Whamcloud - gitweb
LU-911 osd: zerocopy methods in ldiskfs osd
[fs/lustre-release.git] / lustre / lov / lov_lock.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
30  * Use is subject to license terms.
31  *
32  * Copyright (c) 2011, 2012, Whamcloud, Inc.
33  */
34 /*
35  * This file is part of Lustre, http://www.lustre.org/
36  * Lustre is a trademark of Sun Microsystems, Inc.
37  *
38  * Implementation of cl_lock for LOV layer.
39  *
40  *   Author: Nikita Danilov <nikita.danilov@sun.com>
41  */
42
43 #define DEBUG_SUBSYSTEM S_LOV
44
45 #include "lov_cl_internal.h"
46
47 /** \addtogroup lov
48  *  @{
49  */
50
51 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
52                                                struct cl_lock *parent);
53
54 static int lov_lock_unuse(const struct lu_env *env,
55                           const struct cl_lock_slice *slice);
56 /*****************************************************************************
57  *
58  * Lov lock operations.
59  *
60  */
61
62 static struct lov_sublock_env *lov_sublock_env_get(const struct lu_env *env,
63                                                    struct cl_lock *parent,
64                                                    struct lov_lock_sub *lls)
65 {
66         struct lov_sublock_env *subenv;
67         struct lov_io          *lio    = lov_env_io(env);
68         struct cl_io           *io     = lio->lis_cl.cis_io;
69         struct lov_io_sub      *sub;
70
71         subenv = &lov_env_session(env)->ls_subenv;
72
73         /*
74          * FIXME: We tend to use the subio's env & io to call the sublock
75          * lock operations because osc lock sometimes stores some control
76          * variables in thread's IO infomation(Now only lockless information).
77          * However, if the lock's host(object) is different from the object
78          * for current IO, we have no way to get the subenv and subio because
79          * they are not initialized at all. As a temp fix, in this case,
80          * we still borrow the parent's env to call sublock operations.
81          */
82         if (!io || !cl_object_same(io->ci_obj, parent->cll_descr.cld_obj)) {
83                 subenv->lse_env = env;
84                 subenv->lse_io  = io;
85                 subenv->lse_sub = NULL;
86         } else {
87                 sub = lov_sub_get(env, lio, lls->sub_stripe);
88                 if (!IS_ERR(sub)) {
89                         subenv->lse_env = sub->sub_env;
90                         subenv->lse_io  = sub->sub_io;
91                         subenv->lse_sub = sub;
92                 } else {
93                         subenv = (void*)sub;
94                 }
95         }
96         return subenv;
97 }
98
99 static void lov_sublock_env_put(struct lov_sublock_env *subenv)
100 {
101         if (subenv && subenv->lse_sub)
102                 lov_sub_put(subenv->lse_sub);
103 }
104
105 static void lov_sublock_adopt(const struct lu_env *env, struct lov_lock *lck,
106                               struct cl_lock *sublock, int idx,
107                               struct lov_lock_link *link)
108 {
109         struct lovsub_lock *lsl;
110         struct cl_lock     *parent = lck->lls_cl.cls_lock;
111         int                 rc;
112
113         LASSERT(cl_lock_is_mutexed(parent));
114         LASSERT(cl_lock_is_mutexed(sublock));
115         ENTRY;
116
117         lsl = cl2sub_lock(sublock);
118         /*
119          * check that sub-lock doesn't have lock link to this top-lock.
120          */
121         LASSERT(lov_lock_link_find(env, lck, lsl) == NULL);
122         LASSERT(idx < lck->lls_nr);
123
124         lck->lls_sub[idx].sub_lock = lsl;
125         lck->lls_nr_filled++;
126         LASSERT(lck->lls_nr_filled <= lck->lls_nr);
127         cfs_list_add_tail(&link->lll_list, &lsl->lss_parents);
128         link->lll_idx = idx;
129         link->lll_super = lck;
130         cl_lock_get(parent);
131         lu_ref_add(&parent->cll_reference, "lov-child", sublock);
132         lck->lls_sub[idx].sub_flags |= LSF_HELD;
133         cl_lock_user_add(env, sublock);
134
135         rc = lov_sublock_modify(env, lck, lsl, &sublock->cll_descr, idx);
136         LASSERT(rc == 0); /* there is no way this can fail, currently */
137         EXIT;
138 }
139
140 static struct cl_lock *lov_sublock_alloc(const struct lu_env *env,
141                                          const struct cl_io *io,
142                                          struct lov_lock *lck,
143                                          int idx, struct lov_lock_link **out)
144 {
145         struct cl_lock       *sublock;
146         struct cl_lock       *parent;
147         struct lov_lock_link *link;
148
149         LASSERT(idx < lck->lls_nr);
150         ENTRY;
151
152         OBD_SLAB_ALLOC_PTR_GFP(link, lov_lock_link_kmem, CFS_ALLOC_IO);
153         if (link != NULL) {
154                 struct lov_sublock_env *subenv;
155                 struct lov_lock_sub  *lls;
156                 struct cl_lock_descr *descr;
157
158                 parent = lck->lls_cl.cls_lock;
159                 lls    = &lck->lls_sub[idx];
160                 descr  = &lls->sub_descr;
161
162                 subenv = lov_sublock_env_get(env, parent, lls);
163                 if (!IS_ERR(subenv)) {
164                         /* CAVEAT: Don't try to add a field in lov_lock_sub
165                          * to remember the subio. This is because lock is able
166                          * to be cached, but this is not true for IO. This
167                          * further means a sublock might be referenced in
168                          * different io context. -jay */
169
170                         sublock = cl_lock_hold(subenv->lse_env, subenv->lse_io,
171                                                descr, "lov-parent", parent);
172                         lov_sublock_env_put(subenv);
173                 } else {
174                         /* error occurs. */
175                         sublock = (void*)subenv;
176                 }
177
178                 if (!IS_ERR(sublock))
179                         *out = link;
180                 else
181                         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
182         } else
183                 sublock = ERR_PTR(-ENOMEM);
184         RETURN(sublock);
185 }
186
187 static void lov_sublock_unlock(const struct lu_env *env,
188                                struct lovsub_lock *lsl,
189                                struct cl_lock_closure *closure,
190                                struct lov_sublock_env *subenv)
191 {
192         ENTRY;
193         lov_sublock_env_put(subenv);
194         lsl->lss_active = NULL;
195         cl_lock_disclosure(env, closure);
196         EXIT;
197 }
198
199 static int lov_sublock_lock(const struct lu_env *env,
200                             struct lov_lock *lck,
201                             struct lov_lock_sub *lls,
202                             struct cl_lock_closure *closure,
203                             struct lov_sublock_env **lsep)
204 {
205         struct lovsub_lock *sublock;
206         struct cl_lock     *child;
207         int                 result = 0;
208         ENTRY;
209
210         LASSERT(cfs_list_empty(&closure->clc_list));
211
212         sublock = lls->sub_lock;
213         child = sublock->lss_cl.cls_lock;
214         result = cl_lock_closure_build(env, child, closure);
215         if (result == 0) {
216                 struct cl_lock *parent = closure->clc_origin;
217
218                 LASSERT(cl_lock_is_mutexed(child));
219                 sublock->lss_active = parent;
220
221                 if (unlikely((child->cll_state == CLS_FREEING) ||
222                              (child->cll_flags & CLF_CANCELLED))) {
223                         struct lov_lock_link *link;
224                         /*
225                          * we could race with lock deletion which temporarily
226                          * put the lock in freeing state, bug 19080.
227                          */
228                         LASSERT(!(lls->sub_flags & LSF_HELD));
229
230                         link = lov_lock_link_find(env, lck, sublock);
231                         LASSERT(link != NULL);
232                         lov_lock_unlink(env, link, sublock);
233                         lov_sublock_unlock(env, sublock, closure, NULL);
234                         lck->lls_cancel_race = 1;
235                         result = CLO_REPEAT;
236                 } else if (lsep) {
237                         struct lov_sublock_env *subenv;
238                         subenv = lov_sublock_env_get(env, parent, lls);
239                         if (IS_ERR(subenv)) {
240                                 lov_sublock_unlock(env, sublock,
241                                                    closure, NULL);
242                                 result = PTR_ERR(subenv);
243                         } else {
244                                 *lsep = subenv;
245                         }
246                 }
247         }
248         RETURN(result);
249 }
250
251 /**
252  * Updates the result of a top-lock operation from a result of sub-lock
253  * sub-operations. Top-operations like lov_lock_{enqueue,use,unuse}() iterate
254  * over sub-locks and lov_subresult() is used to calculate return value of a
255  * top-operation. To this end, possible return values of sub-operations are
256  * ordered as
257  *
258  *     - 0                  success
259  *     - CLO_WAIT           wait for event
260  *     - CLO_REPEAT         repeat top-operation
261  *     - -ne                fundamental error
262  *
263  * Top-level return code can only go down through this list. CLO_REPEAT
264  * overwrites CLO_WAIT, because lock mutex was released and sleeping condition
265  * has to be rechecked by the upper layer.
266  */
267 static int lov_subresult(int result, int rc)
268 {
269         int result_rank;
270         int rc_rank;
271
272         ENTRY;
273
274         LASSERT(result <= 0 || result == CLO_REPEAT || result == CLO_WAIT);
275         LASSERT(rc <= 0 || rc == CLO_REPEAT || rc == CLO_WAIT);
276         CLASSERT(CLO_WAIT < CLO_REPEAT);
277
278         /* calculate ranks in the ordering above */
279         result_rank = result < 0 ? 1 + CLO_REPEAT : result;
280         rc_rank = rc < 0 ? 1 + CLO_REPEAT : rc;
281
282         if (result_rank < rc_rank)
283                 result = rc;
284         RETURN(result);
285 }
286
287 /**
288  * Creates sub-locks for a given lov_lock for the first time.
289  *
290  * Goes through all sub-objects of top-object, and creates sub-locks on every
291  * sub-object intersecting with top-lock extent. This is complicated by the
292  * fact that top-lock (that is being created) can be accessed concurrently
293  * through already created sub-locks (possibly shared with other top-locks).
294  */
295 static int lov_lock_sub_init(const struct lu_env *env,
296                              struct lov_lock *lck, const struct cl_io *io)
297 {
298         int result = 0;
299         int i;
300         int nr;
301         obd_off start;
302         obd_off end;
303         obd_off file_start;
304         obd_off file_end;
305
306         struct lov_object       *loo    = cl2lov(lck->lls_cl.cls_obj);
307         struct lov_layout_raid0 *r0     = lov_r0(loo);
308         struct cl_lock          *parent = lck->lls_cl.cls_lock;
309
310         ENTRY;
311
312         lck->lls_orig = parent->cll_descr;
313         file_start = cl_offset(lov2cl(loo), parent->cll_descr.cld_start);
314         file_end   = cl_offset(lov2cl(loo), parent->cll_descr.cld_end + 1) - 1;
315
316         for (i = 0, nr = 0; i < r0->lo_nr; i++) {
317                 /*
318                  * XXX for wide striping smarter algorithm is desirable,
319                  * breaking out of the loop, early.
320                  */
321                 if (lov_stripe_intersects(r0->lo_lsm, i,
322                                           file_start, file_end, &start, &end))
323                         nr++;
324         }
325         LASSERT(nr > 0);
326         OBD_ALLOC_LARGE(lck->lls_sub, nr * sizeof lck->lls_sub[0]);
327         if (lck->lls_sub == NULL)
328                 RETURN(-ENOMEM);
329
330         lck->lls_nr = nr;
331         /*
332          * First, fill in sub-lock descriptions in
333          * lck->lls_sub[].sub_descr. They are used by lov_sublock_alloc()
334          * (called below in this function, and by lov_lock_enqueue()) to
335          * create sub-locks. At this moment, no other thread can access
336          * top-lock.
337          */
338         for (i = 0, nr = 0; i < r0->lo_nr; ++i) {
339                 if (lov_stripe_intersects(r0->lo_lsm, i,
340                                           file_start, file_end, &start, &end)) {
341                         struct cl_lock_descr *descr;
342
343                         descr = &lck->lls_sub[nr].sub_descr;
344
345                         LASSERT(descr->cld_obj == NULL);
346                         descr->cld_obj   = lovsub2cl(r0->lo_sub[i]);
347                         descr->cld_start = cl_index(descr->cld_obj, start);
348                         descr->cld_end   = cl_index(descr->cld_obj, end);
349                         descr->cld_mode  = parent->cll_descr.cld_mode;
350                         descr->cld_gid   = parent->cll_descr.cld_gid;
351                         descr->cld_enq_flags   = parent->cll_descr.cld_enq_flags;
352                         /* XXX has no effect */
353                         lck->lls_sub[nr].sub_got = *descr;
354                         lck->lls_sub[nr].sub_stripe = i;
355                         nr++;
356                 }
357         }
358         LASSERT(nr == lck->lls_nr);
359         /*
360          * Then, create sub-locks. Once at least one sub-lock was created,
361          * top-lock can be reached by other threads.
362          */
363         for (i = 0; i < lck->lls_nr; ++i) {
364                 struct cl_lock       *sublock;
365                 struct lov_lock_link *link;
366
367                 if (lck->lls_sub[i].sub_lock == NULL) {
368                         sublock = lov_sublock_alloc(env, io, lck, i, &link);
369                         if (IS_ERR(sublock)) {
370                                 result = PTR_ERR(sublock);
371                                 break;
372                         }
373                         cl_lock_get_trust(sublock);
374                         cl_lock_mutex_get(env, sublock);
375                         cl_lock_mutex_get(env, parent);
376                         /*
377                          * recheck under mutex that sub-lock wasn't created
378                          * concurrently, and that top-lock is still alive.
379                          */
380                         if (lck->lls_sub[i].sub_lock == NULL &&
381                             parent->cll_state < CLS_FREEING) {
382                                 lov_sublock_adopt(env, lck, sublock, i, link);
383                                 cl_lock_mutex_put(env, parent);
384                         } else {
385                                 OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
386                                 cl_lock_mutex_put(env, parent);
387                                 cl_lock_unhold(env, sublock,
388                                                "lov-parent", parent);
389                         }
390                         cl_lock_mutex_put(env, sublock);
391                         cl_lock_put(env, sublock);
392                 }
393         }
394         /*
395          * Some sub-locks can be missing at this point. This is not a problem,
396          * because enqueue will create them anyway. Main duty of this function
397          * is to fill in sub-lock descriptions in a race free manner.
398          */
399         RETURN(result);
400 }
401
402 static int lov_sublock_release(const struct lu_env *env, struct lov_lock *lck,
403                                int i, int deluser, int rc)
404 {
405         struct cl_lock *parent = lck->lls_cl.cls_lock;
406
407         LASSERT(cl_lock_is_mutexed(parent));
408         ENTRY;
409
410         if (lck->lls_sub[i].sub_flags & LSF_HELD) {
411                 struct cl_lock    *sublock;
412                 int dying;
413
414                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
415                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
416                 LASSERT(cl_lock_is_mutexed(sublock));
417
418                 lck->lls_sub[i].sub_flags &= ~LSF_HELD;
419                 if (deluser)
420                         cl_lock_user_del(env, sublock);
421                 /*
422                  * If the last hold is released, and cancellation is pending
423                  * for a sub-lock, release parent mutex, to avoid keeping it
424                  * while sub-lock is being paged out.
425                  */
426                 dying = (sublock->cll_descr.cld_mode == CLM_PHANTOM ||
427                          sublock->cll_descr.cld_mode == CLM_GROUP ||
428                          (sublock->cll_flags & (CLF_CANCELPEND|CLF_DOOMED))) &&
429                         sublock->cll_holds == 1;
430                 if (dying)
431                         cl_lock_mutex_put(env, parent);
432                 cl_lock_unhold(env, sublock, "lov-parent", parent);
433                 if (dying) {
434                         cl_lock_mutex_get(env, parent);
435                         rc = lov_subresult(rc, CLO_REPEAT);
436                 }
437                 /*
438                  * From now on lck->lls_sub[i].sub_lock is a "weak" pointer,
439                  * not backed by a reference on a
440                  * sub-lock. lovsub_lock_delete() will clear
441                  * lck->lls_sub[i].sub_lock under semaphores, just before
442                  * sub-lock is destroyed.
443                  */
444         }
445         RETURN(rc);
446 }
447
448 static void lov_sublock_hold(const struct lu_env *env, struct lov_lock *lck,
449                              int i)
450 {
451         struct cl_lock *parent = lck->lls_cl.cls_lock;
452
453         LASSERT(cl_lock_is_mutexed(parent));
454         ENTRY;
455
456         if (!(lck->lls_sub[i].sub_flags & LSF_HELD)) {
457                 struct cl_lock *sublock;
458
459                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
460                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
461                 LASSERT(cl_lock_is_mutexed(sublock));
462                 LASSERT(sublock->cll_state != CLS_FREEING);
463
464                 lck->lls_sub[i].sub_flags |= LSF_HELD;
465
466                 cl_lock_get_trust(sublock);
467                 cl_lock_hold_add(env, sublock, "lov-parent", parent);
468                 cl_lock_user_add(env, sublock);
469                 cl_lock_put(env, sublock);
470         }
471         EXIT;
472 }
473
474 static void lov_lock_fini(const struct lu_env *env,
475                           struct cl_lock_slice *slice)
476 {
477         struct lov_lock *lck;
478         int i;
479
480         ENTRY;
481         lck = cl2lov_lock(slice);
482         LASSERT(lck->lls_nr_filled == 0);
483         if (lck->lls_sub != NULL) {
484                 for (i = 0; i < lck->lls_nr; ++i)
485                         /*
486                          * No sub-locks exists at this point, as sub-lock has
487                          * a reference on its parent.
488                          */
489                         LASSERT(lck->lls_sub[i].sub_lock == NULL);
490                 OBD_FREE_LARGE(lck->lls_sub,
491                                lck->lls_nr * sizeof lck->lls_sub[0]);
492         }
493         OBD_SLAB_FREE_PTR(lck, lov_lock_kmem);
494         EXIT;
495 }
496
497 static int lov_lock_enqueue_wait(const struct lu_env *env,
498                                  struct lov_lock *lck,
499                                  struct cl_lock *sublock)
500 {
501         struct cl_lock *lock = lck->lls_cl.cls_lock;
502         int             result;
503         ENTRY;
504
505         LASSERT(cl_lock_is_mutexed(lock));
506
507         cl_lock_mutex_put(env, lock);
508         result = cl_lock_enqueue_wait(env, sublock, 0);
509         cl_lock_mutex_get(env, lock);
510         RETURN(result ?: CLO_REPEAT);
511 }
512
513 /**
514  * Tries to advance a state machine of a given sub-lock toward enqueuing of
515  * the top-lock.
516  *
517  * \retval 0 if state-transition can proceed
518  * \retval -ve otherwise.
519  */
520 static int lov_lock_enqueue_one(const struct lu_env *env, struct lov_lock *lck,
521                                 struct cl_lock *sublock,
522                                 struct cl_io *io, __u32 enqflags, int last)
523 {
524         int result;
525         ENTRY;
526
527         /* first, try to enqueue a sub-lock ... */
528         result = cl_enqueue_try(env, sublock, io, enqflags);
529         if ((sublock->cll_state == CLS_ENQUEUED) && !(enqflags & CEF_AGL))
530                 /* if it is enqueued, try to `wait' on it---maybe it's already
531                  * granted */
532                 result = cl_wait_try(env, sublock);
533         /*
534          * If CEF_ASYNC flag is set, then all sub-locks can be enqueued in
535          * parallel, otherwise---enqueue has to wait until sub-lock is granted
536          * before proceeding to the next one.
537          */
538         if ((result == CLO_WAIT) && (sublock->cll_state <= CLS_HELD) &&
539             (enqflags & CEF_ASYNC) && (!last || (enqflags & CEF_AGL)))
540                 result = 0;
541         RETURN(result);
542 }
543
544 /**
545  * Helper function for lov_lock_enqueue() that creates missing sub-lock.
546  */
547 static int lov_sublock_fill(const struct lu_env *env, struct cl_lock *parent,
548                             struct cl_io *io, struct lov_lock *lck, int idx)
549 {
550         struct lov_lock_link *link;
551         struct cl_lock       *sublock;
552         int                   result;
553
554         LASSERT(parent->cll_depth == 1);
555         cl_lock_mutex_put(env, parent);
556         sublock = lov_sublock_alloc(env, io, lck, idx, &link);
557         if (!IS_ERR(sublock))
558                 cl_lock_mutex_get(env, sublock);
559         cl_lock_mutex_get(env, parent);
560
561         if (!IS_ERR(sublock)) {
562                 cl_lock_get_trust(sublock);
563                 if (parent->cll_state == CLS_QUEUING &&
564                     lck->lls_sub[idx].sub_lock == NULL) {
565                         lov_sublock_adopt(env, lck, sublock, idx, link);
566                 } else {
567                         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
568                         /* other thread allocated sub-lock, or enqueue is no
569                          * longer going on */
570                         cl_lock_mutex_put(env, parent);
571                         cl_lock_unhold(env, sublock, "lov-parent", parent);
572                         cl_lock_mutex_get(env, parent);
573                 }
574                 cl_lock_mutex_put(env, sublock);
575                 cl_lock_put(env, sublock);
576                 result = CLO_REPEAT;
577         } else
578                 result = PTR_ERR(sublock);
579         return result;
580 }
581
582 /**
583  * Implementation of cl_lock_operations::clo_enqueue() for lov layer. This
584  * function is rather subtle, as it enqueues top-lock (i.e., advances top-lock
585  * state machine from CLS_QUEUING to CLS_ENQUEUED states) by juggling sub-lock
586  * state machines in the face of sub-locks sharing (by multiple top-locks),
587  * and concurrent sub-lock cancellations.
588  */
589 static int lov_lock_enqueue(const struct lu_env *env,
590                             const struct cl_lock_slice *slice,
591                             struct cl_io *io, __u32 enqflags)
592 {
593         struct cl_lock         *lock    = slice->cls_lock;
594         struct lov_lock        *lck     = cl2lov_lock(slice);
595         struct cl_lock_closure *closure = lov_closure_get(env, lock);
596         int i;
597         int result;
598         enum cl_lock_state minstate;
599
600         ENTRY;
601
602         for (result = 0, minstate = CLS_FREEING, i = 0; i < lck->lls_nr; ++i) {
603                 int rc;
604                 struct lovsub_lock     *sub;
605                 struct lov_lock_sub    *lls;
606                 struct cl_lock         *sublock;
607                 struct lov_sublock_env *subenv;
608
609                 if (lock->cll_state != CLS_QUEUING) {
610                         /*
611                          * Lock might have left QUEUING state if previous
612                          * iteration released its mutex. Stop enqueing in this
613                          * case and let the upper layer to decide what to do.
614                          */
615                         LASSERT(i > 0 && result != 0);
616                         break;
617                 }
618
619                 lls = &lck->lls_sub[i];
620                 sub = lls->sub_lock;
621                 /*
622                  * Sub-lock might have been canceled, while top-lock was
623                  * cached.
624                  */
625                 if (sub == NULL) {
626                         result = lov_sublock_fill(env, lock, io, lck, i);
627                         /* lov_sublock_fill() released @lock mutex,
628                          * restart. */
629                         break;
630                 }
631                 sublock = sub->lss_cl.cls_lock;
632                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
633                 if (rc == 0) {
634                         lov_sublock_hold(env, lck, i);
635                         rc = lov_lock_enqueue_one(subenv->lse_env, lck, sublock,
636                                                   subenv->lse_io, enqflags,
637                                                   i == lck->lls_nr - 1);
638                         minstate = min(minstate, sublock->cll_state);
639                         if (rc == CLO_WAIT) {
640                                 switch (sublock->cll_state) {
641                                 case CLS_QUEUING:
642                                         /* take recursive mutex, the lock is
643                                          * released in lov_lock_enqueue_wait.
644                                          */
645                                         cl_lock_mutex_get(env, sublock);
646                                         lov_sublock_unlock(env, sub, closure,
647                                                            subenv);
648                                         rc = lov_lock_enqueue_wait(env, lck,
649                                                                    sublock);
650                                         break;
651                                 case CLS_CACHED:
652                                         rc = lov_sublock_release(env, lck, i,
653                                                                  1, rc);
654                                 default:
655                                         lov_sublock_unlock(env, sub, closure,
656                                                            subenv);
657                                         break;
658                                 }
659                         } else {
660                                 LASSERT(sublock->cll_conflict == NULL);
661                                 lov_sublock_unlock(env, sub, closure, subenv);
662                         }
663                 }
664                 result = lov_subresult(result, rc);
665                 if (result != 0)
666                         break;
667         }
668         cl_lock_closure_fini(closure);
669         RETURN(result ?: minstate >= CLS_ENQUEUED ? 0 : CLO_WAIT);
670 }
671
672 static int lov_lock_unuse(const struct lu_env *env,
673                           const struct cl_lock_slice *slice)
674 {
675         struct lov_lock        *lck     = cl2lov_lock(slice);
676         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
677         int i;
678         int result;
679
680         ENTRY;
681
682         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
683                 int rc;
684                 struct lovsub_lock     *sub;
685                 struct cl_lock         *sublock;
686                 struct lov_lock_sub    *lls;
687                 struct lov_sublock_env *subenv;
688
689                 /* top-lock state cannot change concurrently, because single
690                  * thread (one that released the last hold) carries unlocking
691                  * to the completion. */
692                 LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
693                 lls = &lck->lls_sub[i];
694                 sub = lls->sub_lock;
695                 if (sub == NULL)
696                         continue;
697
698                 sublock = sub->lss_cl.cls_lock;
699                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
700                 if (rc == 0) {
701                         if (lls->sub_flags & LSF_HELD) {
702                                 LASSERT(sublock->cll_state == CLS_HELD ||
703                                         sublock->cll_state == CLS_ENQUEUED);
704                                 rc = cl_unuse_try(subenv->lse_env, sublock);
705                                 rc = lov_sublock_release(env, lck, i, 0, rc);
706                         }
707                         lov_sublock_unlock(env, sub, closure, subenv);
708                 }
709                 result = lov_subresult(result, rc);
710         }
711
712         if (result == 0 && lck->lls_cancel_race) {
713                 lck->lls_cancel_race = 0;
714                 result = -ESTALE;
715         }
716         cl_lock_closure_fini(closure);
717         RETURN(result);
718 }
719
720
721 static void lov_lock_cancel(const struct lu_env *env,
722                            const struct cl_lock_slice *slice)
723 {
724         struct lov_lock        *lck     = cl2lov_lock(slice);
725         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
726         int i;
727         int result;
728
729         ENTRY;
730
731         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
732                 int rc;
733                 struct lovsub_lock     *sub;
734                 struct cl_lock         *sublock;
735                 struct lov_lock_sub    *lls;
736                 struct lov_sublock_env *subenv;
737
738                 /* top-lock state cannot change concurrently, because single
739                  * thread (one that released the last hold) carries unlocking
740                  * to the completion. */
741                 lls = &lck->lls_sub[i];
742                 sub = lls->sub_lock;
743                 if (sub == NULL)
744                         continue;
745
746                 sublock = sub->lss_cl.cls_lock;
747                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
748                 if (rc == 0) {
749                         if (!(lls->sub_flags & LSF_HELD)) {
750                                 lov_sublock_unlock(env, sub, closure, subenv);
751                                 continue;
752                         }
753
754                         switch(sublock->cll_state) {
755                         case CLS_HELD:
756                                 rc = cl_unuse_try(subenv->lse_env,
757                                                   sublock);
758                                 lov_sublock_release(env, lck, i, 0, 0);
759                                 break;
760                         case CLS_ENQUEUED:
761                                 /* TODO: it's not a good idea to cancel this
762                                  * lock because it's innocent. But it's
763                                  * acceptable. The better way would be to
764                                  * define a new lock method to unhold the
765                                  * dlm lock. */
766                                 cl_lock_cancel(env, sublock);
767                         default:
768                                 lov_sublock_release(env, lck, i, 1, 0);
769                                 break;
770                         }
771                         lov_sublock_unlock(env, sub, closure, subenv);
772                 }
773
774                 if (rc == CLO_REPEAT) {
775                         --i;
776                         continue;
777                 }
778
779                 result = lov_subresult(result, rc);
780         }
781
782         if (result)
783                 CL_LOCK_DEBUG(D_ERROR, env, slice->cls_lock,
784                               "lov_lock_cancel fails with %d.\n", result);
785
786         cl_lock_closure_fini(closure);
787 }
788
789 static int lov_lock_wait(const struct lu_env *env,
790                          const struct cl_lock_slice *slice)
791 {
792         struct lov_lock        *lck     = cl2lov_lock(slice);
793         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
794         enum cl_lock_state      minstate;
795         int                     reenqueued;
796         int                     result;
797         int                     i;
798
799         ENTRY;
800
801 again:
802         for (result = 0, minstate = CLS_FREEING, i = 0, reenqueued = 0;
803              i < lck->lls_nr; ++i) {
804                 int rc;
805                 struct lovsub_lock     *sub;
806                 struct cl_lock         *sublock;
807                 struct lov_lock_sub    *lls;
808                 struct lov_sublock_env *subenv;
809
810                 lls = &lck->lls_sub[i];
811                 sub = lls->sub_lock;
812                 LASSERT(sub != NULL);
813                 sublock = sub->lss_cl.cls_lock;
814                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
815                 if (rc == 0) {
816                         LASSERT(sublock->cll_state >= CLS_ENQUEUED);
817                         if (sublock->cll_state < CLS_HELD)
818                                 rc = cl_wait_try(env, sublock);
819
820                         minstate = min(minstate, sublock->cll_state);
821                         lov_sublock_unlock(env, sub, closure, subenv);
822                 }
823                 if (rc == CLO_REENQUEUED) {
824                         reenqueued++;
825                         rc = 0;
826                 }
827                 result = lov_subresult(result, rc);
828                 if (result != 0)
829                         break;
830         }
831         /* Each sublock only can be reenqueued once, so will not loop for
832          * ever. */
833         if (result == 0 && reenqueued != 0)
834                 goto again;
835         cl_lock_closure_fini(closure);
836         RETURN(result ?: minstate >= CLS_HELD ? 0 : CLO_WAIT);
837 }
838
839 static int lov_lock_use(const struct lu_env *env,
840                         const struct cl_lock_slice *slice)
841 {
842         struct lov_lock        *lck     = cl2lov_lock(slice);
843         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
844         int                     result;
845         int                     i;
846
847         LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
848         ENTRY;
849
850         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
851                 int rc;
852                 struct lovsub_lock     *sub;
853                 struct cl_lock         *sublock;
854                 struct lov_lock_sub    *lls;
855                 struct lov_sublock_env *subenv;
856
857                 LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
858
859                 lls = &lck->lls_sub[i];
860                 sub = lls->sub_lock;
861                 if (sub == NULL) {
862                         /*
863                          * Sub-lock might have been canceled, while top-lock was
864                          * cached.
865                          */
866                         result = -ESTALE;
867                         break;
868                 }
869
870                 sublock = sub->lss_cl.cls_lock;
871                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
872                 if (rc == 0) {
873                         LASSERT(sublock->cll_state != CLS_FREEING);
874                         lov_sublock_hold(env, lck, i);
875                         if (sublock->cll_state == CLS_CACHED) {
876                                 rc = cl_use_try(subenv->lse_env, sublock, 0);
877                                 if (rc != 0)
878                                         rc = lov_sublock_release(env, lck,
879                                                                  i, 1, rc);
880                         } else if (sublock->cll_state == CLS_NEW) {
881                                 /* Sub-lock might have been canceled, while
882                                  * top-lock was cached. */
883                                 result = -ESTALE;
884                                 lov_sublock_release(env, lck, i, 1, result);
885                         }
886                         lov_sublock_unlock(env, sub, closure, subenv);
887                 }
888                 result = lov_subresult(result, rc);
889                 if (result != 0)
890                         break;
891         }
892
893         if (lck->lls_cancel_race) {
894                 /*
895                  * If there is unlocking happened at the same time, then
896                  * sublock_lock state should be FREEING, and lov_sublock_lock
897                  * should return CLO_REPEAT. In this case, it should return
898                  * ESTALE, and up layer should reset the lock state to be NEW.
899                  */
900                 lck->lls_cancel_race = 0;
901                 LASSERT(result != 0);
902                 result = -ESTALE;
903         }
904         cl_lock_closure_fini(closure);
905         RETURN(result);
906 }
907
908 #if 0
909 static int lock_lock_multi_match()
910 {
911         struct cl_lock          *lock    = slice->cls_lock;
912         struct cl_lock_descr    *subneed = &lov_env_info(env)->lti_ldescr;
913         struct lov_object       *loo     = cl2lov(lov->lls_cl.cls_obj);
914         struct lov_layout_raid0 *r0      = lov_r0(loo);
915         struct lov_lock_sub     *sub;
916         struct cl_object        *subobj;
917         obd_off  fstart;
918         obd_off  fend;
919         obd_off  start;
920         obd_off  end;
921         int i;
922
923         fstart = cl_offset(need->cld_obj, need->cld_start);
924         fend   = cl_offset(need->cld_obj, need->cld_end + 1) - 1;
925         subneed->cld_mode = need->cld_mode;
926         cl_lock_mutex_get(env, lock);
927         for (i = 0; i < lov->lls_nr; ++i) {
928                 sub = &lov->lls_sub[i];
929                 if (sub->sub_lock == NULL)
930                         continue;
931                 subobj = sub->sub_descr.cld_obj;
932                 if (!lov_stripe_intersects(r0->lo_lsm, sub->sub_stripe,
933                                            fstart, fend, &start, &end))
934                         continue;
935                 subneed->cld_start = cl_index(subobj, start);
936                 subneed->cld_end   = cl_index(subobj, end);
937                 subneed->cld_obj   = subobj;
938                 if (!cl_lock_ext_match(&sub->sub_got, subneed)) {
939                         result = 0;
940                         break;
941                 }
942         }
943         cl_lock_mutex_put(env, lock);
944 }
945 #endif
946
947 /**
948  * Check if the extent region \a descr is covered by \a child against the
949  * specific \a stripe.
950  */
951 static int lov_lock_stripe_is_matching(const struct lu_env *env,
952                                        struct lov_object *lov, int stripe,
953                                        const struct cl_lock_descr *child,
954                                        const struct cl_lock_descr *descr)
955 {
956         struct lov_stripe_md *lsm = lov_r0(lov)->lo_lsm;
957         obd_off start;
958         obd_off end;
959         int result;
960
961         if (lov_r0(lov)->lo_nr == 1)
962                 return cl_lock_ext_match(child, descr);
963
964         /*
965          * For a multi-stripes object:
966          * - make sure the descr only covers child's stripe, and
967          * - check if extent is matching.
968          */
969         start = cl_offset(&lov->lo_cl, descr->cld_start);
970         end   = cl_offset(&lov->lo_cl, descr->cld_end + 1) - 1;
971         result = end - start <= lsm->lsm_stripe_size &&
972                  stripe == lov_stripe_number(lsm, start) &&
973                  stripe == lov_stripe_number(lsm, end);
974         if (result) {
975                 struct cl_lock_descr *subd = &lov_env_info(env)->lti_ldescr;
976                 obd_off sub_start;
977                 obd_off sub_end;
978
979                 subd->cld_obj  = NULL;   /* don't need sub object at all */
980                 subd->cld_mode = descr->cld_mode;
981                 subd->cld_gid  = descr->cld_gid;
982                 result = lov_stripe_intersects(lsm, stripe, start, end,
983                                                &sub_start, &sub_end);
984                 LASSERT(result);
985                 subd->cld_start = cl_index(child->cld_obj, sub_start);
986                 subd->cld_end   = cl_index(child->cld_obj, sub_end);
987                 result = cl_lock_ext_match(child, subd);
988         }
989         return result;
990 }
991
992 /**
993  * An implementation of cl_lock_operations::clo_fits_into() method.
994  *
995  * Checks whether a lock (given by \a slice) is suitable for \a
996  * io. Multi-stripe locks can be used only for "quick" io, like truncate, or
997  * O_APPEND write.
998  *
999  * \see ccc_lock_fits_into().
1000  */
1001 static int lov_lock_fits_into(const struct lu_env *env,
1002                               const struct cl_lock_slice *slice,
1003                               const struct cl_lock_descr *need,
1004                               const struct cl_io *io)
1005 {
1006         struct lov_lock   *lov = cl2lov_lock(slice);
1007         struct lov_object *obj = cl2lov(slice->cls_obj);
1008         int result;
1009
1010         LASSERT(cl_object_same(need->cld_obj, slice->cls_obj));
1011         LASSERT(lov->lls_nr > 0);
1012
1013         ENTRY;
1014
1015         if (need->cld_mode == CLM_GROUP)
1016                 /*
1017                  * always allow to match group lock.
1018                  */
1019                 result = cl_lock_ext_match(&lov->lls_orig, need);
1020         else if (lov->lls_nr == 1) {
1021                 struct cl_lock_descr *got = &lov->lls_sub[0].sub_got;
1022                 result = lov_lock_stripe_is_matching(env,
1023                                                      cl2lov(slice->cls_obj),
1024                                                      lov->lls_sub[0].sub_stripe,
1025                                                      got, need);
1026         } else if (io->ci_type != CIT_SETATTR && io->ci_type != CIT_MISC &&
1027                    !cl_io_is_append(io) && need->cld_mode != CLM_PHANTOM)
1028                 /*
1029                  * Multi-stripe locks are only suitable for `quick' IO and for
1030                  * glimpse.
1031                  */
1032                 result = 0;
1033         else
1034                 /*
1035                  * Most general case: multi-stripe existing lock, and
1036                  * (potentially) multi-stripe @need lock. Check that @need is
1037                  * covered by @lov's sub-locks.
1038                  *
1039                  * For now, ignore lock expansions made by the server, and
1040                  * match against original lock extent.
1041                  */
1042                 result = cl_lock_ext_match(&lov->lls_orig, need);
1043         CDEBUG(D_DLMTRACE, DDESCR"/"DDESCR" %d %d/%d: %d\n",
1044                PDESCR(&lov->lls_orig), PDESCR(&lov->lls_sub[0].sub_got),
1045                lov->lls_sub[0].sub_stripe, lov->lls_nr, lov_r0(obj)->lo_nr,
1046                result);
1047         RETURN(result);
1048 }
1049
1050 void lov_lock_unlink(const struct lu_env *env,
1051                      struct lov_lock_link *link, struct lovsub_lock *sub)
1052 {
1053         struct lov_lock *lck    = link->lll_super;
1054         struct cl_lock  *parent = lck->lls_cl.cls_lock;
1055
1056         LASSERT(cl_lock_is_mutexed(parent));
1057         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
1058         ENTRY;
1059
1060         cfs_list_del_init(&link->lll_list);
1061         LASSERT(lck->lls_sub[link->lll_idx].sub_lock == sub);
1062         /* yank this sub-lock from parent's array */
1063         lck->lls_sub[link->lll_idx].sub_lock = NULL;
1064         LASSERT(lck->lls_nr_filled > 0);
1065         lck->lls_nr_filled--;
1066         lu_ref_del(&parent->cll_reference, "lov-child", sub->lss_cl.cls_lock);
1067         cl_lock_put(env, parent);
1068         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
1069         EXIT;
1070 }
1071
1072 struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
1073                                          struct lov_lock *lck,
1074                                          struct lovsub_lock *sub)
1075 {
1076         struct lov_lock_link *scan;
1077
1078         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
1079         ENTRY;
1080
1081         cfs_list_for_each_entry(scan, &sub->lss_parents, lll_list) {
1082                 if (scan->lll_super == lck)
1083                         RETURN(scan);
1084         }
1085         RETURN(NULL);
1086 }
1087
1088 /**
1089  * An implementation of cl_lock_operations::clo_delete() method. This is
1090  * invoked for "top-to-bottom" delete, when lock destruction starts from the
1091  * top-lock, e.g., as a result of inode destruction.
1092  *
1093  * Unlinks top-lock from all its sub-locks. Sub-locks are not deleted there:
1094  * this is done separately elsewhere:
1095  *
1096  *     - for inode destruction, lov_object_delete() calls cl_object_kill() for
1097  *       each sub-object, purging its locks;
1098  *
1099  *     - in other cases (e.g., a fatal error with a top-lock) sub-locks are
1100  *       left in the cache.
1101  */
1102 static void lov_lock_delete(const struct lu_env *env,
1103                             const struct cl_lock_slice *slice)
1104 {
1105         struct lov_lock        *lck     = cl2lov_lock(slice);
1106         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
1107         struct lov_lock_link   *link;
1108         int                     rc;
1109         int                     i;
1110
1111         LASSERT(slice->cls_lock->cll_state == CLS_FREEING);
1112         ENTRY;
1113
1114         for (i = 0; i < lck->lls_nr; ++i) {
1115                 struct lov_lock_sub *lls = &lck->lls_sub[i];
1116                 struct lovsub_lock  *lsl = lls->sub_lock;
1117
1118                 if (lsl == NULL) /* already removed */
1119                         continue;
1120
1121                 rc = lov_sublock_lock(env, lck, lls, closure, NULL);
1122                 if (rc == CLO_REPEAT) {
1123                         --i;
1124                         continue;
1125                 }
1126
1127                 LASSERT(rc == 0);
1128                 LASSERT(lsl->lss_cl.cls_lock->cll_state < CLS_FREEING);
1129
1130                 if (lls->sub_flags & LSF_HELD)
1131                         lov_sublock_release(env, lck, i, 1, 0);
1132
1133                 link = lov_lock_link_find(env, lck, lsl);
1134                 LASSERT(link != NULL);
1135                 lov_lock_unlink(env, link, lsl);
1136                 LASSERT(lck->lls_sub[i].sub_lock == NULL);
1137
1138                 lov_sublock_unlock(env, lsl, closure, NULL);
1139         }
1140
1141         cl_lock_closure_fini(closure);
1142         EXIT;
1143 }
1144
1145 static int lov_lock_print(const struct lu_env *env, void *cookie,
1146                           lu_printer_t p, const struct cl_lock_slice *slice)
1147 {
1148         struct lov_lock *lck = cl2lov_lock(slice);
1149         int              i;
1150
1151         (*p)(env, cookie, "%d\n", lck->lls_nr);
1152         for (i = 0; i < lck->lls_nr; ++i) {
1153                 struct lov_lock_sub *sub;
1154
1155                 sub = &lck->lls_sub[i];
1156                 (*p)(env, cookie, "    %d %x: ", i, sub->sub_flags);
1157                 if (sub->sub_lock != NULL)
1158                         cl_lock_print(env, cookie, p,
1159                                       sub->sub_lock->lss_cl.cls_lock);
1160                 else
1161                         (*p)(env, cookie, "---\n");
1162         }
1163         return 0;
1164 }
1165
1166 static const struct cl_lock_operations lov_lock_ops = {
1167         .clo_fini      = lov_lock_fini,
1168         .clo_enqueue   = lov_lock_enqueue,
1169         .clo_wait      = lov_lock_wait,
1170         .clo_use       = lov_lock_use,
1171         .clo_unuse     = lov_lock_unuse,
1172         .clo_cancel    = lov_lock_cancel,
1173         .clo_fits_into = lov_lock_fits_into,
1174         .clo_delete    = lov_lock_delete,
1175         .clo_print     = lov_lock_print
1176 };
1177
1178 int lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
1179                         struct cl_lock *lock, const struct cl_io *io)
1180 {
1181         struct lov_lock *lck;
1182         int result;
1183
1184         ENTRY;
1185         OBD_SLAB_ALLOC_PTR_GFP(lck, lov_lock_kmem, CFS_ALLOC_IO);
1186         if (lck != NULL) {
1187                 cl_lock_slice_add(lock, &lck->lls_cl, obj, &lov_lock_ops);
1188                 result = lov_lock_sub_init(env, lck, io);
1189         } else
1190                 result = -ENOMEM;
1191         RETURN(result);
1192 }
1193
1194 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
1195                                                struct cl_lock *parent)
1196 {
1197         struct cl_lock_closure *closure;
1198
1199         closure = &lov_env_info(env)->lti_closure;
1200         LASSERT(cfs_list_empty(&closure->clc_list));
1201         cl_lock_closure_init(env, closure, parent, 1);
1202         return closure;
1203 }
1204
1205
1206 /** @} lov */