4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
26 * Copyright (c) 2011, 2017, Intel Corporation.
29 * This file is part of Lustre, http://www.lustre.org/
31 * Implementation of cl_object for LOV layer.
33 * Author: Nikita Danilov <nikita.danilov@sun.com>
34 * Author: Jinshan Xiong <jinshan.xiong@whamcloud.com>
37 #define DEBUG_SUBSYSTEM S_LOV
39 #include <linux/random.h>
41 #include "lov_cl_internal.h"
43 static inline struct lov_device *lov_object_dev(struct lov_object *obj)
45 return lu2lov_dev(obj->lo_cl.co_lu.lo_dev);
52 /*****************************************************************************
58 struct lov_layout_operations {
59 int (*llo_init)(const struct lu_env *env, struct lov_device *dev,
60 struct lov_object *lov, struct lov_stripe_md *lsm,
61 const struct cl_object_conf *conf,
62 union lov_layout_state *state);
63 int (*llo_delete)(const struct lu_env *env, struct lov_object *lov,
64 union lov_layout_state *state);
65 void (*llo_fini)(const struct lu_env *env, struct lov_object *lov,
66 union lov_layout_state *state);
67 int (*llo_print)(const struct lu_env *env, void *cookie,
68 lu_printer_t p, const struct lu_object *o);
69 int (*llo_page_init)(const struct lu_env *env, struct cl_object *obj,
70 struct cl_page *page, pgoff_t index);
71 int (*llo_lock_init)(const struct lu_env *env,
72 struct cl_object *obj, struct cl_lock *lock,
73 const struct cl_io *io);
74 int (*llo_io_init)(const struct lu_env *env,
75 struct cl_object *obj, struct cl_io *io);
76 int (*llo_getattr)(const struct lu_env *env, struct cl_object *obj,
77 struct cl_attr *attr);
78 int (*llo_flush)(const struct lu_env *env, struct cl_object *obj,
79 struct ldlm_lock *lock);
82 static int lov_layout_wait(const struct lu_env *env, struct lov_object *lov);
83 static struct lov_stripe_md *lov_lsm_addref(struct lov_object *lov);
85 static void lov_lsm_put(struct lov_stripe_md *lsm)
91 /*****************************************************************************
93 * Lov object layout operations.
97 static struct cl_object *lov_sub_find(const struct lu_env *env,
98 struct cl_device *dev,
99 const struct lu_fid *fid,
100 const struct cl_object_conf *conf)
106 o = lu_object_find_at(env, cl2lu_dev(dev), fid, &conf->coc_lu);
107 LASSERT(ergo(!IS_ERR(o), o->lo_dev->ld_type == &lovsub_device_type));
111 static int lov_page_slice_fixup(struct lov_object *lov,
112 struct cl_object *stripe)
114 struct cl_object_header *hdr = cl_object_header(&lov->lo_cl);
118 return hdr->coh_page_bufsize - lov->lo_cl.co_slice_off -
119 cfs_size_round(sizeof(struct lov_page));
121 cl_object_for_each(o, stripe)
122 o->co_slice_off += hdr->coh_page_bufsize;
124 return cl_object_header(stripe)->coh_page_bufsize;
127 static int lov_init_sub(const struct lu_env *env, struct lov_object *lov,
128 struct cl_object *subobj, struct lov_oinfo *oinfo,
131 struct cl_object_header *hdr;
132 struct cl_object_header *subhdr;
133 struct cl_object_header *parent;
134 int entry = lov_comp_entry(idx);
135 int stripe = lov_comp_stripe(idx);
138 if (OBD_FAIL_CHECK(OBD_FAIL_LOV_INIT)) {
139 /* For sanity:test_206.
140 * Do not leave the object in cache to avoid accessing
141 * freed memory. This is because osc_object is referring to
142 * lov_oinfo of lsm_stripe_data which will be freed due to
144 cl_object_kill(env, subobj);
145 cl_object_put(env, subobj);
149 hdr = cl_object_header(lov2cl(lov));
150 subhdr = cl_object_header(subobj);
152 CDEBUG(D_INODE, DFID"@%p[%d:%d] -> "DFID"@%p: ostid: "DOSTID
153 " ost idx: %d gen: %d\n",
154 PFID(lu_object_fid(&subobj->co_lu)), subhdr, entry, stripe,
155 PFID(lu_object_fid(lov2lu(lov))), hdr, POSTID(&oinfo->loi_oi),
156 oinfo->loi_ost_idx, oinfo->loi_ost_gen);
158 /* reuse ->coh_attr_guard to protect coh_parent change */
159 spin_lock(&subhdr->coh_attr_guard);
160 parent = subhdr->coh_parent;
161 if (parent == NULL) {
162 struct lovsub_object *lso = cl2lovsub(subobj);
164 subhdr->coh_parent = hdr;
165 spin_unlock(&subhdr->coh_attr_guard);
166 subhdr->coh_nesting = hdr->coh_nesting + 1;
167 lu_object_ref_add(&subobj->co_lu, "lov-parent", lov);
168 lso->lso_super = lov;
169 lso->lso_index = idx;
172 struct lu_object *old_obj;
173 struct lov_object *old_lov;
174 unsigned int mask = D_INODE;
176 spin_unlock(&subhdr->coh_attr_guard);
177 old_obj = lu_object_locate(&parent->coh_lu, &lov_device_type);
178 LASSERT(old_obj != NULL);
179 old_lov = cl2lov(lu2cl(old_obj));
180 if (test_bit(LO_LAYOUT_INVALID, &old_lov->lo_obj_flags)) {
181 /* the object's layout has already changed but isn't
183 lu_object_unhash(env, &subobj->co_lu);
190 LU_OBJECT_DEBUG(mask, env, &subobj->co_lu,
191 "stripe %d is already owned.", idx);
192 LU_OBJECT_DEBUG(mask, env, old_obj, "owned.");
193 LU_OBJECT_HEADER(mask, env, lov2lu(lov), "try to own.\n");
194 cl_object_put(env, subobj);
199 static int lov_init_raid0(const struct lu_env *env, struct lov_device *dev,
200 struct lov_object *lov, unsigned int index,
201 const struct cl_object_conf *conf,
202 struct lov_layout_entry *lle)
204 struct lov_layout_raid0 *r0 = &lle->lle_raid0;
205 struct lov_thread_info *lti = lov_env_info(env);
206 struct cl_object_conf *subconf = <i->lti_stripe_conf;
207 struct lu_fid *ofid = <i->lti_fid;
208 struct cl_object *stripe;
209 struct lov_stripe_md_entry *lse = lov_lse(lov, index);
216 spin_lock_init(&r0->lo_sub_lock);
217 r0->lo_nr = lse->lsme_stripe_count;
218 r0->lo_trunc_stripeno = -1;
220 OBD_ALLOC_PTR_ARRAY_LARGE(r0->lo_sub, r0->lo_nr);
221 if (r0->lo_sub == NULL)
222 GOTO(out, result = -ENOMEM);
226 memset(subconf, 0, sizeof(*subconf));
229 * Create stripe cl_objects.
231 for (i = 0; i < r0->lo_nr; ++i) {
232 struct cl_device *subdev;
233 struct lov_oinfo *oinfo = lse->lsme_oinfo[i];
234 int ost_idx = oinfo->loi_ost_idx;
235 struct obd_export *exp;
237 if (lov_oinfo_is_dummy(oinfo))
240 result = ostid_to_fid(ofid, &oinfo->loi_oi, oinfo->loi_ost_idx);
244 if (dev->ld_target[ost_idx] == NULL) {
245 CERROR("%s: OST %04x is not initialized\n",
246 lov2obd(dev->ld_lov)->obd_name, ost_idx);
247 GOTO(out, result = -EIO);
250 exp = dev->ld_lov->lov_tgts[ost_idx]->ltd_exp;
252 /* the more fast OSTs the better */
253 if (exp->exp_obd->obd_osfs.os_state & OS_STATFS_NONROT)
254 lle->lle_preference++;
257 subdev = lovsub2cl_dev(dev->ld_target[ost_idx]);
258 subconf->u.coc_oinfo = oinfo;
259 LASSERTF(subdev != NULL, "not init ost %d\n", ost_idx);
260 /* In the function below, .hs_keycmp resolves to
261 * lu_obj_hop_keycmp() */
262 /* coverity[overrun-buffer-val] */
263 stripe = lov_sub_find(env, subdev, ofid, subconf);
265 GOTO(out, result = PTR_ERR(stripe));
267 result = lov_init_sub(env, lov, stripe, oinfo,
268 lov_comp_index(index, i));
269 if (result == -EAGAIN) { /* try again */
276 r0->lo_sub[i] = cl2lovsub(stripe);
278 sz = lov_page_slice_fixup(lov, stripe);
279 LASSERT(ergo(psz > 0, psz == sz));
289 static void lov_subobject_kill(const struct lu_env *env, struct lov_object *lov,
290 struct lov_layout_raid0 *r0,
291 struct lovsub_object *los, int idx)
293 struct cl_object *sub;
294 struct lu_site *site;
295 wait_queue_head_t *wq;
297 LASSERT(r0->lo_sub[idx] == los);
299 sub = lovsub2cl(los);
300 site = sub->co_lu.lo_dev->ld_site;
301 wq = lu_site_wq_from_fid(site, &sub->co_lu.lo_header->loh_fid);
303 cl_object_kill(env, sub);
304 /* release a reference to the sub-object and ... */
305 lu_object_ref_del(&sub->co_lu, "lov-parent", lov);
306 cl_object_put(env, sub);
308 /* ... wait until it is actually destroyed---sub-object clears its
309 * ->lo_sub[] slot in lovsub_object_free() */
310 wait_event(*wq, r0->lo_sub[idx] != los);
311 LASSERT(r0->lo_sub[idx] == NULL);
314 static void lov_delete_raid0(const struct lu_env *env, struct lov_object *lov,
315 struct lov_layout_entry *lle)
317 struct lov_layout_raid0 *r0 = &lle->lle_raid0;
321 if (r0->lo_sub != NULL) {
324 for (i = 0; i < r0->lo_nr; ++i) {
325 struct lovsub_object *los = r0->lo_sub[i];
328 cl_object_prune(env, &los->lso_cl);
330 * If top-level object is to be evicted from
331 * the cache, so are its sub-objects.
333 lov_subobject_kill(env, lov, r0, los, i);
341 static void lov_fini_raid0(const struct lu_env *env,
342 struct lov_layout_entry *lle)
344 struct lov_layout_raid0 *r0 = &lle->lle_raid0;
346 if (r0->lo_sub != NULL) {
347 OBD_FREE_PTR_ARRAY_LARGE(r0->lo_sub, r0->lo_nr);
352 static int lov_print_raid0(const struct lu_env *env, void *cookie,
353 lu_printer_t p, const struct lov_layout_entry *lle)
355 const struct lov_layout_raid0 *r0 = &lle->lle_raid0;
358 for (i = 0; i < r0->lo_nr; ++i) {
359 struct lu_object *sub;
361 if (r0->lo_sub[i] != NULL) {
362 sub = lovsub2lu(r0->lo_sub[i]);
363 lu_object_print(env, cookie, p, sub);
365 (*p)(env, cookie, "sub %d absent\n", i);
371 static int lov_attr_get_raid0(const struct lu_env *env, struct lov_object *lov,
372 unsigned int index, struct lov_layout_entry *lle,
373 struct cl_attr **lov_attr)
375 struct lov_layout_raid0 *r0 = &lle->lle_raid0;
376 struct lov_stripe_md *lsm = lov->lo_lsm;
377 struct ost_lvb *lvb = &lov_env_info(env)->lti_lvb;
378 struct cl_attr *attr = &r0->lo_attr;
382 if (r0->lo_attr_valid) {
387 memset(lvb, 0, sizeof(*lvb));
389 /* XXX: timestamps can be negative by sanity:test_39m,
391 lvb->lvb_atime = LLONG_MIN;
392 lvb->lvb_ctime = LLONG_MIN;
393 lvb->lvb_mtime = LLONG_MIN;
396 * XXX that should be replaced with a loop over sub-objects,
397 * doing cl_object_attr_get() on them. But for now, let's
398 * reuse old lov code.
402 * XXX take lsm spin-lock to keep lov_merge_lvb_kms()
403 * happy. It's not needed, because new code uses
404 * ->coh_attr_guard spin-lock to protect consistency of
405 * sub-object attributes.
407 lov_stripe_lock(lsm);
408 result = lov_merge_lvb_kms(lsm, index, lvb, &kms);
409 lov_stripe_unlock(lsm);
411 cl_lvb2attr(attr, lvb);
413 r0->lo_attr_valid = 1;
420 static struct lov_comp_layout_entry_ops raid0_ops = {
421 .lco_init = lov_init_raid0,
422 .lco_fini = lov_fini_raid0,
423 .lco_getattr = lov_attr_get_raid0,
426 static int lov_attr_get_dom(const struct lu_env *env, struct lov_object *lov,
427 unsigned int index, struct lov_layout_entry *lle,
428 struct cl_attr **lov_attr)
430 struct lov_layout_dom *dom = &lle->lle_dom;
431 struct lov_oinfo *loi = dom->lo_loi;
432 struct cl_attr *attr = &dom->lo_dom_r0.lo_attr;
434 if (dom->lo_dom_r0.lo_attr_valid) {
439 if (OST_LVB_IS_ERR(loi->loi_lvb.lvb_blocks))
440 return OST_LVB_GET_ERR(loi->loi_lvb.lvb_blocks);
442 cl_lvb2attr(attr, &loi->loi_lvb);
444 /* DoM component size can be bigger than stripe size after
445 * client's setattr RPC, so do not count anything beyond
446 * component end. Alternatively, check that limit on server
447 * and do not allow size overflow there. */
448 if (attr->cat_size > lle->lle_extent->e_end)
449 attr->cat_size = lle->lle_extent->e_end;
451 attr->cat_kms = attr->cat_size;
453 dom->lo_dom_r0.lo_attr_valid = 1;
460 * Lookup FLD to get MDS index of the given DOM object FID.
462 * \param[in] ld LOV device
463 * \param[in] fid FID to lookup
464 * \param[out] nr index in MDC array to return back
466 * \retval 0 and \a mds filled with MDS index if successful
467 * \retval negative value on error
469 static int lov_fld_lookup(struct lov_device *ld, const struct lu_fid *fid,
477 rc = fld_client_lookup(&ld->ld_lmv->u.lmv.lmv_fld, fid_seq(fid),
478 &mds_idx, LU_SEQ_RANGE_MDT, NULL);
480 CERROR("%s: error while looking for mds number. Seq %#llx"
481 ", err = %d\n", lu_dev_name(cl2lu_dev(&ld->ld_cl)),
486 CDEBUG(D_INODE, "FLD lookup got mds #%x for fid="DFID"\n",
489 /* find proper MDC device in the array */
490 for (i = 0; i < ld->ld_md_tgts_nr; i++) {
491 if (ld->ld_md_tgts[i].ldm_mdc != NULL &&
492 ld->ld_md_tgts[i].ldm_idx == mds_idx)
496 if (i == ld->ld_md_tgts_nr) {
497 CERROR("%s: cannot find corresponding MDC device for mds #%x "
498 "for fid="DFID"\n", lu_dev_name(cl2lu_dev(&ld->ld_cl)),
508 * Implementation of lov_comp_layout_entry_ops::lco_init for DOM object.
510 * Init the DOM object for the first time. It prepares also RAID0 entry
511 * for it to use in common methods with ordinary RAID0 layout entries.
513 * \param[in] env execution environment
514 * \param[in] dev LOV device
515 * \param[in] lov LOV object
516 * \param[in] index Composite layout entry index in LSM
517 * \param[in] lle Composite LOV layout entry
519 static int lov_init_dom(const struct lu_env *env, struct lov_device *dev,
520 struct lov_object *lov, unsigned int index,
521 const struct cl_object_conf *conf,
522 struct lov_layout_entry *lle)
524 struct lov_thread_info *lti = lov_env_info(env);
525 struct lov_stripe_md_entry *lsme = lov_lse(lov, index);
526 struct cl_object *clo;
527 struct lu_object *o = lov2lu(lov);
528 const struct lu_fid *fid = lu_object_fid(o);
529 struct cl_device *mdcdev;
530 struct lov_oinfo *loi = NULL;
531 struct cl_object_conf *sconf = <i->lti_stripe_conf;
537 /* DOM entry may be not zero index due to FLR but must start from 0 */
538 if (unlikely(lle->lle_extent->e_start != 0)) {
539 CERROR("%s: DOM entry must be the first stripe in a mirror\n",
540 lov2obd(dev->ld_lov)->obd_name);
541 dump_lsm(D_ERROR, lov->lo_lsm);
545 /* find proper MDS device */
546 rc = lov_fld_lookup(dev, fid, &idx);
550 LASSERTF(dev->ld_md_tgts[idx].ldm_mdc != NULL,
551 "LOV md target[%u] is NULL\n", idx);
553 /* check lsm is DOM, more checks are needed */
554 LASSERT(lsme->lsme_stripe_count == 0);
557 * Create lower cl_objects.
559 mdcdev = dev->ld_md_tgts[idx].ldm_mdc;
561 LASSERTF(mdcdev != NULL, "non-initialized mdc subdev\n");
563 /* DoM object has no oinfo in LSM entry, create it exclusively */
564 OBD_SLAB_ALLOC_PTR_GFP(loi, lov_oinfo_slab, GFP_NOFS);
568 fid_to_ostid(lu_object_fid(lov2lu(lov)), &loi->loi_oi);
570 sconf->u.coc_oinfo = loi;
572 clo = lov_sub_find(env, mdcdev, fid, sconf);
574 GOTO(out, rc = PTR_ERR(clo));
576 rc = lov_init_sub(env, lov, clo, loi, lov_comp_index(index, 0));
577 if (rc == -EAGAIN) /* try again */
582 lle->lle_dom.lo_dom = cl2lovsub(clo);
583 spin_lock_init(&lle->lle_dom.lo_dom_r0.lo_sub_lock);
584 lle->lle_dom.lo_dom_r0.lo_nr = 1;
585 lle->lle_dom.lo_dom_r0.lo_sub = &lle->lle_dom.lo_dom;
586 lle->lle_dom.lo_loi = loi;
588 rc = lov_page_slice_fixup(lov, clo);
593 OBD_SLAB_FREE_PTR(loi, lov_oinfo_slab);
598 * Implementation of lov_layout_operations::llo_fini for DOM object.
600 * Finish the DOM object and free related memory.
602 * \param[in] env execution environment
603 * \param[in] lov LOV object
604 * \param[in] state LOV layout state
606 static void lov_fini_dom(const struct lu_env *env,
607 struct lov_layout_entry *lle)
609 if (lle->lle_dom.lo_dom != NULL)
610 lle->lle_dom.lo_dom = NULL;
611 if (lle->lle_dom.lo_loi != NULL)
612 OBD_SLAB_FREE_PTR(lle->lle_dom.lo_loi, lov_oinfo_slab);
615 static struct lov_comp_layout_entry_ops dom_ops = {
616 .lco_init = lov_init_dom,
617 .lco_fini = lov_fini_dom,
618 .lco_getattr = lov_attr_get_dom,
621 static int lov_init_composite(const struct lu_env *env, struct lov_device *dev,
622 struct lov_object *lov, struct lov_stripe_md *lsm,
623 const struct cl_object_conf *conf,
624 union lov_layout_state *state)
626 struct lov_layout_composite *comp = &state->composite;
627 struct lov_layout_entry *lle;
628 struct lov_mirror_entry *lre;
629 unsigned int entry_count;
630 unsigned int psz = 0;
631 unsigned int mirror_count;
632 int flr_state = lsm->lsm_flags & LCM_FL_FLR_MASK;
635 int i, j, preference;
640 LASSERT(lsm->lsm_entry_count > 0);
641 LASSERT(lov->lo_lsm == NULL);
642 lov->lo_lsm = lsm_addref(lsm);
643 set_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags);
645 dump_lsm(D_INODE, lsm);
647 entry_count = lsm->lsm_entry_count;
649 spin_lock_init(&comp->lo_write_lock);
650 comp->lo_flags = lsm->lsm_flags;
651 comp->lo_mirror_count = lsm->lsm_mirror_count + 1;
652 comp->lo_entry_count = lsm->lsm_entry_count;
653 comp->lo_preferred_mirror = -1;
655 if (equi(flr_state == LCM_FL_NONE, comp->lo_mirror_count > 1))
658 OBD_ALLOC_PTR_ARRAY(comp->lo_mirrors, comp->lo_mirror_count);
659 if (comp->lo_mirrors == NULL)
662 OBD_ALLOC_PTR_ARRAY(comp->lo_entries, entry_count);
663 if (comp->lo_entries == NULL)
666 /* Initiate all entry types and extents data at first */
667 for (i = 0, j = 0, mirror_count = 1; i < entry_count; i++) {
670 lle = &comp->lo_entries[i];
672 lle->lle_lsme = lsm->lsm_entries[i];
673 lle->lle_type = lov_entry_type(lle->lle_lsme);
674 lle->lle_preference = 0;
675 switch (lle->lle_type) {
676 case LOV_PATTERN_RAID0:
677 lle->lle_comp_ops = &raid0_ops;
679 case LOV_PATTERN_MDT:
680 /* Allowed to have several DOM stripes in different
681 * mirrors with the same DoM size.
684 dom_size = lle->lle_lsme->lsme_extent.e_end;
685 } else if (dom_size !=
686 lle->lle_lsme->lsme_extent.e_end) {
687 CERROR("%s: DOM entries with different sizes\n",
688 lov2obd(dev->ld_lov)->obd_name);
689 dump_lsm(D_ERROR, lsm);
692 lle->lle_comp_ops = &dom_ops;
694 case LOV_PATTERN_FOREIGN:
695 lle->lle_comp_ops = NULL;
698 CERROR("%s: unknown composite layout entry type %i\n",
699 lov2obd(dev->ld_lov)->obd_name,
700 lsm->lsm_entries[i]->lsme_pattern);
701 dump_lsm(D_ERROR, lsm);
705 lle->lle_extent = &lle->lle_lsme->lsme_extent;
706 lle->lle_valid = !(lle->lle_lsme->lsme_flags & LCME_FL_STALE);
708 if (flr_state != LCM_FL_NONE)
709 mirror_id = mirror_id_of(lle->lle_lsme->lsme_id);
711 lre = &comp->lo_mirrors[j];
713 if (mirror_id == lre->lre_mirror_id) {
714 lre->lre_valid |= lle->lle_valid;
715 lre->lre_stale |= !lle->lle_valid;
717 lsme_is_foreign(lle->lle_lsme);
722 /* new mirror detected, assume that the mirrors
723 * are shorted in layout */
726 if (j >= comp->lo_mirror_count)
729 lre = &comp->lo_mirrors[j];
732 /* entries must be sorted by mirrors */
733 lre->lre_mirror_id = mirror_id;
734 lre->lre_start = lre->lre_end = i;
735 lre->lre_preference = lle->lle_lsme->lsme_flags &
736 LCME_FL_PREF_RD ? 1000 : 0;
737 lre->lre_valid = lle->lle_valid;
738 lre->lre_stale = !lle->lle_valid;
739 lre->lre_foreign = lsme_is_foreign(lle->lle_lsme);
742 /* sanity check for FLR */
743 if (mirror_count != comp->lo_mirror_count) {
745 " doesn't have the # of mirrors it claims, %u/%u\n",
746 PFID(lu_object_fid(lov2lu(lov))), mirror_count,
747 comp->lo_mirror_count + 1);
749 GOTO(out, result = -EINVAL);
752 lov_foreach_layout_entry(lov, lle) {
753 int index = lov_layout_entry_index(lov, lle);
756 * If the component has not been init-ed on MDS side, for
757 * PFL layout, we'd know that the components beyond this one
758 * will be dynamically init-ed later on file write/trunc ops.
760 if (!lsme_inited(lle->lle_lsme))
763 if (lsme_is_foreign(lle->lle_lsme))
766 result = lle->lle_comp_ops->lco_init(env, dev, lov, index,
771 LASSERT(ergo(psz > 0, psz == result));
776 cl_object_header(&lov->lo_cl)->coh_page_bufsize += psz;
778 /* decide the preferred mirror. It uses the hash value of lov_object
779 * so that different clients would use different mirrors for read. */
782 seq = hash_long((unsigned long)lov, 8);
783 for (i = 0; i < comp->lo_mirror_count; i++) {
784 unsigned int idx = (i + seq) % comp->lo_mirror_count;
786 lre = lov_mirror_entry(lov, idx);
790 if (lre->lre_foreign)
793 mirror_count++; /* valid mirror */
795 /* aggregated preference of all involved OSTs */
796 for (j = lre->lre_start; j <= lre->lre_end; j++) {
797 lre->lre_preference +=
798 comp->lo_entries[j].lle_preference;
801 if (lre->lre_preference > preference) {
802 preference = lre->lre_preference;
803 comp->lo_preferred_mirror = idx;
808 " doesn't have any valid mirrors\n",
809 PFID(lu_object_fid(lov2lu(lov))));
811 comp->lo_preferred_mirror = 0;
814 LASSERT(comp->lo_preferred_mirror >= 0);
818 return result > 0 ? 0 : result;
821 static int lov_init_empty(const struct lu_env *env, struct lov_device *dev,
822 struct lov_object *lov, struct lov_stripe_md *lsm,
823 const struct cl_object_conf *conf,
824 union lov_layout_state *state)
829 static int lov_init_released(const struct lu_env *env,
830 struct lov_device *dev, struct lov_object *lov,
831 struct lov_stripe_md *lsm,
832 const struct cl_object_conf *conf,
833 union lov_layout_state *state)
835 LASSERT(lsm != NULL);
836 LASSERT(lsm->lsm_is_released);
837 LASSERT(lov->lo_lsm == NULL);
839 lov->lo_lsm = lsm_addref(lsm);
843 static int lov_init_foreign(const struct lu_env *env,
844 struct lov_device *dev, struct lov_object *lov,
845 struct lov_stripe_md *lsm,
846 const struct cl_object_conf *conf,
847 union lov_layout_state *state)
849 LASSERT(lsm != NULL);
850 LASSERT(lov->lo_type == LLT_FOREIGN);
851 LASSERT(lov->lo_lsm == NULL);
853 lov->lo_lsm = lsm_addref(lsm);
857 static int lov_delete_empty(const struct lu_env *env, struct lov_object *lov,
858 union lov_layout_state *state)
860 LASSERT(lov->lo_type == LLT_EMPTY || lov->lo_type == LLT_RELEASED ||
861 lov->lo_type == LLT_FOREIGN);
863 lov_layout_wait(env, lov);
867 static int lov_delete_composite(const struct lu_env *env,
868 struct lov_object *lov,
869 union lov_layout_state *state)
871 struct lov_layout_entry *entry;
872 struct lov_layout_composite *comp = &state->composite;
876 dump_lsm(D_INODE, lov->lo_lsm);
878 lov_layout_wait(env, lov);
879 if (comp->lo_entries)
880 lov_foreach_layout_entry(lov, entry) {
881 if (entry->lle_lsme && lsme_is_foreign(entry->lle_lsme))
884 lov_delete_raid0(env, lov, entry);
890 static void lov_fini_empty(const struct lu_env *env, struct lov_object *lov,
891 union lov_layout_state *state)
893 LASSERT(lov->lo_type == LLT_EMPTY || lov->lo_type == LLT_RELEASED);
896 static void lov_fini_composite(const struct lu_env *env,
897 struct lov_object *lov,
898 union lov_layout_state *state)
900 struct lov_layout_composite *comp = &state->composite;
903 if (comp->lo_entries != NULL) {
904 struct lov_layout_entry *entry;
906 lov_foreach_layout_entry(lov, entry)
907 if (entry->lle_comp_ops)
908 entry->lle_comp_ops->lco_fini(env, entry);
910 OBD_FREE_PTR_ARRAY(comp->lo_entries, comp->lo_entry_count);
911 comp->lo_entries = NULL;
914 if (comp->lo_mirrors != NULL) {
915 OBD_FREE_PTR_ARRAY(comp->lo_mirrors, comp->lo_mirror_count);
916 comp->lo_mirrors = NULL;
919 memset(comp, 0, sizeof(*comp));
921 dump_lsm(D_INODE, lov->lo_lsm);
922 lov_free_memmd(&lov->lo_lsm);
927 static void lov_fini_released(const struct lu_env *env, struct lov_object *lov,
928 union lov_layout_state *state)
931 dump_lsm(D_INODE, lov->lo_lsm);
932 lov_free_memmd(&lov->lo_lsm);
936 static int lov_print_empty(const struct lu_env *env, void *cookie,
937 lu_printer_t p, const struct lu_object *o)
939 (*p)(env, cookie, "empty %d\n",
940 test_bit(LO_LAYOUT_INVALID, &lu2lov(o)->lo_obj_flags));
944 static int lov_print_composite(const struct lu_env *env, void *cookie,
945 lu_printer_t p, const struct lu_object *o)
947 struct lov_object *lov = lu2lov(o);
948 struct lov_stripe_md *lsm = lov->lo_lsm;
951 (*p)(env, cookie, "entries: %d, %s, lsm{%p 0x%08X %d %u}:\n",
952 lsm->lsm_entry_count,
953 test_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags) ? "invalid" :
954 "valid", lsm, lsm->lsm_magic, atomic_read(&lsm->lsm_refc),
955 lsm->lsm_layout_gen);
957 for (i = 0; i < lsm->lsm_entry_count; i++) {
958 struct lov_stripe_md_entry *lse = lsm->lsm_entries[i];
959 struct lov_layout_entry *lle = lov_entry(lov, i);
962 DEXT ": { 0x%08X, %u, %#x, %u, %#x, %u, %u }\n",
963 PEXT(&lse->lsme_extent), lse->lsme_magic,
964 lse->lsme_id, lse->lsme_pattern, lse->lsme_layout_gen,
965 lse->lsme_flags, lse->lsme_stripe_count,
966 lse->lsme_stripe_size);
968 if (!lsme_is_foreign(lse))
969 lov_print_raid0(env, cookie, p, lle);
975 static int lov_print_released(const struct lu_env *env, void *cookie,
976 lu_printer_t p, const struct lu_object *o)
978 struct lov_object *lov = lu2lov(o);
979 struct lov_stripe_md *lsm = lov->lo_lsm;
982 "released: %s, lsm{%p 0x%08X %d %u}:\n",
983 test_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags) ? "invalid" :
984 "valid", lsm, lsm->lsm_magic, atomic_read(&lsm->lsm_refc),
985 lsm->lsm_layout_gen);
989 static int lov_print_foreign(const struct lu_env *env, void *cookie,
990 lu_printer_t p, const struct lu_object *o)
992 struct lov_object *lov = lu2lov(o);
993 struct lov_stripe_md *lsm = lov->lo_lsm;
996 "foreign: %s, lsm{%p 0x%08X %d %u}:\n",
997 test_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags) ?
998 "invalid" : "valid", lsm,
999 lsm->lsm_magic, atomic_read(&lsm->lsm_refc),
1000 lsm->lsm_layout_gen);
1002 "raw_ea_content '%.*s'\n",
1003 (int)lsm->lsm_foreign_size, (char *)lsm_foreign(lsm));
1008 * Implements cl_object_operations::coo_attr_get() method for an object
1009 * without stripes (LLT_EMPTY layout type).
1011 * The only attributes this layer is authoritative in this case is
1012 * cl_attr::cat_blocks---it's 0.
1014 static int lov_attr_get_empty(const struct lu_env *env, struct cl_object *obj,
1015 struct cl_attr *attr)
1017 attr->cat_blocks = 0;
1021 static int lov_attr_get_composite(const struct lu_env *env,
1022 struct cl_object *obj,
1023 struct cl_attr *attr)
1025 struct lov_object *lov = cl2lov(obj);
1026 struct lov_layout_entry *entry;
1032 attr->cat_blocks = 0;
1033 lov_foreach_layout_entry(lov, entry) {
1034 struct cl_attr *lov_attr = NULL;
1035 int index = lov_layout_entry_index(lov, entry);
1037 if (!entry->lle_valid)
1040 /* PFL: This component has not been init-ed. */
1041 if (!lsm_entry_inited(lov->lo_lsm, index))
1044 result = entry->lle_comp_ops->lco_getattr(env, lov, index,
1049 if (lov_attr == NULL)
1052 CDEBUG(D_INODE, "COMP ID #%i: s=%llu m=%llu a=%llu c=%llu "
1053 "b=%llu\n", index - 1, lov_attr->cat_size,
1054 lov_attr->cat_mtime, lov_attr->cat_atime,
1055 lov_attr->cat_ctime, lov_attr->cat_blocks);
1058 attr->cat_blocks += lov_attr->cat_blocks;
1059 if (attr->cat_size < lov_attr->cat_size)
1060 attr->cat_size = lov_attr->cat_size;
1061 if (attr->cat_kms < lov_attr->cat_kms)
1062 attr->cat_kms = lov_attr->cat_kms;
1063 if (attr->cat_atime < lov_attr->cat_atime)
1064 attr->cat_atime = lov_attr->cat_atime;
1065 if (attr->cat_ctime < lov_attr->cat_ctime)
1066 attr->cat_ctime = lov_attr->cat_ctime;
1067 if (attr->cat_mtime < lov_attr->cat_mtime)
1068 attr->cat_mtime = lov_attr->cat_mtime;
1074 static int lov_flush_composite(const struct lu_env *env,
1075 struct cl_object *obj,
1076 struct ldlm_lock *lock)
1078 struct lov_object *lov = cl2lov(obj);
1079 struct lov_layout_entry *lle;
1084 lov_foreach_layout_entry(lov, lle) {
1085 if (!lsme_is_dom(lle->lle_lsme))
1087 rc = cl_object_flush(env, lovsub2cl(lle->lle_dom.lo_dom), lock);
1094 static int lov_flush_empty(const struct lu_env *env, struct cl_object *obj,
1095 struct ldlm_lock *lock)
1100 const static struct lov_layout_operations lov_dispatch[] = {
1102 .llo_init = lov_init_empty,
1103 .llo_delete = lov_delete_empty,
1104 .llo_fini = lov_fini_empty,
1105 .llo_print = lov_print_empty,
1106 .llo_page_init = lov_page_init_empty,
1107 .llo_lock_init = lov_lock_init_empty,
1108 .llo_io_init = lov_io_init_empty,
1109 .llo_getattr = lov_attr_get_empty,
1110 .llo_flush = lov_flush_empty,
1113 .llo_init = lov_init_released,
1114 .llo_delete = lov_delete_empty,
1115 .llo_fini = lov_fini_released,
1116 .llo_print = lov_print_released,
1117 .llo_page_init = lov_page_init_empty,
1118 .llo_lock_init = lov_lock_init_empty,
1119 .llo_io_init = lov_io_init_released,
1120 .llo_getattr = lov_attr_get_empty,
1121 .llo_flush = lov_flush_empty,
1124 .llo_init = lov_init_composite,
1125 .llo_delete = lov_delete_composite,
1126 .llo_fini = lov_fini_composite,
1127 .llo_print = lov_print_composite,
1128 .llo_page_init = lov_page_init_composite,
1129 .llo_lock_init = lov_lock_init_composite,
1130 .llo_io_init = lov_io_init_composite,
1131 .llo_getattr = lov_attr_get_composite,
1132 .llo_flush = lov_flush_composite,
1135 .llo_init = lov_init_foreign,
1136 .llo_delete = lov_delete_empty,
1137 .llo_fini = lov_fini_released,
1138 .llo_print = lov_print_foreign,
1139 .llo_page_init = lov_page_init_foreign,
1140 .llo_lock_init = lov_lock_init_empty,
1141 .llo_io_init = lov_io_init_empty,
1142 .llo_getattr = lov_attr_get_empty,
1143 .llo_flush = lov_flush_empty,
1148 * Performs a double-dispatch based on the layout type of an object.
1150 #define LOV_2DISPATCH_NOLOCK(obj, op, ...) \
1152 struct lov_object *__obj = (obj); \
1153 enum lov_layout_type __llt; \
1155 __llt = __obj->lo_type; \
1156 LASSERT(__llt < ARRAY_SIZE(lov_dispatch)); \
1157 lov_dispatch[__llt].op(__VA_ARGS__); \
1161 * Return lov_layout_type associated with a given lsm
1163 static enum lov_layout_type lov_type(struct lov_stripe_md *lsm)
1168 if (lsm->lsm_is_released)
1169 return LLT_RELEASED;
1171 if (lsm->lsm_magic == LOV_MAGIC_V1 ||
1172 lsm->lsm_magic == LOV_MAGIC_V3 ||
1173 lsm->lsm_magic == LOV_MAGIC_COMP_V1)
1176 if (lsm->lsm_magic == LOV_MAGIC_FOREIGN)
1182 static inline void lov_conf_freeze(struct lov_object *lov)
1184 CDEBUG(D_INODE, "To take share lov(%p) owner %p/%p\n",
1185 lov, lov->lo_owner, current);
1186 if (lov->lo_owner != current)
1187 down_read(&lov->lo_type_guard);
1190 static inline void lov_conf_thaw(struct lov_object *lov)
1192 CDEBUG(D_INODE, "To release share lov(%p) owner %p/%p\n",
1193 lov, lov->lo_owner, current);
1194 if (lov->lo_owner != current)
1195 up_read(&lov->lo_type_guard);
1198 #define LOV_2DISPATCH_MAYLOCK(obj, op, lock, ...) \
1200 struct lov_object *__obj = (obj); \
1201 int __lock = !!(lock); \
1202 typeof(lov_dispatch[0].op(__VA_ARGS__)) __result; \
1205 lov_conf_freeze(__obj); \
1206 __result = LOV_2DISPATCH_NOLOCK(obj, op, __VA_ARGS__); \
1208 lov_conf_thaw(__obj); \
1213 * Performs a locked double-dispatch based on the layout type of an object.
1215 #define LOV_2DISPATCH(obj, op, ...) \
1216 LOV_2DISPATCH_MAYLOCK(obj, op, 1, __VA_ARGS__)
1218 #define LOV_2DISPATCH_VOID(obj, op, ...) \
1220 struct lov_object *__obj = (obj); \
1221 enum lov_layout_type __llt; \
1223 lov_conf_freeze(__obj); \
1224 __llt = __obj->lo_type; \
1225 LASSERT(__llt < ARRAY_SIZE(lov_dispatch)); \
1226 lov_dispatch[__llt].op(__VA_ARGS__); \
1227 lov_conf_thaw(__obj); \
1230 static void lov_conf_lock(struct lov_object *lov)
1232 LASSERT(lov->lo_owner != current);
1233 down_write(&lov->lo_type_guard);
1234 LASSERT(lov->lo_owner == NULL);
1235 lov->lo_owner = current;
1236 CDEBUG(D_INODE, "Took exclusive lov(%p) owner %p\n",
1237 lov, lov->lo_owner);
1240 static void lov_conf_unlock(struct lov_object *lov)
1242 CDEBUG(D_INODE, "To release exclusive lov(%p) owner %p\n",
1243 lov, lov->lo_owner);
1244 lov->lo_owner = NULL;
1245 up_write(&lov->lo_type_guard);
1248 static int lov_layout_wait(const struct lu_env *env, struct lov_object *lov)
1252 while (atomic_read(&lov->lo_active_ios) > 0) {
1253 CDEBUG(D_INODE, "file:"DFID" wait for active IO, now: %d.\n",
1254 PFID(lu_object_fid(lov2lu(lov))),
1255 atomic_read(&lov->lo_active_ios));
1257 wait_event_idle(lov->lo_waitq,
1258 atomic_read(&lov->lo_active_ios) == 0);
1263 static int lov_layout_change(const struct lu_env *unused,
1264 struct lov_object *lov, struct lov_stripe_md *lsm,
1265 const struct cl_object_conf *conf)
1267 enum lov_layout_type llt = lov_type(lsm);
1268 union lov_layout_state *state = &lov->u;
1269 const struct lov_layout_operations *old_ops;
1270 const struct lov_layout_operations *new_ops;
1271 struct lov_device *lov_dev = lov_object_dev(lov);
1277 LASSERT(lov->lo_type < ARRAY_SIZE(lov_dispatch));
1279 env = cl_env_get(&refcheck);
1281 RETURN(PTR_ERR(env));
1283 LASSERT(llt < ARRAY_SIZE(lov_dispatch));
1285 CDEBUG(D_INODE, DFID" from %s to %s\n",
1286 PFID(lu_object_fid(lov2lu(lov))),
1287 llt2str(lov->lo_type), llt2str(llt));
1289 old_ops = &lov_dispatch[lov->lo_type];
1290 new_ops = &lov_dispatch[llt];
1292 rc = cl_object_prune(env, &lov->lo_cl);
1296 rc = old_ops->llo_delete(env, lov, &lov->u);
1300 old_ops->llo_fini(env, lov, &lov->u);
1302 LASSERT(atomic_read(&lov->lo_active_ios) == 0);
1304 CDEBUG(D_INODE, DFID "Apply new layout lov %p, type %d\n",
1305 PFID(lu_object_fid(lov2lu(lov))), lov, llt);
1307 /* page bufsize fixup */
1308 cl_object_header(&lov->lo_cl)->coh_page_bufsize -=
1309 lov_page_slice_fixup(lov, NULL);
1312 rc = new_ops->llo_init(env, lov_dev, lov, lsm, conf, state);
1314 struct obd_device *obd = lov2obd(lov_dev->ld_lov);
1316 CERROR("%s: cannot apply new layout on "DFID" : rc = %d\n",
1317 obd->obd_name, PFID(lu_object_fid(lov2lu(lov))), rc);
1318 new_ops->llo_delete(env, lov, state);
1319 new_ops->llo_fini(env, lov, state);
1320 /* this file becomes an EMPTY file. */
1321 lov->lo_type = LLT_EMPTY;
1326 cl_env_put(env, &refcheck);
1330 /*****************************************************************************
1332 * Lov object operations.
1335 static int lov_object_init(const struct lu_env *env, struct lu_object *obj,
1336 const struct lu_object_conf *conf)
1338 struct lov_object *lov = lu2lov(obj);
1339 struct lov_device *dev = lov_object_dev(lov);
1340 const struct cl_object_conf *cconf = lu2cl_conf(conf);
1341 union lov_layout_state *set = &lov->u;
1342 const struct lov_layout_operations *ops;
1343 struct lov_stripe_md *lsm = NULL;
1347 init_rwsem(&lov->lo_type_guard);
1348 atomic_set(&lov->lo_active_ios, 0);
1349 init_waitqueue_head(&lov->lo_waitq);
1350 cl_object_page_init(lu2cl(obj), sizeof(struct lov_page));
1352 lov->lo_type = LLT_EMPTY;
1353 if (cconf->u.coc_layout.lb_buf != NULL) {
1354 lsm = lov_unpackmd(dev->ld_lov,
1355 cconf->u.coc_layout.lb_buf,
1356 cconf->u.coc_layout.lb_len);
1358 RETURN(PTR_ERR(lsm));
1360 dump_lsm(D_INODE, lsm);
1363 /* no locking is necessary, as object is being created */
1364 lov->lo_type = lov_type(lsm);
1365 ops = &lov_dispatch[lov->lo_type];
1366 rc = ops->llo_init(env, dev, lov, lsm, cconf, set);
1376 static int lov_conf_set(const struct lu_env *env, struct cl_object *obj,
1377 const struct cl_object_conf *conf)
1379 struct lov_stripe_md *lsm = NULL;
1380 struct lov_object *lov = cl2lov(obj);
1384 if (conf->coc_opc == OBJECT_CONF_SET &&
1385 conf->u.coc_layout.lb_buf != NULL) {
1386 lsm = lov_unpackmd(lov_object_dev(lov)->ld_lov,
1387 conf->u.coc_layout.lb_buf,
1388 conf->u.coc_layout.lb_len);
1390 RETURN(PTR_ERR(lsm));
1391 dump_lsm(D_INODE, lsm);
1394 if (conf->coc_opc == OBJECT_CONF_INVALIDATE) {
1395 set_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags);
1396 GOTO(out_lsm, result = 0);
1400 if (conf->coc_opc == OBJECT_CONF_WAIT) {
1401 if (test_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags) &&
1402 atomic_read(&lov->lo_active_ios) > 0) {
1403 lov_conf_unlock(lov);
1404 result = lov_layout_wait(env, lov);
1410 LASSERT(conf->coc_opc == OBJECT_CONF_SET);
1412 if ((lsm == NULL && lov->lo_lsm == NULL) ||
1413 ((lsm != NULL && lov->lo_lsm != NULL) &&
1414 (lov->lo_lsm->lsm_layout_gen == lsm->lsm_layout_gen) &&
1415 (lov->lo_lsm->lsm_flags == lsm->lsm_flags) &&
1416 (lov->lo_lsm->lsm_entries[0]->lsme_pattern ==
1417 lsm->lsm_entries[0]->lsme_pattern))) {
1418 /* same version of layout */
1419 clear_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags);
1420 GOTO(out, result = 0);
1423 /* will change layout - check if there still exists active IO. */
1424 if (atomic_read(&lov->lo_active_ios) > 0) {
1425 set_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags);
1426 GOTO(out, result = -EBUSY);
1429 result = lov_layout_change(env, lov, lsm, conf);
1431 set_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags);
1433 clear_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags);
1437 lov_conf_unlock(lov);
1440 CDEBUG(D_INODE, DFID" lo_layout_invalid=%u\n",
1441 PFID(lu_object_fid(lov2lu(lov))),
1442 test_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags));
1446 static void lov_object_delete(const struct lu_env *env, struct lu_object *obj)
1448 struct lov_object *lov = lu2lov(obj);
1451 LOV_2DISPATCH_VOID(lov, llo_delete, env, lov, &lov->u);
1455 static void lov_object_free(const struct lu_env *env, struct lu_object *obj)
1457 struct lov_object *lov = lu2lov(obj);
1460 LOV_2DISPATCH_VOID(lov, llo_fini, env, lov, &lov->u);
1461 lu_object_fini(obj);
1462 OBD_SLAB_FREE_PTR(lov, lov_object_kmem);
1466 static int lov_object_print(const struct lu_env *env, void *cookie,
1467 lu_printer_t p, const struct lu_object *o)
1469 return LOV_2DISPATCH_NOLOCK(lu2lov(o), llo_print, env, cookie, p, o);
1472 static int lov_page_init(const struct lu_env *env, struct cl_object *obj,
1473 struct cl_page *page, pgoff_t index)
1475 return LOV_2DISPATCH_NOLOCK(cl2lov(obj), llo_page_init, env, obj, page,
1480 * Implements cl_object_operations::clo_io_init() method for lov
1481 * layer. Dispatches to the appropriate layout io initialization method.
1483 static int lov_io_init(const struct lu_env *env, struct cl_object *obj,
1486 CL_IO_SLICE_CLEAN(lov_env_io(env), lis_preserved);
1488 CDEBUG(D_INODE, DFID "io %p type %d ignore/verify layout %d/%d\n",
1489 PFID(lu_object_fid(&obj->co_lu)), io, io->ci_type,
1490 io->ci_ignore_layout, io->ci_verify_layout);
1492 /* IO type CIT_MISC with ci_ignore_layout set are usually invoked from
1493 * the OSC layer. It shouldn't take lov layout conf lock in that case,
1494 * because as long as the OSC object exists, the layout can't be
1496 return LOV_2DISPATCH_MAYLOCK(cl2lov(obj), llo_io_init,
1497 !(io->ci_ignore_layout && io->ci_type == CIT_MISC),
1502 * An implementation of cl_object_operations::clo_attr_get() method for lov
1503 * layer. For raid0 layout this collects and merges attributes of all
1506 static int lov_attr_get(const struct lu_env *env, struct cl_object *obj,
1507 struct cl_attr *attr)
1509 /* do not take lock, as this function is called under a
1510 * spin-lock. Layout is protected from changing by ongoing IO. */
1511 return LOV_2DISPATCH_NOLOCK(cl2lov(obj), llo_getattr, env, obj, attr);
1514 static int lov_attr_update(const struct lu_env *env, struct cl_object *obj,
1515 const struct cl_attr *attr, unsigned valid)
1518 * No dispatch is required here, as no layout implements this.
1523 static int lov_lock_init(const struct lu_env *env, struct cl_object *obj,
1524 struct cl_lock *lock, const struct cl_io *io)
1526 /* No need to lock because we've taken one refcount of layout. */
1527 return LOV_2DISPATCH_NOLOCK(cl2lov(obj), llo_lock_init, env, obj, lock,
1532 * We calculate on which OST the mapping will end. If the length of mapping
1533 * is greater than (stripe_size * stripe_count) then the last_stripe will
1534 * will be one just before start_stripe. Else we check if the mapping
1535 * intersects each OST and find last_stripe.
1536 * This function returns the last_stripe and also sets the stripe_count
1537 * over which the mapping is spread
1539 * \param lsm [in] striping information for the file
1540 * \param index [in] stripe component index
1541 * \param ext [in] logical extent of mapping
1542 * \param start_stripe [in] starting stripe of the mapping
1543 * \param stripe_count [out] the number of stripes across which to map is
1546 * \retval last_stripe return the last stripe of the mapping
1548 static int fiemap_calc_last_stripe(struct lov_stripe_md *lsm, int index,
1549 struct lu_extent *ext,
1550 int start_stripe, int *stripe_count)
1552 struct lov_stripe_md_entry *lsme = lsm->lsm_entries[index];
1557 init_stripe = lov_stripe_number(lsm, index, ext->e_start);
1559 if (ext->e_end - ext->e_start >
1560 lsme->lsme_stripe_size * lsme->lsme_stripe_count) {
1561 if (init_stripe == start_stripe) {
1562 last_stripe = (start_stripe < 1) ?
1563 lsme->lsme_stripe_count - 1 : start_stripe - 1;
1564 *stripe_count = lsme->lsme_stripe_count;
1565 } else if (init_stripe < start_stripe) {
1566 last_stripe = (init_stripe < 1) ?
1567 lsme->lsme_stripe_count - 1 : init_stripe - 1;
1568 *stripe_count = lsme->lsme_stripe_count -
1569 (start_stripe - init_stripe);
1571 last_stripe = init_stripe - 1;
1572 *stripe_count = init_stripe - start_stripe;
1575 for (j = 0, i = start_stripe; j < lsme->lsme_stripe_count;
1576 i = (i + 1) % lsme->lsme_stripe_count, j++) {
1577 if (!lov_stripe_intersects(lsm, index, i, ext, NULL,
1580 if ((start_stripe != init_stripe) && (i == init_stripe))
1584 last_stripe = (start_stripe + j - 1) % lsme->lsme_stripe_count;
1591 * Set fe_device and copy extents from local buffer into main return buffer.
1593 * \param fiemap [out] fiemap to hold all extents
1594 * \param lcl_fm_ext [in] array of fiemap extents get from OSC layer
1595 * \param ost_index [in] OST index to be written into the fm_device
1596 * field for each extent
1597 * \param ext_count [in] number of extents to be copied
1598 * \param current_extent [in] where to start copying in the extent array
1600 static void fiemap_prepare_and_copy_exts(struct fiemap *fiemap,
1601 struct fiemap_extent *lcl_fm_ext,
1602 int ost_index, unsigned int ext_count,
1603 int current_extent, int abs_stripeno)
1608 for (ext = 0; ext < ext_count; ext++) {
1609 set_fe_device_stripenr(&lcl_fm_ext[ext], ost_index,
1611 lcl_fm_ext[ext].fe_flags |= FIEMAP_EXTENT_NET;
1614 /* Copy fm_extent's from fm_local to return buffer */
1615 to = (char *)fiemap + fiemap_count_to_size(current_extent);
1616 memcpy(to, lcl_fm_ext, ext_count * sizeof(struct fiemap_extent));
1619 #define FIEMAP_BUFFER_SIZE 4096
1622 * Non-zero fe_logical indicates that this is a continuation FIEMAP
1623 * call. The local end offset and the device are sent in the first
1624 * fm_extent. This function calculates the stripe number from the index.
1625 * This function returns a stripe_no on which mapping is to be restarted.
1627 * This function returns fm_end_offset which is the in-OST offset at which
1628 * mapping should be restarted. If fm_end_offset=0 is returned then caller
1629 * will re-calculate proper offset in next stripe.
1630 * Note that the first extent is passed to lov_get_info via the value field.
1632 * \param fiemap [in] fiemap request header
1633 * \param lsm [in] striping information for the file
1634 * \param index [in] stripe component index
1635 * \param ext [in] logical extent of mapping
1636 * \param start_stripe [out] starting stripe will be returned in this
1638 static u64 fiemap_calc_fm_end_offset(struct fiemap *fiemap,
1639 struct lov_stripe_md *lsm,
1640 int index, struct lu_extent *ext,
1643 struct lov_stripe_md_entry *lsme = lsm->lsm_entries[index];
1644 u64 local_end = fiemap->fm_extents[0].fe_logical;
1649 if (fiemap->fm_extent_count == 0 ||
1650 fiemap->fm_extents[0].fe_logical == 0)
1653 stripe_no = *start_stripe;
1655 if (stripe_no == -1)
1658 /* If we have finished mapping on previous device, shift logical
1659 * offset to start of next device */
1660 if (lov_stripe_intersects(lsm, index, stripe_no, ext, NULL, &lun_end) &&
1661 local_end < lun_end) {
1662 fm_end_offset = local_end;
1664 /* This is a special value to indicate that caller should
1665 * calculate offset in next stripe. */
1667 *start_stripe = (stripe_no + 1) % lsme->lsme_stripe_count;
1670 return fm_end_offset;
1673 struct fiemap_state {
1674 struct fiemap *fs_fm;
1675 struct lu_extent fs_ext; /* current entry extent */
1677 u64 fs_end_offset; /* last iteration offset */
1678 int fs_cur_extent; /* collected exts so far */
1679 int fs_cnt_need; /* # of extents buf can hold */
1680 int fs_start_stripe;
1682 bool fs_device_done; /* enough for this OST */
1683 bool fs_finish_stripe; /* reached fs_last_stripe */
1684 bool fs_enough; /* enough for this call */
1687 static struct cl_object *lov_find_subobj(const struct lu_env *env,
1688 struct lov_object *lov,
1689 struct lov_stripe_md *lsm,
1692 struct lov_device *dev = lu2lov_dev(lov2lu(lov)->lo_dev);
1693 struct lov_thread_info *lti = lov_env_info(env);
1694 struct lu_fid *ofid = <i->lti_fid;
1695 struct lov_oinfo *oinfo;
1696 struct cl_device *subdev;
1697 int entry = lov_comp_entry(index);
1698 int stripe = lov_comp_stripe(index);
1701 struct cl_object *result;
1703 if (lov->lo_type != LLT_COMP)
1704 GOTO(out, result = NULL);
1706 if (entry >= lsm->lsm_entry_count ||
1707 stripe >= lsm->lsm_entries[entry]->lsme_stripe_count)
1708 GOTO(out, result = NULL);
1710 oinfo = lsm->lsm_entries[entry]->lsme_oinfo[stripe];
1711 ost_idx = oinfo->loi_ost_idx;
1712 rc = ostid_to_fid(ofid, &oinfo->loi_oi, ost_idx);
1714 GOTO(out, result = NULL);
1716 subdev = lovsub2cl_dev(dev->ld_target[ost_idx]);
1717 result = lov_sub_find(env, subdev, ofid, NULL);
1720 result = ERR_PTR(-EINVAL);
1724 static int fiemap_for_stripe(const struct lu_env *env, struct cl_object *obj,
1725 struct lov_stripe_md *lsm, struct fiemap *fiemap,
1726 size_t *buflen, struct ll_fiemap_info_key *fmkey,
1727 int index, int stripe_last, int stripeno,
1728 struct fiemap_state *fs)
1730 struct lov_stripe_md_entry *lsme = lsm->lsm_entries[index];
1731 struct cl_object *subobj;
1732 struct lov_obd *lov = lu2lov_dev(obj->co_lu.lo_dev)->ld_lov;
1733 struct fiemap_extent *fm_ext = &fs->fs_fm->fm_extents[0];
1734 u64 req_fm_len; /* max requested extent coverage */
1735 u64 len_mapped_single_call;
1738 unsigned int ext_count;
1739 /* EOF for object */
1740 bool ost_eof = false;
1741 /* done with required mapping for this OST? */
1742 bool ost_done = false;
1746 fs->fs_device_done = false;
1747 /* Find out range of mapping on this stripe */
1748 if ((lov_stripe_intersects(lsm, index, stripeno, &fs->fs_ext,
1749 &obd_start, &obd_end)) == 0)
1752 if (lov_oinfo_is_dummy(lsme->lsme_oinfo[stripeno]))
1755 /* If this is a continuation FIEMAP call and we are on
1756 * starting stripe then obd_start needs to be set to
1758 if (fs->fs_end_offset != 0 && stripeno == fs->fs_start_stripe)
1759 obd_start = fs->fs_end_offset;
1761 if (lov_size_to_stripe(lsm, index, fs->fs_ext.e_end, stripeno) ==
1765 req_fm_len = obd_end - obd_start + 1;
1766 fs->fs_fm->fm_length = 0;
1767 len_mapped_single_call = 0;
1769 /* find lobsub object */
1770 subobj = lov_find_subobj(env, cl2lov(obj), lsm,
1771 lov_comp_index(index, stripeno));
1773 return PTR_ERR(subobj);
1774 /* If the output buffer is very large and the objects have many
1775 * extents we may need to loop on a single OST repeatedly */
1777 if (fiemap->fm_extent_count > 0) {
1778 /* Don't get too many extents. */
1779 if (fs->fs_cur_extent + fs->fs_cnt_need >
1780 fiemap->fm_extent_count)
1781 fs->fs_cnt_need = fiemap->fm_extent_count -
1785 obd_start += len_mapped_single_call;
1786 fs->fs_fm->fm_length = req_fm_len - len_mapped_single_call;
1787 req_fm_len = fs->fs_fm->fm_length;
1789 * If we've collected enough extent map, we'd request 1 more,
1790 * to see whether we coincidentally finished all available
1791 * extent map, so that FIEMAP_EXTENT_LAST would be set.
1793 fs->fs_fm->fm_extent_count = fs->fs_enough ?
1794 1 : fs->fs_cnt_need;
1795 fs->fs_fm->fm_mapped_extents = 0;
1796 fs->fs_fm->fm_flags = fiemap->fm_flags;
1798 ost_index = lsme->lsme_oinfo[stripeno]->loi_ost_idx;
1800 if (ost_index < 0 || ost_index >= lov->desc.ld_tgt_count)
1801 GOTO(obj_put, rc = -EINVAL);
1802 /* If OST is inactive, return extent with UNKNOWN flag. */
1803 if (!lov->lov_tgts[ost_index]->ltd_active) {
1804 fs->fs_fm->fm_flags |= FIEMAP_EXTENT_LAST;
1805 fs->fs_fm->fm_mapped_extents = 1;
1807 fm_ext[0].fe_logical = obd_start;
1808 fm_ext[0].fe_length = obd_end - obd_start + 1;
1809 fm_ext[0].fe_flags |= FIEMAP_EXTENT_UNKNOWN;
1814 fs->fs_fm->fm_start = obd_start;
1815 fs->fs_fm->fm_flags &= ~FIEMAP_FLAG_DEVICE_ORDER;
1816 memcpy(&fmkey->lfik_fiemap, fs->fs_fm, sizeof(*fs->fs_fm));
1817 *buflen = fiemap_count_to_size(fs->fs_fm->fm_extent_count);
1819 rc = cl_object_fiemap(env, subobj, fmkey, fs->fs_fm, buflen);
1823 ext_count = fs->fs_fm->fm_mapped_extents;
1824 if (ext_count == 0) {
1826 fs->fs_device_done = true;
1827 /* If last stripe has hold at the end,
1828 * we need to return */
1829 if (stripeno == fs->fs_last_stripe) {
1830 fiemap->fm_mapped_extents = 0;
1831 fs->fs_finish_stripe = true;
1835 } else if (fs->fs_enough) {
1837 * We've collected enough extents and there are
1838 * more extents after it.
1843 /* If we just need num of extents, got to next device */
1844 if (fiemap->fm_extent_count == 0) {
1845 fs->fs_cur_extent += ext_count;
1849 /* prepare to copy retrived map extents */
1850 len_mapped_single_call = fm_ext[ext_count - 1].fe_logical +
1851 fm_ext[ext_count - 1].fe_length -
1854 /* Have we finished mapping on this device? */
1855 if (req_fm_len <= len_mapped_single_call) {
1857 fs->fs_device_done = true;
1860 /* Clear the EXTENT_LAST flag which can be present on
1861 * the last extent */
1862 if (fm_ext[ext_count - 1].fe_flags & FIEMAP_EXTENT_LAST)
1863 fm_ext[ext_count - 1].fe_flags &= ~FIEMAP_EXTENT_LAST;
1864 if (lov_stripe_size(lsm, index,
1865 fm_ext[ext_count - 1].fe_logical +
1866 fm_ext[ext_count - 1].fe_length,
1867 stripeno) >= fmkey->lfik_oa.o_size) {
1869 fs->fs_device_done = true;
1872 fiemap_prepare_and_copy_exts(fiemap, fm_ext, ost_index,
1873 ext_count, fs->fs_cur_extent,
1874 stripe_last + stripeno);
1875 fs->fs_cur_extent += ext_count;
1877 /* Ran out of available extents? */
1878 if (fs->fs_cur_extent >= fiemap->fm_extent_count)
1879 fs->fs_enough = true;
1880 } while (!ost_done && !ost_eof);
1882 if (stripeno == fs->fs_last_stripe)
1883 fs->fs_finish_stripe = true;
1885 cl_object_put(env, subobj);
1891 * Break down the FIEMAP request and send appropriate calls to individual OSTs.
1892 * This also handles the restarting of FIEMAP calls in case mapping overflows
1893 * the available number of extents in single call.
1895 * \param env [in] lustre environment
1896 * \param obj [in] file object
1897 * \param fmkey [in] fiemap request header and other info
1898 * \param fiemap [out] fiemap buffer holding retrived map extents
1899 * \param buflen [in/out] max buffer length of @fiemap, when iterate
1900 * each OST, it is used to limit max map needed
1904 static int lov_object_fiemap(const struct lu_env *env, struct cl_object *obj,
1905 struct ll_fiemap_info_key *fmkey,
1906 struct fiemap *fiemap, size_t *buflen)
1908 struct lov_stripe_md_entry *lsme;
1909 struct lov_stripe_md *lsm;
1910 struct fiemap *fm_local = NULL;
1914 int start_entry = -1;
1918 unsigned int buffer_size = FIEMAP_BUFFER_SIZE;
1920 struct fiemap_state fs = { 0 };
1921 struct lu_extent range;
1924 int start_stripe = 0;
1925 bool resume = false;
1928 lsm = lov_lsm_addref(cl2lov(obj));
1930 /* no extent: there is no object for mapping */
1931 fiemap->fm_mapped_extents = 0;
1935 if (!(fiemap->fm_flags & FIEMAP_FLAG_DEVICE_ORDER)) {
1937 * If the entry count > 1 or stripe_count > 1 and the
1938 * application does not understand DEVICE_ORDER flag,
1939 * it cannot interpret the extents correctly.
1941 if (lsm->lsm_entry_count > 1 ||
1942 (lsm->lsm_entry_count == 1 &&
1943 lsm->lsm_entries[0]->lsme_stripe_count > 1))
1944 GOTO(out_lsm, rc = -ENOTSUPP);
1947 /* No support for DOM layout yet. */
1948 if (lsme_is_dom(lsm->lsm_entries[0]))
1949 GOTO(out_lsm, rc = -ENOTSUPP);
1951 if (lsm->lsm_is_released) {
1952 if (fiemap->fm_start < fmkey->lfik_oa.o_size) {
1954 * released file, return a minimal FIEMAP if
1955 * request fits in file-size.
1957 fiemap->fm_mapped_extents = 1;
1958 fiemap->fm_extents[0].fe_logical = fiemap->fm_start;
1959 if (fiemap->fm_start + fiemap->fm_length <
1960 fmkey->lfik_oa.o_size)
1961 fiemap->fm_extents[0].fe_length =
1964 fiemap->fm_extents[0].fe_length =
1965 fmkey->lfik_oa.o_size -
1967 fiemap->fm_extents[0].fe_flags |=
1968 FIEMAP_EXTENT_UNKNOWN | FIEMAP_EXTENT_LAST;
1970 GOTO(out_lsm, rc = 0);
1973 /* buffer_size is small to hold fm_extent_count of extents. */
1974 if (fiemap_count_to_size(fiemap->fm_extent_count) < buffer_size)
1975 buffer_size = fiemap_count_to_size(fiemap->fm_extent_count);
1977 OBD_ALLOC_LARGE(fm_local, buffer_size);
1978 if (fm_local == NULL)
1979 GOTO(out_lsm, rc = -ENOMEM);
1982 * Requested extent count exceeds the fiemap buffer size, shrink our
1985 if (fiemap_count_to_size(fiemap->fm_extent_count) > *buflen)
1986 fiemap->fm_extent_count = fiemap_size_to_count(*buflen);
1988 fs.fs_enough = false;
1989 fs.fs_cur_extent = 0;
1990 fs.fs_fm = fm_local;
1991 fs.fs_cnt_need = fiemap_size_to_count(buffer_size);
1993 whole_start = fiemap->fm_start;
1994 /* whole_start is beyond the end of the file */
1995 if (whole_start > fmkey->lfik_oa.o_size)
1996 GOTO(out_fm_local, rc = -EINVAL);
1997 whole_end = (fiemap->fm_length == OBD_OBJECT_EOF) ?
1998 fmkey->lfik_oa.o_size + 1 :
1999 whole_start + fiemap->fm_length;
2001 * If fiemap->fm_length != OBD_OBJECT_EOF but whole_end exceeds file
2004 if (whole_end > fmkey->lfik_oa.o_size + 1)
2005 whole_end = fmkey->lfik_oa.o_size + 1;
2008 * the high 16bits of fe_device remember which stripe the last
2009 * call has been arrived, we'd continue from there in this call.
2011 if (fiemap->fm_extent_count && fiemap->fm_extents[0].fe_logical)
2013 stripe_last = get_fe_stripenr(&fiemap->fm_extents[0]);
2015 * stripe_last records stripe number we've been processed in the last
2018 end_entry = lsm->lsm_entry_count - 1;
2020 for (entry = 0; entry <= end_entry; entry++) {
2021 lsme = lsm->lsm_entries[entry];
2022 if (cur_stripe + lsme->lsme_stripe_count >= stripe_last) {
2023 start_entry = entry;
2024 start_stripe = stripe_last - cur_stripe;
2028 cur_stripe += lsme->lsme_stripe_count;
2030 if (start_entry == -1) {
2031 CERROR(DFID": FIEMAP does not init start entry, cur_stripe=%d, "
2032 "stripe_last=%d\n", PFID(lu_object_fid(&obj->co_lu)),
2033 cur_stripe, stripe_last);
2034 GOTO(out_fm_local, rc = -EINVAL);
2037 * @start_entry & @start_stripe records the position of fiemap
2038 * resumption @stripe_last keeps recording the absolution position
2039 * we'are processing. @resume indicates we'd honor @start_stripe.
2042 range.e_start = whole_start;
2043 range.e_end = whole_end;
2045 for (entry = start_entry; entry <= end_entry; entry++) {
2046 /* remeber to update stripe_last accordingly */
2047 lsme = lsm->lsm_entries[entry];
2049 /* FLR could contain component holes between entries */
2050 if (!lsme_inited(lsme)) {
2051 stripe_last += lsme->lsme_stripe_count;
2056 if (!lu_extent_is_overlapped(&range, &lsme->lsme_extent)) {
2057 stripe_last += lsme->lsme_stripe_count;
2062 /* prepare for a component entry iteration */
2063 if (lsme->lsme_extent.e_start > whole_start)
2064 fs.fs_ext.e_start = lsme->lsme_extent.e_start;
2066 fs.fs_ext.e_start = whole_start;
2067 if (lsme->lsme_extent.e_end > whole_end)
2068 fs.fs_ext.e_end = whole_end;
2070 fs.fs_ext.e_end = lsme->lsme_extent.e_end;
2072 /* Calculate start stripe, last stripe and length of mapping */
2074 fs.fs_start_stripe = start_stripe;
2075 /* put stripe_last to the first stripe of the comp */
2076 stripe_last -= start_stripe;
2079 fs.fs_start_stripe = lov_stripe_number(lsm, entry,
2082 fs.fs_last_stripe = fiemap_calc_last_stripe(lsm, entry,
2083 &fs.fs_ext, fs.fs_start_stripe,
2086 * A new mirror component is under process, reset
2087 * fs.fs_end_offset and then fiemap_for_stripe() starts from
2088 * the overlapping extent, otherwise starts from
2091 if (entry > start_entry && lsme->lsme_extent.e_start == 0) {
2093 fs.fs_end_offset = 0;
2095 fs.fs_end_offset = fiemap_calc_fm_end_offset(fiemap,
2096 lsm, entry, &fs.fs_ext,
2097 &fs.fs_start_stripe);
2100 /* Check each stripe */
2101 for (cur_stripe = fs.fs_start_stripe; stripe_count > 0;
2103 cur_stripe = (cur_stripe + 1) % lsme->lsme_stripe_count) {
2104 /* reset fs_finish_stripe */
2105 fs.fs_finish_stripe = false;
2106 rc = fiemap_for_stripe(env, obj, lsm, fiemap, buflen,
2107 fmkey, entry, stripe_last,
2110 GOTO(out_fm_local, rc);
2112 stripe_last += cur_stripe;
2115 if (fs.fs_finish_stripe)
2117 } /* for each stripe */
2118 stripe_last += lsme->lsme_stripe_count;
2119 } /* for covering layout component entry */
2122 if (fs.fs_cur_extent > 0)
2123 cur_ext = fs.fs_cur_extent - 1;
2127 /* done all the processing */
2128 if (entry > end_entry)
2129 fiemap->fm_extents[cur_ext].fe_flags |= FIEMAP_EXTENT_LAST;
2131 /* Indicate that we are returning device offsets unless file just has
2133 if (lsm->lsm_entry_count > 1 ||
2134 (lsm->lsm_entry_count == 1 &&
2135 lsm->lsm_entries[0]->lsme_stripe_count > 1))
2136 fiemap->fm_flags |= FIEMAP_FLAG_DEVICE_ORDER;
2138 if (fiemap->fm_extent_count == 0)
2139 goto skip_last_device_calc;
2141 skip_last_device_calc:
2142 fiemap->fm_mapped_extents = fs.fs_cur_extent;
2144 OBD_FREE_LARGE(fm_local, buffer_size);
2151 static int lov_object_getstripe(const struct lu_env *env, struct cl_object *obj,
2152 struct lov_user_md __user *lum, size_t size)
2154 struct lov_object *lov = cl2lov(obj);
2155 struct lov_stripe_md *lsm;
2159 lsm = lov_lsm_addref(lov);
2163 rc = lov_getstripe(env, cl2lov(obj), lsm, lum, size);
2168 static int lov_object_layout_get(const struct lu_env *env,
2169 struct cl_object *obj,
2170 struct cl_layout *cl)
2172 struct lov_object *lov = cl2lov(obj);
2173 struct lov_stripe_md *lsm = lov_lsm_addref(lov);
2174 struct lu_buf *buf = &cl->cl_buf;
2180 cl->cl_layout_gen = CL_LAYOUT_GEN_EMPTY;
2185 cl->cl_size = lov_comp_md_size(lsm);
2186 cl->cl_layout_gen = lsm->lsm_layout_gen;
2187 cl->cl_is_released = lsm->lsm_is_released;
2188 cl->cl_is_composite = lsm_is_composite(lsm->lsm_magic);
2190 rc = lov_lsm_pack(lsm, buf->lb_buf, buf->lb_len);
2193 /* return error or number of bytes */
2197 static loff_t lov_object_maxbytes(struct cl_object *obj)
2199 struct lov_object *lov = cl2lov(obj);
2200 struct lov_stripe_md *lsm = lov_lsm_addref(lov);
2206 maxbytes = lsm->lsm_maxbytes;
2213 static int lov_object_flush(const struct lu_env *env, struct cl_object *obj,
2214 struct ldlm_lock *lock)
2216 return LOV_2DISPATCH_MAYLOCK(cl2lov(obj), llo_flush, true, env, obj,
2220 static const struct cl_object_operations lov_ops = {
2221 .coo_page_init = lov_page_init,
2222 .coo_lock_init = lov_lock_init,
2223 .coo_io_init = lov_io_init,
2224 .coo_attr_get = lov_attr_get,
2225 .coo_attr_update = lov_attr_update,
2226 .coo_conf_set = lov_conf_set,
2227 .coo_getstripe = lov_object_getstripe,
2228 .coo_layout_get = lov_object_layout_get,
2229 .coo_maxbytes = lov_object_maxbytes,
2230 .coo_fiemap = lov_object_fiemap,
2231 .coo_object_flush = lov_object_flush
2234 static const struct lu_object_operations lov_lu_obj_ops = {
2235 .loo_object_init = lov_object_init,
2236 .loo_object_delete = lov_object_delete,
2237 .loo_object_release = NULL,
2238 .loo_object_free = lov_object_free,
2239 .loo_object_print = lov_object_print,
2240 .loo_object_invariant = NULL,
2243 struct lu_object *lov_object_alloc(const struct lu_env *env,
2244 const struct lu_object_header *unused,
2245 struct lu_device *dev)
2247 struct lov_object *lov;
2248 struct lu_object *obj;
2251 OBD_SLAB_ALLOC_PTR_GFP(lov, lov_object_kmem, GFP_NOFS);
2254 lu_object_init(obj, NULL, dev);
2255 lov->lo_cl.co_ops = &lov_ops;
2256 lov->lo_type = -1; /* invalid, to catch uninitialized type */
2258 * object io operation vector (cl_object::co_iop) is installed
2259 * later in lov_object_init(), as different vectors are used
2260 * for object with different layouts.
2262 obj->lo_ops = &lov_lu_obj_ops;
2268 static struct lov_stripe_md *lov_lsm_addref(struct lov_object *lov)
2270 struct lov_stripe_md *lsm = NULL;
2272 lov_conf_freeze(lov);
2273 if (lov->lo_lsm != NULL) {
2274 lsm = lsm_addref(lov->lo_lsm);
2275 CDEBUG(D_INODE, "lsm %p addref %d/%d by %p.\n",
2276 lsm, atomic_read(&lsm->lsm_refc),
2277 test_bit(LO_LAYOUT_INVALID, &lov->lo_obj_flags),
2284 int lov_read_and_clear_async_rc(struct cl_object *clob)
2286 struct lu_object *luobj;
2290 luobj = lu_object_locate(&cl_object_header(clob)->coh_lu,
2292 if (luobj != NULL) {
2293 struct lov_object *lov = lu2lov(luobj);
2295 lov_conf_freeze(lov);
2296 switch (lov->lo_type) {
2298 struct lov_stripe_md *lsm;
2302 LASSERT(lsm != NULL);
2303 for (i = 0; i < lsm->lsm_entry_count; i++) {
2304 struct lov_stripe_md_entry *lse =
2305 lsm->lsm_entries[i];
2308 if (!lsme_inited(lse))
2311 for (j = 0; j < lse->lsme_stripe_count; j++) {
2312 struct lov_oinfo *loi =
2315 if (lov_oinfo_is_dummy(loi))
2318 if (loi->loi_ar.ar_rc && !rc)
2319 rc = loi->loi_ar.ar_rc;
2320 loi->loi_ar.ar_rc = 0;
2336 EXPORT_SYMBOL(lov_read_and_clear_async_rc);