4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
26 * Copyright (c) 2011, 2016, Intel Corporation.
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
32 * Implementation of cl_page for OSC layer.
34 * Author: Nikita Danilov <nikita.danilov@sun.com>
35 * Author: Jinshan Xiong <jinshan.xiong@intel.com>
38 #define DEBUG_SUBSYSTEM S_OSC
40 #include "osc_cl_internal.h"
42 static void osc_lru_del(struct client_obd *cli, struct osc_page *opg);
43 static void osc_lru_use(struct client_obd *cli, struct osc_page *opg);
44 static int osc_lru_alloc(const struct lu_env *env, struct client_obd *cli,
45 struct osc_page *opg);
54 static void osc_page_transfer_get(struct osc_page *opg, const char *label)
56 struct cl_page *page = opg->ops_cl.cpl_page;
58 LASSERT(!opg->ops_transfer_pinned);
60 lu_ref_add_atomic(&page->cp_reference, label, page);
61 opg->ops_transfer_pinned = 1;
64 static void osc_page_transfer_put(const struct lu_env *env,
67 struct cl_page *page = opg->ops_cl.cpl_page;
69 if (opg->ops_transfer_pinned) {
70 opg->ops_transfer_pinned = 0;
71 lu_ref_del(&page->cp_reference, "transfer", page);
72 cl_page_put(env, page);
77 * This is called once for every page when it is submitted for a transfer
78 * either opportunistic (osc_page_cache_add()), or immediate
79 * (osc_page_submit()).
81 static void osc_page_transfer_add(const struct lu_env *env,
82 struct osc_page *opg, enum cl_req_type crt)
84 struct osc_object *obj = cl2osc(opg->ops_cl.cpl_obj);
86 /* ops_lru and ops_inflight share the same field, so take it from LRU
87 * first and then use it as inflight. */
88 osc_lru_use(osc_cli(obj), opg);
91 int osc_page_cache_add(const struct lu_env *env,
92 const struct cl_page_slice *slice, struct cl_io *io)
94 struct osc_page *opg = cl2osc_page(slice);
98 osc_page_transfer_get(opg, "transfer\0cache");
99 result = osc_queue_async_io(env, io, opg);
101 osc_page_transfer_put(env, opg);
103 osc_page_transfer_add(env, opg, CRT_WRITE);
108 void osc_index2policy(union ldlm_policy_data *policy,
109 const struct cl_object *obj, pgoff_t start, pgoff_t end)
111 memset(policy, 0, sizeof *policy);
112 policy->l_extent.start = cl_offset(obj, start);
113 policy->l_extent.end = cl_offset(obj, end + 1) - 1;
116 static const char *osc_list(struct list_head *head)
118 return list_empty(head) ? "-" : "+";
121 static inline cfs_time_t osc_submit_duration(struct osc_page *opg)
123 if (opg->ops_submit_time == 0)
126 return (cfs_time_current() - opg->ops_submit_time);
129 static int osc_page_print(const struct lu_env *env,
130 const struct cl_page_slice *slice,
131 void *cookie, lu_printer_t printer)
133 struct osc_page *opg = cl2osc_page(slice);
134 struct osc_async_page *oap = &opg->ops_oap;
135 struct osc_object *obj = cl2osc(slice->cpl_obj);
136 struct client_obd *cli = &osc_export(obj)->exp_obd->u.cli;
138 return (*printer)(env, cookie, LUSTRE_OSC_NAME"-page@%p %lu: "
139 "1< %#x %d %u %s %s > "
140 "2< %lld %u %u %#x %#x | %p %p %p > "
142 "4< %d %d %d %lu %s | %s %s %s %s > "
143 "5< %s %s %s %s | %d %s | %d %s %s>\n",
146 oap->oap_magic, oap->oap_cmd,
147 oap->oap_interrupted,
148 osc_list(&oap->oap_pending_item),
149 osc_list(&oap->oap_rpc_item),
151 oap->oap_obj_off, oap->oap_page_off, oap->oap_count,
152 oap->oap_async_flags, oap->oap_brw_flags,
153 oap->oap_request, oap->oap_cli, obj,
155 opg->ops_transfer_pinned,
156 osc_submit_duration(opg), opg->ops_srvlock,
158 cli->cl_r_in_flight, cli->cl_w_in_flight,
159 cli->cl_max_rpcs_in_flight,
161 osc_list(&cli->cl_cache_waiters),
162 osc_list(&cli->cl_loi_ready_list),
163 osc_list(&cli->cl_loi_hp_ready_list),
164 osc_list(&cli->cl_loi_write_list),
165 osc_list(&cli->cl_loi_read_list),
167 osc_list(&obj->oo_ready_item),
168 osc_list(&obj->oo_hp_ready_item),
169 osc_list(&obj->oo_write_item),
170 osc_list(&obj->oo_read_item),
171 atomic_read(&obj->oo_nr_reads),
172 osc_list(&obj->oo_reading_exts),
173 atomic_read(&obj->oo_nr_writes),
174 osc_list(&obj->oo_hp_exts),
175 osc_list(&obj->oo_urgent_exts));
178 static void osc_page_delete(const struct lu_env *env,
179 const struct cl_page_slice *slice)
181 struct osc_page *opg = cl2osc_page(slice);
182 struct osc_object *obj = cl2osc(opg->ops_cl.cpl_obj);
186 CDEBUG(D_TRACE, "%p\n", opg);
187 osc_page_transfer_put(env, opg);
188 rc = osc_teardown_async_page(env, obj, opg);
190 CL_PAGE_DEBUG(D_ERROR, env, slice->cpl_page,
191 "Trying to teardown failed: %d\n", rc);
195 osc_lru_del(osc_cli(obj), opg);
197 if (slice->cpl_page->cp_type == CPT_CACHEABLE) {
200 spin_lock(&obj->oo_tree_lock);
201 if (opg->ops_intree) {
202 value = radix_tree_delete(&obj->oo_tree,
209 spin_unlock(&obj->oo_tree_lock);
211 LASSERT(ergo(value != NULL, value == opg));
217 static void osc_page_clip(const struct lu_env *env,
218 const struct cl_page_slice *slice,
221 struct osc_page *opg = cl2osc_page(slice);
222 struct osc_async_page *oap = &opg->ops_oap;
224 opg->ops_from = from;
226 spin_lock(&oap->oap_lock);
227 oap->oap_async_flags |= ASYNC_COUNT_STABLE;
228 spin_unlock(&oap->oap_lock);
231 static int osc_page_cancel(const struct lu_env *env,
232 const struct cl_page_slice *slice)
234 struct osc_page *opg = cl2osc_page(slice);
237 /* Check if the transferring against this page
238 * is completed, or not even queued. */
239 if (opg->ops_transfer_pinned)
240 /* FIXME: may not be interrupted.. */
241 rc = osc_cancel_async_page(env, opg);
242 LASSERT(ergo(rc == 0, opg->ops_transfer_pinned == 0));
246 static int osc_page_flush(const struct lu_env *env,
247 const struct cl_page_slice *slice,
250 struct osc_page *opg = cl2osc_page(slice);
253 rc = osc_flush_async_page(env, io, opg);
257 static const struct cl_page_operations osc_page_ops = {
258 .cpo_print = osc_page_print,
259 .cpo_delete = osc_page_delete,
260 .cpo_clip = osc_page_clip,
261 .cpo_cancel = osc_page_cancel,
262 .cpo_flush = osc_page_flush
265 int osc_page_init(const struct lu_env *env, struct cl_object *obj,
266 struct cl_page *page, pgoff_t index)
268 struct osc_object *osc = cl2osc(obj);
269 struct osc_page *opg = cl_object_page_slice(obj, page);
270 struct osc_io *oio = osc_env_io(env);
274 opg->ops_to = PAGE_SIZE;
276 INIT_LIST_HEAD(&opg->ops_lru);
278 result = osc_prep_async_page(osc, opg, page->cp_vmpage,
279 cl_offset(obj, index));
283 opg->ops_srvlock = osc_io_srvlock(oio);
284 cl_page_slice_add(page, &opg->ops_cl, obj, index,
288 /* reserve an LRU space for this page */
289 if (page->cp_type == CPT_CACHEABLE) {
290 result = osc_lru_alloc(env, osc_cli(osc), opg);
292 result = radix_tree_preload(GFP_NOFS);
294 spin_lock(&osc->oo_tree_lock);
295 result = radix_tree_insert(&osc->oo_tree,
301 spin_unlock(&osc->oo_tree_lock);
303 radix_tree_preload_end();
312 * Helper function called by osc_io_submit() for every page in an immediate
313 * transfer (i.e., transferred synchronously).
315 void osc_page_submit(const struct lu_env *env, struct osc_page *opg,
316 enum cl_req_type crt, int brw_flags)
318 struct osc_async_page *oap = &opg->ops_oap;
320 LASSERTF(oap->oap_magic == OAP_MAGIC, "Bad oap magic: oap %p, "
321 "magic 0x%x\n", oap, oap->oap_magic);
322 LASSERT(oap->oap_async_flags & ASYNC_READY);
323 LASSERT(oap->oap_async_flags & ASYNC_COUNT_STABLE);
325 oap->oap_cmd = crt == CRT_WRITE ? OBD_BRW_WRITE : OBD_BRW_READ;
326 oap->oap_page_off = opg->ops_from;
327 oap->oap_count = opg->ops_to - opg->ops_from;
328 oap->oap_brw_flags = OBD_BRW_SYNC | brw_flags;
330 if (cfs_capable(CFS_CAP_SYS_RESOURCE)) {
331 oap->oap_brw_flags |= OBD_BRW_NOQUOTA;
332 oap->oap_cmd |= OBD_BRW_NOQUOTA;
335 opg->ops_submit_time = cfs_time_current();
336 osc_page_transfer_get(opg, "transfer\0imm");
337 osc_page_transfer_add(env, opg, crt);
340 /* --------------- LRU page management ------------------ */
342 /* OSC is a natural place to manage LRU pages as applications are specialized
343 * to write OSC by OSC. Ideally, if one OSC is used more frequently it should
344 * occupy more LRU slots. On the other hand, we should avoid using up all LRU
345 * slots (client_obd::cl_lru_left) otherwise process has to be put into sleep
346 * for free LRU slots - this will be very bad so the algorithm requires each
347 * OSC to free slots voluntarily to maintain a reasonable number of free slots
351 static DECLARE_WAIT_QUEUE_HEAD(osc_lru_waitq);
354 * LRU pages are freed in batch mode. OSC should at least free this
355 * number of pages to avoid running out of LRU slots.
357 static inline int lru_shrink_min(struct client_obd *cli)
359 return cli->cl_max_pages_per_rpc * 2;
363 * free this number at most otherwise it will take too long time to finsih.
365 static inline int lru_shrink_max(struct client_obd *cli)
367 return cli->cl_max_pages_per_rpc * cli->cl_max_rpcs_in_flight;
371 * Check if we can free LRU slots from this OSC. If there exists LRU waiters,
372 * we should free slots aggressively. In this way, slots are freed in a steady
373 * step to maintain fairness among OSCs.
375 * Return how many LRU pages should be freed.
377 static int osc_cache_too_much(struct client_obd *cli)
379 struct cl_client_cache *cache = cli->cl_cache;
380 long pages = atomic_long_read(&cli->cl_lru_in_list);
381 unsigned long budget;
383 LASSERT(cache != NULL);
384 budget = cache->ccc_lru_max / (atomic_read(&cache->ccc_users) - 2);
386 /* if it's going to run out LRU slots, we should free some, but not
387 * too much to maintain faireness among OSCs. */
388 if (atomic_long_read(cli->cl_lru_left) < cache->ccc_lru_max >> 2) {
390 return lru_shrink_max(cli);
391 else if (pages >= budget / 2)
392 return lru_shrink_min(cli);
394 time64_t duration = ktime_get_real_seconds();
397 /* knock out pages by duration of no IO activity */
398 duration -= cli->cl_lru_last_used;
400 * The difference shouldn't be more than 70 years
401 * so we can safely case to a long. Round to
402 * approximately 1 minute.
404 timediff = (long)(duration >> 6);
405 if (timediff > 0 && pages >= budget / timediff)
406 return lru_shrink_min(cli);
411 int lru_queue_work(const struct lu_env *env, void *data)
413 struct client_obd *cli = data;
416 CDEBUG(D_CACHE, "%s: run LRU work for client obd\n", cli_name(cli));
417 count = osc_cache_too_much(cli);
419 int rc = osc_lru_shrink(env, cli, count, false);
421 CDEBUG(D_CACHE, "%s: shrank %d/%d pages from client obd\n",
422 cli_name(cli), rc, count);
424 CDEBUG(D_CACHE, "%s: queue again\n", cli_name(cli));
425 ptlrpcd_queue_work(cli->cl_lru_work);
432 void osc_lru_add_batch(struct client_obd *cli, struct list_head *plist)
434 struct list_head lru = LIST_HEAD_INIT(lru);
435 struct osc_async_page *oap;
438 list_for_each_entry(oap, plist, oap_pending_item) {
439 struct osc_page *opg = oap2osc_page(oap);
441 if (!opg->ops_in_lru)
445 LASSERT(list_empty(&opg->ops_lru));
446 list_add(&opg->ops_lru, &lru);
450 spin_lock(&cli->cl_lru_list_lock);
451 list_splice_tail(&lru, &cli->cl_lru_list);
452 atomic_long_sub(npages, &cli->cl_lru_busy);
453 atomic_long_add(npages, &cli->cl_lru_in_list);
454 cli->cl_lru_last_used = ktime_get_real_seconds();
455 spin_unlock(&cli->cl_lru_list_lock);
457 if (waitqueue_active(&osc_lru_waitq))
458 (void)ptlrpcd_queue_work(cli->cl_lru_work);
462 static void __osc_lru_del(struct client_obd *cli, struct osc_page *opg)
464 LASSERT(atomic_long_read(&cli->cl_lru_in_list) > 0);
465 list_del_init(&opg->ops_lru);
466 atomic_long_dec(&cli->cl_lru_in_list);
470 * Page is being destroyed. The page may be not in LRU list, if the transfer
471 * has never finished(error occurred).
473 static void osc_lru_del(struct client_obd *cli, struct osc_page *opg)
475 if (opg->ops_in_lru) {
476 spin_lock(&cli->cl_lru_list_lock);
477 if (!list_empty(&opg->ops_lru)) {
478 __osc_lru_del(cli, opg);
480 LASSERT(atomic_long_read(&cli->cl_lru_busy) > 0);
481 atomic_long_dec(&cli->cl_lru_busy);
483 spin_unlock(&cli->cl_lru_list_lock);
485 atomic_long_inc(cli->cl_lru_left);
486 /* this is a great place to release more LRU pages if
487 * this osc occupies too many LRU pages and kernel is
488 * stealing one of them. */
489 if (osc_cache_too_much(cli)) {
490 CDEBUG(D_CACHE, "%s: queue LRU work\n", cli_name(cli));
491 (void)ptlrpcd_queue_work(cli->cl_lru_work);
493 wake_up(&osc_lru_waitq);
495 LASSERT(list_empty(&opg->ops_lru));
500 * Delete page from LRU list for redirty.
502 static void osc_lru_use(struct client_obd *cli, struct osc_page *opg)
504 /* If page is being transferred for the first time,
505 * ops_lru should be empty */
506 if (opg->ops_in_lru) {
507 spin_lock(&cli->cl_lru_list_lock);
508 if (!list_empty(&opg->ops_lru)) {
509 __osc_lru_del(cli, opg);
510 atomic_long_inc(&cli->cl_lru_busy);
512 spin_unlock(&cli->cl_lru_list_lock);
516 static void discard_pagevec(const struct lu_env *env, struct cl_io *io,
517 struct cl_page **pvec, int max_index)
521 for (i = 0; i < max_index; i++) {
522 struct cl_page *page = pvec[i];
524 LASSERT(cl_page_is_owned(page, io));
525 cl_page_delete(env, page);
526 cl_page_discard(env, io, page);
527 cl_page_disown(env, io, page);
528 cl_page_put(env, page);
535 * Check if a cl_page can be released, i.e, it's not being used.
537 * If unstable account is turned on, bulk transfer may hold one refcount
538 * for recovery so we need to check vmpage refcount as well; otherwise,
539 * even we can destroy cl_page but the corresponding vmpage can't be reused.
541 static inline bool lru_page_busy(struct client_obd *cli, struct cl_page *page)
543 if (cl_page_in_use_noref(page))
546 if (cli->cl_cache->ccc_unstable_check) {
547 struct page *vmpage = cl_page_vmpage(page);
549 /* vmpage have two known users: cl_page and VM page cache */
550 if (page_count(vmpage) - page_mapcount(vmpage) > 2)
557 * Drop @target of pages from LRU at most.
559 long osc_lru_shrink(const struct lu_env *env, struct client_obd *cli,
560 long target, bool force)
563 struct cl_object *clobj = NULL;
564 struct cl_page **pvec;
565 struct osc_page *opg;
572 LASSERT(atomic_long_read(&cli->cl_lru_in_list) >= 0);
573 if (atomic_long_read(&cli->cl_lru_in_list) == 0 || target <= 0)
576 CDEBUG(D_CACHE, "%s: shrinkers: %d, force: %d\n",
577 cli_name(cli), atomic_read(&cli->cl_lru_shrinkers), force);
579 if (atomic_read(&cli->cl_lru_shrinkers) > 0)
582 if (atomic_inc_return(&cli->cl_lru_shrinkers) > 1) {
583 atomic_dec(&cli->cl_lru_shrinkers);
587 atomic_inc(&cli->cl_lru_shrinkers);
590 pvec = (struct cl_page **)osc_env_info(env)->oti_pvec;
591 io = &osc_env_info(env)->oti_io;
593 spin_lock(&cli->cl_lru_list_lock);
595 cli->cl_lru_reclaim++;
596 maxscan = min(target << 1, atomic_long_read(&cli->cl_lru_in_list));
597 while (!list_empty(&cli->cl_lru_list)) {
598 struct cl_page *page;
599 bool will_free = false;
601 if (!force && atomic_read(&cli->cl_lru_shrinkers) > 1)
607 opg = list_entry(cli->cl_lru_list.next, struct osc_page,
609 page = opg->ops_cl.cpl_page;
610 if (lru_page_busy(cli, page)) {
611 list_move_tail(&opg->ops_lru, &cli->cl_lru_list);
615 LASSERT(page->cp_obj != NULL);
616 if (clobj != page->cp_obj) {
617 struct cl_object *tmp = page->cp_obj;
620 spin_unlock(&cli->cl_lru_list_lock);
623 discard_pagevec(env, io, pvec, index);
627 cl_object_put(env, clobj);
633 io->ci_ignore_layout = 1;
634 rc = cl_io_init(env, io, CIT_MISC, clobj);
636 spin_lock(&cli->cl_lru_list_lock);
645 if (cl_page_own_try(env, io, page) == 0) {
646 if (!lru_page_busy(cli, page)) {
647 /* remove it from lru list earlier to avoid
649 __osc_lru_del(cli, opg);
650 opg->ops_in_lru = 0; /* will be discarded */
655 cl_page_disown(env, io, page);
660 list_move_tail(&opg->ops_lru, &cli->cl_lru_list);
664 /* Don't discard and free the page with cl_lru_list held */
665 pvec[index++] = page;
666 if (unlikely(index == OTI_PVEC_SIZE)) {
667 spin_unlock(&cli->cl_lru_list_lock);
668 discard_pagevec(env, io, pvec, index);
671 spin_lock(&cli->cl_lru_list_lock);
674 if (++count >= target)
677 spin_unlock(&cli->cl_lru_list_lock);
680 discard_pagevec(env, io, pvec, index);
683 cl_object_put(env, clobj);
686 atomic_dec(&cli->cl_lru_shrinkers);
688 atomic_long_add(count, cli->cl_lru_left);
689 wake_up_all(&osc_lru_waitq);
691 RETURN(count > 0 ? count : rc);
695 * Reclaim LRU pages by an IO thread. The caller wants to reclaim at least
696 * \@npages of LRU slots. For performance consideration, it's better to drop
697 * LRU pages in batch. Therefore, the actual number is adjusted at least
700 static long osc_lru_reclaim(struct client_obd *cli, unsigned long npages)
703 struct cl_client_cache *cache = cli->cl_cache;
709 LASSERT(cache != NULL);
711 env = cl_env_get(&refcheck);
715 npages = max_t(int, npages, cli->cl_max_pages_per_rpc);
716 CDEBUG(D_CACHE, "%s: start to reclaim %ld pages from LRU\n",
717 cli_name(cli), npages);
718 rc = osc_lru_shrink(env, cli, npages, true);
720 CDEBUG(D_CACHE, "%s: reclaimed %ld/%ld pages from LRU\n",
721 cli_name(cli), rc, npages);
722 if (osc_cache_too_much(cli) > 0)
723 ptlrpcd_queue_work(cli->cl_lru_work);
729 CDEBUG(D_CACHE, "%s: cli %p no free slots, pages: %ld/%ld, want: %ld\n",
730 cli_name(cli), cli, atomic_long_read(&cli->cl_lru_in_list),
731 atomic_long_read(&cli->cl_lru_busy), npages);
733 /* Reclaim LRU slots from other client_obd as it can't free enough
734 * from its own. This should rarely happen. */
735 spin_lock(&cache->ccc_lru_lock);
736 LASSERT(!list_empty(&cache->ccc_lru));
738 cache->ccc_lru_shrinkers++;
739 list_move_tail(&cli->cl_lru_osc, &cache->ccc_lru);
741 max_scans = atomic_read(&cache->ccc_users) - 2;
742 while (--max_scans > 0 && !list_empty(&cache->ccc_lru)) {
743 cli = list_entry(cache->ccc_lru.next, struct client_obd,
746 CDEBUG(D_CACHE, "%s: cli %p LRU pages: %ld, busy: %ld.\n",
748 atomic_long_read(&cli->cl_lru_in_list),
749 atomic_long_read(&cli->cl_lru_busy));
751 list_move_tail(&cli->cl_lru_osc, &cache->ccc_lru);
752 if (osc_cache_too_much(cli) > 0) {
753 spin_unlock(&cache->ccc_lru_lock);
755 rc = osc_lru_shrink(env, cli, npages, true);
756 spin_lock(&cache->ccc_lru_lock);
763 spin_unlock(&cache->ccc_lru_lock);
766 cl_env_put(env, &refcheck);
767 CDEBUG(D_CACHE, "%s: cli %p freed %ld pages.\n",
768 cli_name(cli), cli, rc);
773 * osc_lru_alloc() is called to allocate an LRU slot for a cl_page.
775 * Usually the LRU slots are reserved in osc_io_iter_rw_init().
776 * Only in the case that the LRU slots are in extreme shortage, it should
777 * have reserved enough slots for an IO.
779 static int osc_lru_alloc(const struct lu_env *env, struct client_obd *cli,
780 struct osc_page *opg)
782 struct l_wait_info lwi = LWI_INTR(LWI_ON_SIGNAL_NOOP, NULL);
783 struct osc_io *oio = osc_env_io(env);
787 if (cli->cl_cache == NULL) /* shall not be in LRU */
790 if (oio->oi_lru_reserved > 0) {
791 --oio->oi_lru_reserved;
795 LASSERT(atomic_long_read(cli->cl_lru_left) >= 0);
796 while (!atomic_long_add_unless(cli->cl_lru_left, -1, 0)) {
797 /* run out of LRU spaces, try to drop some by itself */
798 rc = osc_lru_reclaim(cli, 1);
805 rc = l_wait_event(osc_lru_waitq,
806 atomic_long_read(cli->cl_lru_left) > 0,
814 atomic_long_inc(&cli->cl_lru_busy);
823 * osc_lru_reserve() is called to reserve enough LRU slots for I/O.
825 * The benefit of doing this is to reduce contention against atomic counter
826 * cl_lru_left by changing it from per-page access to per-IO access.
828 unsigned long osc_lru_reserve(struct client_obd *cli, unsigned long npages)
830 unsigned long reserved = 0;
831 unsigned long max_pages;
834 /* reserve a full RPC window at most to avoid that a thread accidentally
835 * consumes too many LRU slots */
836 max_pages = cli->cl_max_pages_per_rpc * cli->cl_max_rpcs_in_flight;
837 if (npages > max_pages)
840 c = atomic_long_read(cli->cl_lru_left);
841 if (c < npages && osc_lru_reclaim(cli, npages) > 0)
842 c = atomic_long_read(cli->cl_lru_left);
843 while (c >= npages) {
844 if (c == atomic_long_cmpxchg(cli->cl_lru_left, c, c - npages)) {
848 c = atomic_long_read(cli->cl_lru_left);
850 if (atomic_long_read(cli->cl_lru_left) < max_pages) {
851 /* If there aren't enough pages in the per-OSC LRU then
852 * wake up the LRU thread to try and clear out space, so
853 * we don't block if pages are being dirtied quickly. */
854 CDEBUG(D_CACHE, "%s: queue LRU, left: %lu/%ld.\n",
855 cli_name(cli), atomic_long_read(cli->cl_lru_left),
857 (void)ptlrpcd_queue_work(cli->cl_lru_work);
864 * osc_lru_unreserve() is called to unreserve LRU slots.
866 * LRU slots reserved by osc_lru_reserve() may have entries left due to several
867 * reasons such as page already existing or I/O error. Those reserved slots
868 * should be freed by calling this function.
870 void osc_lru_unreserve(struct client_obd *cli, unsigned long npages)
872 atomic_long_add(npages, cli->cl_lru_left);
873 wake_up_all(&osc_lru_waitq);
877 * Atomic operations are expensive. We accumulate the accounting for the
878 * same page zone to get better performance.
879 * In practice this can work pretty good because the pages in the same RPC
880 * are likely from the same page zone.
882 static inline void unstable_page_accounting(struct ptlrpc_bulk_desc *desc,
885 int page_count = desc->bd_iov_count;
890 LASSERT(ptlrpc_is_bulk_desc_kiov(desc->bd_type));
892 for (i = 0; i < page_count; i++) {
893 void *pz = page_zone(BD_GET_KIOV(desc, i).kiov_page);
895 if (likely(pz == zone)) {
901 mod_zone_page_state(zone, NR_UNSTABLE_NFS,
909 mod_zone_page_state(zone, NR_UNSTABLE_NFS, factor * count);
912 static inline void add_unstable_page_accounting(struct ptlrpc_bulk_desc *desc)
914 unstable_page_accounting(desc, 1);
917 static inline void dec_unstable_page_accounting(struct ptlrpc_bulk_desc *desc)
919 unstable_page_accounting(desc, -1);
923 * Performs "unstable" page accounting. This function balances the
924 * increment operations performed in osc_inc_unstable_pages. It is
925 * registered as the RPC request callback, and is executed when the
926 * bulk RPC is committed on the server. Thus at this point, the pages
927 * involved in the bulk transfer are no longer considered unstable.
929 * If this function is called, the request should have been committed
930 * or req:rq_unstable must have been set; it implies that the unstable
931 * statistic have been added.
933 void osc_dec_unstable_pages(struct ptlrpc_request *req)
935 struct ptlrpc_bulk_desc *desc = req->rq_bulk;
936 struct client_obd *cli = &req->rq_import->imp_obd->u.cli;
937 int page_count = desc->bd_iov_count;
940 LASSERT(page_count >= 0);
941 dec_unstable_page_accounting(desc);
943 unstable_count = atomic_long_sub_return(page_count,
944 &cli->cl_unstable_count);
945 LASSERT(unstable_count >= 0);
947 unstable_count = atomic_long_sub_return(page_count,
948 &cli->cl_cache->ccc_unstable_nr);
949 LASSERT(unstable_count >= 0);
950 if (unstable_count == 0)
951 wake_up_all(&cli->cl_cache->ccc_unstable_waitq);
953 if (waitqueue_active(&osc_lru_waitq))
954 (void)ptlrpcd_queue_work(cli->cl_lru_work);
958 * "unstable" page accounting. See: osc_dec_unstable_pages.
960 void osc_inc_unstable_pages(struct ptlrpc_request *req)
962 struct ptlrpc_bulk_desc *desc = req->rq_bulk;
963 struct client_obd *cli = &req->rq_import->imp_obd->u.cli;
964 long page_count = desc->bd_iov_count;
966 /* No unstable page tracking */
967 if (cli->cl_cache == NULL || !cli->cl_cache->ccc_unstable_check)
970 add_unstable_page_accounting(desc);
971 atomic_long_add(page_count, &cli->cl_unstable_count);
972 atomic_long_add(page_count, &cli->cl_cache->ccc_unstable_nr);
974 /* If the request has already been committed (i.e. brw_commit
975 * called via rq_commit_cb), we need to undo the unstable page
976 * increments we just performed because rq_commit_cb wont be
978 spin_lock(&req->rq_lock);
979 if (unlikely(req->rq_committed)) {
980 spin_unlock(&req->rq_lock);
982 osc_dec_unstable_pages(req);
984 req->rq_unstable = 1;
985 spin_unlock(&req->rq_lock);
990 * Check if it piggybacks SOFT_SYNC flag to OST from this OSC.
991 * This function will be called by every BRW RPC so it's critical
992 * to make this function fast.
994 bool osc_over_unstable_soft_limit(struct client_obd *cli)
996 long unstable_nr, osc_unstable_count;
998 /* Can't check cli->cl_unstable_count, therefore, no soft limit */
999 if (cli->cl_cache == NULL || !cli->cl_cache->ccc_unstable_check)
1002 osc_unstable_count = atomic_long_read(&cli->cl_unstable_count);
1003 unstable_nr = atomic_long_read(&cli->cl_cache->ccc_unstable_nr);
1006 "%s: cli: %p unstable pages: %lu, osc unstable pages: %lu\n",
1007 cli_name(cli), cli, unstable_nr, osc_unstable_count);
1009 /* If the LRU slots are in shortage - 25% remaining AND this OSC
1010 * has one full RPC window of unstable pages, it's a good chance
1011 * to piggyback a SOFT_SYNC flag.
1012 * Please notice that the OST won't take immediate response for the
1013 * SOFT_SYNC request so active OSCs will have more chance to carry
1014 * the flag, this is reasonable. */
1015 return unstable_nr > cli->cl_cache->ccc_lru_max >> 2 &&
1016 osc_unstable_count > cli->cl_max_pages_per_rpc *
1017 cli->cl_max_rpcs_in_flight;
1021 * Return how many LRU pages in the cache of all OSC devices
1023 * \retval return # of cached LRU pages times reclaimation tendency
1024 * \retval SHRINK_STOP if it cannot do any scanning in this time
1026 unsigned long osc_cache_shrink_count(struct shrinker *sk,
1027 struct shrink_control *sc)
1029 struct client_obd *cli;
1030 unsigned long cached = 0;
1032 spin_lock(&osc_shrink_lock);
1033 list_for_each_entry(cli, &osc_shrink_list, cl_shrink_list)
1034 cached += atomic_long_read(&cli->cl_lru_in_list);
1035 spin_unlock(&osc_shrink_lock);
1037 return (cached * sysctl_vfs_cache_pressure) / 100;
1041 * Scan and try to reclaim sc->nr_to_scan cached LRU pages
1043 * \retval number of cached LRU pages reclaimed
1044 * \retval SHRINK_STOP if it cannot do any scanning in this time
1046 * Linux kernel will loop calling this shrinker scan routine with
1047 * sc->nr_to_scan = SHRINK_BATCH(128 for now) until kernel got enough memory.
1049 * If sc->nr_to_scan is 0, the VM is querying the cache size, we don't need
1050 * to scan and try to reclaim LRU pages, just return 0 and
1051 * osc_cache_shrink_count() will report the LRU page number.
1053 unsigned long osc_cache_shrink_scan(struct shrinker *sk,
1054 struct shrink_control *sc)
1056 struct client_obd *cli;
1057 struct client_obd *stop_anchor = NULL;
1063 if (sc->nr_to_scan == 0)
1066 if (!(sc->gfp_mask & __GFP_FS))
1069 env = cl_env_get(&refcheck);
1073 spin_lock(&osc_shrink_lock);
1074 while (!list_empty(&osc_shrink_list)) {
1075 cli = list_entry(osc_shrink_list.next, struct client_obd,
1078 if (stop_anchor == NULL)
1080 else if (cli == stop_anchor)
1083 list_move_tail(&cli->cl_shrink_list, &osc_shrink_list);
1084 spin_unlock(&osc_shrink_lock);
1086 /* shrink no more than max_pages_per_rpc for an OSC */
1087 rc = osc_lru_shrink(env, cli, (sc->nr_to_scan - shrank) >
1088 cli->cl_max_pages_per_rpc ?
1089 cli->cl_max_pages_per_rpc :
1090 sc->nr_to_scan - shrank, true);
1094 if (shrank >= sc->nr_to_scan)
1097 spin_lock(&osc_shrink_lock);
1099 spin_unlock(&osc_shrink_lock);
1102 cl_env_put(env, &refcheck);