1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2 * vim:expandtab:shiftwidth=8:tabstop=8:
6 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 only,
10 * as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License version 2 for more details (a copy is included
16 * in the LICENSE file that accompanied this code).
18 * You should have received a copy of the GNU General Public License
19 * version 2 along with this program; If not, see
20 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
22 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23 * CA 95054 USA or visit www.sun.com if you need additional information or
29 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
30 * Use is subject to license terms.
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
38 * Author: Nikita Danilov <nikita.danilov@sun.com>
41 #define DEBUG_SUBSYSTEM S_CLASS
43 # define EXPORT_SYMTAB
46 #include <libcfs/libcfs.h>
47 #include <obd_class.h>
48 #include <obd_support.h>
49 #include <libcfs/list.h>
51 #include <cl_object.h>
52 #include "cl_internal.h"
54 static void cl_page_delete0(const struct lu_env *env, struct cl_page *pg,
57 static cfs_mem_cache_t *cl_page_kmem = NULL;
59 static struct lu_kmem_descr cl_page_caches[] = {
61 .ckd_cache = &cl_page_kmem,
62 .ckd_name = "cl_page_kmem",
63 .ckd_size = sizeof (struct cl_page)
71 # define PASSERT(env, page, expr) \
73 if (unlikely(!(expr))) { \
74 CL_PAGE_DEBUG(D_ERROR, (env), (page), #expr "\n"); \
78 #else /* !LIBCFS_DEBUG */
79 # define PASSERT(env, page, exp) \
80 ((void)sizeof(env), (void)sizeof(page), (void)sizeof !!(exp))
81 #endif /* !LIBCFS_DEBUG */
83 #ifdef INVARIANT_CHECK
84 # define PINVRNT(env, page, expr) \
86 if (unlikely(!(expr))) { \
87 CL_PAGE_DEBUG(D_ERROR, (env), (page), #expr "\n"); \
91 #else /* !INVARIANT_CHECK */
92 # define PINVRNT(env, page, exp) \
93 ((void)sizeof(env), (void)sizeof(page), (void)sizeof !!(exp))
94 #endif /* !INVARIANT_CHECK */
97 * Internal version of cl_page_top, it should be called with page referenced,
98 * or coh_page_guard held.
100 static struct cl_page *cl_page_top_trusted(struct cl_page *page)
102 LASSERT(cl_is_page(page));
103 while (page->cp_parent != NULL)
104 page = page->cp_parent;
109 * Internal version of cl_page_get().
111 * This function can be used to obtain initial reference to previously
112 * unreferenced cached object. It can be called only if concurrent page
113 * reclamation is somehow prevented, e.g., by locking page radix-tree
114 * (cl_object_header::hdr->coh_page_guard), or by keeping a lock on a VM page,
115 * associated with \a page.
117 * Use with care! Not exported.
119 static void cl_page_get_trust(struct cl_page *page)
121 LASSERT(cl_is_page(page));
123 * Checkless version for trusted users.
125 if (cfs_atomic_inc_return(&page->cp_ref) == 1)
126 cfs_atomic_inc(&cl_object_site(page->cp_obj)->cs_pages.cs_busy);
130 * Returns a slice within a page, corresponding to the given layer in the
135 static const struct cl_page_slice *
136 cl_page_at_trusted(const struct cl_page *page,
137 const struct lu_device_type *dtype)
139 const struct cl_page_slice *slice;
141 #ifdef INVARIANT_CHECK
142 struct cl_object_header *ch = cl_object_header(page->cp_obj);
144 if (!cfs_atomic_read(&page->cp_ref))
145 LASSERT_SPIN_LOCKED(&ch->coh_page_guard);
149 page = cl_page_top_trusted((struct cl_page *)page);
151 cfs_list_for_each_entry(slice, &page->cp_layers, cpl_linkage) {
152 if (slice->cpl_obj->co_lu.lo_dev->ld_type == dtype)
155 page = page->cp_child;
156 } while (page != NULL);
161 * Returns a page with given index in the given object, or NULL if no page is
162 * found. Acquires a reference on \a page.
164 * Locking: called under cl_object_header::coh_page_guard spin-lock.
166 struct cl_page *cl_page_lookup(struct cl_object_header *hdr, pgoff_t index)
168 struct cl_page *page;
170 LASSERT_SPIN_LOCKED(&hdr->coh_page_guard);
172 page = radix_tree_lookup(&hdr->coh_tree, index);
174 LASSERT(cl_is_page(page));
175 cl_page_get_trust(page);
179 EXPORT_SYMBOL(cl_page_lookup);
182 * Returns a list of pages by a given [start, end] of \a obj.
184 * \param resched If not NULL, then we give up before hogging CPU for too
185 * long and set *resched = 1, in that case caller should implement a retry
188 * Gang tree lookup (radix_tree_gang_lookup()) optimization is absolutely
189 * crucial in the face of [offset, EOF] locks.
191 void cl_page_gang_lookup(const struct lu_env *env, struct cl_object *obj,
192 struct cl_io *io, pgoff_t start, pgoff_t end,
193 struct cl_page_list *queue, int nonblock,
196 struct cl_object_header *hdr;
197 struct cl_page *page;
198 struct cl_page **pvec;
199 const struct cl_page_slice *slice;
200 const struct lu_device_type *dtype;
205 int (*page_own)(const struct lu_env *env,
212 page_own = nonblock ? cl_page_own_try : cl_page_own;
215 hdr = cl_object_header(obj);
216 pvec = cl_env_info(env)->clt_pvec;
217 dtype = cl_object_top(obj)->co_lu.lo_dev->ld_type;
218 cfs_spin_lock(&hdr->coh_page_guard);
219 while ((nr = radix_tree_gang_lookup(&hdr->coh_tree, (void **)pvec,
220 idx, CLT_PVEC_SIZE)) > 0) {
221 idx = pvec[nr - 1]->cp_index + 1;
222 for (i = 0, j = 0; i < nr; ++i) {
224 PASSERT(env, page, cl_is_page(page));
226 if (page->cp_index > end)
228 if (page->cp_state == CPS_FREEING)
230 if (page->cp_type == CPT_TRANSIENT) {
231 /* God, we found a transient page!*/
235 slice = cl_page_at_trusted(page, dtype);
237 * Pages for lsm-less file has no underneath sub-page
238 * for osc, in case of ...
240 PASSERT(env, page, slice != NULL);
242 page = slice->cpl_page;
244 * Can safely call cl_page_get_trust() under
245 * radix-tree spin-lock.
247 * XXX not true, because @page is from object another
248 * than @hdr and protected by different tree lock.
250 cl_page_get_trust(page);
251 lu_ref_add_atomic(&page->cp_reference,
252 "page_list", cfs_current());
257 * Here a delicate locking dance is performed. Current thread
258 * holds a reference to a page, but has to own it before it
259 * can be placed into queue. Owning implies waiting, so
260 * radix-tree lock is to be released. After a wait one has to
261 * check that pages weren't truncated (cl_page_own() returns
262 * error in the latter case).
264 cfs_spin_unlock(&hdr->coh_page_guard);
265 for (i = 0; i < j; ++i) {
267 if (page_own(env, io, page) == 0)
268 cl_page_list_add(queue, page);
269 lu_ref_del(&page->cp_reference,
270 "page_list", cfs_current());
271 cl_page_put(env, page);
273 cfs_spin_lock(&hdr->coh_page_guard);
274 if (nr < CLT_PVEC_SIZE)
276 if (resched != NULL && cfs_need_resched()) {
281 cfs_spin_unlock(&hdr->coh_page_guard);
284 EXPORT_SYMBOL(cl_page_gang_lookup);
286 static void cl_page_free(const struct lu_env *env, struct cl_page *page)
288 struct cl_object *obj = page->cp_obj;
289 struct cl_site *site = cl_object_site(obj);
291 PASSERT(env, page, cl_is_page(page));
292 PASSERT(env, page, cfs_list_empty(&page->cp_batch));
293 PASSERT(env, page, page->cp_owner == NULL);
294 PASSERT(env, page, page->cp_req == NULL);
295 PASSERT(env, page, page->cp_parent == NULL);
296 PASSERT(env, page, page->cp_state == CPS_FREEING);
300 while (!cfs_list_empty(&page->cp_layers)) {
301 struct cl_page_slice *slice;
303 slice = cfs_list_entry(page->cp_layers.next,
304 struct cl_page_slice, cpl_linkage);
305 cfs_list_del_init(page->cp_layers.next);
306 slice->cpl_ops->cpo_fini(env, slice);
308 cfs_atomic_dec(&site->cs_pages.cs_total);
310 #ifdef LUSTRE_PAGESTATE_TRACKING
311 cfs_atomic_dec(&site->cs_pages_state[page->cp_state]);
313 lu_object_ref_del_at(&obj->co_lu, page->cp_obj_ref, "cl_page", page);
314 cl_object_put(env, obj);
315 lu_ref_fini(&page->cp_reference);
316 OBD_SLAB_FREE_PTR(page, cl_page_kmem);
321 * Helper function updating page state. This is the only place in the code
322 * where cl_page::cp_state field is mutated.
324 static inline void cl_page_state_set_trust(struct cl_page *page,
325 enum cl_page_state state)
328 *(enum cl_page_state *)&page->cp_state = state;
331 static int cl_page_alloc(const struct lu_env *env, struct cl_object *o,
332 pgoff_t ind, struct page *vmpage,
333 enum cl_page_type type, struct cl_page **out)
335 struct cl_page *page;
336 struct cl_page *err = NULL;
337 struct lu_object_header *head;
338 struct cl_site *site = cl_object_site(o);
343 OBD_SLAB_ALLOC_PTR_GFP(page, cl_page_kmem, CFS_ALLOC_IO);
345 cfs_atomic_set(&page->cp_ref, 1);
348 page->cp_obj_ref = lu_object_ref_add(&o->co_lu,
350 page->cp_index = ind;
351 cl_page_state_set_trust(page, CPS_CACHED);
352 page->cp_type = type;
353 CFS_INIT_LIST_HEAD(&page->cp_layers);
354 CFS_INIT_LIST_HEAD(&page->cp_batch);
355 CFS_INIT_LIST_HEAD(&page->cp_flight);
356 cfs_mutex_init(&page->cp_mutex);
357 lu_ref_init(&page->cp_reference);
358 head = o->co_lu.lo_header;
359 cfs_list_for_each_entry(o, &head->loh_layers,
361 if (o->co_ops->coo_page_init != NULL) {
362 err = o->co_ops->coo_page_init(env, o,
365 cl_page_state_set_trust(page,
367 cl_page_free(env, page);
374 cfs_atomic_inc(&site->cs_pages.cs_busy);
375 cfs_atomic_inc(&site->cs_pages.cs_total);
377 #ifdef LUSTRE_PAGESTATE_TRACKING
378 cfs_atomic_inc(&site->cs_pages_state[CPS_CACHED]);
380 cfs_atomic_inc(&site->cs_pages.cs_created);
384 page = ERR_PTR(-ENOMEM);
390 * Returns a cl_page with index \a idx at the object \a o, and associated with
391 * the VM page \a vmpage.
393 * This is the main entry point into the cl_page caching interface. First, a
394 * cache (implemented as a per-object radix tree) is consulted. If page is
395 * found there, it is returned immediately. Otherwise new page is allocated
396 * and returned. In any case, additional reference to page is acquired.
398 * \see cl_object_find(), cl_lock_find()
400 static struct cl_page *cl_page_find0(const struct lu_env *env,
402 pgoff_t idx, struct page *vmpage,
403 enum cl_page_type type,
404 struct cl_page *parent)
406 struct cl_page *page;
407 struct cl_page *ghost = NULL;
408 struct cl_object_header *hdr;
409 struct cl_site *site = cl_object_site(o);
412 LINVRNT(type == CPT_CACHEABLE || type == CPT_TRANSIENT);
417 hdr = cl_object_header(o);
418 cfs_atomic_inc(&site->cs_pages.cs_lookup);
420 CDEBUG(D_PAGE, "%lu@"DFID" %p %lu %d\n",
421 idx, PFID(&hdr->coh_lu.loh_fid), vmpage, vmpage->private, type);
423 if (type == CPT_CACHEABLE) {
425 * cl_vmpage_page() can be called here without any locks as
427 * - "vmpage" is locked (which prevents ->private from
428 * concurrent updates), and
430 * - "o" cannot be destroyed while current thread holds a
433 page = cl_vmpage_page(vmpage, o);
436 cl_page_vmpage(env, page) == vmpage &&
437 (void *)radix_tree_lookup(&hdr->coh_tree,
440 cfs_spin_lock(&hdr->coh_page_guard);
441 page = cl_page_lookup(hdr, idx);
442 cfs_spin_unlock(&hdr->coh_page_guard);
445 cfs_atomic_inc(&site->cs_pages.cs_hit);
449 /* allocate and initialize cl_page */
450 err = cl_page_alloc(env, o, idx, vmpage, type, &page);
454 * XXX optimization: use radix_tree_preload() here, and change tree
455 * gfp mask to GFP_KERNEL in cl_object_header_init().
457 cfs_spin_lock(&hdr->coh_page_guard);
458 err = radix_tree_insert(&hdr->coh_tree, idx, page);
462 * Noted by Jay: a lock on \a vmpage protects cl_page_find()
463 * from this race, but
465 * 0. it's better to have cl_page interface "locally
466 * consistent" so that its correctness can be reasoned
467 * about without appealing to the (obscure world of) VM
470 * 1. handling this race allows ->coh_tree to remain
471 * consistent even when VM locking is somehow busted,
472 * which is very useful during diagnosing and debugging.
475 if (err == -EEXIST) {
477 * XXX in case of a lookup for CPT_TRANSIENT page,
478 * nothing protects a CPT_CACHEABLE page from being
479 * concurrently moved into CPS_FREEING state.
481 page = cl_page_lookup(hdr, idx);
482 PASSERT(env, page, page != NULL);
483 if (page->cp_type == CPT_TRANSIENT &&
484 type == CPT_CACHEABLE) {
485 /* XXX: We should make sure that inode sem
486 * keeps being held in the lifetime of
487 * transient pages, so it is impossible to
488 * have conflicting transient pages.
490 cfs_spin_unlock(&hdr->coh_page_guard);
491 cl_page_put(env, page);
492 cfs_spin_lock(&hdr->coh_page_guard);
493 page = ERR_PTR(-EBUSY);
498 LASSERT(page->cp_parent == NULL);
499 page->cp_parent = parent;
500 parent->cp_child = page;
504 cfs_spin_unlock(&hdr->coh_page_guard);
506 if (unlikely(ghost != NULL)) {
507 cfs_atomic_dec(&site->cs_pages.cs_busy);
508 cl_page_delete0(env, ghost, 0);
509 cl_page_free(env, ghost);
514 struct cl_page *cl_page_find(const struct lu_env *env, struct cl_object *o,
515 pgoff_t idx, struct page *vmpage,
516 enum cl_page_type type)
518 return cl_page_find0(env, o, idx, vmpage, type, NULL);
520 EXPORT_SYMBOL(cl_page_find);
523 struct cl_page *cl_page_find_sub(const struct lu_env *env, struct cl_object *o,
524 pgoff_t idx, struct page *vmpage,
525 struct cl_page *parent)
527 return cl_page_find0(env, o, idx, vmpage, parent->cp_type, parent);
529 EXPORT_SYMBOL(cl_page_find_sub);
531 static inline int cl_page_invariant(const struct cl_page *pg)
533 struct cl_object_header *header;
534 struct cl_page *parent;
535 struct cl_page *child;
538 LASSERT(cl_is_page(pg));
540 * Page invariant is protected by a VM lock.
542 LINVRNT(cl_page_is_vmlocked(NULL, pg));
544 header = cl_object_header(pg->cp_obj);
545 parent = pg->cp_parent;
546 child = pg->cp_child;
547 owner = pg->cp_owner;
549 return cfs_atomic_read(&pg->cp_ref) > 0 &&
550 ergo(parent != NULL, parent->cp_child == pg) &&
551 ergo(child != NULL, child->cp_parent == pg) &&
552 ergo(child != NULL, pg->cp_obj != child->cp_obj) &&
553 ergo(parent != NULL, pg->cp_obj != parent->cp_obj) &&
554 ergo(owner != NULL && parent != NULL,
555 parent->cp_owner == pg->cp_owner->ci_parent) &&
556 ergo(owner != NULL && child != NULL,
557 child->cp_owner->ci_parent == owner) &&
559 * Either page is early in initialization (has neither child
560 * nor parent yet), or it is in the object radix tree.
562 ergo(pg->cp_state < CPS_FREEING,
563 (void *)radix_tree_lookup(&header->coh_tree,
564 pg->cp_index) == pg ||
565 (child == NULL && parent == NULL));
568 static void cl_page_state_set0(const struct lu_env *env,
569 struct cl_page *page, enum cl_page_state state)
571 enum cl_page_state old;
572 #ifdef LUSTRE_PAGESTATE_TRACKING
573 struct cl_site *site = cl_object_site(page->cp_obj);
577 * Matrix of allowed state transitions [old][new], for sanity
580 static const int allowed_transitions[CPS_NR][CPS_NR] = {
583 [CPS_OWNED] = 1, /* io finds existing cached page */
585 [CPS_PAGEOUT] = 1, /* write-out from the cache */
586 [CPS_FREEING] = 1, /* eviction on the memory pressure */
589 [CPS_CACHED] = 1, /* release to the cache */
591 [CPS_PAGEIN] = 1, /* start read immediately */
592 [CPS_PAGEOUT] = 1, /* start write immediately */
593 [CPS_FREEING] = 1, /* lock invalidation or truncate */
596 [CPS_CACHED] = 1, /* io completion */
603 [CPS_CACHED] = 1, /* io completion */
619 old = page->cp_state;
620 PASSERT(env, page, allowed_transitions[old][state]);
621 CL_PAGE_HEADER(D_TRACE, env, page, "%d -> %d\n", old, state);
622 for (; page != NULL; page = page->cp_child) {
623 PASSERT(env, page, page->cp_state == old);
625 equi(state == CPS_OWNED, page->cp_owner != NULL));
627 #ifdef LUSTRE_PAGESTATE_TRACKING
628 cfs_atomic_dec(&site->cs_pages_state[page->cp_state]);
629 cfs_atomic_inc(&site->cs_pages_state[state]);
631 cl_page_state_set_trust(page, state);
636 static void cl_page_state_set(const struct lu_env *env,
637 struct cl_page *page, enum cl_page_state state)
639 PINVRNT(env, page, cl_page_invariant(page));
640 cl_page_state_set0(env, page, state);
644 * Acquires an additional reference to a page.
646 * This can be called only by caller already possessing a reference to \a
649 * \see cl_object_get(), cl_lock_get().
651 void cl_page_get(struct cl_page *page)
654 LASSERT(page->cp_state != CPS_FREEING);
655 cl_page_get_trust(page);
658 EXPORT_SYMBOL(cl_page_get);
661 * Releases a reference to a page.
663 * When last reference is released, page is returned to the cache, unless it
664 * is in cl_page_state::CPS_FREEING state, in which case it is immediately
667 * \see cl_object_put(), cl_lock_put().
669 void cl_page_put(const struct lu_env *env, struct cl_page *page)
671 struct cl_object_header *hdr;
672 struct cl_site *site = cl_object_site(page->cp_obj);
674 PASSERT(env, page, cfs_atomic_read(&page->cp_ref) > !!page->cp_parent);
677 CL_PAGE_HEADER(D_TRACE, env, page, "%d\n",
678 cfs_atomic_read(&page->cp_ref));
680 hdr = cl_object_header(cl_object_top(page->cp_obj));
681 if (cfs_atomic_dec_and_lock(&page->cp_ref, &hdr->coh_page_guard)) {
682 cfs_atomic_dec(&site->cs_pages.cs_busy);
683 /* We're going to access the page w/o a reference, but it's
684 * ok because we have grabbed the lock coh_page_guard, which
685 * means nobody is able to free this page behind us.
687 if (page->cp_state == CPS_FREEING) {
688 /* We drop the page reference and check the page state
689 * inside the coh_page_guard. So that if it gets here,
690 * it is the REALLY last reference to this page.
692 cfs_spin_unlock(&hdr->coh_page_guard);
694 LASSERT(cfs_atomic_read(&page->cp_ref) == 0);
695 PASSERT(env, page, page->cp_owner == NULL);
696 PASSERT(env, page, cfs_list_empty(&page->cp_batch));
698 * Page is no longer reachable by other threads. Tear
701 cl_page_free(env, page);
706 cfs_spin_unlock(&hdr->coh_page_guard);
711 EXPORT_SYMBOL(cl_page_put);
714 * Returns a VM page associated with a given cl_page.
716 cfs_page_t *cl_page_vmpage(const struct lu_env *env, struct cl_page *page)
718 const struct cl_page_slice *slice;
721 * Find uppermost layer with ->cpo_vmpage() method, and return its
724 page = cl_page_top(page);
726 cfs_list_for_each_entry(slice, &page->cp_layers, cpl_linkage) {
727 if (slice->cpl_ops->cpo_vmpage != NULL)
728 RETURN(slice->cpl_ops->cpo_vmpage(env, slice));
730 page = page->cp_child;
731 } while (page != NULL);
732 LBUG(); /* ->cpo_vmpage() has to be defined somewhere in the stack */
734 EXPORT_SYMBOL(cl_page_vmpage);
737 * Returns a cl_page associated with a VM page, and given cl_object.
739 struct cl_page *cl_vmpage_page(cfs_page_t *vmpage, struct cl_object *obj)
741 struct cl_page *page;
742 struct cl_object_header *hdr;
745 KLASSERT(PageLocked(vmpage));
748 * NOTE: absence of races and liveness of data are guaranteed by page
749 * lock on a "vmpage". That works because object destruction has
750 * bottom-to-top pass.
754 * This loop assumes that ->private points to the top-most page. This
755 * can be rectified easily.
757 hdr = cl_object_header(cl_object_top(obj));
758 cfs_spin_lock(&hdr->coh_page_guard);
759 for (page = (void *)vmpage->private;
760 page != NULL; page = page->cp_child) {
761 if (cl_object_same(page->cp_obj, obj)) {
762 cl_page_get_trust(page);
766 cfs_spin_unlock(&hdr->coh_page_guard);
767 LASSERT(ergo(page, cl_is_page(page) && page->cp_type == CPT_CACHEABLE));
770 EXPORT_SYMBOL(cl_vmpage_page);
773 * Returns the top-page for a given page.
775 * \see cl_object_top(), cl_io_top()
777 struct cl_page *cl_page_top(struct cl_page *page)
779 return cl_page_top_trusted(page);
781 EXPORT_SYMBOL(cl_page_top);
784 * Returns true if \a addr is an address of an allocated cl_page. Used in
785 * assertions. This check is optimistically imprecise, i.e., it occasionally
786 * returns true for the incorrect addresses, but if it returns false, then the
787 * address is guaranteed to be incorrect. (Should be named cl_pagep().)
791 int cl_is_page(const void *addr)
793 return cfs_mem_is_in_cache(addr, cl_page_kmem);
795 EXPORT_SYMBOL(cl_is_page);
797 const struct cl_page_slice *cl_page_at(const struct cl_page *page,
798 const struct lu_device_type *dtype)
800 return cl_page_at_trusted(page, dtype);
802 EXPORT_SYMBOL(cl_page_at);
804 #define CL_PAGE_OP(opname) offsetof(struct cl_page_operations, opname)
806 #define CL_PAGE_INVOKE(_env, _page, _op, _proto, ...) \
808 const struct lu_env *__env = (_env); \
809 struct cl_page *__page = (_page); \
810 const struct cl_page_slice *__scan; \
812 ptrdiff_t __op = (_op); \
813 int (*__method)_proto; \
816 __page = cl_page_top(__page); \
818 cfs_list_for_each_entry(__scan, &__page->cp_layers, \
820 __method = *(void **)((char *)__scan->cpl_ops + \
822 if (__method != NULL) { \
823 __result = (*__method)(__env, __scan, \
829 __page = __page->cp_child; \
830 } while (__page != NULL && __result == 0); \
836 #define CL_PAGE_INVOID(_env, _page, _op, _proto, ...) \
838 const struct lu_env *__env = (_env); \
839 struct cl_page *__page = (_page); \
840 const struct cl_page_slice *__scan; \
841 ptrdiff_t __op = (_op); \
842 void (*__method)_proto; \
844 __page = cl_page_top(__page); \
846 cfs_list_for_each_entry(__scan, &__page->cp_layers, \
848 __method = *(void **)((char *)__scan->cpl_ops + \
850 if (__method != NULL) \
851 (*__method)(__env, __scan, \
854 __page = __page->cp_child; \
855 } while (__page != NULL); \
858 #define CL_PAGE_INVOID_REVERSE(_env, _page, _op, _proto, ...) \
860 const struct lu_env *__env = (_env); \
861 struct cl_page *__page = (_page); \
862 const struct cl_page_slice *__scan; \
863 ptrdiff_t __op = (_op); \
864 void (*__method)_proto; \
866 /* get to the bottom page. */ \
867 while (__page->cp_child != NULL) \
868 __page = __page->cp_child; \
870 cfs_list_for_each_entry_reverse(__scan, &__page->cp_layers, \
872 __method = *(void **)((char *)__scan->cpl_ops + \
874 if (__method != NULL) \
875 (*__method)(__env, __scan, \
878 __page = __page->cp_parent; \
879 } while (__page != NULL); \
882 static int cl_page_invoke(const struct lu_env *env,
883 struct cl_io *io, struct cl_page *page, ptrdiff_t op)
886 PINVRNT(env, page, cl_object_same(page->cp_obj, io->ci_obj));
888 RETURN(CL_PAGE_INVOKE(env, page, op,
889 (const struct lu_env *,
890 const struct cl_page_slice *, struct cl_io *),
894 static void cl_page_invoid(const struct lu_env *env,
895 struct cl_io *io, struct cl_page *page, ptrdiff_t op)
898 PINVRNT(env, page, cl_object_same(page->cp_obj, io->ci_obj));
900 CL_PAGE_INVOID(env, page, op,
901 (const struct lu_env *,
902 const struct cl_page_slice *, struct cl_io *), io);
906 static void cl_page_owner_clear(struct cl_page *page)
909 for (page = cl_page_top(page); page != NULL; page = page->cp_child) {
910 if (page->cp_owner != NULL) {
911 LASSERT(page->cp_owner->ci_owned_nr > 0);
912 page->cp_owner->ci_owned_nr--;
913 page->cp_owner = NULL;
914 page->cp_task = NULL;
920 static void cl_page_owner_set(struct cl_page *page)
923 for (page = cl_page_top(page); page != NULL; page = page->cp_child) {
924 LASSERT(page->cp_owner != NULL);
925 page->cp_owner->ci_owned_nr++;
930 void cl_page_disown0(const struct lu_env *env,
931 struct cl_io *io, struct cl_page *pg)
933 enum cl_page_state state;
936 state = pg->cp_state;
937 PINVRNT(env, pg, state == CPS_OWNED || state == CPS_FREEING);
938 PINVRNT(env, pg, cl_page_invariant(pg));
939 cl_page_owner_clear(pg);
941 if (state == CPS_OWNED)
942 cl_page_state_set(env, pg, CPS_CACHED);
944 * Completion call-backs are executed in the bottom-up order, so that
945 * uppermost layer (llite), responsible for VFS/VM interaction runs
946 * last and can release locks safely.
948 CL_PAGE_INVOID_REVERSE(env, pg, CL_PAGE_OP(cpo_disown),
949 (const struct lu_env *,
950 const struct cl_page_slice *, struct cl_io *),
956 * returns true, iff page is owned by the given io.
958 int cl_page_is_owned(const struct cl_page *pg, const struct cl_io *io)
960 LINVRNT(cl_object_same(pg->cp_obj, io->ci_obj));
962 RETURN(pg->cp_state == CPS_OWNED && pg->cp_owner == io);
964 EXPORT_SYMBOL(cl_page_is_owned);
967 * Try to own a page by IO.
969 * Waits until page is in cl_page_state::CPS_CACHED state, and then switch it
970 * into cl_page_state::CPS_OWNED state.
972 * \pre !cl_page_is_owned(pg, io)
973 * \post result == 0 iff cl_page_is_owned(pg, io)
977 * \retval -ve failure, e.g., page was destroyed (and landed in
978 * cl_page_state::CPS_FREEING instead of cl_page_state::CPS_CACHED).
979 * or, page was owned by another thread, or in IO.
981 * \see cl_page_disown()
982 * \see cl_page_operations::cpo_own()
983 * \see cl_page_own_try()
986 static int cl_page_own0(const struct lu_env *env, struct cl_io *io,
987 struct cl_page *pg, int nonblock)
991 PINVRNT(env, pg, !cl_page_is_owned(pg, io));
994 pg = cl_page_top(pg);
997 if (pg->cp_state == CPS_FREEING) {
1000 result = CL_PAGE_INVOKE(env, pg, CL_PAGE_OP(cpo_own),
1001 (const struct lu_env *,
1002 const struct cl_page_slice *,
1003 struct cl_io *, int),
1006 PASSERT(env, pg, pg->cp_owner == NULL);
1007 PASSERT(env, pg, pg->cp_req == NULL);
1009 pg->cp_task = current;
1010 cl_page_owner_set(pg);
1011 if (pg->cp_state != CPS_FREEING) {
1012 cl_page_state_set(env, pg, CPS_OWNED);
1014 cl_page_disown0(env, io, pg);
1019 PINVRNT(env, pg, ergo(result == 0, cl_page_invariant(pg)));
1024 * Own a page, might be blocked.
1026 * \see cl_page_own0()
1028 int cl_page_own(const struct lu_env *env, struct cl_io *io, struct cl_page *pg)
1030 return cl_page_own0(env, io, pg, 0);
1032 EXPORT_SYMBOL(cl_page_own);
1035 * Nonblock version of cl_page_own().
1037 * \see cl_page_own0()
1039 int cl_page_own_try(const struct lu_env *env, struct cl_io *io,
1042 return cl_page_own0(env, io, pg, 1);
1044 EXPORT_SYMBOL(cl_page_own_try);
1048 * Assume page ownership.
1050 * Called when page is already locked by the hosting VM.
1052 * \pre !cl_page_is_owned(pg, io)
1053 * \post cl_page_is_owned(pg, io)
1055 * \see cl_page_operations::cpo_assume()
1057 void cl_page_assume(const struct lu_env *env,
1058 struct cl_io *io, struct cl_page *pg)
1060 PASSERT(env, pg, pg->cp_state < CPS_OWNED);
1061 PASSERT(env, pg, pg->cp_owner == NULL);
1062 PINVRNT(env, pg, cl_object_same(pg->cp_obj, io->ci_obj));
1063 PINVRNT(env, pg, cl_page_invariant(pg));
1066 pg = cl_page_top(pg);
1069 cl_page_invoid(env, io, pg, CL_PAGE_OP(cpo_assume));
1071 pg->cp_task = current;
1072 cl_page_owner_set(pg);
1073 cl_page_state_set(env, pg, CPS_OWNED);
1076 EXPORT_SYMBOL(cl_page_assume);
1079 * Releases page ownership without unlocking the page.
1081 * Moves page into cl_page_state::CPS_CACHED without releasing a lock on the
1082 * underlying VM page (as VM is supposed to do this itself).
1084 * \pre cl_page_is_owned(pg, io)
1085 * \post !cl_page_is_owned(pg, io)
1087 * \see cl_page_assume()
1089 void cl_page_unassume(const struct lu_env *env,
1090 struct cl_io *io, struct cl_page *pg)
1092 PINVRNT(env, pg, cl_page_is_owned(pg, io));
1093 PINVRNT(env, pg, cl_page_invariant(pg));
1096 pg = cl_page_top(pg);
1098 cl_page_owner_clear(pg);
1099 cl_page_state_set(env, pg, CPS_CACHED);
1100 CL_PAGE_INVOID_REVERSE(env, pg, CL_PAGE_OP(cpo_unassume),
1101 (const struct lu_env *,
1102 const struct cl_page_slice *, struct cl_io *),
1106 EXPORT_SYMBOL(cl_page_unassume);
1109 * Releases page ownership.
1111 * Moves page into cl_page_state::CPS_CACHED.
1113 * \pre cl_page_is_owned(pg, io)
1114 * \post !cl_page_is_owned(pg, io)
1116 * \see cl_page_own()
1117 * \see cl_page_operations::cpo_disown()
1119 void cl_page_disown(const struct lu_env *env,
1120 struct cl_io *io, struct cl_page *pg)
1122 PINVRNT(env, pg, cl_page_is_owned(pg, io));
1125 pg = cl_page_top(pg);
1127 cl_page_disown0(env, io, pg);
1130 EXPORT_SYMBOL(cl_page_disown);
1133 * Called when page is to be removed from the object, e.g., as a result of
1136 * Calls cl_page_operations::cpo_discard() top-to-bottom.
1138 * \pre cl_page_is_owned(pg, io)
1140 * \see cl_page_operations::cpo_discard()
1142 void cl_page_discard(const struct lu_env *env,
1143 struct cl_io *io, struct cl_page *pg)
1145 PINVRNT(env, pg, cl_page_is_owned(pg, io));
1146 PINVRNT(env, pg, cl_page_invariant(pg));
1148 cl_page_invoid(env, io, pg, CL_PAGE_OP(cpo_discard));
1150 EXPORT_SYMBOL(cl_page_discard);
1153 * Version of cl_page_delete() that can be called for not fully constructed
1154 * pages, e.g,. in a error handling cl_page_find()->cl_page_delete0()
1155 * path. Doesn't check page invariant.
1157 static void cl_page_delete0(const struct lu_env *env, struct cl_page *pg,
1160 struct cl_page *tmp = pg;
1163 PASSERT(env, pg, pg == cl_page_top(pg));
1164 PASSERT(env, pg, pg->cp_state != CPS_FREEING);
1167 * Severe all ways to obtain new pointers to @pg.
1169 cl_page_owner_clear(pg);
1172 * unexport the page firstly before freeing it so that
1173 * the page content is considered to be invalid.
1174 * We have to do this because a CPS_FREEING cl_page may
1175 * be NOT under the protection of a cl_lock.
1176 * Afterwards, if this page is found by other threads, then this
1177 * page will be forced to reread.
1179 cl_page_export(env, pg, 0);
1180 cl_page_state_set0(env, pg, CPS_FREEING);
1184 * !radix means that @pg is not yet in the radix tree, skip
1188 for (; tmp != NULL; tmp = tmp->cp_child) {
1190 struct cl_object_header *hdr;
1192 hdr = cl_object_header(tmp->cp_obj);
1193 cfs_spin_lock(&hdr->coh_page_guard);
1194 value = radix_tree_delete(&hdr->coh_tree, tmp->cp_index);
1195 PASSERT(env, tmp, value == tmp);
1196 PASSERT(env, tmp, hdr->coh_pages > 0);
1198 cfs_spin_unlock(&hdr->coh_page_guard);
1201 CL_PAGE_INVOID(env, pg, CL_PAGE_OP(cpo_delete),
1202 (const struct lu_env *, const struct cl_page_slice *));
1207 * Called when a decision is made to throw page out of memory.
1209 * Notifies all layers about page destruction by calling
1210 * cl_page_operations::cpo_delete() method top-to-bottom.
1212 * Moves page into cl_page_state::CPS_FREEING state (this is the only place
1213 * where transition to this state happens).
1215 * Eliminates all venues through which new references to the page can be
1218 * - removes page from the radix trees,
1220 * - breaks linkage from VM page to cl_page.
1222 * Once page reaches cl_page_state::CPS_FREEING, all remaining references will
1223 * drain after some time, at which point page will be recycled.
1225 * \pre pg == cl_page_top(pg)
1226 * \pre VM page is locked
1227 * \post pg->cp_state == CPS_FREEING
1229 * \see cl_page_operations::cpo_delete()
1231 void cl_page_delete(const struct lu_env *env, struct cl_page *pg)
1233 PINVRNT(env, pg, cl_page_invariant(pg));
1235 cl_page_delete0(env, pg, 1);
1238 EXPORT_SYMBOL(cl_page_delete);
1241 * Unmaps page from user virtual memory.
1243 * Calls cl_page_operations::cpo_unmap() through all layers top-to-bottom. The
1244 * layer responsible for VM interaction has to unmap page from user space
1247 * \see cl_page_operations::cpo_unmap()
1249 int cl_page_unmap(const struct lu_env *env,
1250 struct cl_io *io, struct cl_page *pg)
1252 PINVRNT(env, pg, cl_page_is_owned(pg, io));
1253 PINVRNT(env, pg, cl_page_invariant(pg));
1255 return cl_page_invoke(env, io, pg, CL_PAGE_OP(cpo_unmap));
1257 EXPORT_SYMBOL(cl_page_unmap);
1260 * Marks page up-to-date.
1262 * Call cl_page_operations::cpo_export() through all layers top-to-bottom. The
1263 * layer responsible for VM interaction has to mark/clear page as up-to-date
1264 * by the \a uptodate argument.
1266 * \see cl_page_operations::cpo_export()
1268 void cl_page_export(const struct lu_env *env, struct cl_page *pg, int uptodate)
1270 PINVRNT(env, pg, cl_page_invariant(pg));
1271 CL_PAGE_INVOID(env, pg, CL_PAGE_OP(cpo_export),
1272 (const struct lu_env *,
1273 const struct cl_page_slice *, int), uptodate);
1275 EXPORT_SYMBOL(cl_page_export);
1278 * Returns true, iff \a pg is VM locked in a suitable sense by the calling
1281 int cl_page_is_vmlocked(const struct lu_env *env, const struct cl_page *pg)
1284 const struct cl_page_slice *slice;
1287 pg = cl_page_top_trusted((struct cl_page *)pg);
1288 slice = container_of(pg->cp_layers.next,
1289 const struct cl_page_slice, cpl_linkage);
1290 PASSERT(env, pg, slice->cpl_ops->cpo_is_vmlocked != NULL);
1292 * Call ->cpo_is_vmlocked() directly instead of going through
1293 * CL_PAGE_INVOKE(), because cl_page_is_vmlocked() is used by
1294 * cl_page_invariant().
1296 result = slice->cpl_ops->cpo_is_vmlocked(env, slice);
1297 PASSERT(env, pg, result == -EBUSY || result == -ENODATA);
1298 RETURN(result == -EBUSY);
1300 EXPORT_SYMBOL(cl_page_is_vmlocked);
1302 static enum cl_page_state cl_req_type_state(enum cl_req_type crt)
1305 RETURN(crt == CRT_WRITE ? CPS_PAGEOUT : CPS_PAGEIN);
1308 static void cl_page_io_start(const struct lu_env *env,
1309 struct cl_page *pg, enum cl_req_type crt)
1312 * Page is queued for IO, change its state.
1315 cl_page_owner_clear(pg);
1316 cl_page_state_set(env, pg, cl_req_type_state(crt));
1321 * Prepares page for immediate transfer. cl_page_operations::cpo_prep() is
1322 * called top-to-bottom. Every layer either agrees to submit this page (by
1323 * returning 0), or requests to omit this page (by returning -EALREADY). Layer
1324 * handling interactions with the VM also has to inform VM that page is under
1327 int cl_page_prep(const struct lu_env *env, struct cl_io *io,
1328 struct cl_page *pg, enum cl_req_type crt)
1332 PINVRNT(env, pg, cl_page_is_owned(pg, io));
1333 PINVRNT(env, pg, cl_page_invariant(pg));
1334 PINVRNT(env, pg, crt < CRT_NR);
1337 * XXX this has to be called bottom-to-top, so that llite can set up
1338 * PG_writeback without risking other layers deciding to skip this
1341 result = cl_page_invoke(env, io, pg, CL_PAGE_OP(io[crt].cpo_prep));
1343 cl_page_io_start(env, pg, crt);
1345 KLASSERT(ergo(crt == CRT_WRITE && pg->cp_type == CPT_CACHEABLE,
1347 PageWriteback(cl_page_vmpage(env, pg)))));
1348 CL_PAGE_HEADER(D_TRACE, env, pg, "%d %d\n", crt, result);
1351 EXPORT_SYMBOL(cl_page_prep);
1354 * Notify layers about transfer completion.
1356 * Invoked by transfer sub-system (which is a part of osc) to notify layers
1357 * that a transfer, of which this page is a part of has completed.
1359 * Completion call-backs are executed in the bottom-up order, so that
1360 * uppermost layer (llite), responsible for the VFS/VM interaction runs last
1361 * and can release locks safely.
1363 * \pre pg->cp_state == CPS_PAGEIN || pg->cp_state == CPS_PAGEOUT
1364 * \post pg->cp_state == CPS_CACHED
1366 * \see cl_page_operations::cpo_completion()
1368 void cl_page_completion(const struct lu_env *env,
1369 struct cl_page *pg, enum cl_req_type crt, int ioret)
1371 struct cl_sync_io *anchor = pg->cp_sync_io;
1373 PASSERT(env, pg, crt < CRT_NR);
1374 /* cl_page::cp_req already cleared by the caller (osc_completion()) */
1375 PASSERT(env, pg, pg->cp_req == NULL);
1376 PASSERT(env, pg, pg->cp_state == cl_req_type_state(crt));
1377 PINVRNT(env, pg, cl_page_invariant(pg));
1380 CL_PAGE_HEADER(D_TRACE, env, pg, "%d %d\n", crt, ioret);
1381 if (crt == CRT_READ && ioret == 0) {
1382 PASSERT(env, pg, !(pg->cp_flags & CPF_READ_COMPLETED));
1383 pg->cp_flags |= CPF_READ_COMPLETED;
1386 cl_page_state_set(env, pg, CPS_CACHED);
1387 CL_PAGE_INVOID_REVERSE(env, pg, CL_PAGE_OP(io[crt].cpo_completion),
1388 (const struct lu_env *,
1389 const struct cl_page_slice *, int), ioret);
1391 LASSERT(pg->cp_sync_io == anchor);
1392 pg->cp_sync_io = NULL;
1393 cl_sync_io_note(anchor, ioret);
1396 /* Don't assert the page writeback bit here because the lustre file
1397 * may be as a backend of swap space. in this case, the page writeback
1398 * is set by VM, and obvious we shouldn't clear it at all. Fortunately
1399 * this type of pages are all TRANSIENT pages. */
1400 KLASSERT(ergo(pg->cp_type == CPT_CACHEABLE,
1401 !PageWriteback(cl_page_vmpage(env, pg))));
1404 EXPORT_SYMBOL(cl_page_completion);
1407 * Notify layers that transfer formation engine decided to yank this page from
1408 * the cache and to make it a part of a transfer.
1410 * \pre pg->cp_state == CPS_CACHED
1411 * \post pg->cp_state == CPS_PAGEIN || pg->cp_state == CPS_PAGEOUT
1413 * \see cl_page_operations::cpo_make_ready()
1415 int cl_page_make_ready(const struct lu_env *env, struct cl_page *pg,
1416 enum cl_req_type crt)
1420 PINVRNT(env, pg, crt < CRT_NR);
1423 result = CL_PAGE_INVOKE(env, pg, CL_PAGE_OP(io[crt].cpo_make_ready),
1424 (const struct lu_env *,
1425 const struct cl_page_slice *));
1427 PASSERT(env, pg, pg->cp_state == CPS_CACHED);
1428 cl_page_io_start(env, pg, crt);
1430 CL_PAGE_HEADER(D_TRACE, env, pg, "%d %d\n", crt, result);
1433 EXPORT_SYMBOL(cl_page_make_ready);
1436 * Notify layers that high level io decided to place this page into a cache
1437 * for future transfer.
1439 * The layer implementing transfer engine (osc) has to register this page in
1442 * \pre cl_page_is_owned(pg, io)
1443 * \post ergo(result == 0,
1444 * pg->cp_state == CPS_PAGEIN || pg->cp_state == CPS_PAGEOUT)
1446 * \see cl_page_operations::cpo_cache_add()
1448 int cl_page_cache_add(const struct lu_env *env, struct cl_io *io,
1449 struct cl_page *pg, enum cl_req_type crt)
1453 PINVRNT(env, pg, crt < CRT_NR);
1454 PINVRNT(env, pg, cl_page_is_owned(pg, io));
1455 PINVRNT(env, pg, cl_page_invariant(pg));
1458 result = cl_page_invoke(env, io, pg, CL_PAGE_OP(io[crt].cpo_cache_add));
1460 cl_page_owner_clear(pg);
1461 cl_page_state_set(env, pg, CPS_CACHED);
1463 CL_PAGE_HEADER(D_TRACE, env, pg, "%d %d\n", crt, result);
1466 EXPORT_SYMBOL(cl_page_cache_add);
1469 * Checks whether page is protected by any extent lock is at least required
1472 * \return the same as in cl_page_operations::cpo_is_under_lock() method.
1473 * \see cl_page_operations::cpo_is_under_lock()
1475 int cl_page_is_under_lock(const struct lu_env *env, struct cl_io *io,
1476 struct cl_page *page)
1480 PINVRNT(env, page, cl_page_invariant(page));
1483 rc = CL_PAGE_INVOKE(env, page, CL_PAGE_OP(cpo_is_under_lock),
1484 (const struct lu_env *,
1485 const struct cl_page_slice *, struct cl_io *),
1487 PASSERT(env, page, rc != 0);
1490 EXPORT_SYMBOL(cl_page_is_under_lock);
1493 * Purges all cached pages belonging to the object \a obj.
1495 int cl_pages_prune(const struct lu_env *env, struct cl_object *clobj)
1497 struct cl_thread_info *info;
1498 struct cl_object *obj = cl_object_top(clobj);
1500 struct cl_page_list *plist;
1505 info = cl_env_info(env);
1506 plist = &info->clt_list;
1510 * initialize the io. This is ugly since we never do IO in this
1511 * function, we just make cl_page_list functions happy. -jay
1514 result = cl_io_init(env, io, CIT_MISC, obj);
1516 cl_io_fini(env, io);
1517 RETURN(io->ci_result);
1521 cl_page_list_init(plist);
1522 cl_page_gang_lookup(env, obj, io, 0, CL_PAGE_EOF, plist, 0,
1525 * Since we're purging the pages of an object, we don't care
1526 * the possible outcomes of the following functions.
1528 cl_page_list_unmap(env, io, plist);
1529 cl_page_list_discard(env, io, plist);
1530 cl_page_list_disown(env, io, plist);
1531 cl_page_list_fini(env, plist);
1537 cl_io_fini(env, io);
1540 EXPORT_SYMBOL(cl_pages_prune);
1543 * Tells transfer engine that only part of a page is to be transmitted.
1545 * \see cl_page_operations::cpo_clip()
1547 void cl_page_clip(const struct lu_env *env, struct cl_page *pg,
1550 PINVRNT(env, pg, cl_page_invariant(pg));
1552 CL_PAGE_HEADER(D_TRACE, env, pg, "%d %d\n", from, to);
1553 CL_PAGE_INVOID(env, pg, CL_PAGE_OP(cpo_clip),
1554 (const struct lu_env *,
1555 const struct cl_page_slice *,int, int),
1558 EXPORT_SYMBOL(cl_page_clip);
1561 * Prints human readable representation of \a pg to the \a f.
1563 void cl_page_header_print(const struct lu_env *env, void *cookie,
1564 lu_printer_t printer, const struct cl_page *pg)
1566 (*printer)(env, cookie,
1567 "page@%p[%d %p:%lu ^%p_%p %d %d %d %p %p %#x]\n",
1568 pg, cfs_atomic_read(&pg->cp_ref), pg->cp_obj,
1569 pg->cp_index, pg->cp_parent, pg->cp_child,
1570 pg->cp_state, pg->cp_error, pg->cp_type,
1571 pg->cp_owner, pg->cp_req, pg->cp_flags);
1573 EXPORT_SYMBOL(cl_page_header_print);
1576 * Prints human readable representation of \a pg to the \a f.
1578 void cl_page_print(const struct lu_env *env, void *cookie,
1579 lu_printer_t printer, const struct cl_page *pg)
1581 struct cl_page *scan;
1583 for (scan = cl_page_top((struct cl_page *)pg);
1584 scan != NULL; scan = scan->cp_child)
1585 cl_page_header_print(env, cookie, printer, scan);
1586 CL_PAGE_INVOKE(env, (struct cl_page *)pg, CL_PAGE_OP(cpo_print),
1587 (const struct lu_env *env,
1588 const struct cl_page_slice *slice,
1589 void *cookie, lu_printer_t p), cookie, printer);
1590 (*printer)(env, cookie, "end page@%p\n", pg);
1592 EXPORT_SYMBOL(cl_page_print);
1595 * Cancel a page which is still in a transfer.
1597 int cl_page_cancel(const struct lu_env *env, struct cl_page *page)
1599 return CL_PAGE_INVOKE(env, page, CL_PAGE_OP(cpo_cancel),
1600 (const struct lu_env *,
1601 const struct cl_page_slice *));
1603 EXPORT_SYMBOL(cl_page_cancel);
1606 * Converts a byte offset within object \a obj into a page index.
1608 loff_t cl_offset(const struct cl_object *obj, pgoff_t idx)
1613 return (loff_t)idx << CFS_PAGE_SHIFT;
1615 EXPORT_SYMBOL(cl_offset);
1618 * Converts a page index into a byte offset within object \a obj.
1620 pgoff_t cl_index(const struct cl_object *obj, loff_t offset)
1625 return offset >> CFS_PAGE_SHIFT;
1627 EXPORT_SYMBOL(cl_index);
1629 int cl_page_size(const struct cl_object *obj)
1631 return 1 << CFS_PAGE_SHIFT;
1633 EXPORT_SYMBOL(cl_page_size);
1636 * Adds page slice to the compound page.
1638 * This is called by cl_object_operations::coo_page_init() methods to add a
1639 * per-layer state to the page. New state is added at the end of
1640 * cl_page::cp_layers list, that is, it is at the bottom of the stack.
1642 * \see cl_lock_slice_add(), cl_req_slice_add(), cl_io_slice_add()
1644 void cl_page_slice_add(struct cl_page *page, struct cl_page_slice *slice,
1645 struct cl_object *obj,
1646 const struct cl_page_operations *ops)
1649 cfs_list_add_tail(&slice->cpl_linkage, &page->cp_layers);
1650 slice->cpl_obj = obj;
1651 slice->cpl_ops = ops;
1652 slice->cpl_page = page;
1655 EXPORT_SYMBOL(cl_page_slice_add);
1657 int cl_page_init(void)
1659 return lu_kmem_init(cl_page_caches);
1662 void cl_page_fini(void)
1664 lu_kmem_fini(cl_page_caches);