4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
26 * Copyright (c) 2010, 2017, Intel Corporation.
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
32 * lustre/ldlm/ldlm_pool.c
34 * Author: Yury Umanets <umka@clusterfs.com>
38 * Idea of this code is rather simple. Each second, for each server namespace
39 * we have SLV - server lock volume which is calculated on current number of
40 * granted locks, grant speed for past period, etc - that is, locking load.
41 * This SLV number may be thought as a flow definition for simplicity. It is
42 * sent to clients with each occasion to let them know what is current load
43 * situation on the server. By default, at the beginning, SLV on server is
44 * set max value which is calculated as the following: allow to one client
45 * have all locks of limit ->pl_limit for 10h.
47 * Next, on clients, number of cached locks is not limited artificially in any
48 * way as it was before. Instead, client calculates CLV, that is, client lock
49 * volume for each lock and compares it with last SLV from the server. CLV is
50 * calculated as the number of locks in LRU * lock live time in seconds. If
51 * CLV > SLV - lock is canceled.
53 * Client has LVF, that is, lock volume factor which regulates how much
54 * sensitive client should be about last SLV from server. The higher LVF is the
55 * more locks will be canceled on client. Default value for it is 1. Setting
56 * LVF to 2 means that client will cancel locks 2 times faster.
58 * Locks on a client will be canceled more intensively in these cases:
59 * (1) if SLV is smaller, that is, load is higher on the server;
60 * (2) client has a lot of locks (the more locks are held by client, the bigger
61 * chances that some of them should be canceled);
62 * (3) client has old locks (taken some time ago);
64 * Thus, according to flow paradigm that we use for better understanding SLV,
65 * CLV is the volume of particle in flow described by SLV. According to this,
66 * if flow is getting thinner, more and more particles become outside of it and
67 * as particles are locks, they should be canceled.
69 * General idea of this belongs to Vitaly Fertman (vitaly@clusterfs.com).
70 * Andreas Dilger(adilger@clusterfs.com) proposed few nice ideas like using LVF
71 * and many cleanups. Flow definition to allow more easy understanding of the
72 * logic belongs to Nikita Danilov(nikita@clusterfs.com) as well as many
73 * cleanups and fixes. And design and implementation are done by Yury Umanets
74 * (umka@clusterfs.com).
76 * Glossary for terms used:
78 * pl_limit - Number of allowed locks in pool. Applies to server and client
81 * pl_granted - Number of granted locks (calculated);
82 * pl_grant_rate - Number of granted locks for last T (calculated);
83 * pl_cancel_rate - Number of canceled locks for last T (calculated);
84 * pl_grant_speed - Grant speed (GR - CR) for last T (calculated);
85 * pl_grant_plan - Planned number of granted locks for next T (calculated);
86 * pl_server_lock_volume - Current server lock volume (calculated);
88 * As it may be seen from list above, we have few possible tunables which may
89 * affect behavior much. They all may be modified via sysfs. However, they also
90 * give a possibility for constructing few pre-defined behavior policies. If
91 * none of predefines is suitable for a working pattern being used, new one may
92 * be "constructed" via sysfs tunables.
95 #define DEBUG_SUBSYSTEM S_LDLM
97 #include <linux/workqueue.h>
98 #include <libcfs/linux/linux-mem.h>
99 #include <lustre_dlm.h>
100 #include <cl_object.h>
101 #include <obd_class.h>
102 #include <obd_support.h>
103 #include "ldlm_internal.h"
105 #ifdef HAVE_LRU_RESIZE_SUPPORT
108 * 50 ldlm locks for 1MB of RAM.
110 #define LDLM_POOL_HOST_L ((NUM_CACHEPAGES >> (20 - PAGE_SHIFT)) * 50)
113 * Maximal possible grant step plan in %.
115 #define LDLM_POOL_MAX_GSP (30)
118 * Minimal possible grant step plan in %.
120 #define LDLM_POOL_MIN_GSP (1)
123 * This controls the speed of reaching LDLM_POOL_MAX_GSP
124 * with increasing thread period.
126 #define LDLM_POOL_GSP_STEP_SHIFT (2)
129 * LDLM_POOL_GSP% of all locks is default GP.
131 #define LDLM_POOL_GP(L) (((L) * LDLM_POOL_MAX_GSP) / 100)
134 * Max age for locks on clients.
136 #define LDLM_POOL_MAX_AGE (36000)
139 * The granularity of SLV calculation.
141 #define LDLM_POOL_SLV_SHIFT (10)
143 extern struct proc_dir_entry *ldlm_ns_proc_dir;
145 static inline __u64 dru(__u64 val, __u32 shift, int round_up)
147 return (val + (round_up ? (1 << shift) - 1 : 0)) >> shift;
150 static inline __u64 ldlm_pool_slv_max(__u32 L)
153 * Allow to have all locks for 1 client for 10 hrs.
154 * Formula is the following: limit * 10h / 1 client.
156 __u64 lim = (__u64)L * LDLM_POOL_MAX_AGE / 1;
160 static inline __u64 ldlm_pool_slv_min(__u32 L)
166 LDLM_POOL_FIRST_STAT = 0,
167 LDLM_POOL_GRANTED_STAT = LDLM_POOL_FIRST_STAT,
168 LDLM_POOL_GRANT_STAT,
169 LDLM_POOL_CANCEL_STAT,
170 LDLM_POOL_GRANT_RATE_STAT,
171 LDLM_POOL_CANCEL_RATE_STAT,
172 LDLM_POOL_GRANT_PLAN_STAT,
174 LDLM_POOL_SHRINK_REQTD_STAT,
175 LDLM_POOL_SHRINK_FREED_STAT,
176 LDLM_POOL_RECALC_STAT,
177 LDLM_POOL_TIMING_STAT,
181 static inline struct ldlm_namespace *ldlm_pl2ns(struct ldlm_pool *pl)
183 return container_of(pl, struct ldlm_namespace, ns_pool);
187 * Calculates suggested grant_step in % of available locks for passed
188 * \a period. This is later used in grant_plan calculations.
190 static inline int ldlm_pool_t2gsp(unsigned int t)
193 * This yields 1% grant step for anything below LDLM_POOL_GSP_STEP
194 * and up to 30% for anything higher than LDLM_POOL_GSP_STEP.
196 * How this will affect execution is the following:
198 * - for thread period 1s we will have grant_step 1% which good from
199 * pov of taking some load off from server and push it out to clients.
200 * This is like that because 1% for grant_step means that server will
201 * not allow clients to get lots of locks in short period of time and
202 * keep all old locks in their caches. Clients will always have to
203 * get some locks back if they want to take some new;
205 * - for thread period 10s (which is default) we will have 23% which
206 * means that clients will have enough of room to take some new locks
207 * without getting some back. All locks from this 23% which were not
208 * taken by clients in current period will contribute in SLV growing.
209 * SLV growing means more locks cached on clients until limit or grant
212 return LDLM_POOL_MAX_GSP -
213 ((LDLM_POOL_MAX_GSP - LDLM_POOL_MIN_GSP) >>
214 (t >> LDLM_POOL_GSP_STEP_SHIFT));
217 static inline int ldlm_pool_granted(struct ldlm_pool *pl)
219 return atomic_read(&pl->pl_granted);
223 * Recalculates next grant limit on passed \a pl.
225 * \pre ->pl_lock is locked.
227 static void ldlm_pool_recalc_grant_plan(struct ldlm_pool *pl)
229 int granted, grant_step, limit;
231 limit = ldlm_pool_get_limit(pl);
232 granted = ldlm_pool_granted(pl);
234 grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
235 grant_step = ((limit - granted) * grant_step) / 100;
236 pl->pl_grant_plan = granted + grant_step;
237 limit = (limit * 5) >> 2;
238 if (pl->pl_grant_plan > limit)
239 pl->pl_grant_plan = limit;
243 * Recalculates next SLV on passed \a pl.
245 * \pre ->pl_lock is locked.
247 static void ldlm_pool_recalc_slv(struct ldlm_pool *pl)
257 slv = pl->pl_server_lock_volume;
258 grant_plan = pl->pl_grant_plan;
259 limit = ldlm_pool_get_limit(pl);
260 granted = ldlm_pool_granted(pl);
261 round_up = granted < limit;
263 grant_usage = max_t(int, limit - (granted - grant_plan), 1);
266 * Find out SLV change factor which is the ratio of grant usage
267 * from limit. SLV changes as fast as the ratio of grant plan
268 * consumption. The more locks from grant plan are not consumed
269 * by clients in last interval (idle time), the faster grows
270 * SLV. And the opposite, the more grant plan is over-consumed
271 * (load time) the faster drops SLV.
273 slv_factor = (grant_usage << LDLM_POOL_SLV_SHIFT);
274 do_div(slv_factor, limit);
275 slv = slv * slv_factor;
276 slv = dru(slv, LDLM_POOL_SLV_SHIFT, round_up);
278 if (slv > ldlm_pool_slv_max(limit))
279 slv = ldlm_pool_slv_max(limit);
280 else if (slv < ldlm_pool_slv_min(limit))
281 slv = ldlm_pool_slv_min(limit);
283 pl->pl_server_lock_volume = slv;
287 * Recalculates next stats on passed \a pl.
289 * \pre ->pl_lock is locked.
291 static void ldlm_pool_recalc_stats(struct ldlm_pool *pl)
293 int grant_plan = pl->pl_grant_plan;
294 __u64 slv = pl->pl_server_lock_volume;
295 int granted = ldlm_pool_granted(pl);
296 int grant_rate = atomic_read(&pl->pl_grant_rate);
297 int cancel_rate = atomic_read(&pl->pl_cancel_rate);
299 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_SLV_STAT,
301 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
303 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
305 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
307 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
312 * Sets current SLV into obd accessible via ldlm_pl2ns(pl)->ns_obd.
314 static void ldlm_srv_pool_push_slv(struct ldlm_pool *pl)
316 struct obd_device *obd;
319 * Set new SLV in obd field for using it later without accessing the
320 * pool. This is required to avoid race between sending reply to client
321 * with new SLV and cleanup server stack in which we can't guarantee
322 * that namespace is still alive. We know only that obd is alive as
323 * long as valid export is alive.
325 obd = ldlm_pl2ns(pl)->ns_obd;
326 LASSERT(obd != NULL);
327 write_lock(&obd->obd_pool_lock);
328 obd->obd_pool_slv = pl->pl_server_lock_volume;
329 write_unlock(&obd->obd_pool_lock);
333 * Recalculates all pool fields on passed \a pl.
335 * \pre ->pl_lock is not locked.
337 static int ldlm_srv_pool_recalc(struct ldlm_pool *pl)
339 time64_t recalc_interval_sec;
343 recalc_interval_sec = ktime_get_real_seconds() - pl->pl_recalc_time;
344 if (recalc_interval_sec < pl->pl_recalc_period)
347 spin_lock(&pl->pl_lock);
348 recalc_interval_sec = ktime_get_real_seconds() - pl->pl_recalc_time;
349 if (recalc_interval_sec < pl->pl_recalc_period) {
350 spin_unlock(&pl->pl_lock);
354 * Recalc SLV after last period. This should be done
355 * _before_ recalculating new grant plan.
357 ldlm_pool_recalc_slv(pl);
360 * Make sure that pool informed obd of last SLV changes.
362 ldlm_srv_pool_push_slv(pl);
365 * Update grant_plan for new period.
367 ldlm_pool_recalc_grant_plan(pl);
369 pl->pl_recalc_time = ktime_get_real_seconds();
370 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
371 recalc_interval_sec);
372 spin_unlock(&pl->pl_lock);
377 * This function is used on server side as main entry point for memory
378 * pressure handling. It decreases SLV on \a pl according to passed
379 * \a nr and \a gfp_mask.
381 * Our goal here is to decrease SLV such a way that clients hold \a nr
382 * locks smaller in next 10h.
384 static int ldlm_srv_pool_shrink(struct ldlm_pool *pl,
385 int nr, gfp_t gfp_mask)
390 * VM is asking how many entries may be potentially freed.
393 return ldlm_pool_granted(pl);
396 * Client already canceled locks but server is already in shrinker
397 * and can't cancel anything. Let's catch this race.
399 if (ldlm_pool_granted(pl) == 0)
402 spin_lock(&pl->pl_lock);
405 * We want shrinker to possibly cause cancellation of @nr locks from
406 * clients or grant approximately @nr locks smaller next intervals.
408 * This is why we decreased SLV by @nr. This effect will only be as
409 * long as one re-calc interval (1s these days) and this should be
410 * enough to pass this decreased SLV to all clients. On next recalc
411 * interval pool will either increase SLV if locks load is not high
412 * or will keep on same level or even decrease again, thus, shrinker
413 * decreased SLV will affect next recalc intervals and this way will
414 * make locking load lower.
416 if (nr < pl->pl_server_lock_volume) {
417 pl->pl_server_lock_volume = pl->pl_server_lock_volume - nr;
419 limit = ldlm_pool_get_limit(pl);
420 pl->pl_server_lock_volume = ldlm_pool_slv_min(limit);
424 * Make sure that pool informed obd of last SLV changes.
426 ldlm_srv_pool_push_slv(pl);
427 spin_unlock(&pl->pl_lock);
430 * We did not really free any memory here so far, it only will be
431 * freed later may be, so that we return 0 to not confuse VM.
437 * Setup server side pool \a pl with passed \a limit.
439 static int ldlm_srv_pool_setup(struct ldlm_pool *pl, int limit)
441 struct obd_device *obd;
443 obd = ldlm_pl2ns(pl)->ns_obd;
444 LASSERT(obd != NULL && obd != LP_POISON);
445 LASSERT(obd->obd_type != LP_POISON);
446 write_lock(&obd->obd_pool_lock);
447 obd->obd_pool_limit = limit;
448 write_unlock(&obd->obd_pool_lock);
450 ldlm_pool_set_limit(pl, limit);
455 * Sets SLV and Limit from ldlm_pl2ns(pl)->ns_obd tp passed \a pl.
457 static void ldlm_cli_pool_pop_slv(struct ldlm_pool *pl)
459 struct obd_device *obd;
462 * Get new SLV and Limit from obd which is updated with coming
465 obd = ldlm_pl2ns(pl)->ns_obd;
466 LASSERT(obd != NULL);
467 read_lock(&obd->obd_pool_lock);
468 pl->pl_server_lock_volume = obd->obd_pool_slv;
469 ldlm_pool_set_limit(pl, obd->obd_pool_limit);
470 read_unlock(&obd->obd_pool_lock);
474 * Recalculates client size pool \a pl according to current SLV and Limit.
476 static int ldlm_cli_pool_recalc(struct ldlm_pool *pl)
478 time64_t recalc_interval_sec;
483 recalc_interval_sec = ktime_get_real_seconds() - pl->pl_recalc_time;
484 if (recalc_interval_sec < pl->pl_recalc_period)
487 spin_lock(&pl->pl_lock);
489 * Check if we need to recalc lists now.
491 recalc_interval_sec = ktime_get_real_seconds() - pl->pl_recalc_time;
492 if (recalc_interval_sec < pl->pl_recalc_period) {
493 spin_unlock(&pl->pl_lock);
498 * Make sure that pool knows last SLV and Limit from obd.
500 ldlm_cli_pool_pop_slv(pl);
501 spin_unlock(&pl->pl_lock);
504 * Do not cancel locks in case lru resize is disabled for this ns.
506 if (!ns_connect_lru_resize(ldlm_pl2ns(pl)))
510 * In the time of canceling locks on client we do not need to maintain
511 * sharp timing, we only want to cancel locks asap according to new SLV.
512 * It may be called when SLV has changed much, this is why we do not
513 * take into account pl->pl_recalc_time here.
515 ret = ldlm_cancel_lru(ldlm_pl2ns(pl), 0, LCF_ASYNC,
519 spin_lock(&pl->pl_lock);
521 * Time of LRU resizing might be longer than period,
522 * so update after LRU resizing rather than before it.
524 pl->pl_recalc_time = ktime_get_real_seconds();
525 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
526 recalc_interval_sec);
527 spin_unlock(&pl->pl_lock);
532 * This function is main entry point for memory pressure handling on client
533 * side. Main goal of this function is to cancel some number of locks on
534 * passed \a pl according to \a nr and \a gfp_mask.
536 static int ldlm_cli_pool_shrink(struct ldlm_pool *pl,
537 int nr, gfp_t gfp_mask)
539 struct ldlm_namespace *ns;
545 * Do not cancel locks in case lru resize is disabled for this ns.
547 if (!ns_connect_lru_resize(ns))
551 * Make sure that pool knows last SLV and Limit from obd.
553 ldlm_cli_pool_pop_slv(pl);
555 spin_lock(&ns->ns_lock);
556 unused = ns->ns_nr_unused;
557 spin_unlock(&ns->ns_lock);
560 return (unused / 100) * sysctl_vfs_cache_pressure;
562 return ldlm_cancel_lru(ns, nr, LCF_ASYNC, LDLM_LRU_FLAG_SHRINK);
565 static struct ldlm_pool_ops ldlm_srv_pool_ops = {
566 .po_recalc = ldlm_srv_pool_recalc,
567 .po_shrink = ldlm_srv_pool_shrink,
568 .po_setup = ldlm_srv_pool_setup
571 static struct ldlm_pool_ops ldlm_cli_pool_ops = {
572 .po_recalc = ldlm_cli_pool_recalc,
573 .po_shrink = ldlm_cli_pool_shrink
577 * Pool recalc wrapper. Will call either client or server pool recalc callback
578 * depending what pool \a pl is used.
580 time64_t ldlm_pool_recalc(struct ldlm_pool *pl)
582 time64_t recalc_interval_sec;
585 recalc_interval_sec = ktime_get_real_seconds() - pl->pl_recalc_time;
586 if (recalc_interval_sec > 0) {
587 spin_lock(&pl->pl_lock);
588 recalc_interval_sec = ktime_get_real_seconds() -
591 if (recalc_interval_sec > 0) {
593 * Update pool statistics every 1s.
595 ldlm_pool_recalc_stats(pl);
598 * Zero out all rates and speed for the last period.
600 atomic_set(&pl->pl_grant_rate, 0);
601 atomic_set(&pl->pl_cancel_rate, 0);
603 spin_unlock(&pl->pl_lock);
606 if (pl->pl_ops->po_recalc != NULL) {
607 count = pl->pl_ops->po_recalc(pl);
608 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_RECALC_STAT,
612 recalc_interval_sec = pl->pl_recalc_time - ktime_get_real_seconds() +
613 pl->pl_recalc_period;
614 if (recalc_interval_sec <= 0) {
615 /* DEBUG: should be re-removed after LU-4536 is fixed */
616 CDEBUG(D_DLMTRACE, "%s: Negative interval(%lld), too short period(%lld)\n",
617 pl->pl_name, recalc_interval_sec,
618 (s64)pl->pl_recalc_period);
620 /* Prevent too frequent recalculation. */
621 recalc_interval_sec = 1;
624 return recalc_interval_sec;
628 * Pool shrink wrapper. Will call either client or server pool recalc callback
629 * depending what pool \a pl is used.
631 int ldlm_pool_shrink(struct ldlm_pool *pl, int nr, gfp_t gfp_mask)
635 if (pl->pl_ops->po_shrink != NULL) {
636 cancel = pl->pl_ops->po_shrink(pl, nr, gfp_mask);
638 lprocfs_counter_add(pl->pl_stats,
639 LDLM_POOL_SHRINK_REQTD_STAT,
641 lprocfs_counter_add(pl->pl_stats,
642 LDLM_POOL_SHRINK_FREED_STAT,
645 "%s: request to shrink %d locks, shrunk %d\n",
646 pl->pl_name, nr, cancel);
653 * Pool setup wrapper. Will call either client or server pool recalc callback
654 * depending what pool \a pl is used.
656 * Sets passed \a limit into pool \a pl.
658 int ldlm_pool_setup(struct ldlm_pool *pl, int limit)
660 if (pl->pl_ops->po_setup != NULL)
661 return pl->pl_ops->po_setup(pl, limit);
665 static int lprocfs_pool_state_seq_show(struct seq_file *m, void *unused)
667 int granted, grant_rate, cancel_rate, grant_step;
668 int grant_speed, grant_plan, lvf;
669 struct ldlm_pool *pl = m->private;
673 spin_lock(&pl->pl_lock);
674 slv = pl->pl_server_lock_volume;
675 clv = pl->pl_client_lock_volume;
676 limit = ldlm_pool_get_limit(pl);
677 grant_plan = pl->pl_grant_plan;
678 granted = ldlm_pool_granted(pl);
679 grant_rate = atomic_read(&pl->pl_grant_rate);
680 cancel_rate = atomic_read(&pl->pl_cancel_rate);
681 grant_speed = grant_rate - cancel_rate;
682 lvf = atomic_read(&pl->pl_lock_volume_factor);
683 grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
684 spin_unlock(&pl->pl_lock);
686 seq_printf(m, "LDLM pool state (%s):\n"
690 pl->pl_name, slv, clv, lvf);
692 if (ns_is_server(ldlm_pl2ns(pl))) {
693 seq_printf(m, " GSP: %d%%\n", grant_step);
694 seq_printf(m, " GP: %d\n", grant_plan);
697 seq_printf(m, " GR: %d\n CR: %d\n GS: %d\n G: %d\n L: %d\n",
698 grant_rate, cancel_rate, grant_speed,
703 LDEBUGFS_SEQ_FOPS_RO(lprocfs_pool_state);
705 static ssize_t grant_speed_show(struct kobject *kobj, struct attribute *attr,
708 struct ldlm_pool *pl = container_of(kobj, struct ldlm_pool,
712 spin_lock(&pl->pl_lock);
713 /* serialize with ldlm_pool_recalc */
714 grant_speed = atomic_read(&pl->pl_grant_rate) -
715 atomic_read(&pl->pl_cancel_rate);
716 spin_unlock(&pl->pl_lock);
717 return sprintf(buf, "%d\n", grant_speed);
719 LUSTRE_RO_ATTR(grant_speed);
721 LDLM_POOL_SYSFS_READER_SHOW(grant_plan, int);
722 LUSTRE_RO_ATTR(grant_plan);
724 LDLM_POOL_SYSFS_READER_SHOW(recalc_period, int);
725 LDLM_POOL_SYSFS_WRITER_STORE(recalc_period, int);
726 LUSTRE_RW_ATTR(recalc_period);
728 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(server_lock_volume, u64);
729 LUSTRE_RO_ATTR(server_lock_volume);
731 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(limit, atomic);
732 LDLM_POOL_SYSFS_WRITER_NOLOCK_STORE(limit, atomic);
733 LUSTRE_RW_ATTR(limit);
735 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(granted, atomic);
736 LUSTRE_RO_ATTR(granted);
738 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(cancel_rate, atomic);
739 LUSTRE_RO_ATTR(cancel_rate);
741 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(grant_rate, atomic);
742 LUSTRE_RO_ATTR(grant_rate);
744 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(lock_volume_factor, atomic);
745 LDLM_POOL_SYSFS_WRITER_NOLOCK_STORE(lock_volume_factor, atomic);
746 LUSTRE_RW_ATTR(lock_volume_factor);
748 /* These are for pools in /sys/fs/lustre/ldlm/namespaces/.../pool */
749 static struct attribute *ldlm_pl_attrs[] = {
750 &lustre_attr_grant_speed.attr,
751 &lustre_attr_grant_plan.attr,
752 &lustre_attr_recalc_period.attr,
753 &lustre_attr_server_lock_volume.attr,
754 &lustre_attr_limit.attr,
755 &lustre_attr_granted.attr,
756 &lustre_attr_cancel_rate.attr,
757 &lustre_attr_grant_rate.attr,
758 &lustre_attr_lock_volume_factor.attr,
762 static void ldlm_pl_release(struct kobject *kobj)
764 struct ldlm_pool *pl = container_of(kobj, struct ldlm_pool,
766 complete(&pl->pl_kobj_unregister);
769 static struct kobj_type ldlm_pl_ktype = {
770 .default_attrs = ldlm_pl_attrs,
771 .sysfs_ops = &lustre_sysfs_ops,
772 .release = ldlm_pl_release,
775 static int ldlm_pool_sysfs_init(struct ldlm_pool *pl)
777 struct ldlm_namespace *ns = ldlm_pl2ns(pl);
780 init_completion(&pl->pl_kobj_unregister);
781 err = kobject_init_and_add(&pl->pl_kobj, &ldlm_pl_ktype, &ns->ns_kobj,
787 static int ldlm_pool_debugfs_init(struct ldlm_pool *pl)
789 struct ldlm_namespace *ns = ldlm_pl2ns(pl);
790 struct dentry *debugfs_ns_parent;
791 struct lprocfs_vars pool_vars[2];
792 char *var_name = NULL;
797 OBD_ALLOC(var_name, MAX_STRING_SIZE + 1);
801 debugfs_ns_parent = ns->ns_debugfs_entry;
802 if (IS_ERR_OR_NULL(debugfs_ns_parent)) {
803 CERROR("%s: debugfs entry is not initialized\n",
805 GOTO(out_free_name, rc = -EINVAL);
807 pl->pl_debugfs_entry = ldebugfs_register("pool", debugfs_ns_parent,
809 if (IS_ERR(pl->pl_debugfs_entry)) {
810 rc = PTR_ERR(pl->pl_debugfs_entry);
811 pl->pl_debugfs_entry = NULL;
812 CERROR("%s: cannot create 'pool' debugfs entry: rc = %d\n",
813 ldlm_ns_name(ns), rc);
814 GOTO(out_free_name, rc);
817 var_name[MAX_STRING_SIZE] = '\0';
818 memset(pool_vars, 0, sizeof(pool_vars));
819 pool_vars[0].name = var_name;
821 ldlm_add_var(&pool_vars[0], pl->pl_debugfs_entry, "state", pl,
822 &lprocfs_pool_state_fops);
824 pl->pl_stats = lprocfs_alloc_stats(LDLM_POOL_LAST_STAT -
825 LDLM_POOL_FIRST_STAT, 0);
827 GOTO(out_free_name, rc = -ENOMEM);
829 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
830 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
832 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_STAT,
833 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
835 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_STAT,
836 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
838 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
839 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
840 "grant_rate", "locks/s");
841 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
842 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
843 "cancel_rate", "locks/s");
844 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
845 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
846 "grant_plan", "locks/s");
847 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SLV_STAT,
848 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
850 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_REQTD_STAT,
851 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
852 "shrink_request", "locks");
853 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_FREED_STAT,
854 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
855 "shrink_freed", "locks");
856 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_RECALC_STAT,
857 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
858 "recalc_freed", "locks");
859 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_TIMING_STAT,
860 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
861 "recalc_timing", "sec");
862 rc = ldebugfs_register_stats(pl->pl_debugfs_entry, "stats",
867 OBD_FREE(var_name, MAX_STRING_SIZE + 1);
871 static void ldlm_pool_sysfs_fini(struct ldlm_pool *pl)
873 kobject_put(&pl->pl_kobj);
874 wait_for_completion(&pl->pl_kobj_unregister);
877 static void ldlm_pool_debugfs_fini(struct ldlm_pool *pl)
879 if (pl->pl_stats != NULL) {
880 lprocfs_free_stats(&pl->pl_stats);
883 if (pl->pl_debugfs_entry != NULL) {
884 ldebugfs_remove(&pl->pl_debugfs_entry);
885 pl->pl_debugfs_entry = NULL;
889 int ldlm_pool_init(struct ldlm_pool *pl, struct ldlm_namespace *ns,
890 int idx, enum ldlm_side client)
896 spin_lock_init(&pl->pl_lock);
897 atomic_set(&pl->pl_granted, 0);
898 pl->pl_recalc_time = ktime_get_real_seconds();
899 atomic_set(&pl->pl_lock_volume_factor, 1);
901 atomic_set(&pl->pl_grant_rate, 0);
902 atomic_set(&pl->pl_cancel_rate, 0);
903 pl->pl_grant_plan = LDLM_POOL_GP(LDLM_POOL_HOST_L);
905 snprintf(pl->pl_name, sizeof(pl->pl_name), "ldlm-pool-%s-%d",
906 ldlm_ns_name(ns), idx);
908 if (client == LDLM_NAMESPACE_SERVER) {
909 pl->pl_ops = &ldlm_srv_pool_ops;
910 ldlm_pool_set_limit(pl, LDLM_POOL_HOST_L);
911 pl->pl_recalc_period = LDLM_POOL_SRV_DEF_RECALC_PERIOD;
912 pl->pl_server_lock_volume = ldlm_pool_slv_max(LDLM_POOL_HOST_L);
914 ldlm_pool_set_limit(pl, 1);
915 pl->pl_server_lock_volume = 0;
916 pl->pl_ops = &ldlm_cli_pool_ops;
917 pl->pl_recalc_period = LDLM_POOL_CLI_DEF_RECALC_PERIOD;
919 pl->pl_client_lock_volume = 0;
920 rc = ldlm_pool_debugfs_init(pl);
924 rc = ldlm_pool_sysfs_init(pl);
928 CDEBUG(D_DLMTRACE, "Lock pool %s is initialized\n", pl->pl_name);
933 void ldlm_pool_fini(struct ldlm_pool *pl)
936 ldlm_pool_sysfs_fini(pl);
937 ldlm_pool_debugfs_fini(pl);
940 * Pool should not be used after this point. We can't free it here as
941 * it lives in struct ldlm_namespace, but still interested in catching
942 * any abnormal using cases.
944 POISON(pl, 0x5a, sizeof(*pl));
949 * Add new taken ldlm lock \a lock into pool \a pl accounting.
951 void ldlm_pool_add(struct ldlm_pool *pl, struct ldlm_lock *lock)
954 * FLOCK locks are special in a sense that they are almost never
955 * cancelled, instead special kind of lock is used to drop them.
956 * also there is no LRU for flock locks, so no point in tracking
959 * PLAIN locks are used by config and quota, the quantity is small
960 * and usually they are not in LRU.
962 if (lock->l_resource->lr_type == LDLM_FLOCK ||
963 lock->l_resource->lr_type == LDLM_PLAIN)
966 ldlm_reclaim_add(lock);
968 atomic_inc(&pl->pl_granted);
969 atomic_inc(&pl->pl_grant_rate);
970 lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_GRANT_STAT);
972 * Do not do pool recalc for client side as all locks which
973 * potentially may be canceled has already been packed into
974 * enqueue/cancel rpc. Also we do not want to run out of stack
975 * with too long call paths.
977 if (ns_is_server(ldlm_pl2ns(pl)))
978 ldlm_pool_recalc(pl);
982 * Remove ldlm lock \a lock from pool \a pl accounting.
984 void ldlm_pool_del(struct ldlm_pool *pl, struct ldlm_lock *lock)
987 * Filter out FLOCK & PLAIN locks. Read above comment in
990 if (lock->l_resource->lr_type == LDLM_FLOCK ||
991 lock->l_resource->lr_type == LDLM_PLAIN)
994 ldlm_reclaim_del(lock);
996 LASSERT(atomic_read(&pl->pl_granted) > 0);
997 atomic_dec(&pl->pl_granted);
998 atomic_inc(&pl->pl_cancel_rate);
1000 lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_CANCEL_STAT);
1002 if (ns_is_server(ldlm_pl2ns(pl)))
1003 ldlm_pool_recalc(pl);
1007 * Returns current \a pl SLV.
1009 * \pre ->pl_lock is not locked.
1011 __u64 ldlm_pool_get_slv(struct ldlm_pool *pl)
1015 spin_lock(&pl->pl_lock);
1016 slv = pl->pl_server_lock_volume;
1017 spin_unlock(&pl->pl_lock);
1022 * Sets passed \a slv to \a pl.
1024 * \pre ->pl_lock is not locked.
1026 void ldlm_pool_set_slv(struct ldlm_pool *pl, __u64 slv)
1028 spin_lock(&pl->pl_lock);
1029 pl->pl_server_lock_volume = slv;
1030 spin_unlock(&pl->pl_lock);
1034 * Returns current \a pl CLV.
1036 * \pre ->pl_lock is not locked.
1038 __u64 ldlm_pool_get_clv(struct ldlm_pool *pl)
1042 spin_lock(&pl->pl_lock);
1043 slv = pl->pl_client_lock_volume;
1044 spin_unlock(&pl->pl_lock);
1049 * Sets passed \a clv to \a pl.
1051 * \pre ->pl_lock is not locked.
1053 void ldlm_pool_set_clv(struct ldlm_pool *pl, __u64 clv)
1055 spin_lock(&pl->pl_lock);
1056 pl->pl_client_lock_volume = clv;
1057 spin_unlock(&pl->pl_lock);
1061 * Returns current \a pl limit.
1063 __u32 ldlm_pool_get_limit(struct ldlm_pool *pl)
1065 return atomic_read(&pl->pl_limit);
1069 * Sets passed \a limit to \a pl.
1071 void ldlm_pool_set_limit(struct ldlm_pool *pl, __u32 limit)
1073 atomic_set(&pl->pl_limit, limit);
1077 * Returns current LVF from \a pl.
1079 __u32 ldlm_pool_get_lvf(struct ldlm_pool *pl)
1081 return atomic_read(&pl->pl_lock_volume_factor);
1084 static struct shrinker *ldlm_pools_srv_shrinker;
1085 static struct shrinker *ldlm_pools_cli_shrinker;
1088 * count locks from all namespaces (if possible). Returns number of
1091 static unsigned long ldlm_pools_count(enum ldlm_side client, gfp_t gfp_mask)
1093 unsigned long total = 0;
1095 struct ldlm_namespace *ns;
1096 struct ldlm_namespace *ns_old = NULL; /* loop detection */
1098 if (client == LDLM_NAMESPACE_CLIENT && !(gfp_mask & __GFP_FS))
1102 * Find out how many resources we may release.
1104 for (nr_ns = ldlm_namespace_nr_read(client);
1105 nr_ns > 0; nr_ns--) {
1106 mutex_lock(ldlm_namespace_lock(client));
1107 if (list_empty(ldlm_namespace_list(client))) {
1108 mutex_unlock(ldlm_namespace_lock(client));
1111 ns = ldlm_namespace_first_locked(client);
1114 mutex_unlock(ldlm_namespace_lock(client));
1118 if (ldlm_ns_empty(ns)) {
1119 ldlm_namespace_move_to_inactive_locked(ns, client);
1120 mutex_unlock(ldlm_namespace_lock(client));
1127 ldlm_namespace_get(ns);
1128 ldlm_namespace_move_to_active_locked(ns, client);
1129 mutex_unlock(ldlm_namespace_lock(client));
1130 total += ldlm_pool_shrink(&ns->ns_pool, 0, gfp_mask);
1131 ldlm_namespace_put(ns);
1137 static unsigned long ldlm_pools_scan(enum ldlm_side client, int nr,
1140 unsigned long freed = 0;
1142 struct ldlm_namespace *ns;
1144 if (client == LDLM_NAMESPACE_CLIENT && !(gfp_mask & __GFP_FS))
1148 * Shrink at least ldlm_namespace_nr_read(client) namespaces.
1150 for (tmp = nr_ns = ldlm_namespace_nr_read(client);
1152 int cancel, nr_locks;
1155 * Do not call shrink under ldlm_namespace_lock(client)
1157 mutex_lock(ldlm_namespace_lock(client));
1158 if (list_empty(ldlm_namespace_list(client))) {
1159 mutex_unlock(ldlm_namespace_lock(client));
1162 ns = ldlm_namespace_first_locked(client);
1163 ldlm_namespace_get(ns);
1164 ldlm_namespace_move_to_active_locked(ns, client);
1165 mutex_unlock(ldlm_namespace_lock(client));
1167 nr_locks = ldlm_pool_granted(&ns->ns_pool);
1169 * We use to shrink propotionally but with new shrinker API,
1170 * we lost the total number of freeable locks.
1172 cancel = 1 + min_t(int, nr_locks, nr / nr_ns);
1173 freed += ldlm_pool_shrink(&ns->ns_pool, cancel, gfp_mask);
1174 ldlm_namespace_put(ns);
1177 * we only decrease the SLV in server pools shrinker, return
1178 * SHRINK_STOP to kernel to avoid needless loop. LU-1128
1180 return (client == LDLM_NAMESPACE_SERVER) ? SHRINK_STOP : freed;
1183 #ifdef HAVE_SHRINKER_COUNT
1184 static unsigned long ldlm_pools_srv_count(struct shrinker *s,
1185 struct shrink_control *sc)
1187 return ldlm_pools_count(LDLM_NAMESPACE_SERVER, sc->gfp_mask);
1190 static unsigned long ldlm_pools_srv_scan(struct shrinker *s,
1191 struct shrink_control *sc)
1193 return ldlm_pools_scan(LDLM_NAMESPACE_SERVER, sc->nr_to_scan,
1197 static unsigned long ldlm_pools_cli_count(struct shrinker *s,
1198 struct shrink_control *sc)
1200 return ldlm_pools_count(LDLM_NAMESPACE_CLIENT, sc->gfp_mask);
1203 static unsigned long ldlm_pools_cli_scan(struct shrinker *s,
1204 struct shrink_control *sc)
1206 return ldlm_pools_scan(LDLM_NAMESPACE_CLIENT, sc->nr_to_scan,
1212 * Cancel \a nr locks from all namespaces (if possible). Returns number of
1213 * cached locks after shrink is finished. All namespaces are asked to
1214 * cancel approximately equal amount of locks to keep balancing.
1216 static int ldlm_pools_shrink(enum ldlm_side client, int nr, gfp_t gfp_mask)
1218 unsigned long total = 0;
1220 if (client == LDLM_NAMESPACE_CLIENT && nr != 0 &&
1221 !(gfp_mask & __GFP_FS))
1224 total = ldlm_pools_count(client, gfp_mask);
1226 if (nr == 0 || total == 0)
1229 return ldlm_pools_scan(client, nr, gfp_mask);
1232 static int ldlm_pools_srv_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1234 return ldlm_pools_shrink(LDLM_NAMESPACE_SERVER,
1235 shrink_param(sc, nr_to_scan),
1236 shrink_param(sc, gfp_mask));
1239 static int ldlm_pools_cli_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1241 return ldlm_pools_shrink(LDLM_NAMESPACE_CLIENT,
1242 shrink_param(sc, nr_to_scan),
1243 shrink_param(sc, gfp_mask));
1246 #endif /* HAVE_SHRINKER_COUNT */
1248 static time64_t ldlm_pools_recalc_delay(enum ldlm_side side)
1250 struct ldlm_namespace *ns;
1251 struct ldlm_namespace *ns_old = NULL;
1252 /* seconds of sleep if no active namespaces */
1253 time64_t delay = side == LDLM_NAMESPACE_SERVER ?
1254 LDLM_POOL_SRV_DEF_RECALC_PERIOD :
1255 LDLM_POOL_CLI_DEF_RECALC_PERIOD;
1258 /* Recalc at least ldlm_namespace_nr(side) namespaces. */
1259 for (nr = ldlm_namespace_nr_read(side); nr > 0; nr--) {
1262 * Lock the list, get first @ns in the list, getref, move it
1263 * to the tail, unlock and call pool recalc. This way we avoid
1264 * calling recalc under @ns lock, which is really good as we
1265 * get rid of potential deadlock on side nodes when canceling
1266 * locks synchronously.
1268 mutex_lock(ldlm_namespace_lock(side));
1269 if (list_empty(ldlm_namespace_list(side))) {
1270 mutex_unlock(ldlm_namespace_lock(side));
1273 ns = ldlm_namespace_first_locked(side);
1275 if (ns_old == ns) { /* Full pass complete */
1276 mutex_unlock(ldlm_namespace_lock(side));
1280 /* We got an empty namespace, need to move it back to inactive
1282 * The race with parallel resource creation is fine:
1283 * - If they do namespace_get before our check, we fail the
1284 * check and they move this item to the end of the list anyway
1285 * - If we do the check and then they do namespace_get, then
1286 * we move the namespace to inactive and they will move
1287 * it back to active (synchronised by the lock, so no clash
1290 if (ldlm_ns_empty(ns)) {
1291 ldlm_namespace_move_to_inactive_locked(ns, side);
1292 mutex_unlock(ldlm_namespace_lock(side));
1299 spin_lock(&ns->ns_lock);
1301 * skip ns which is being freed, and we don't want to increase
1302 * its refcount again, not even temporarily. bz21519 & LU-499.
1304 if (ns->ns_stopping) {
1308 ldlm_namespace_get(ns);
1310 spin_unlock(&ns->ns_lock);
1312 ldlm_namespace_move_to_active_locked(ns, side);
1313 mutex_unlock(ldlm_namespace_lock(side));
1316 * After setup is done - recalc the pool.
1319 delay = min(delay, ldlm_pool_recalc(&ns->ns_pool));
1320 ldlm_namespace_put(ns);
1327 static void ldlm_pools_recalc_task(struct work_struct *ws);
1328 static DECLARE_DELAYED_WORK(ldlm_pools_recalc_work, ldlm_pools_recalc_task);
1330 static void ldlm_pools_recalc_task(struct work_struct *ws)
1332 /* seconds of sleep if no active namespaces */
1334 #ifdef HAVE_SERVER_SUPPORT
1335 struct ldlm_namespace *ns;
1336 unsigned long nr_l = 0, nr_p = 0, l;
1339 /* Check all modest namespaces first. */
1340 mutex_lock(ldlm_namespace_lock(LDLM_NAMESPACE_SERVER));
1341 list_for_each_entry(ns, ldlm_namespace_list(LDLM_NAMESPACE_SERVER),
1343 if (ns->ns_appetite != LDLM_NAMESPACE_MODEST)
1346 l = ldlm_pool_granted(&ns->ns_pool);
1351 * Set the modest pools limit equal to their avg granted
1354 l += dru(l, LDLM_POOLS_MODEST_MARGIN_SHIFT, 0);
1355 ldlm_pool_setup(&ns->ns_pool, l);
1361 * Make sure than modest namespaces did not eat more that 2/3
1364 if (nr_l >= 2 * (LDLM_POOL_HOST_L / 3)) {
1365 CWARN("'Modest' pools eat out 2/3 of server locks limit (%lu of %lu). This means that you have too many clients for this amount of server RAM. Upgrade server!\n",
1366 nr_l, LDLM_POOL_HOST_L);
1370 /* The rest is given to greedy namespaces. */
1371 list_for_each_entry(ns, ldlm_namespace_list(LDLM_NAMESPACE_SERVER),
1373 if (!equal && ns->ns_appetite != LDLM_NAMESPACE_GREEDY)
1378 * In the case 2/3 locks are eaten out by
1379 * modest pools, we re-setup equal limit
1382 l = LDLM_POOL_HOST_L /
1383 ldlm_namespace_nr_read(LDLM_NAMESPACE_SERVER);
1386 * All the rest of greedy pools will have
1387 * all locks in equal parts.
1389 l = (LDLM_POOL_HOST_L - nr_l) /
1390 (ldlm_namespace_nr_read(LDLM_NAMESPACE_SERVER) -
1393 ldlm_pool_setup(&ns->ns_pool, l);
1395 mutex_unlock(ldlm_namespace_lock(LDLM_NAMESPACE_SERVER));
1397 delay = min(ldlm_pools_recalc_delay(LDLM_NAMESPACE_SERVER),
1398 ldlm_pools_recalc_delay(LDLM_NAMESPACE_CLIENT));
1399 #else /* !HAVE_SERVER_SUPPORT */
1400 delay = ldlm_pools_recalc_delay(LDLM_NAMESPACE_CLIENT);
1401 #endif /* HAVE_SERVER_SUPPORT */
1403 /* Wake up the blocking threads from time to time. */
1404 ldlm_bl_thread_wakeup();
1406 schedule_delayed_work(&ldlm_pools_recalc_work, cfs_time_seconds(delay));
1409 int ldlm_pools_init(void)
1411 DEF_SHRINKER_VAR(shsvar, ldlm_pools_srv_shrink,
1412 ldlm_pools_srv_count, ldlm_pools_srv_scan);
1413 DEF_SHRINKER_VAR(shcvar, ldlm_pools_cli_shrink,
1414 ldlm_pools_cli_count, ldlm_pools_cli_scan);
1416 schedule_delayed_work(&ldlm_pools_recalc_work,
1417 LDLM_POOL_CLI_DEF_RECALC_PERIOD);
1418 ldlm_pools_srv_shrinker = set_shrinker(DEFAULT_SEEKS, &shsvar);
1419 ldlm_pools_cli_shrinker = set_shrinker(DEFAULT_SEEKS, &shcvar);
1424 void ldlm_pools_fini(void)
1426 if (ldlm_pools_srv_shrinker != NULL) {
1427 remove_shrinker(ldlm_pools_srv_shrinker);
1428 ldlm_pools_srv_shrinker = NULL;
1430 if (ldlm_pools_cli_shrinker != NULL) {
1431 remove_shrinker(ldlm_pools_cli_shrinker);
1432 ldlm_pools_cli_shrinker = NULL;
1434 cancel_delayed_work_sync(&ldlm_pools_recalc_work);
1437 #else /* !HAVE_LRU_RESIZE_SUPPORT */
1438 int ldlm_pool_setup(struct ldlm_pool *pl, int limit)
1443 time64_t ldlm_pool_recalc(struct ldlm_pool *pl)
1448 int ldlm_pool_shrink(struct ldlm_pool *pl,
1449 int nr, gfp_t gfp_mask)
1454 int ldlm_pool_init(struct ldlm_pool *pl, struct ldlm_namespace *ns,
1455 int idx, enum ldlm_side client)
1460 void ldlm_pool_fini(struct ldlm_pool *pl)
1465 void ldlm_pool_add(struct ldlm_pool *pl, struct ldlm_lock *lock)
1470 void ldlm_pool_del(struct ldlm_pool *pl, struct ldlm_lock *lock)
1475 __u64 ldlm_pool_get_slv(struct ldlm_pool *pl)
1480 void ldlm_pool_set_slv(struct ldlm_pool *pl, __u64 slv)
1485 __u64 ldlm_pool_get_clv(struct ldlm_pool *pl)
1490 void ldlm_pool_set_clv(struct ldlm_pool *pl, __u64 clv)
1495 __u32 ldlm_pool_get_limit(struct ldlm_pool *pl)
1500 void ldlm_pool_set_limit(struct ldlm_pool *pl, __u32 limit)
1505 __u32 ldlm_pool_get_lvf(struct ldlm_pool *pl)
1510 int ldlm_pools_init(void)
1515 void ldlm_pools_fini(void)
1520 #endif /* HAVE_LRU_RESIZE_SUPPORT */