Whamcloud - gitweb
LU-6245 libcfs: cleanup up libcfs hash code for upstream
[fs/lustre-release.git] / lustre / lod / lod_lov.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License version 2 for more details.  A copy is
14  * included in the COPYING file that accompanied this code.
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright  2009 Sun Microsystems, Inc. All rights reserved
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2012, 2014, Intel Corporation.
27  */
28 /*
29  * lustre/lod/lod_lov.c
30  *
31  * A set of helpers to maintain Logical Object Volume (LOV)
32  * Extended Attribute (EA) and known OST targets
33  *
34  * Author: Alex Zhuravlev <alexey.zhuravlev@intel.com>
35  */
36
37 #define DEBUG_SUBSYSTEM S_MDS
38
39 #include <obd_class.h>
40 #include <lustre_lfsck.h>
41 #include <lustre_lmv.h>
42
43 #include "lod_internal.h"
44
45 /**
46  * Increase reference count on the target table.
47  *
48  * Increase reference count on the target table usage to prevent racing with
49  * addition/deletion. Any function that expects the table to remain
50  * stationary must take a ref.
51  *
52  * \param[in] ltd       target table (lod_ost_descs or lod_mdt_descs)
53  */
54 void lod_getref(struct lod_tgt_descs *ltd)
55 {
56         down_read(&ltd->ltd_rw_sem);
57         mutex_lock(&ltd->ltd_mutex);
58         ltd->ltd_refcount++;
59         mutex_unlock(&ltd->ltd_mutex);
60 }
61
62 /**
63  * Decrease reference count on the target table.
64  *
65  * Companion of lod_getref() to release a reference on the target table.
66  * If this is the last reference and the OST entry was scheduled for deletion,
67  * the descriptor is removed from the table.
68  *
69  * \param[in] lod       LOD device from which we release a reference
70  * \param[in] ltd       target table (lod_ost_descs or lod_mdt_descs)
71  */
72 void lod_putref(struct lod_device *lod, struct lod_tgt_descs *ltd)
73 {
74         mutex_lock(&ltd->ltd_mutex);
75         ltd->ltd_refcount--;
76         if (ltd->ltd_refcount == 0 && ltd->ltd_death_row) {
77                 struct lod_tgt_desc *tgt_desc, *tmp;
78                 struct list_head kill;
79                 unsigned int idx;
80
81                 CDEBUG(D_CONFIG, "destroying %d ltd desc\n",
82                        ltd->ltd_death_row);
83
84                 INIT_LIST_HEAD(&kill);
85
86                 cfs_foreach_bit(ltd->ltd_tgt_bitmap, idx) {
87                         tgt_desc = LTD_TGT(ltd, idx);
88                         LASSERT(tgt_desc);
89
90                         if (!tgt_desc->ltd_reap)
91                                 continue;
92
93                         list_add(&tgt_desc->ltd_kill, &kill);
94                         LTD_TGT(ltd, idx) = NULL;
95                         /*FIXME: only support ost pool for now */
96                         if (ltd == &lod->lod_ost_descs) {
97                                 lod_ost_pool_remove(&lod->lod_pool_info, idx);
98                                 if (tgt_desc->ltd_active)
99                                         lod->lod_desc.ld_active_tgt_count--;
100                         }
101                         ltd->ltd_tgtnr--;
102                         cfs_bitmap_clear(ltd->ltd_tgt_bitmap, idx);
103                         ltd->ltd_death_row--;
104                 }
105                 mutex_unlock(&ltd->ltd_mutex);
106                 up_read(&ltd->ltd_rw_sem);
107
108                 list_for_each_entry_safe(tgt_desc, tmp, &kill, ltd_kill) {
109                         int rc;
110                         list_del(&tgt_desc->ltd_kill);
111                         if (ltd == &lod->lod_ost_descs) {
112                                 /* remove from QoS structures */
113                                 rc = qos_del_tgt(lod, tgt_desc);
114                                 if (rc)
115                                         CERROR("%s: qos_del_tgt(%s) failed:"
116                                                "rc = %d\n",
117                                                lod2obd(lod)->obd_name,
118                                               obd_uuid2str(&tgt_desc->ltd_uuid),
119                                                rc);
120                         }
121                         rc = obd_disconnect(tgt_desc->ltd_exp);
122                         if (rc)
123                                 CERROR("%s: failed to disconnect %s: rc = %d\n",
124                                        lod2obd(lod)->obd_name,
125                                        obd_uuid2str(&tgt_desc->ltd_uuid), rc);
126                         OBD_FREE_PTR(tgt_desc);
127                 }
128         } else {
129                 mutex_unlock(&ltd->ltd_mutex);
130                 up_read(&ltd->ltd_rw_sem);
131         }
132 }
133
134 /**
135  * Expand size of target table.
136  *
137  * When the target table is full, we have to extend the table. To do so,
138  * we allocate new memory with some reserve, move data from the old table
139  * to the new one and release memory consumed by the old table.
140  * Notice we take ltd_rw_sem exclusively to ensure atomic switch.
141  *
142  * \param[in] ltd               target table
143  * \param[in] newsize           new size of the table
144  *
145  * \retval                      0 on success
146  * \retval                      -ENOMEM if reallocation failed
147  */
148 static int ltd_bitmap_resize(struct lod_tgt_descs *ltd, __u32 newsize)
149 {
150         cfs_bitmap_t *new_bitmap, *old_bitmap = NULL;
151         int           rc = 0;
152         ENTRY;
153
154         /* grab write reference on the lod. Relocating the array requires
155          * exclusive access */
156
157         down_write(&ltd->ltd_rw_sem);
158         if (newsize <= ltd->ltd_tgts_size)
159                 /* someone else has already resize the array */
160                 GOTO(out, rc = 0);
161
162         /* allocate new bitmap */
163         new_bitmap = CFS_ALLOCATE_BITMAP(newsize);
164         if (!new_bitmap)
165                 GOTO(out, rc = -ENOMEM);
166
167         if (ltd->ltd_tgts_size > 0) {
168                 /* the bitmap already exists, we need
169                  * to copy data from old one */
170                 cfs_bitmap_copy(new_bitmap, ltd->ltd_tgt_bitmap);
171                 old_bitmap = ltd->ltd_tgt_bitmap;
172         }
173
174         ltd->ltd_tgts_size  = newsize;
175         ltd->ltd_tgt_bitmap = new_bitmap;
176
177         if (old_bitmap)
178                 CFS_FREE_BITMAP(old_bitmap);
179
180         CDEBUG(D_CONFIG, "tgt size: %d\n", ltd->ltd_tgts_size);
181
182         EXIT;
183 out:
184         up_write(&ltd->ltd_rw_sem);
185         return rc;
186 }
187
188 /**
189  * Connect LOD to a new OSP and add it to the target table.
190  *
191  * Connect to the OSP device passed, initialize all the internal
192  * structures related to the device and add it to the target table.
193  *
194  * \param[in] env               execution environment for this thread
195  * \param[in] lod               LOD device to be connected to the new OSP
196  * \param[in] osp               name of OSP device name to be added
197  * \param[in] index             index of the new target
198  * \param[in] gen               target's generation number
199  * \param[in] tgt_index         OSP's group
200  * \param[in] type              type of device (mdc or osc)
201  * \param[in] active            state of OSP: 0 - inactive, 1 - active
202  *
203  * \retval                      0 if added successfully
204  * \retval                      negative error number on failure
205  */
206 int lod_add_device(const struct lu_env *env, struct lod_device *lod,
207                    char *osp, unsigned index, unsigned gen, int tgt_index,
208                    char *type, int active)
209 {
210         struct obd_connect_data *data = NULL;
211         struct obd_export       *exp = NULL;
212         struct obd_device       *obd;
213         struct lu_device        *ldev;
214         struct dt_device        *d;
215         int                      rc;
216         struct lod_tgt_desc     *tgt_desc;
217         struct lod_tgt_descs    *ltd;
218         struct obd_uuid         obd_uuid;
219         bool                    for_ost;
220         ENTRY;
221
222         CDEBUG(D_CONFIG, "osp:%s idx:%d gen:%d\n", osp, index, gen);
223
224         if (gen <= 0) {
225                 CERROR("request to add OBD %s with invalid generation: %d\n",
226                        osp, gen);
227                 RETURN(-EINVAL);
228         }
229
230         obd_str2uuid(&obd_uuid, osp);
231
232         obd = class_find_client_obd(&obd_uuid, LUSTRE_OSP_NAME,
233                                 &lod->lod_dt_dev.dd_lu_dev.ld_obd->obd_uuid);
234         if (obd == NULL) {
235                 CERROR("can't find %s device\n", osp);
236                 RETURN(-EINVAL);
237         }
238
239         OBD_ALLOC_PTR(data);
240         if (data == NULL)
241                 RETURN(-ENOMEM);
242
243         data->ocd_connect_flags = OBD_CONNECT_INDEX | OBD_CONNECT_VERSION;
244         data->ocd_version = LUSTRE_VERSION_CODE;
245         data->ocd_index = index;
246
247         if (strcmp(LUSTRE_OSC_NAME, type) == 0) {
248                 for_ost = true;
249                 data->ocd_connect_flags |= OBD_CONNECT_AT |
250                                            OBD_CONNECT_FULL20 |
251                                            OBD_CONNECT_INDEX |
252 #ifdef HAVE_LRU_RESIZE_SUPPORT
253                                            OBD_CONNECT_LRU_RESIZE |
254 #endif
255                                            OBD_CONNECT_MDS |
256                                            OBD_CONNECT_REQPORTAL |
257                                            OBD_CONNECT_SKIP_ORPHAN |
258                                            OBD_CONNECT_FID |
259                                            OBD_CONNECT_LVB_TYPE |
260                                            OBD_CONNECT_VERSION |
261                                            OBD_CONNECT_PINGLESS |
262                                            OBD_CONNECT_LFSCK;
263
264                 data->ocd_group = tgt_index;
265                 ltd = &lod->lod_ost_descs;
266         } else {
267                 struct obd_import *imp = obd->u.cli.cl_import;
268
269                 for_ost = false;
270                 data->ocd_ibits_known = MDS_INODELOCK_UPDATE;
271                 data->ocd_connect_flags |= OBD_CONNECT_ACL |
272                                            OBD_CONNECT_IBITS |
273                                            OBD_CONNECT_MDS_MDS |
274                                            OBD_CONNECT_FID |
275                                            OBD_CONNECT_AT |
276                                            OBD_CONNECT_FULL20 |
277                                            OBD_CONNECT_LFSCK;
278                 spin_lock(&imp->imp_lock);
279                 imp->imp_server_timeout = 1;
280                 spin_unlock(&imp->imp_lock);
281                 imp->imp_client->cli_request_portal = OUT_PORTAL;
282                 CDEBUG(D_OTHER, "%s: Set 'mds' portal and timeout\n",
283                       obd->obd_name);
284                 ltd = &lod->lod_mdt_descs;
285         }
286
287         rc = obd_connect(env, &exp, obd, &obd->obd_uuid, data, NULL);
288         OBD_FREE_PTR(data);
289         if (rc) {
290                 CERROR("%s: cannot connect to next dev %s (%d)\n",
291                        obd->obd_name, osp, rc);
292                 GOTO(out_free, rc);
293         }
294
295         LASSERT(obd->obd_lu_dev);
296         LASSERT(obd->obd_lu_dev->ld_site == lod->lod_dt_dev.dd_lu_dev.ld_site);
297
298         ldev = obd->obd_lu_dev;
299         d = lu2dt_dev(ldev);
300
301         /* Allocate ost descriptor and fill it */
302         OBD_ALLOC_PTR(tgt_desc);
303         if (!tgt_desc)
304                 GOTO(out_conn, rc = -ENOMEM);
305
306         tgt_desc->ltd_tgt    = d;
307         tgt_desc->ltd_exp    = exp;
308         tgt_desc->ltd_uuid   = obd->u.cli.cl_target_uuid;
309         tgt_desc->ltd_gen    = gen;
310         tgt_desc->ltd_index  = index;
311         tgt_desc->ltd_active = active;
312
313         lod_getref(ltd);
314         if (index >= ltd->ltd_tgts_size) {
315                 /* we have to increase the size of the lod_osts array */
316                 __u32  newsize;
317
318                 newsize = max(ltd->ltd_tgts_size, (__u32)2);
319                 while (newsize < index + 1)
320                         newsize = newsize << 1;
321
322                 /* lod_bitmap_resize() needs lod_rw_sem
323                  * which we hold with th reference */
324                 lod_putref(lod, ltd);
325
326                 rc = ltd_bitmap_resize(ltd, newsize);
327                 if (rc)
328                         GOTO(out_desc, rc);
329
330                 lod_getref(ltd);
331         }
332
333         mutex_lock(&ltd->ltd_mutex);
334         if (cfs_bitmap_check(ltd->ltd_tgt_bitmap, index)) {
335                 CERROR("%s: device %d is registered already\n", obd->obd_name,
336                        index);
337                 GOTO(out_mutex, rc = -EEXIST);
338         }
339
340         if (ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK] == NULL) {
341                 OBD_ALLOC_PTR(ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK]);
342                 if (ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK] == NULL) {
343                         CERROR("can't allocate index to add %s\n",
344                                obd->obd_name);
345                         GOTO(out_mutex, rc = -ENOMEM);
346                 }
347         }
348
349         if (for_ost) {
350                 /* pool and qos are not supported for MDS stack yet */
351                 rc = lod_ost_pool_add(&lod->lod_pool_info, index,
352                                       lod->lod_osts_size);
353                 if (rc) {
354                         CERROR("%s: can't set up pool, failed with %d\n",
355                                obd->obd_name, rc);
356                         GOTO(out_mutex, rc);
357                 }
358
359                 rc = qos_add_tgt(lod, tgt_desc);
360                 if (rc) {
361                         CERROR("%s: qos_add_tgt failed with %d\n",
362                                 obd->obd_name, rc);
363                         GOTO(out_pool, rc);
364                 }
365
366                 /* The new OST is now a full citizen */
367                 if (index >= lod->lod_desc.ld_tgt_count)
368                         lod->lod_desc.ld_tgt_count = index + 1;
369                 if (active)
370                         lod->lod_desc.ld_active_tgt_count++;
371         }
372
373         LTD_TGT(ltd, index) = tgt_desc;
374         cfs_bitmap_set(ltd->ltd_tgt_bitmap, index);
375         ltd->ltd_tgtnr++;
376         mutex_unlock(&ltd->ltd_mutex);
377         lod_putref(lod, ltd);
378         if (lod->lod_recovery_completed)
379                 ldev->ld_ops->ldo_recovery_complete(env, ldev);
380
381         if (!for_ost && lod->lod_initialized) {
382                 rc = lod_sub_init_llog(env, lod, tgt_desc->ltd_tgt);
383                 if (rc != 0) {
384                         CERROR("%s: cannot start llog on %s:rc = %d\n",
385                                lod2obd(lod)->obd_name, osp, rc);
386                         GOTO(out_pool, rc);
387                 }
388         }
389
390         rc = lfsck_add_target(env, lod->lod_child, d, exp, index, for_ost);
391         if (rc != 0) {
392                 CERROR("Fail to add LFSCK target: name = %s, type = %s, "
393                        "index = %u, rc = %d\n", osp, type, index, rc);
394                 GOTO(out_fini_llog, rc);
395         }
396         RETURN(rc);
397 out_fini_llog:
398         lod_sub_fini_llog(env, tgt_desc->ltd_tgt,
399                           tgt_desc->ltd_recovery_thread);
400 out_pool:
401         lod_ost_pool_remove(&lod->lod_pool_info, index);
402 out_mutex:
403         mutex_unlock(&ltd->ltd_mutex);
404         lod_putref(lod, ltd);
405 out_desc:
406         OBD_FREE_PTR(tgt_desc);
407 out_conn:
408         obd_disconnect(exp);
409 out_free:
410         return rc;
411 }
412
413 /**
414  * Schedule target removal from the target table.
415  *
416  * Mark the device as dead. The device is not removed here because it may
417  * still be in use. The device will be removed in lod_putref() when the
418  * last reference is released.
419  *
420  * \param[in] env               execution environment for this thread
421  * \param[in] lod               LOD device the target table belongs to
422  * \param[in] ltd               target table
423  * \param[in] idx               index of the target
424  * \param[in] for_ost           type of the target: 0 - MDT, 1 - OST
425  */
426 static void __lod_del_device(const struct lu_env *env, struct lod_device *lod,
427                              struct lod_tgt_descs *ltd, unsigned idx,
428                              bool for_ost)
429 {
430         LASSERT(LTD_TGT(ltd, idx));
431
432         lfsck_del_target(env, lod->lod_child, LTD_TGT(ltd, idx)->ltd_tgt,
433                          idx, for_ost);
434
435         if (!for_ost && LTD_TGT(ltd, idx)->ltd_recovery_thread != NULL) {
436                 struct ptlrpc_thread *thread;
437
438                 thread = LTD_TGT(ltd, idx)->ltd_recovery_thread;
439                 OBD_FREE_PTR(thread);
440         }
441
442         if (LTD_TGT(ltd, idx)->ltd_reap == 0) {
443                 LTD_TGT(ltd, idx)->ltd_reap = 1;
444                 ltd->ltd_death_row++;
445         }
446 }
447
448 /**
449  * Schedule removal of all the targets from the given target table.
450  *
451  * See more details in the description for __lod_del_device()
452  *
453  * \param[in] env               execution environment for this thread
454  * \param[in] lod               LOD device the target table belongs to
455  * \param[in] ltd               target table
456  * \param[in] for_ost           type of the target: MDT or OST
457  *
458  * \retval                      0 always
459  */
460 int lod_fini_tgt(const struct lu_env *env, struct lod_device *lod,
461                  struct lod_tgt_descs *ltd, bool for_ost)
462 {
463         unsigned int idx;
464
465         if (ltd->ltd_tgts_size <= 0)
466                 return 0;
467         lod_getref(ltd);
468         mutex_lock(&ltd->ltd_mutex);
469         cfs_foreach_bit(ltd->ltd_tgt_bitmap, idx)
470                 __lod_del_device(env, lod, ltd, idx, for_ost);
471         mutex_unlock(&ltd->ltd_mutex);
472         lod_putref(lod, ltd);
473         CFS_FREE_BITMAP(ltd->ltd_tgt_bitmap);
474         for (idx = 0; idx < TGT_PTRS; idx++) {
475                 if (ltd->ltd_tgt_idx[idx])
476                         OBD_FREE_PTR(ltd->ltd_tgt_idx[idx]);
477         }
478         ltd->ltd_tgts_size = 0;
479         return 0;
480 }
481
482 /**
483  * Remove device by name.
484  *
485  * Remove a device identified by \a osp from the target table. Given
486  * the device can be in use, the real deletion happens in lod_putref().
487  *
488  * \param[in] env               execution environment for this thread
489  * \param[in] lod               LOD device to be connected to the new OSP
490  * \param[in] ltd               target table
491  * \param[in] osp               name of OSP device to be removed
492  * \param[in] idx               index of the target
493  * \param[in] gen               generation number, not used currently
494  * \param[in] for_ost           type of the target: 0 - MDT, 1 - OST
495  *
496  * \retval                      0 if the device was scheduled for removal
497  * \retval                      -EINVAL if no device was found
498  */
499 int lod_del_device(const struct lu_env *env, struct lod_device *lod,
500                    struct lod_tgt_descs *ltd, char *osp, unsigned idx,
501                    unsigned gen, bool for_ost)
502 {
503         struct obd_device *obd;
504         int                rc = 0;
505         struct obd_uuid    uuid;
506         ENTRY;
507
508         CDEBUG(D_CONFIG, "osp:%s idx:%d gen:%d\n", osp, idx, gen);
509
510         obd_str2uuid(&uuid, osp);
511
512         obd = class_find_client_obd(&uuid, LUSTRE_OSP_NAME,
513                                    &lod->lod_dt_dev.dd_lu_dev.ld_obd->obd_uuid);
514         if (obd == NULL) {
515                 CERROR("can't find %s device\n", osp);
516                 RETURN(-EINVAL);
517         }
518
519         if (gen <= 0) {
520                 CERROR("%s: request to remove OBD %s with invalid generation %d"
521                        "\n", obd->obd_name, osp, gen);
522                 RETURN(-EINVAL);
523         }
524
525         obd_str2uuid(&uuid,  osp);
526
527         lod_getref(ltd);
528         mutex_lock(&ltd->ltd_mutex);
529         /* check that the index is allocated in the bitmap */
530         if (!cfs_bitmap_check(ltd->ltd_tgt_bitmap, idx) ||
531             !LTD_TGT(ltd, idx)) {
532                 CERROR("%s: device %d is not set up\n", obd->obd_name, idx);
533                 GOTO(out, rc = -EINVAL);
534         }
535
536         /* check that the UUID matches */
537         if (!obd_uuid_equals(&uuid, &LTD_TGT(ltd, idx)->ltd_uuid)) {
538                 CERROR("%s: LOD target UUID %s at index %d does not match %s\n",
539                        obd->obd_name, obd_uuid2str(&LTD_TGT(ltd,idx)->ltd_uuid),
540                        idx, osp);
541                 GOTO(out, rc = -EINVAL);
542         }
543
544         __lod_del_device(env, lod, ltd, idx, for_ost);
545         EXIT;
546 out:
547         mutex_unlock(&ltd->ltd_mutex);
548         lod_putref(lod, ltd);
549         return(rc);
550 }
551
552 /**
553  * Resize per-thread storage to hold specified size.
554  *
555  * A helper function to resize per-thread temporary storage. This storage
556  * is used to process LOV/LVM EAs and may be quite large. We do not want to
557  * allocate/release it every time, so instead we put it into the env and
558  * reallocate on demand. The memory is released when the correspondent thread
559  * is finished.
560  *
561  * \param[in] info              LOD-specific storage in the environment
562  * \param[in] size              new size to grow the buffer to
563
564  * \retval                      0 on success, -ENOMEM if reallocation failed
565  */
566 int lod_ea_store_resize(struct lod_thread_info *info, size_t size)
567 {
568         __u32 round = size_roundup_power2(size);
569
570         LASSERT(round <=
571                 lov_mds_md_size(LOV_MAX_STRIPE_COUNT, LOV_MAGIC_V3));
572         if (info->lti_ea_store) {
573                 LASSERT(info->lti_ea_store_size);
574                 LASSERT(info->lti_ea_store_size < round);
575                 CDEBUG(D_INFO, "EA store size %d is not enough, need %d\n",
576                        info->lti_ea_store_size, round);
577                 OBD_FREE_LARGE(info->lti_ea_store, info->lti_ea_store_size);
578                 info->lti_ea_store = NULL;
579                 info->lti_ea_store_size = 0;
580         }
581
582         OBD_ALLOC_LARGE(info->lti_ea_store, round);
583         if (info->lti_ea_store == NULL)
584                 RETURN(-ENOMEM);
585         info->lti_ea_store_size = round;
586         RETURN(0);
587 }
588
589 /**
590  * Make LOV EA for striped object.
591  *
592  * Generate striping information and store it in the LOV EA of the given
593  * object. The caller must ensure nobody else is calling the function
594  * against the object concurrently. The transaction must be started.
595  * FLDB service must be running as well; it's used to map FID to the target,
596  * which is stored in LOV EA.
597  *
598  * \param[in] env               execution environment for this thread
599  * \param[in] lo                LOD object
600  * \param[in] th                transaction handle
601  *
602  * \retval                      0 if LOV EA is stored successfully
603  * \retval                      negative error number on failure
604  */
605 int lod_generate_and_set_lovea(const struct lu_env *env,
606                                struct lod_object *lo, struct thandle *th)
607 {
608         struct lod_thread_info  *info = lod_env_info(env);
609         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
610         const struct lu_fid     *fid  = lu_object_fid(&lo->ldo_obj.do_lu);
611         struct lov_mds_md_v1    *lmm;
612         struct lov_ost_data_v1  *objs;
613         __u32                    magic;
614         int                      i, rc;
615         size_t                   lmm_size;
616         ENTRY;
617
618         LASSERT(lo);
619
620         magic = lo->ldo_pool != NULL ? LOV_MAGIC_V3 : LOV_MAGIC_V1;
621         lmm_size = lov_mds_md_size(lo->ldo_stripenr, magic);
622         if (info->lti_ea_store_size < lmm_size) {
623                 rc = lod_ea_store_resize(info, lmm_size);
624                 if (rc)
625                         RETURN(rc);
626         }
627
628         if (lo->ldo_pattern == 0) /* default striping */
629                 lo->ldo_pattern = LOV_PATTERN_RAID0;
630
631         lmm = info->lti_ea_store;
632
633         lmm->lmm_magic = cpu_to_le32(magic);
634         lmm->lmm_pattern = cpu_to_le32(lo->ldo_pattern);
635         fid_to_lmm_oi(fid, &lmm->lmm_oi);
636         if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_LMMOI))
637                 lmm->lmm_oi.oi.oi_id++;
638         lmm_oi_cpu_to_le(&lmm->lmm_oi, &lmm->lmm_oi);
639         lmm->lmm_stripe_size = cpu_to_le32(lo->ldo_stripe_size);
640         lmm->lmm_stripe_count = cpu_to_le16(lo->ldo_stripenr);
641         if (lo->ldo_pattern & LOV_PATTERN_F_RELEASED)
642                 lmm->lmm_stripe_count = cpu_to_le16(lo->ldo_released_stripenr);
643         lmm->lmm_layout_gen = 0;
644         if (magic == LOV_MAGIC_V1) {
645                 objs = &lmm->lmm_objects[0];
646         } else {
647                 struct lov_mds_md_v3 *v3 = (struct lov_mds_md_v3 *) lmm;
648                 size_t cplen = strlcpy(v3->lmm_pool_name, lo->ldo_pool,
649                                 sizeof(v3->lmm_pool_name));
650                 if (cplen >= sizeof(v3->lmm_pool_name))
651                         RETURN(-E2BIG);
652                 objs = &v3->lmm_objects[0];
653         }
654
655         for (i = 0; i < lo->ldo_stripenr; i++) {
656                 struct lu_fid           *fid    = &info->lti_fid;
657                 struct lod_device       *lod;
658                 __u32                   index;
659                 int                     type    = LU_SEQ_RANGE_OST;
660
661                 lod = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev);
662                 LASSERT(lo->ldo_stripe[i]);
663
664                 *fid = *lu_object_fid(&lo->ldo_stripe[i]->do_lu);
665                 if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_MULTIPLE_REF)) {
666                         if (cfs_fail_val == 0)
667                                 cfs_fail_val = fid->f_oid;
668                         else
669                                 fid->f_oid = cfs_fail_val;
670                 }
671
672                 rc = fid_to_ostid(fid, &info->lti_ostid);
673                 LASSERT(rc == 0);
674
675                 ostid_cpu_to_le(&info->lti_ostid, &objs[i].l_ost_oi);
676                 objs[i].l_ost_gen    = cpu_to_le32(0);
677                 rc = lod_fld_lookup(env, lod, fid, &index, &type);
678                 if (rc < 0) {
679                         CERROR("%s: Can not locate "DFID": rc = %d\n",
680                                lod2obd(lod)->obd_name, PFID(fid), rc);
681                         lod_object_free_striping(env, lo);
682                         RETURN(rc);
683                 }
684                 objs[i].l_ost_idx = cpu_to_le32(index);
685         }
686
687         info->lti_buf.lb_buf = lmm;
688         info->lti_buf.lb_len = lmm_size;
689         rc = lod_sub_object_xattr_set(env, next, &info->lti_buf, XATTR_NAME_LOV,
690                                       0, th);
691         if (rc < 0) {
692                 lod_object_free_striping(env, lo);
693                 RETURN(rc);
694         }
695
696         RETURN(rc);
697 }
698
699 /**
700  * Get LOV EA.
701  *
702  * Fill lti_ea_store buffer in the environment with a value for the given
703  * EA. The buffer is reallocated if the value doesn't fit.
704  *
705  * \param[in,out] env           execution environment for this thread
706  *                              .lti_ea_store buffer is filled with EA's value
707  * \param[in] lo                LOD object
708  * \param[in] name              name of the EA
709  *
710  * \retval                      0 if EA is fetched successfully
711  * \retval                      negative error number on failure
712  */
713 int lod_get_ea(const struct lu_env *env, struct lod_object *lo,
714                const char *name)
715 {
716         struct lod_thread_info  *info = lod_env_info(env);
717         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
718         int                     rc;
719         ENTRY;
720
721         LASSERT(info);
722
723         if (unlikely(info->lti_ea_store == NULL)) {
724                 /* just to enter in allocation block below */
725                 rc = -ERANGE;
726         } else {
727 repeat:
728                 info->lti_buf.lb_buf = info->lti_ea_store;
729                 info->lti_buf.lb_len = info->lti_ea_store_size;
730                 rc = dt_xattr_get(env, next, &info->lti_buf, name);
731         }
732
733         /* if object is not striped or inaccessible */
734         if (rc == -ENODATA || rc == -ENOENT)
735                 RETURN(0);
736
737         if (rc == -ERANGE) {
738                 /* EA doesn't fit, reallocate new buffer */
739                 rc = dt_xattr_get(env, next, &LU_BUF_NULL, name);
740                 if (rc == -ENODATA || rc == -ENOENT)
741                         RETURN(0);
742                 else if (rc < 0)
743                         RETURN(rc);
744
745                 LASSERT(rc > 0);
746                 rc = lod_ea_store_resize(info, rc);
747                 if (rc)
748                         RETURN(rc);
749                 goto repeat;
750         }
751
752         RETURN(rc);
753 }
754
755 /**
756  * Verify the target index is present in the current configuration.
757  *
758  * \param[in] md                LOD device where the target table is stored
759  * \param[in] idx               target's index
760  *
761  * \retval                      0 if the index is present
762  * \retval                      -EINVAL if not
763  */
764 static int validate_lod_and_idx(struct lod_device *md, __u32 idx)
765 {
766         if (unlikely(idx >= md->lod_ost_descs.ltd_tgts_size ||
767                      !cfs_bitmap_check(md->lod_ost_bitmap, idx))) {
768                 CERROR("%s: bad idx: %d of %d\n", lod2obd(md)->obd_name, idx,
769                        md->lod_ost_descs.ltd_tgts_size);
770                 return -EINVAL;
771         }
772
773         if (unlikely(OST_TGT(md, idx) == NULL)) {
774                 CERROR("%s: bad lod_tgt_desc for idx: %d\n",
775                        lod2obd(md)->obd_name, idx);
776                 return -EINVAL;
777         }
778
779         if (unlikely(OST_TGT(md, idx)->ltd_ost == NULL)) {
780                 CERROR("%s: invalid lod device, for idx: %d\n",
781                        lod2obd(md)->obd_name , idx);
782                 return -EINVAL;
783         }
784
785         return 0;
786 }
787
788 /**
789  * Instantiate objects for stripes.
790  *
791  * Allocate and initialize LU-objects representing the stripes. The number
792  * of the stripes (ldo_stripenr) must be initialized already. The caller
793  * must ensure nobody else is calling the function on the object at the same
794  * time. FLDB service must be running to be able to map a FID to the targets
795  * and find appropriate device representing that target.
796  *
797  * \param[in] env               execution environment for this thread
798  * \param[in,out] lo            LOD object
799  * \param[in] objs              an array of IDs to creates the objects from
800  *
801  * \retval                      0 if the objects are instantiated successfully
802  * \retval                      negative error number on failure
803  */
804 int lod_initialize_objects(const struct lu_env *env, struct lod_object *lo,
805                            struct lov_ost_data_v1 *objs)
806 {
807         struct lod_thread_info  *info = lod_env_info(env);
808         struct lod_device       *md;
809         struct lu_object        *o, *n;
810         struct lu_device        *nd;
811         struct dt_object       **stripe;
812         int                      stripe_len;
813         int                      i, rc = 0;
814         __u32                   idx;
815         ENTRY;
816
817         LASSERT(lo != NULL);
818         md = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev);
819         LASSERT(lo->ldo_stripe == NULL);
820         LASSERT(lo->ldo_stripenr > 0);
821         LASSERT(lo->ldo_stripe_size > 0);
822
823         stripe_len = lo->ldo_stripenr;
824         OBD_ALLOC(stripe, sizeof(stripe[0]) * stripe_len);
825         if (stripe == NULL)
826                 RETURN(-ENOMEM);
827
828         for (i = 0; i < lo->ldo_stripenr; i++) {
829                 if (unlikely(lovea_slot_is_dummy(&objs[i])))
830                         continue;
831
832                 ostid_le_to_cpu(&objs[i].l_ost_oi, &info->lti_ostid);
833                 idx = le32_to_cpu(objs[i].l_ost_idx);
834                 rc = ostid_to_fid(&info->lti_fid, &info->lti_ostid, idx);
835                 if (rc != 0)
836                         GOTO(out, rc);
837                 LASSERTF(fid_is_sane(&info->lti_fid), ""DFID" insane!\n",
838                          PFID(&info->lti_fid));
839                 lod_getref(&md->lod_ost_descs);
840
841                 rc = validate_lod_and_idx(md, idx);
842                 if (unlikely(rc != 0)) {
843                         lod_putref(md, &md->lod_ost_descs);
844                         GOTO(out, rc);
845                 }
846
847                 nd = &OST_TGT(md,idx)->ltd_ost->dd_lu_dev;
848                 lod_putref(md, &md->lod_ost_descs);
849
850                 /* In the function below, .hs_keycmp resolves to
851                  * u_obj_hop_keycmp() */
852                 /* coverity[overrun-buffer-val] */
853                 o = lu_object_find_at(env, nd, &info->lti_fid, NULL);
854                 if (IS_ERR(o))
855                         GOTO(out, rc = PTR_ERR(o));
856
857                 n = lu_object_locate(o->lo_header, nd->ld_type);
858                 LASSERT(n);
859
860                 stripe[i] = container_of(n, struct dt_object, do_lu);
861         }
862
863 out:
864         if (rc != 0) {
865                 for (i = 0; i < stripe_len; i++)
866                         if (stripe[i] != NULL)
867                                 lu_object_put(env, &stripe[i]->do_lu);
868
869                 OBD_FREE(stripe, sizeof(stripe[0]) * stripe_len);
870                 lo->ldo_stripenr = 0;
871         } else {
872                 lo->ldo_stripe = stripe;
873                 lo->ldo_stripes_allocated = stripe_len;
874         }
875
876         RETURN(rc);
877 }
878
879 /**
880  * Instantiate objects for striping.
881  *
882  * Parse striping information in \a buf and instantiate the objects
883  * representing the stripes.
884  *
885  * \param[in] env               execution environment for this thread
886  * \param[in] lo                LOD object
887  * \param[in] buf               buffer storing LOV EA to parse
888  *
889  * \retval                      0 if parsing and objects creation succeed
890  * \retval                      negative error number on failure
891  */
892 int lod_parse_striping(const struct lu_env *env, struct lod_object *lo,
893                        const struct lu_buf *buf)
894 {
895         struct lov_mds_md_v1    *lmm;
896         struct lov_ost_data_v1  *objs;
897         __u32                    magic;
898         __u32                    pattern;
899         int                      rc = 0;
900         ENTRY;
901
902         LASSERT(buf);
903         LASSERT(buf->lb_buf);
904         LASSERT(buf->lb_len);
905
906         lmm = (struct lov_mds_md_v1 *) buf->lb_buf;
907         magic = le32_to_cpu(lmm->lmm_magic);
908         pattern = le32_to_cpu(lmm->lmm_pattern);
909
910         if (magic != LOV_MAGIC_V1 && magic != LOV_MAGIC_V3)
911                 GOTO(out, rc = -EINVAL);
912         if (lov_pattern(pattern) != LOV_PATTERN_RAID0)
913                 GOTO(out, rc = -EINVAL);
914
915         lo->ldo_pattern = pattern;
916         lo->ldo_stripe_size = le32_to_cpu(lmm->lmm_stripe_size);
917         lo->ldo_layout_gen = le16_to_cpu(lmm->lmm_layout_gen);
918         lo->ldo_stripenr = le16_to_cpu(lmm->lmm_stripe_count);
919         /* released file stripenr fixup. */
920         if (pattern & LOV_PATTERN_F_RELEASED)
921                 lo->ldo_stripenr = 0;
922
923         LASSERT(buf->lb_len >= lov_mds_md_size(lo->ldo_stripenr, magic));
924
925         if (magic == LOV_MAGIC_V3) {
926                 struct lov_mds_md_v3 *v3 = (struct lov_mds_md_v3 *) lmm;
927                 objs = &v3->lmm_objects[0];
928                 lod_object_set_pool(lo, v3->lmm_pool_name);
929         } else {
930                 objs = &lmm->lmm_objects[0];
931         }
932
933         if (lo->ldo_stripenr > 0)
934                 rc = lod_initialize_objects(env, lo, objs);
935
936 out:
937         RETURN(rc);
938 }
939
940 /**
941  * Initialize the object representing the stripes.
942  *
943  * Unless the stripes are initialized already, fetch LOV (for regular
944  * objects) or LMV (for directory objects) EA and call lod_parse_striping()
945  * to instantiate the objects representing the stripes.
946  *
947  * \param[in] env               execution environment for this thread
948  * \param[in,out] lo            LOD object
949  *
950  * \retval                      0 if parsing and object creation succeed
951  * \retval                      negative error number on failure
952  */
953 int lod_load_striping_locked(const struct lu_env *env, struct lod_object *lo)
954 {
955         struct lod_thread_info  *info = lod_env_info(env);
956         struct lu_buf           *buf  = &info->lti_buf;
957         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
958         int                      rc = 0;
959         ENTRY;
960
961         /* already initialized? */
962         if (lo->ldo_stripe != NULL)
963                 GOTO(out, rc = 0);
964
965         if (!dt_object_exists(next))
966                 GOTO(out, rc = 0);
967
968         /* Do not load stripe for slaves of striped dir */
969         if (lo->ldo_dir_slave_stripe)
970                 GOTO(out, rc = 0);
971
972         if (S_ISREG(lu_object_attr(lod2lu_obj(lo)))) {
973                 rc = lod_get_lov_ea(env, lo);
974                 if (rc <= 0)
975                         GOTO(out, rc);
976                 /*
977                  * there is LOV EA (striping information) in this object
978                  * let's parse it and create in-core objects for the stripes
979                  */
980                 buf->lb_buf = info->lti_ea_store;
981                 buf->lb_len = info->lti_ea_store_size;
982                 rc = lod_parse_striping(env, lo, buf);
983         } else if (S_ISDIR(lu_object_attr(lod2lu_obj(lo)))) {
984                 rc = lod_get_lmv_ea(env, lo);
985                 if (rc < (typeof(rc))sizeof(struct lmv_mds_md_v1))
986                         GOTO(out, rc = rc > 0 ? -EINVAL : rc);
987
988                 buf->lb_buf = info->lti_ea_store;
989                 buf->lb_len = info->lti_ea_store_size;
990                 if (rc == sizeof(struct lmv_mds_md_v1)) {
991                         rc = lod_load_lmv_shards(env, lo, buf, true);
992                         if (buf->lb_buf != info->lti_ea_store) {
993                                 OBD_FREE_LARGE(info->lti_ea_store,
994                                                info->lti_ea_store_size);
995                                 info->lti_ea_store = buf->lb_buf;
996                                 info->lti_ea_store_size = buf->lb_len;
997                         }
998
999                         if (rc < 0)
1000                                 GOTO(out, rc);
1001                 }
1002
1003                 /*
1004                  * there is LOV EA (striping information) in this object
1005                  * let's parse it and create in-core objects for the stripes
1006                  */
1007                 rc = lod_parse_dir_striping(env, lo, buf);
1008         }
1009
1010         if (rc == 0)
1011                 lo->ldo_striping_cached = 1;
1012 out:
1013         RETURN(rc);
1014 }
1015
1016 /**
1017  * A generic function to initialize the stripe objects.
1018  *
1019  * A protected version of lod_load_striping_locked() - load the striping
1020  * information from storage, parse that and instantiate LU objects to
1021  * represent the stripes.  The LOD object \a lo supplies a pointer to the
1022  * next sub-object in the LU stack so we can lock it. Also use \a lo to
1023  * return an array of references to the newly instantiated objects.
1024  *
1025  * \param[in] env               execution environment for this thread
1026  * \param[in,out] lo            LOD object, where striping is stored and
1027  *                              which gets an array of references
1028  *
1029  * \retval                      0 if parsing and object creation succeed
1030  * \retval                      negative error number on failure
1031  **/
1032 int lod_load_striping(const struct lu_env *env, struct lod_object *lo)
1033 {
1034         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
1035         int                     rc = 0;
1036
1037         /* currently this code is supposed to be called from declaration
1038          * phase only, thus the object is not expected to be locked by caller */
1039         dt_write_lock(env, next, 0);
1040         rc = lod_load_striping_locked(env, lo);
1041         dt_write_unlock(env, next);
1042         return rc;
1043 }
1044
1045 /**
1046  * Verify striping.
1047  *
1048  * Check the validity of all fields including the magic, stripe size,
1049  * stripe count, stripe offset and that the pool is present.  Also check
1050  * that each target index points to an existing target. The additional
1051  * \a is_from_disk turns additional checks. In some cases zero fields
1052  * are allowed (like pattern=0).
1053  *
1054  * \param[in] d                 LOD device
1055  * \param[in] buf               buffer with LOV EA to verify
1056  * \param[in] is_from_disk      0 - from user, allow some fields to be 0
1057  *                              1 - from disk, do not allow
1058  *
1059  * \retval                      0 if the striping is valid
1060  * \retval                      -EINVAL if striping is invalid
1061  */
1062 int lod_verify_striping(struct lod_device *d, const struct lu_buf *buf,
1063                         bool is_from_disk)
1064 {
1065         struct lov_user_md_v1   *lum;
1066         struct lov_user_md_v3   *lum3;
1067         struct pool_desc        *pool = NULL;
1068         __u32                    magic;
1069         __u32                    stripe_size;
1070         __u16                    stripe_count;
1071         __u16                    stripe_offset;
1072         size_t                   lum_size;
1073         int                      rc = 0;
1074         ENTRY;
1075
1076         lum = buf->lb_buf;
1077
1078         LASSERT(sizeof(*lum) < sizeof(*lum3));
1079
1080         if (buf->lb_len < sizeof(*lum)) {
1081                 CDEBUG(D_IOCTL, "buf len %zu too small for lov_user_md\n",
1082                        buf->lb_len);
1083                 GOTO(out, rc = -EINVAL);
1084         }
1085
1086         magic = le32_to_cpu(lum->lmm_magic);
1087         if (magic != LOV_USER_MAGIC_V1 &&
1088             magic != LOV_USER_MAGIC_V3 &&
1089             magic != LOV_MAGIC_V1_DEF &&
1090             magic != LOV_MAGIC_V3_DEF) {
1091                 CDEBUG(D_IOCTL, "bad userland LOV MAGIC: %#x\n", magic);
1092                 GOTO(out, rc = -EINVAL);
1093         }
1094
1095         /* the user uses "0" for default stripe pattern normally. */
1096         if (!is_from_disk && lum->lmm_pattern == 0)
1097                 lum->lmm_pattern = cpu_to_le32(LOV_PATTERN_RAID0);
1098
1099         if (le32_to_cpu(lum->lmm_pattern) != LOV_PATTERN_RAID0) {
1100                 CDEBUG(D_IOCTL, "bad userland stripe pattern: %#x\n",
1101                        le32_to_cpu(lum->lmm_pattern));
1102                 GOTO(out, rc = -EINVAL);
1103         }
1104
1105         /* 64kB is the largest common page size we see (ia64), and matches the
1106          * check in lfs */
1107         stripe_size = le32_to_cpu(lum->lmm_stripe_size);
1108         if (stripe_size & (LOV_MIN_STRIPE_SIZE - 1)) {
1109                 CDEBUG(D_IOCTL, "stripe size %u not a multiple of %u\n",
1110                        stripe_size, LOV_MIN_STRIPE_SIZE);
1111                 GOTO(out, rc = -EINVAL);
1112         }
1113
1114         stripe_offset = le16_to_cpu(lum->lmm_stripe_offset);
1115         if (stripe_offset != LOV_OFFSET_DEFAULT) {
1116                 /* if offset is not within valid range [0, osts_size) */
1117                 if (stripe_offset >= d->lod_osts_size) {
1118                         CDEBUG(D_IOCTL, "stripe offset %u >= bitmap size %u\n",
1119                                stripe_offset, d->lod_osts_size);
1120                         GOTO(out, rc = -EINVAL);
1121                 }
1122
1123                 /* if lmm_stripe_offset is *not* in bitmap */
1124                 if (!cfs_bitmap_check(d->lod_ost_bitmap, stripe_offset)) {
1125                         CDEBUG(D_IOCTL, "stripe offset %u not in bitmap\n",
1126                                stripe_offset);
1127                         GOTO(out, rc = -EINVAL);
1128                 }
1129         }
1130
1131         if (magic == LOV_USER_MAGIC_V1 || magic == LOV_MAGIC_V1_DEF)
1132                 lum_size = offsetof(struct lov_user_md_v1,
1133                                     lmm_objects[0]);
1134         else if (magic == LOV_USER_MAGIC_V3 || magic == LOV_MAGIC_V3_DEF)
1135                 lum_size = offsetof(struct lov_user_md_v3,
1136                                     lmm_objects[0]);
1137         else
1138                 GOTO(out, rc = -EINVAL);
1139
1140         stripe_count = le16_to_cpu(lum->lmm_stripe_count);
1141         if (buf->lb_len != lum_size) {
1142                 CDEBUG(D_IOCTL, "invalid buf len %zu for lov_user_md with "
1143                        "magic %#x and stripe_count %u\n",
1144                        buf->lb_len, magic, stripe_count);
1145                 GOTO(out, rc = -EINVAL);
1146         }
1147
1148         if (!(magic == LOV_USER_MAGIC_V3 || magic == LOV_MAGIC_V3_DEF))
1149                 goto out;
1150
1151         lum3 = buf->lb_buf;
1152         if (buf->lb_len < sizeof(*lum3)) {
1153                 CDEBUG(D_IOCTL, "buf len %zu too small for lov_user_md_v3\n",
1154                        buf->lb_len);
1155                 GOTO(out, rc = -EINVAL);
1156         }
1157
1158         /* In the function below, .hs_keycmp resolves to
1159          * pool_hashkey_keycmp() */
1160         /* coverity[overrun-buffer-val] */
1161         pool = lod_find_pool(d, lum3->lmm_pool_name);
1162         if (pool == NULL)
1163                 goto out;
1164
1165         if (stripe_offset != LOV_OFFSET_DEFAULT) {
1166                 rc = lod_check_index_in_pool(stripe_offset, pool);
1167                 if (rc < 0)
1168                         GOTO(out, rc = -EINVAL);
1169         }
1170
1171         if (is_from_disk && stripe_count > pool_tgt_count(pool)) {
1172                 CDEBUG(D_IOCTL,
1173                        "stripe count %u > # OSTs %u in the pool\n",
1174                        stripe_count, pool_tgt_count(pool));
1175                 GOTO(out, rc = -EINVAL);
1176         }
1177
1178 out:
1179         if (pool != NULL)
1180                 lod_pool_putref(pool);
1181
1182         RETURN(rc);
1183 }
1184
1185 void lod_fix_desc_stripe_size(__u64 *val)
1186 {
1187         if (*val < LOV_MIN_STRIPE_SIZE) {
1188                 if (*val != 0)
1189                         LCONSOLE_INFO("Increasing default stripe size to "
1190                                       "minimum value %u\n",
1191                                       LOV_DESC_STRIPE_SIZE_DEFAULT);
1192                 *val = LOV_DESC_STRIPE_SIZE_DEFAULT;
1193         } else if (*val & (LOV_MIN_STRIPE_SIZE - 1)) {
1194                 *val &= ~(LOV_MIN_STRIPE_SIZE - 1);
1195                 LCONSOLE_WARN("Changing default stripe size to "LPU64" (a "
1196                               "multiple of %u)\n",
1197                               *val, LOV_MIN_STRIPE_SIZE);
1198         }
1199 }
1200
1201 void lod_fix_desc_stripe_count(__u32 *val)
1202 {
1203         if (*val == 0)
1204                 *val = 1;
1205 }
1206
1207 void lod_fix_desc_pattern(__u32 *val)
1208 {
1209         /* from lov_setstripe */
1210         if ((*val != 0) && (*val != LOV_PATTERN_RAID0)) {
1211                 LCONSOLE_WARN("Unknown stripe pattern: %#x\n", *val);
1212                 *val = 0;
1213         }
1214 }
1215
1216 void lod_fix_desc_qos_maxage(__u32 *val)
1217 {
1218         /* fix qos_maxage */
1219         if (*val == 0)
1220                 *val = LOV_DESC_QOS_MAXAGE_DEFAULT;
1221 }
1222
1223 /**
1224  * Used to fix insane default striping.
1225  *
1226  * \param[in] desc      striping description
1227  */
1228 void lod_fix_desc(struct lov_desc *desc)
1229 {
1230         lod_fix_desc_stripe_size(&desc->ld_default_stripe_size);
1231         lod_fix_desc_stripe_count(&desc->ld_default_stripe_count);
1232         lod_fix_desc_pattern(&desc->ld_pattern);
1233         lod_fix_desc_qos_maxage(&desc->ld_qos_maxage);
1234 }
1235
1236 /**
1237  * Initialize the structures used to store pools and default striping.
1238  *
1239  * \param[in] lod       LOD device
1240  * \param[in] lcfg      configuration structure storing default striping.
1241  *
1242  * \retval              0 if initialization succeeds
1243  * \retval              negative error number on failure
1244  */
1245 int lod_pools_init(struct lod_device *lod, struct lustre_cfg *lcfg)
1246 {
1247         struct obd_device          *obd;
1248         struct lov_desc            *desc;
1249         int                         rc;
1250         ENTRY;
1251
1252         obd = class_name2obd(lustre_cfg_string(lcfg, 0));
1253         LASSERT(obd != NULL);
1254         obd->obd_lu_dev = &lod->lod_dt_dev.dd_lu_dev;
1255
1256         if (LUSTRE_CFG_BUFLEN(lcfg, 1) < 1) {
1257                 CERROR("LOD setup requires a descriptor\n");
1258                 RETURN(-EINVAL);
1259         }
1260
1261         desc = (struct lov_desc *)lustre_cfg_buf(lcfg, 1);
1262
1263         if (sizeof(*desc) > LUSTRE_CFG_BUFLEN(lcfg, 1)) {
1264                 CERROR("descriptor size wrong: %d > %d\n",
1265                        (int)sizeof(*desc), LUSTRE_CFG_BUFLEN(lcfg, 1));
1266                 RETURN(-EINVAL);
1267         }
1268
1269         if (desc->ld_magic != LOV_DESC_MAGIC) {
1270                 if (desc->ld_magic == __swab32(LOV_DESC_MAGIC)) {
1271                         CDEBUG(D_OTHER, "%s: Swabbing lov desc %p\n",
1272                                obd->obd_name, desc);
1273                         lustre_swab_lov_desc(desc);
1274                 } else {
1275                         CERROR("%s: Bad lov desc magic: %#x\n",
1276                                obd->obd_name, desc->ld_magic);
1277                         RETURN(-EINVAL);
1278                 }
1279         }
1280
1281         lod_fix_desc(desc);
1282
1283         desc->ld_active_tgt_count = 0;
1284         lod->lod_desc = *desc;
1285
1286         lod->lod_sp_me = LUSTRE_SP_CLI;
1287
1288         /* Set up allocation policy (QoS and RR) */
1289         INIT_LIST_HEAD(&lod->lod_qos.lq_oss_list);
1290         init_rwsem(&lod->lod_qos.lq_rw_sem);
1291         lod->lod_qos.lq_dirty = 1;
1292         lod->lod_qos.lq_rr.lqr_dirty = 1;
1293         lod->lod_qos.lq_reset = 1;
1294         /* Default priority is toward free space balance */
1295         lod->lod_qos.lq_prio_free = 232;
1296         /* Default threshold for rr (roughly 17%) */
1297         lod->lod_qos.lq_threshold_rr = 43;
1298
1299         /* Set up OST pool environment */
1300         lod->lod_pools_hash_body = cfs_hash_create("POOLS", HASH_POOLS_CUR_BITS,
1301                                                    HASH_POOLS_MAX_BITS,
1302                                                    HASH_POOLS_BKT_BITS, 0,
1303                                                    CFS_HASH_MIN_THETA,
1304                                                    CFS_HASH_MAX_THETA,
1305                                                    &pool_hash_operations,
1306                                                    CFS_HASH_DEFAULT);
1307         if (lod->lod_pools_hash_body == NULL)
1308                 RETURN(-ENOMEM);
1309
1310         INIT_LIST_HEAD(&lod->lod_pool_list);
1311         lod->lod_pool_count = 0;
1312         rc = lod_ost_pool_init(&lod->lod_pool_info, 0);
1313         if (rc)
1314                 GOTO(out_hash, rc);
1315         rc = lod_ost_pool_init(&lod->lod_qos.lq_rr.lqr_pool, 0);
1316         if (rc)
1317                 GOTO(out_pool_info, rc);
1318
1319         RETURN(0);
1320
1321 out_pool_info:
1322         lod_ost_pool_free(&lod->lod_pool_info);
1323 out_hash:
1324         cfs_hash_putref(lod->lod_pools_hash_body);
1325
1326         return rc;
1327 }
1328
1329 /**
1330  * Release the structures describing the pools.
1331  *
1332  * \param[in] lod       LOD device from which we release the structures
1333  *
1334  * \retval              0 always
1335  */
1336 int lod_pools_fini(struct lod_device *lod)
1337 {
1338         struct obd_device   *obd = lod2obd(lod);
1339         struct pool_desc    *pool, *tmp;
1340         ENTRY;
1341
1342         list_for_each_entry_safe(pool, tmp, &lod->lod_pool_list, pool_list) {
1343                 /* free pool structs */
1344                 CDEBUG(D_INFO, "delete pool %p\n", pool);
1345                 /* In the function below, .hs_keycmp resolves to
1346                  * pool_hashkey_keycmp() */
1347                 /* coverity[overrun-buffer-val] */
1348                 lod_pool_del(obd, pool->pool_name);
1349         }
1350
1351         cfs_hash_putref(lod->lod_pools_hash_body);
1352         lod_ost_pool_free(&(lod->lod_qos.lq_rr.lqr_pool));
1353         lod_ost_pool_free(&lod->lod_pool_info);
1354
1355         RETURN(0);
1356 }