
2322                 else
2323                         deadline = req->rq_sent + req->rq_timeout;
2324
2325                 if (deadline <= now)    /* actually expired already */
2326                         timeout = 1;    /* ASAP */
2327                 else if (timeout == 0 || timeout > deadline - now)
2328                         timeout = deadline - now;
2329         }
2330         RETURN(timeout);
2331 }
2332
2333 /**
2334  * Send all unset request from the set and then wait untill all
2335  * requests in the set complete (either get a reply, timeout, get an
2336  * error or otherwise be interrupted).
2337  * Returns 0 on success or error code otherwise.
2338  */
2339 int ptlrpc_set_wait(const struct lu_env *env, struct ptlrpc_request_set *set)
2340 {
2341         struct list_head *tmp;
2342         struct ptlrpc_request *req;
2343         struct l_wait_info lwi;
2344         time64_t timeout;
2345         int rc;
2346         ENTRY;
2347
2348         if (set->set_producer)
2349                 (void)ptlrpc_set_producer(set);
2350         else
2351                 list_for_each(tmp, &set->set_requests) {
2352                         req = list_entry(tmp, struct ptlrpc_request,
2353                                          rq_set_chain);
2354                         if (req->rq_phase == RQ_PHASE_NEW)
2355                                 (void)ptlrpc_send_new_req(req);
2356                 }
2357
2358         if (list_empty(&set->set_requests))
2359                 RETURN(0);
2360
2361         do {
2362                 timeout = ptlrpc_set_next_timeout(set);
2363
2364                 /* wait until all complete, interrupted, or an in-flight
2365                  * req times out */
2366                 CDEBUG(D_RPCTRACE, "set %p going to sleep for %lld seconds\n",
2367                         set, timeout);
2368
2369                 if ((timeout == 0 && !signal_pending(current)) ||
2370                     set->set_allow_intr)
2371                         /* No requests are in-flight (ether timed out
2372                          * or delayed), so we can allow interrupts.
2373                          * We still want to block for a limited time,
2374                          * so we allow interrupts during the timeout. */
2375                         lwi = LWI_TIMEOUT_INTR_ALL(
2376                                         cfs_time_seconds(timeout ? timeout : 1),
2377                                         ptlrpc_expired_set,
2378                                         ptlrpc_interrupted_set, set);
2379                 else
2380                         /*
2381                          * At least one request is in flight, so no
2382                          * interrupts are allowed. Wait until all
2383                          * complete, or an in-flight req times out.
2384                          */
2385                         lwi = LWI_TIMEOUT(cfs_time_seconds(timeout? timeout : 1),
2386                                           ptlrpc_expired_set, set);
2387
2388                 rc = l_wait_event(set->set_waitq,
2389                                   ptlrpc_check_set(NULL, set), &lwi);
2390
2391                 /* LU-769 - if we ignored the signal because it was already
2392                  * pending when we started, we need to handle it now or we risk
2393                  * it being ignored forever */
2394                 if (rc == -ETIMEDOUT &&
2395                     (!lwi.lwi_allow_intr || set->set_allow_intr) &&
2396                     signal_pending(current)) {
2397                         sigset_t blocked_sigs =
2398                                            cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2399
2400                         /* In fact we only interrupt for the "fatal" signals
2401                          * like SIGINT or SIGKILL. We still ignore less
2402                          * important signals since ptlrpc set is not easily
2403                          * reentrant from userspace again */
2404                         if (signal_pending(current))
2405                                 ptlrpc_interrupted_set(set);
2406                         cfs_restore_sigs(blocked_sigs);
2407                 }
2408
2409                 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2410
2411                 /* -EINTR => all requests have been flagged rq_intr so next
2412                  * check completes.
2413                  * -ETIMEDOUT => someone timed out.  When all reqs have
2414                  * timed out, signals are enabled allowing completion with
2415                  * EINTR.
2416                  * I don't really care if we go once more round the loop in
2417                  * the error cases -eeb. */
2418                 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2419                         list_for_each(tmp, &set->set_requests) {
2420                                 req = list_entry(tmp, struct ptlrpc_request,
2421                                                  rq_set_chain);
2422                                 spin_lock(&req->rq_lock);
2423                                 req->rq_invalid_rqset = 1;
2424                                 spin_unlock(&req->rq_lock);
2425                         }
2426                 }
2427         } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2428
2429         LASSERT(atomic_read(&set->set_remaining) == 0);
2430
2431         rc = set->set_rc; /* rq_status of already freed requests if any */
2432         list_for_each(tmp, &set->set_requests) {
2433                 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2434
2435                 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2436                 if (req->rq_status != 0)
2437                         rc = req->rq_status;
2438         }
2439
2440         RETURN(rc);
2441 }
2442 EXPORT_SYMBOL(ptlrpc_set_wait);
2443
2444 /**
2445  * Helper fuction for request freeing.
2446  * Called when request count reached zero and request needs to be freed.
2447  * Removes request from all sorts of sending/replay lists it might be on,
2448  * frees network buffers if any are present.
2449  * If \a locked is set, that means caller is already holding import imp_lock
2450  * and so we no longer need to reobtain it (for certain lists manipulations)
2451  */
2452 static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2453 {
2454         ENTRY;
2455
2456         if (request == NULL)
2457                 RETURN_EXIT;
2458
2459         LASSERT(!request->rq_srv_req);
2460         LASSERT(request->rq_export == NULL);
2461         LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
2462         LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2463         LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2464         LASSERTF(!request->rq_replay, "req %p\n", request);
2465
2466         req_capsule_fini(&request->rq_pill);
2467
2468         /* We must take it off the imp_replay_list first.  Otherwise, we'll set
2469          * request->rq_reqmsg to NULL while osc_close is dereferencing it. */
2470         if (request->rq_import != NULL) {
2471                 if (!locked)
2472                         spin_lock(&request->rq_import->imp_lock);
2473                 list_del_init(&request->rq_replay_list);
2474                 list_del_init(&request->rq_unreplied_list);
2475                 if (!locked)
2476                         spin_unlock(&request->rq_import->imp_lock);
2477         }
2478         LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2479
2480         if (atomic_read(&request->rq_refcount) != 0) {
2481                 DEBUG_REQ(D_ERROR, request,
2482                           "freeing request with nonzero refcount");
2483                 LBUG();
2484         }
2485
2486         if (request->rq_repbuf != NULL)
2487                 sptlrpc_cli_free_repbuf(request);
2488
2489         if (request->rq_import != NULL) {
2490                 if (!ptlrpcd_check_work(request)) {
2491                         LASSERT(atomic_read(&request->rq_import->imp_reqs) > 0);
2492                         atomic_dec(&request->rq_import->imp_reqs);
2493                 }
2494                 class_import_put(request->rq_import);
2495                 request->rq_import = NULL;
2496         }
2497         if (request->rq_bulk != NULL)
2498                 ptlrpc_free_bulk(request->rq_bulk);
2499
2500         if (request->rq_reqbuf != NULL || request->rq_clrbuf != NULL)
2501                 sptlrpc_cli_free_reqbuf(request);
2502
2503         if (request->rq_cli_ctx)
2504                 sptlrpc_req_put_ctx(request, !locked);
2505
2506         if (request->rq_pool)
2507                 __ptlrpc_free_req_to_pool(request);
2508         else
2509                 ptlrpc_request_cache_free(request);
2510         EXIT;
2511 }
2512
2513 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked);
2514 /**
2515  * Drop one request reference. Must be called with import imp_lock held.
2516  * When reference count drops to zero, request is freed.
2517  */
2518 void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request)
2519 {
2520         assert_spin_locked(&request->rq_import->imp_lock);
2521         (void)__ptlrpc_req_finished(request, 1);
2522 }
2523
2524 /**
2525  * Helper function
2526  * Drops one reference count for request \a request.
2527  * \a locked set indicates that caller holds import imp_lock.
2528  * Frees the request whe reference count reaches zero.
2529  *
2530  * \retval 1    the request is freed
2531  * \retval 0    some others still hold references on the request
2532  */
2533 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2534 {
2535         int count;
2536         ENTRY;
2537
2538         if (!request)
2539                 RETURN(1);
2540
2541         LASSERT(request != LP_POISON);
2542         LASSERT(request->rq_reqmsg != LP_POISON);
2543
2544         DEBUG_REQ(D_INFO, request, "refcount now %u",
2545                   atomic_read(&request->rq_refcount) - 1);
2546
2547         spin_lock(&request->rq_lock);
2548         count = atomic_dec_return(&request->rq_refcount);
2549         LASSERTF(count >= 0, "Invalid ref count %d\n", count);
2550
2551         /* For open RPC, the client does not know the EA size (LOV, ACL, and
2552          * so on) before replied, then the client has to reserve very large
2553          * reply buffer. Such buffer will not be released until the RPC freed.
2554          * Since The open RPC is replayable, we need to keep it in the replay
2555          * list until close. If there are a lot of files opened concurrently,
2556          * then the client may be OOM.
2557          *
2558          * If fact, it is unnecessary to keep reply buffer for open replay,
2559          * related EAs have already been saved via mdc_save_lovea() before
2560          * coming here. So it is safe to free the reply buffer some earlier
2561          * before releasing the RPC to avoid client OOM. LU-9514 */
2562         if (count == 1 && request->rq_early_free_repbuf && request->rq_repbuf) {
2563                 spin_lock(&request->rq_early_free_lock);
2564                 sptlrpc_cli_free_repbuf(request);
2565                 request->rq_repbuf = NULL;
2566                 request->rq_repbuf_len = 0;
2567                 request->rq_repdata = NULL;
2568                 request->rq_reqdata_len = 0;
2569                 spin_unlock(&request->rq_early_free_lock);
2570         }
2571         spin_unlock(&request->rq_lock);
2572
2573         if (!count)
2574                 __ptlrpc_free_req(request, locked);
2575
2576         RETURN(!count);
2577 }
2578
2579 /**
2580  * Drops one reference count for a request.
2581  */
2582 void ptlrpc_req_finished(struct ptlrpc_request *request)
2583 {
2584         __ptlrpc_req_finished(request, 0);
2585 }
2586 EXPORT_SYMBOL(ptlrpc_req_finished);
2587
2588 /**
2589  * Returns xid of a \a request
2590  */
2591 __u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2592 {
2593         return request->rq_xid;
2594 }
2595 EXPORT_SYMBOL(ptlrpc_req_xid);
2596
2597 /**
2598  * Disengage the client's reply buffer from the network
2599  * NB does _NOT_ unregister any client-side bulk.
2600  * IDEMPOTENT, but _not_ safe against concurrent callers.
2601  * The request owner (i.e. the thread doing the I/O) must call...
2602  * Returns 0 on success or 1 if unregistering cannot be made.
2603  */
2604 static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2605 {
2606         int                rc;
2607         struct l_wait_info lwi;
2608
2609         /*
2610          * Might sleep.
2611          */
2612         LASSERT(!in_interrupt());
2613
2614         /* Let's setup deadline for reply unlink. */
2615         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2616             async && request->rq_reply_deadline == 0 && cfs_fail_val == 0)
2617                 request->rq_reply_deadline = ktime_get_real_seconds() +
2618                                              LONG_UNLINK;
2619
2620         /*
2621          * Nothing left to do.
2622          */
2623         if (!ptlrpc_client_recv_or_unlink(request))
2624                 RETURN(1);
2625
2626         LNetMDUnlink(request->rq_reply_md_h);
2627
2628         /*
2629          * Let's check it once again.
2630          */
2631         if (!ptlrpc_client_recv_or_unlink(request))
2632                 RETURN(1);
2633
2634         /* Move to "Unregistering" phase as reply was not unlinked yet. */
2635         ptlrpc_rqphase_move(request, RQ_PHASE_UNREG_RPC);
2636
2637         /*
2638          * Do not wait for unlink to finish.
2639          */
2640         if (async)
2641                 RETURN(0);
2642
2643         /*
2644          * We have to l_wait_event() whatever the result, to give liblustre
2645          * a chance to run reply_in_callback(), and to make sure we've
2646          * unlinked before returning a req to the pool.
2647          */
2648         for (;;) {
2649                 /* The wq argument is ignored by user-space wait_event macros */
2650                 wait_queue_head_t *wq = (request->rq_set != NULL) ?
2651                                         &request->rq_set->set_waitq :
2652                                         &request->rq_reply_waitq;
2653                 /* Network access will complete in finite time but the HUGE
2654                  * timeout lets us CWARN for visibility of sluggish NALs */
2655                 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2656                                            cfs_time_seconds(1), NULL, NULL);
2657                 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2658                                   &lwi);
2659                 if (rc == 0) {
2660                         ptlrpc_rqphase_move(request, request->rq_next_phase);
2661                         RETURN(1);
2662                 }
2663
2664                 LASSERT(rc == -ETIMEDOUT);
2665                 DEBUG_REQ(D_WARNING, request, "Unexpectedly long timeout "
2666                           "receiving_reply=%d req_ulinked=%d reply_unlinked=%d",
2667                           request->rq_receiving_reply,
2668                           request->rq_req_unlinked,
2669                           request->rq_reply_unlinked);
2670         }
2671         RETURN(0);
2672 }
2673
2674 static void ptlrpc_free_request(struct ptlrpc_request *req)
2675 {
2676         spin_lock(&req->rq_lock);
2677         req->rq_replay = 0;
2678         spin_unlock(&req->rq_lock);
2679
2680         if (req->rq_commit_cb != NULL)
2681                 req->rq_commit_cb(req);
2682         list_del_init(&req->rq_replay_list);
2683
2684         __ptlrpc_req_finished(req, 1);
2685 }
2686
2687 /**
2688  * the request is committed and dropped from the replay list of its import
2689  */
2690 void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2691 {
2692         struct obd_import       *imp = req->rq_import;
2693
2694         spin_lock(&imp->imp_lock);
2695         if (list_empty(&req->rq_replay_list)) {
2696                 spin_unlock(&imp->imp_lock);
2697                 return;
2698         }
2699
2700         if (force || req->rq_transno <= imp->imp_peer_committed_transno) {
2701                 if (imp->imp_replay_cursor == &req->rq_replay_list)
2702                         imp->imp_replay_cursor = req->rq_replay_list.next;
2703                 ptlrpc_free_request(req);
2704         }
2705
2706         spin_unlock(&imp->imp_lock);
2707 }
2708 EXPORT_SYMBOL(ptlrpc_request_committed);
2709
2710 /**
2711  * Iterates through replay_list on import and prunes
2712  * all requests have transno smaller than last_committed for the
2713  * import and don't have rq_replay set.
2714  * Since requests are sorted in transno order, stops when meetign first
2715  * transno bigger than last_committed.
2716  * caller must hold imp->imp_lock
2717  */
2718 void ptlrpc_free_committed(struct obd_import *imp)
2719 {
2720         struct ptlrpc_request   *req, *saved;
2721         struct ptlrpc_request   *last_req = NULL; /* temporary fire escape */
2722         bool                     skip_committed_list = true;
2723         ENTRY;
2724
2725         LASSERT(imp != NULL);
2726         assert_spin_locked(&imp->imp_lock);
2727
2728         if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2729             imp->imp_generation == imp->imp_last_generation_checked) {
2730                 CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
2731                        imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
2732                 RETURN_EXIT;
2733         }
2734         CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
2735                imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2736                imp->imp_generation);
2737
2738         if (imp->imp_generation != imp->imp_last_generation_checked ||
2739             imp->imp_last_transno_checked == 0)
2740                 skip_committed_list = false;
2741
2742         imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2743         imp->imp_last_generation_checked = imp->imp_generation;
2744
2745         list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2746                                      rq_replay_list) {
2747                 /* XXX ok to remove when 1357 resolved - rread 05/29/03  */
2748                 LASSERT(req != last_req);
2749                 last_req = req;
2750
2751                 if (req->rq_transno == 0) {
2752                         DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2753                         LBUG();
2754                 }
2755                 if (req->rq_import_generation < imp->imp_generation) {
2756                         DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
2757                         GOTO(free_req, 0);
2758                 }
2759
2760                 /* not yet committed */
2761                 if (req->rq_transno > imp->imp_peer_committed_transno) {
2762                         DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2763                         break;
2764                 }
2765
2766                 if (req->rq_replay) {
2767                         DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2768                         list_move_tail(&req->rq_replay_list,
2769                                            &imp->imp_committed_list);
2770                         continue;
2771                 }
2772
2773                 DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
2774                           imp->imp_peer_committed_transno);
2775 free_req:
2776                 ptlrpc_free_request(req);
2777         }
2778
2779         if (skip_committed_list)
2780                 GOTO(out, 0);
2781
2782         list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2783                                  rq_replay_list) {
2784                 LASSERT(req->rq_transno != 0);
2785                 if (req->rq_import_generation < imp->imp_generation ||
2786                     !req->rq_replay) {
2787                         DEBUG_REQ(D_RPCTRACE, req, "free %s open request",
2788                                   req->rq_import_generation <
2789                                   imp->imp_generation ? "stale" : "closed");
2790
2791                         if (imp->imp_replay_cursor == &req->rq_replay_list)
2792                                 imp->imp_replay_cursor =
2793                                         req->rq_replay_list.next;
2794
2795                         ptlrpc_free_request(req);
2796                 }
2797         }
2798 out:
2799         EXIT;
2800 }
2801
2802 void ptlrpc_cleanup_client(struct obd_import *imp)
2803 {
2804         ENTRY;
2805         EXIT;
2806 }
2807
2808 /**
2809  * Schedule previously sent request for resend.
2810  * For bulk requests we assign new xid (to avoid problems with
2811  * lost replies and therefore several transfers landing into same buffer
2812  * from different sending attempts).
2813  */
2814 void ptlrpc_resend_req(struct ptlrpc_request *req)
2815 {
2816         DEBUG_REQ(D_HA, req, "going to resend");
2817         spin_lock(&req->rq_lock);
2818
2819         /* Request got reply but linked to the import list still.
2820            Let ptlrpc_check_set() to process it. */
2821         if (ptlrpc_client_replied(req)) {
2822                 spin_unlock(&req->rq_lock);
2823                 DEBUG_REQ(D_HA, req, "it has reply, so skip it");
2824                 return;
2825         }
2826
2827         req->rq_status = -EAGAIN;
2828
2829         req->rq_resend = 1;
2830         req->rq_net_err = 0;
2831         req->rq_timedout = 0;
2832
2833         ptlrpc_client_wake_req(req);
2834         spin_unlock(&req->rq_lock);
2835 }
2836
2837 /* XXX: this function and rq_status are currently unused */
2838 void ptlrpc_restart_req(struct ptlrpc_request *req)
2839 {
2840         DEBUG_REQ(D_HA, req, "restarting (possibly-)completed request");
2841         req->rq_status = -ERESTARTSYS;
2842
2843         spin_lock(&req->rq_lock);
2844         req->rq_restart = 1;
2845         req->rq_timedout = 0;
2846         ptlrpc_client_wake_req(req);
2847         spin_unlock(&req->rq_lock);
2848 }
2849
2850 /**
2851  * Grab additional reference on a request \a req
2852  */
2853 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2854 {
2855         ENTRY;
2856         atomic_inc(&req->rq_refcount);
2857         RETURN(req);
2858 }
2859 EXPORT_SYMBOL(ptlrpc_request_addref);
2860
2861 /**
2862  * Add a request to import replay_list.
2863  * Must be called under imp_lock
2864  */
2865 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2866                                       struct obd_import *imp)
2867 {
2868         struct list_head *tmp;
2869
2870         assert_spin_locked(&imp->imp_lock);
2871
2872         if (req->rq_transno == 0) {
2873                 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2874                 LBUG();
2875         }
2876
2877         /* clear this for new requests that were resent as well
2878            as resent replayed requests. */
2879         lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2880
2881         /* don't re-add requests that have been replayed */
2882         if (!list_empty(&req->rq_replay_list))
2883                 return;
2884
2885         lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2886
2887         spin_lock(&req->rq_lock);
2888         req->rq_resend = 0;
2889         spin_unlock(&req->rq_lock);
2890
2891         LASSERT(imp->imp_replayable);
2892         /* Balanced in ptlrpc_free_committed, usually. */
2893         ptlrpc_request_addref(req);
2894         list_for_each_prev(tmp, &imp->imp_replay_list) {
2895                 struct ptlrpc_request *iter = list_entry(tmp,
2896                                                          struct ptlrpc_request,
2897                                                          rq_replay_list);
2898
2899                 /* We may have duplicate transnos if we create and then
2900                  * open a file, or for closes retained if to match creating
2901                  * opens, so use req->rq_xid as a secondary key.
2902                  * (See bugs 684, 685, and 428.)
2903                  * XXX no longer needed, but all opens need transnos!
2904                  */
2905                 if (iter->rq_transno > req->rq_transno)
2906                         continue;
2907
2908                 if (iter->rq_transno == req->rq_transno) {
2909                         LASSERT(iter->rq_xid != req->rq_xid);
2910                         if (iter->rq_xid > req->rq_xid)
2911                                 continue;
2912                 }
2913
2914                 list_add(&req->rq_replay_list, &iter->rq_replay_list);
2915                 return;
2916         }
2917
2918         list_add(&req->rq_replay_list, &imp->imp_replay_list);
2919 }
2920
2921 /**
2922  * Send request and wait until it completes.
2923  * Returns request processing status.
2924  */
2925 int ptlrpc_queue_wait(struct ptlrpc_request *req)
2926 {
2927         struct ptlrpc_request_set *set;
2928         int rc;
2929         ENTRY;
2930
2931         LASSERT(req->rq_set == NULL);
2932         LASSERT(!req->rq_receiving_reply);
2933
2934         set = ptlrpc_prep_set();
2935         if (set == NULL) {
2936                 CERROR("cannot allocate ptlrpc set: rc = %d\n", -ENOMEM);
2937                 RETURN(-ENOMEM);
2938         }
2939
2940         /* for distributed debugging */
2941         lustre_msg_set_status(req->rq_reqmsg, current_pid());
2942
2943         /* add a ref for the set (see comment in ptlrpc_set_add_req) */
2944         ptlrpc_request_addref(req);
2945         ptlrpc_set_add_req(set, req);
2946         rc = ptlrpc_set_wait(NULL, set);
2947         ptlrpc_set_destroy(set);
2948
2949         RETURN(rc);
2950 }
2951 EXPORT_SYMBOL(ptlrpc_queue_wait);
2952
2953 /**
2954  * Callback used for replayed requests reply processing.
2955  * In case of successful reply calls registered request replay callback.
2956  * In case of error restart replay process.
2957  */
2958 static int ptlrpc_replay_interpret(const struct lu_env *env,
2959                                    struct ptlrpc_request *req,
2960                                    void * data, int rc)
2961 {
2962         struct ptlrpc_replay_async_args *aa = data;
2963         struct obd_import *imp = req->rq_import;
2964
2965         ENTRY;
2966         atomic_dec(&imp->imp_replay_inflight);
2967
2968         /* Note: if it is bulk replay (MDS-MDS replay), then even if
2969          * server got the request, but bulk transfer timeout, let's
2970          * replay the bulk req again */
2971         if (!ptlrpc_client_replied(req) ||
2972             (req->rq_bulk != NULL &&
2973              lustre_msg_get_status(req->rq_repmsg) == -ETIMEDOUT)) {
2974                 DEBUG_REQ(D_ERROR, req, "request replay timed out.\n");
2975                 GOTO(out, rc = -ETIMEDOUT);
2976         }
2977
2978         if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
2979             (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
2980              lustre_msg_get_status(req->rq_repmsg) == -ENODEV))
2981                 GOTO(out, rc = lustre_msg_get_status(req->rq_repmsg));
2982
2983         /** VBR: check version failure */
2984         if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
2985                 /** replay was failed due to version mismatch */
2986                 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
2987                 spin_lock(&imp->imp_lock);
2988                 imp->imp_vbr_failed = 1;
2989                 spin_unlock(&imp->imp_lock);
2990                 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2991         } else {
2992                 /** The transno had better not change over replay. */
2993                 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
2994                          lustre_msg_get_transno(req->rq_repmsg) ||
2995                          lustre_msg_get_transno(req->rq_repmsg) == 0,
2996                          "%#llx/%#llx\n",
2997                          lustre_msg_get_transno(req->rq_reqmsg),
2998                          lustre_msg_get_transno(req->rq_repmsg));
2999         }
3000
3001         spin_lock(&imp->imp_lock);
3002         imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
3003         spin_unlock(&imp->imp_lock);
3004         LASSERT(imp->imp_last_replay_transno);
3005
3006         /* transaction number shouldn't be bigger than the latest replayed */
3007         if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
3008                 DEBUG_REQ(D_ERROR, req,
3009                           "Reported transno %llu is bigger than the "
3010                           "replayed one: %llu", req->rq_transno,
3011                           lustre_msg_get_transno(req->rq_reqmsg));
3012                 GOTO(out, rc = -EINVAL);
3013         }
3014
3015         DEBUG_REQ(D_HA, req, "got rep");
3016
3017         /* let the callback do fixups, possibly including in the request */
3018         if (req->rq_replay_cb)
3019                 req->rq_replay_cb(req);
3020
3021         if (ptlrpc_client_replied(req) &&
3022             lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
3023                 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
3024                           lustre_msg_get_status(req->rq_repmsg),
3025                           aa->praa_old_status);
3026
3027                 /* Note: If the replay fails for MDT-MDT recovery, let's
3028                  * abort all of the following requests in the replay
3029                  * and sending list, because MDT-MDT update requests
3030                  * are dependent on each other, see LU-7039 */
3031                 if (imp->imp_connect_flags_orig & OBD_CONNECT_MDS_MDS) {
3032                         struct ptlrpc_request *free_req;
3033                         struct ptlrpc_request *tmp;
3034
3035                         spin_lock(&imp->imp_lock);
3036                         list_for_each_entry_safe(free_req, tmp,
3037                                                  &imp->imp_replay_list,
3038                                                  rq_replay_list) {
3039                                 ptlrpc_free_request(free_req);
3040                         }
3041
3042                         list_for_each_entry_safe(free_req, tmp,
3043                                                  &imp->imp_committed_list,
3044                                                  rq_replay_list) {
3045                                 ptlrpc_free_request(free_req);
3046                         }
3047
3048                         list_for_each_entry_safe(free_req, tmp,
3049                                                 &imp->imp_delayed_list,
3050                                                 rq_list) {
3051                                 spin_lock(&free_req->rq_lock);
3052                                 free_req->rq_err = 1;
3053                                 free_req->rq_status = -EIO;
3054                                 ptlrpc_client_wake_req(free_req);
3055                                 spin_unlock(&free_req->rq_lock);
3056                         }
3057
3058                         list_for_each_entry_safe(free_req, tmp,
3059                                                 &imp->imp_sending_list,
3060                                                 rq_list) {
3061                                 spin_lock(&free_req->rq_lock);
3062                                 free_req->rq_err = 1;
3063                                 free_req->rq_status = -EIO;
3064                                 ptlrpc_client_wake_req(free_req);
3065                                 spin_unlock(&free_req->rq_lock);
3066                         }
3067                         spin_unlock(&imp->imp_lock);
3068                 }
3069         } else {
3070                 /* Put it back for re-replay. */
3071                 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
3072         }
3073
3074         /*
3075          * Errors while replay can set transno to 0, but
3076          * imp_last_replay_transno shouldn't be set to 0 anyway
3077          */
3078         if (req->rq_transno == 0)
3079                 CERROR("Transno is 0 during replay!\n");
3080
3081         /* continue with recovery */
3082         rc = ptlrpc_import_recovery_state_machine(imp);
3083  out:
3084         req->rq_send_state = aa->praa_old_state;
3085
3086         if (rc != 0)
3087                 /* this replay failed, so restart recovery */
3088                 ptlrpc_connect_import(imp);
3089
3090         RETURN(rc);
3091 }
3092
3093 /**
3094  * Prepares and queues request for replay.
3095  * Adds it to ptlrpcd queue for actual sending.
3096  * Returns 0 on success.
3097  */
3098 int ptlrpc_replay_req(struct ptlrpc_request *req)
3099 {
3100         struct ptlrpc_replay_async_args *aa;
3101
3102         ENTRY;
3103
3104         LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
3105
3106         CLASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
3107         aa = ptlrpc_req_async_args(req);
3108         memset(aa, 0, sizeof(*aa));
3109
3110         /* Prepare request to be resent with ptlrpcd */
3111         aa->praa_old_state = req->rq_send_state;
3112         req->rq_send_state = LUSTRE_IMP_REPLAY;
3113         req->rq_phase = RQ_PHASE_NEW;
3114         req->rq_next_phase = RQ_PHASE_UNDEFINED;
3115         if (req->rq_repmsg)
3116                 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
3117         req->rq_status = 0;
3118         req->rq_interpret_reply = ptlrpc_replay_interpret;
3119         /* Readjust the timeout for current conditions */
3120         ptlrpc_at_set_req_timeout(req);
3121
3122         /* Tell server the net_latency, so the server can calculate how long
3123          * it should wait for next replay */
3124         lustre_msg_set_service_time(req->rq_reqmsg,
3125                                     ptlrpc_at_get_net_latency(req));
3126         DEBUG_REQ(D_HA, req, "REPLAY");
3127
3128         atomic_inc(&req->rq_import->imp_replay_inflight);
3129         spin_lock(&req->rq_lock);
3130         req->rq_early_free_repbuf = 0;
3131         spin_unlock(&req->rq_lock);
3132         ptlrpc_request_addref(req);     /* ptlrpcd needs a ref */
3133
3134         ptlrpcd_add_req(req);
3135         RETURN(0);
3136 }
3137
3138 /**
3139  * Aborts all in-flight request on import \a imp sending and delayed lists
3140  */
3141 void ptlrpc_abort_inflight(struct obd_import *imp)
3142 {
3143         struct list_head *tmp, *n;
3144         ENTRY;
3145
3146         /*
3147          * Make sure that no new requests get processed for this import.
3148          * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
3149          * this flag and then putting requests on sending_list or delayed_list.
3150          */
3151         assert_spin_locked(&imp->imp_lock);
3152
3153         /* XXX locking?  Maybe we should remove each request with the list
3154          * locked?  Also, how do we know if the requests on the list are
3155          * being freed at this time?
3156          */
3157         list_for_each_safe(tmp, n, &imp->imp_sending_list) {
3158                 struct ptlrpc_request *req = list_entry(tmp,
3159                                                         struct ptlrpc_request,
3160                                                         rq_list);
3161
3162                 DEBUG_REQ(D_RPCTRACE, req, "inflight");
3163
3164                 spin_lock(&req->rq_lock);
3165                 if (req->rq_import_generation < imp->imp_generation) {
3166                         req->rq_err = 1;
3167                         req->rq_status = -EIO;
3168                         ptlrpc_client_wake_req(req);
3169                 }
3170                 spin_unlock(&req->rq_lock);
3171         }
3172
3173         list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
3174                 struct ptlrpc_request *req =
3175                         list_entry(tmp, struct ptlrpc_request, rq_list);
3176
3177                 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
3178
3179                 spin_lock(&req->rq_lock);
3180                 if (req->rq_import_generation < imp->imp_generation) {
3181                         req->rq_err = 1;
3182                         req->rq_status = -EIO;
3183                         ptlrpc_client_wake_req(req);
3184                 }
3185                 spin_unlock(&req->rq_lock);
3186         }
3187
3188         /* Last chance to free reqs left on the replay list, but we
3189          * will still leak reqs that haven't committed.  */
3190         if (imp->imp_replayable)
3191                 ptlrpc_free_committed(imp);
3192
3193         EXIT;
3194 }
3195
3196 /**
3197  * Abort all uncompleted requests in request set \a set
3198  */
3199 void ptlrpc_abort_set(struct ptlrpc_request_set *set)
3200 {
3201         struct list_head *tmp, *pos;
3202
3203         LASSERT(set != NULL);
3204
3205         list_for_each_safe(pos, tmp, &set->set_requests) {
3206                 struct ptlrpc_request *req =
3207                         list_entry(pos, struct ptlrpc_request,
3208                                    rq_set_chain);
3209
3210                 spin_lock(&req->rq_lock);
3211                 if (req->rq_phase != RQ_PHASE_RPC) {
3212                         spin_unlock(&req->rq_lock);
3213                         continue;
3214                 }
3215
3216                 req->rq_err = 1;
3217                 req->rq_status = -EINTR;
3218                 ptlrpc_client_wake_req(req);
3219                 spin_unlock(&req->rq_lock);
3220         }
3221 }
3222
3223 static __u64 ptlrpc_last_xid;
3224 static spinlock_t ptlrpc_last_xid_lock;
3225
3226 /**
3227  * Initialize the XID for the node.  This is common among all requests on
3228  * this node, and only requires the property that it is monotonically
3229  * increasing.  It does not need to be sequential.  Since this is also used
3230  * as the RDMA match bits, it is important that a single client NOT have
3231  * the same match bits for two different in-flight requests, hence we do
3232  * NOT want to have an XID per target or similar.
3233  *
3234  * To avoid an unlikely collision between match bits after a client reboot
3235  * (which would deliver old data into the wrong RDMA buffer) initialize
3236  * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
3237  * If the time is clearly incorrect, we instead use a 62-bit random number.
3238  * In the worst case the random number will overflow 1M RPCs per second in
3239  * 9133 years, or permutations thereof.
3240  */
3241 #define YEAR_2004 (1ULL << 30)
3242 void ptlrpc_init_xid(void)
3243 {
3244         time64_t now = ktime_get_real_seconds();
3245
3246         spin_lock_init(&ptlrpc_last_xid_lock);
3247         if (now < YEAR_2004) {
3248                 cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid));
3249                 ptlrpc_last_xid >>= 2;
3250                 ptlrpc_last_xid |= (1ULL << 61);
3251         } else {
3252                 ptlrpc_last_xid = (__u64)now << 20;
3253         }
3254
3255         /* Need to always be aligned to a power-of-two for mutli-bulk BRW */
3256         CLASSERT((PTLRPC_BULK_OPS_COUNT & (PTLRPC_BULK_OPS_COUNT - 1)) == 0);
3257         ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK;
3258 }
3259
3260 /**
3261  * Increase xid and returns resulting new value to the caller.
3262  *
3263  * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
3264  * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
3265  * itself uses the last bulk xid needed, so the server can determine the
3266  * the number of bulk transfers from the RPC XID and a bitmask.  The starting
3267  * xid must align to a power-of-two value.
3268  *
3269  * This is assumed to be true due to the initial ptlrpc_last_xid
3270  * value also being initialized to a power-of-two value. LU-1431
3271  */
3272 __u64 ptlrpc_next_xid(void)
3273 {
3274         __u64 next;
3275
3276         spin_lock(&ptlrpc_last_xid_lock);
3277         next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
3278         ptlrpc_last_xid = next;
3279         spin_unlock(&ptlrpc_last_xid_lock);
3280
3281         return next;
3282 }
3283
3284 /**
3285  * If request has a new allocated XID (new request or EINPROGRESS resend),
3286  * use this XID as matchbits of bulk, otherwise allocate a new matchbits for
3287  * request to ensure previous bulk fails and avoid problems with lost replies
3288  * and therefore several transfers landing into the same buffer from different
3289  * sending attempts.
3290  */
3291 void ptlrpc_set_bulk_mbits(struct ptlrpc_request *req)
3292 {
3293         struct ptlrpc_bulk_desc *bd = req->rq_bulk;
3294
3295         LASSERT(bd != NULL);
3296
3297         /* Generate new matchbits for all resend requests, including
3298          * resend replay. */
3299         if (req->rq_resend) {
3300                 __u64 old_mbits = req->rq_mbits;
3301
3302                 /* First time resend on -EINPROGRESS will generate new xid,
3303                  * so we can actually use the rq_xid as rq_mbits in such case,
3304                  * however, it's bit hard to distinguish such resend with a
3305                  * 'resend for the -EINPROGRESS resend'. To make it simple,
3306                  * we opt to generate mbits for all resend cases. */
3307                 if (OCD_HAS_FLAG(&bd->bd_import->imp_connect_data, BULK_MBITS)){
3308                         req->rq_mbits = ptlrpc_next_xid();
3309                 } else {
3310                         /* Old version transfers rq_xid to peer as
3311                          * matchbits. */
3312                         spin_lock(&req->rq_import->imp_lock);
3313                         list_del_init(&req->rq_unreplied_list);
3314                         ptlrpc_assign_next_xid_nolock(req);
3315                         spin_unlock(&req->rq_import->imp_lock);
3316                         req->rq_mbits = req->rq_xid;
3317                 }
3318                 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
3319                        old_mbits, req->rq_mbits);
3320         } else if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
3321                 /* Request being sent first time, use xid as matchbits. */
3322                 req->rq_mbits = req->rq_xid;
3323         } else {
3324                 /* Replay request, xid and matchbits have already been
3325                  * correctly assigned. */
3326                 return;
3327         }
3328
3329         /* For multi-bulk RPCs, rq_mbits is the last mbits needed for bulks so
3330          * that server can infer the number of bulks that were prepared,
3331          * see LU-1431 */
3332         req->rq_mbits += ((bd->bd_iov_count + LNET_MAX_IOV - 1) /
3333                           LNET_MAX_IOV) - 1;
3334
3335         /* Set rq_xid as rq_mbits to indicate the final bulk for the old
3336          * server which does not support OBD_CONNECT_BULK_MBITS. LU-6808.
3337          *
3338          * It's ok to directly set the rq_xid here, since this xid bump
3339          * won't affect the request position in unreplied list. */
3340         if (!OCD_HAS_FLAG(&bd->bd_import->imp_connect_data, BULK_MBITS))
3341                 req->rq_xid = req->rq_mbits;
3342 }
3343
3344 /**
3345  * Get a glimpse at what next xid value might have been.
3346  * Returns possible next xid.
3347  */
3348 __u64 ptlrpc_sample_next_xid(void)
3349 {
3350 #if BITS_PER_LONG == 32
3351         /* need to avoid possible word tearing on 32-bit systems */
3352         __u64 next;
3353
3354         spin_lock(&ptlrpc_last_xid_lock);
3355         next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
3356         spin_unlock(&ptlrpc_last_xid_lock);
3357
3358         return next;
3359 #else
3360         /* No need to lock, since returned value is racy anyways */
3361         return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
3362 #endif
3363 }
3364 EXPORT_SYMBOL(ptlrpc_sample_next_xid);
3365
3366 /**
3367  * Functions for operating ptlrpc workers.
3368  *
3369  * A ptlrpc work is a function which will be running inside ptlrpc context.
3370  * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
3371  *
3372  * 1. after a work is created, it can be used many times, that is:
3373  *         handler = ptlrpcd_alloc_work();
3374  *         ptlrpcd_queue_work();
3375  *
3376  *    queue it again when necessary:
3377  *         ptlrpcd_queue_work();
3378  *         ptlrpcd_destroy_work();
3379  * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
3380  *    it will only be queued once in any time. Also as its name implies, it may
3381  *    have delay before it really runs by ptlrpcd thread.
3382  */
3383 struct ptlrpc_work_async_args {
3384         int   (*cb)(const struct lu_env *, void *);
3385         void   *cbdata;
3386 };
3387
3388 static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
3389 {
3390         /* re-initialize the req */
3391         req->rq_timeout         = obd_timeout;
3392         req->rq_sent            = ktime_get_real_seconds();
3393         req->rq_deadline        = req->rq_sent + req->rq_timeout;
3394         req->rq_phase           = RQ_PHASE_INTERPRET;
3395         req->rq_next_phase      = RQ_PHASE_COMPLETE;
3396         req->rq_xid             = ptlrpc_next_xid();
3397         req->rq_import_generation = req->rq_import->imp_generation;
3398
3399         ptlrpcd_add_req(req);
3400 }
3401
3402 static int work_interpreter(const struct lu_env *env,
3403                             struct ptlrpc_request *req, void *data, int rc)
3404 {
3405         struct ptlrpc_work_async_args *arg = data;
3406
3407         LASSERT(ptlrpcd_check_work(req));
3408         LASSERT(arg->cb != NULL);
3409
3410         rc = arg->cb(env, arg->cbdata);
3411
3412         list_del_init(&req->rq_set_chain);
3413         req->rq_set = NULL;
3414
3415         if (atomic_dec_return(&req->rq_refcount) > 1) {
3416                 atomic_set(&req->rq_refcount, 2);
3417                 ptlrpcd_add_work_req(req);
3418         }
3419         return rc;
3420 }
3421
3422 static int worker_format;
3423
3424 static int ptlrpcd_check_work(struct ptlrpc_request *req)
3425 {
3426         return req->rq_pill.rc_fmt == (void *)&worker_format;
3427 }
3428
3429 /**
3430  * Create a work for ptlrpc.
3431  */
3432 void *ptlrpcd_alloc_work(struct obd_import *imp,
3433                          int (*cb)(const struct lu_env *, void *), void *cbdata)
3434 {
3435         struct ptlrpc_request         *req = NULL;
3436         struct ptlrpc_work_async_args *args;
3437         ENTRY;
3438
3439         might_sleep();
3440
3441         if (cb == NULL)
3442                 RETURN(ERR_PTR(-EINVAL));
3443
3444         /* copy some code from deprecated fakereq. */
3445         req = ptlrpc_request_cache_alloc(GFP_NOFS);
3446         if (req == NULL) {
3447                 CERROR("ptlrpc: run out of memory!\n");
3448                 RETURN(ERR_PTR(-ENOMEM));
3449         }
3450
3451         ptlrpc_cli_req_init(req);
3452
3453         req->rq_send_state = LUSTRE_IMP_FULL;
3454         req->rq_type = PTL_RPC_MSG_REQUEST;
3455         req->rq_import = class_import_get(imp);
3456         req->rq_interpret_reply = work_interpreter;
3457         /* don't want reply */
3458         req->rq_no_delay = req->rq_no_resend = 1;
3459         req->rq_pill.rc_fmt = (void *)&worker_format;
3460
3461         CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
3462         args = ptlrpc_req_async_args(req);
3463         args->cb     = cb;
3464         args->cbdata = cbdata;
3465
3466         RETURN(req);
3467 }
3468 EXPORT_SYMBOL(ptlrpcd_alloc_work);
3469
3470 void ptlrpcd_destroy_work(void *handler)
3471 {
3472         struct ptlrpc_request *req = handler;
3473
3474         if (req)
3475                 ptlrpc_req_finished(req);
3476 }
3477 EXPORT_SYMBOL(ptlrpcd_destroy_work);
3478
3479 int ptlrpcd_queue_work(void *handler)
3480 {
3481         struct ptlrpc_request *req = handler;
3482
3483         /*
3484          * Check if the req is already being queued.
3485          *
3486          * Here comes a trick: it lacks a way of checking if a req is being
3487          * processed reliably in ptlrpc. Here I have to use refcount of req
3488          * for this purpose. This is okay because the caller should use this
3489          * req as opaque data. - Jinshan
3490          */
3491         LASSERT(atomic_read(&req->rq_refcount) > 0);
3492         if (atomic_inc_return(&req->rq_refcount) == 2)
3493                 ptlrpcd_add_work_req(req);
3494         return 0;
3495 }
3496 EXPORT_SYMBOL(ptlrpcd_queue_work);