4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
30 * Copyright (c) 2010, 2013, Intel Corporation.
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
36 /** \defgroup PtlRPC Portal RPC and networking module.
38 * PortalRPC is the layer used by rest of lustre code to achieve network
39 * communications: establish connections with corresponding export and import
40 * states, listen for a service, send and receive RPCs.
41 * PortalRPC also includes base recovery framework: packet resending and
42 * replaying, reconnections, pinger.
44 * PortalRPC utilizes LNet as its transport layer.
58 #if defined(__linux__)
59 #include <linux/lustre_net.h>
60 #elif defined(__APPLE__)
61 #include <darwin/lustre_net.h>
62 #elif defined(__WINNT__)
63 #include <winnt/lustre_net.h>
65 #error Unsupported operating system.
68 #include <libcfs/libcfs.h>
70 #include <lnet/lnet.h>
71 #include <lustre/lustre_idl.h>
72 #include <lustre_ha.h>
73 #include <lustre_sec.h>
74 #include <lustre_import.h>
75 #include <lprocfs_status.h>
76 #include <lu_object.h>
77 #include <lustre_req_layout.h>
79 #include <obd_support.h>
80 #include <lustre_ver.h>
82 /* MD flags we _always_ use */
83 #define PTLRPC_MD_OPTIONS 0
86 * Max # of bulk operations in one request.
87 * In order for the client and server to properly negotiate the maximum
88 * possible transfer size, PTLRPC_BULK_OPS_COUNT must be a power-of-two
89 * value. The client is free to limit the actual RPC size for any bulk
90 * transfer via cl_max_pages_per_rpc to some non-power-of-two value. */
91 #define PTLRPC_BULK_OPS_BITS 2
92 #define PTLRPC_BULK_OPS_COUNT (1U << PTLRPC_BULK_OPS_BITS)
94 * PTLRPC_BULK_OPS_MASK is for the convenience of the client only, and
95 * should not be used on the server at all. Otherwise, it imposes a
96 * protocol limitation on the maximum RPC size that can be used by any
97 * RPC sent to that server in the future. Instead, the server should
98 * use the negotiated per-client ocd_brw_size to determine the bulk
100 #define PTLRPC_BULK_OPS_MASK (~((__u64)PTLRPC_BULK_OPS_COUNT - 1))
103 * Define maxima for bulk I/O.
105 * A single PTLRPC BRW request is sent via up to PTLRPC_BULK_OPS_COUNT
106 * of LNET_MTU sized RDMA transfers. Clients and servers negotiate the
107 * currently supported maximum between peers at connect via ocd_brw_size.
109 #define PTLRPC_MAX_BRW_BITS (LNET_MTU_BITS + PTLRPC_BULK_OPS_BITS)
110 #define PTLRPC_MAX_BRW_SIZE (1 << PTLRPC_MAX_BRW_BITS)
111 #define PTLRPC_MAX_BRW_PAGES (PTLRPC_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
113 #define ONE_MB_BRW_SIZE (1 << LNET_MTU_BITS)
114 #define MD_MAX_BRW_SIZE (1 << LNET_MTU_BITS)
115 #define MD_MAX_BRW_PAGES (MD_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
116 #define DT_MAX_BRW_SIZE PTLRPC_MAX_BRW_SIZE
117 #define DT_MAX_BRW_PAGES (DT_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
118 #define OFD_MAX_BRW_SIZE (1 << LNET_MTU_BITS)
120 /* When PAGE_SIZE is a constant, we can check our arithmetic here with cpp! */
122 # if ((PTLRPC_MAX_BRW_PAGES & (PTLRPC_MAX_BRW_PAGES - 1)) != 0)
123 # error "PTLRPC_MAX_BRW_PAGES isn't a power of two"
125 # if (PTLRPC_MAX_BRW_SIZE != (PTLRPC_MAX_BRW_PAGES * PAGE_CACHE_SIZE))
126 # error "PTLRPC_MAX_BRW_SIZE isn't PTLRPC_MAX_BRW_PAGES * PAGE_CACHE_SIZE"
128 # if (PTLRPC_MAX_BRW_SIZE > LNET_MTU * PTLRPC_BULK_OPS_COUNT)
129 # error "PTLRPC_MAX_BRW_SIZE too big"
131 # if (PTLRPC_MAX_BRW_PAGES > LNET_MAX_IOV * PTLRPC_BULK_OPS_COUNT)
132 # error "PTLRPC_MAX_BRW_PAGES too big"
134 #endif /* __KERNEL__ */
136 #define PTLRPC_NTHRS_INIT 2
141 * Constants determine how memory is used to buffer incoming service requests.
143 * ?_NBUFS # buffers to allocate when growing the pool
144 * ?_BUFSIZE # bytes in a single request buffer
145 * ?_MAXREQSIZE # maximum request service will receive
147 * When fewer than ?_NBUFS/2 buffers are posted for receive, another chunk
148 * of ?_NBUFS is added to the pool.
150 * Messages larger than ?_MAXREQSIZE are dropped. Request buffers are
151 * considered full when less than ?_MAXREQSIZE is left in them.
156 * Constants determine how threads are created for ptlrpc service.
158 * ?_NTHRS_INIT # threads to create for each service partition on
159 * initializing. If it's non-affinity service and
160 * there is only one partition, it's the overall #
161 * threads for the service while initializing.
162 * ?_NTHRS_BASE # threads should be created at least for each
163 * ptlrpc partition to keep the service healthy.
164 * It's the low-water mark of threads upper-limit
165 * for each partition.
166 * ?_THR_FACTOR # threads can be added on threads upper-limit for
167 * each CPU core. This factor is only for reference,
168 * we might decrease value of factor if number of cores
169 * per CPT is above a limit.
170 * ?_NTHRS_MAX # overall threads can be created for a service,
171 * it's a soft limit because if service is running
172 * on machine with hundreds of cores and tens of
173 * CPU partitions, we need to guarantee each partition
174 * has ?_NTHRS_BASE threads, which means total threads
175 * will be ?_NTHRS_BASE * number_of_cpts which can
176 * exceed ?_NTHRS_MAX.
180 * #define MDS_NTHRS_INIT 2
181 * #define MDS_NTHRS_BASE 64
182 * #define MDS_NTHRS_FACTOR 8
183 * #define MDS_NTHRS_MAX 1024
186 * ---------------------------------------------------------------------
187 * Server(A) has 16 cores, user configured it to 4 partitions so each
188 * partition has 4 cores, then actual number of service threads on each
190 * MDS_NTHRS_BASE(64) + cores(4) * MDS_NTHRS_FACTOR(8) = 96
192 * Total number of threads for the service is:
193 * 96 * partitions(4) = 384
196 * ---------------------------------------------------------------------
197 * Server(B) has 32 cores, user configured it to 4 partitions so each
198 * partition has 8 cores, then actual number of service threads on each
200 * MDS_NTHRS_BASE(64) + cores(8) * MDS_NTHRS_FACTOR(8) = 128
202 * Total number of threads for the service is:
203 * 128 * partitions(4) = 512
206 * ---------------------------------------------------------------------
207 * Server(B) has 96 cores, user configured it to 8 partitions so each
208 * partition has 12 cores, then actual number of service threads on each
210 * MDS_NTHRS_BASE(64) + cores(12) * MDS_NTHRS_FACTOR(8) = 160
212 * Total number of threads for the service is:
213 * 160 * partitions(8) = 1280
215 * However, it's above the soft limit MDS_NTHRS_MAX, so we choose this number
216 * as upper limit of threads number for each partition:
217 * MDS_NTHRS_MAX(1024) / partitions(8) = 128
220 * ---------------------------------------------------------------------
221 * Server(C) have a thousand of cores and user configured it to 32 partitions
222 * MDS_NTHRS_BASE(64) * 32 = 2048
224 * which is already above soft limit MDS_NTHRS_MAX(1024), but we still need
225 * to guarantee that each partition has at least MDS_NTHRS_BASE(64) threads
226 * to keep service healthy, so total number of threads will just be 2048.
228 * NB: we don't suggest to choose server with that many cores because backend
229 * filesystem itself, buffer cache, or underlying network stack might
230 * have some SMP scalability issues at that large scale.
232 * If user already has a fat machine with hundreds or thousands of cores,
233 * there are two choices for configuration:
234 * a) create CPU table from subset of all CPUs and run Lustre on
236 * b) bind service threads on a few partitions, see modparameters of
237 * MDS and OSS for details
239 * NB: these calculations (and examples below) are simplified to help
240 * understanding, the real implementation is a little more complex,
241 * please see ptlrpc_server_nthreads_check() for details.
246 * LDLM threads constants:
248 * Given 8 as factor and 24 as base threads number
251 * On 4-core machine we will have 24 + 8 * 4 = 56 threads.
254 * On 8-core machine with 2 partitions we will have 24 + 4 * 8 = 56
255 * threads for each partition and total threads number will be 112.
258 * On 64-core machine with 8 partitions we will need LDLM_NTHRS_BASE(24)
259 * threads for each partition to keep service healthy, so total threads
260 * number should be 24 * 8 = 192.
262 * So with these constants, threads number will be at the similar level
263 * of old versions, unless target machine has over a hundred cores
265 #define LDLM_THR_FACTOR 8
266 #define LDLM_NTHRS_INIT PTLRPC_NTHRS_INIT
267 #define LDLM_NTHRS_BASE 24
268 #define LDLM_NTHRS_MAX (num_online_cpus() == 1 ? 64 : 128)
270 #define LDLM_BL_THREADS LDLM_NTHRS_AUTO_INIT
271 #define LDLM_CLIENT_NBUFS 1
272 #define LDLM_SERVER_NBUFS 64
273 #define LDLM_BUFSIZE (8 * 1024)
274 #define LDLM_MAXREQSIZE (5 * 1024)
275 #define LDLM_MAXREPSIZE (1024)
278 * MDS threads constants:
280 * Please see examples in "Thread Constants", MDS threads number will be at
281 * the comparable level of old versions, unless the server has many cores.
283 #ifndef MDS_MAX_THREADS
284 #define MDS_MAX_THREADS 1024
285 #define MDS_MAX_OTHR_THREADS 256
287 #else /* MDS_MAX_THREADS */
288 #if MDS_MAX_THREADS < PTLRPC_NTHRS_INIT
289 #undef MDS_MAX_THREADS
290 #define MDS_MAX_THREADS PTLRPC_NTHRS_INIT
292 #define MDS_MAX_OTHR_THREADS max(PTLRPC_NTHRS_INIT, MDS_MAX_THREADS / 2)
295 /* default service */
296 #define MDS_THR_FACTOR 8
297 #define MDS_NTHRS_INIT PTLRPC_NTHRS_INIT
298 #define MDS_NTHRS_MAX MDS_MAX_THREADS
299 #define MDS_NTHRS_BASE min(64, MDS_NTHRS_MAX)
301 /* read-page service */
302 #define MDS_RDPG_THR_FACTOR 4
303 #define MDS_RDPG_NTHRS_INIT PTLRPC_NTHRS_INIT
304 #define MDS_RDPG_NTHRS_MAX MDS_MAX_OTHR_THREADS
305 #define MDS_RDPG_NTHRS_BASE min(48, MDS_RDPG_NTHRS_MAX)
307 /* these should be removed when we remove setattr service in the future */
308 #define MDS_SETA_THR_FACTOR 4
309 #define MDS_SETA_NTHRS_INIT PTLRPC_NTHRS_INIT
310 #define MDS_SETA_NTHRS_MAX MDS_MAX_OTHR_THREADS
311 #define MDS_SETA_NTHRS_BASE min(48, MDS_SETA_NTHRS_MAX)
313 /* non-affinity threads */
314 #define MDS_OTHR_NTHRS_INIT PTLRPC_NTHRS_INIT
315 #define MDS_OTHR_NTHRS_MAX MDS_MAX_OTHR_THREADS
320 * Assume file name length = FNAME_MAX = 256 (true for ext3).
321 * path name length = PATH_MAX = 4096
322 * LOV MD size max = EA_MAX = 24 * 2000
323 * (NB: 24 is size of lov_ost_data)
324 * LOV LOGCOOKIE size max = 32 * 2000
325 * (NB: 32 is size of llog_cookie)
326 * symlink: FNAME_MAX + PATH_MAX <- largest
327 * link: FNAME_MAX + PATH_MAX (mds_rec_link < mds_rec_create)
328 * rename: FNAME_MAX + FNAME_MAX
329 * open: FNAME_MAX + EA_MAX
331 * MDS_MAXREQSIZE ~= 4736 bytes =
332 * lustre_msg + ldlm_request + mdt_body + mds_rec_create + FNAME_MAX + PATH_MAX
333 * MDS_MAXREPSIZE ~= 8300 bytes = lustre_msg + llog_header
335 * Realistic size is about 512 bytes (20 character name + 128 char symlink),
336 * except in the open case where there are a large number of OSTs in a LOV.
338 #define MDS_MAXREQSIZE (5 * 1024) /* >= 4736 */
339 #define MDS_MAXREPSIZE (9 * 1024) /* >= 8300 */
342 * MDS incoming request with LOV EA
343 * 24 = sizeof(struct lov_ost_data), i.e: replay of opencreate
345 #define MDS_LOV_MAXREQSIZE max(MDS_MAXREQSIZE, \
346 362 + LOV_MAX_STRIPE_COUNT * 24)
348 * MDS outgoing reply with LOV EA
350 * NB: max reply size Lustre 2.4+ client can get from old MDS is:
351 * LOV_MAX_STRIPE_COUNT * (llog_cookie + lov_ost_data) + extra bytes
353 * but 2.4 or later MDS will never send reply with llog_cookie to any
354 * version client. This macro is defined for server side reply buffer size.
356 #define MDS_LOV_MAXREPSIZE MDS_LOV_MAXREQSIZE
359 * This is the size of a maximum REINT_SETXATTR request:
361 * lustre_msg 56 (32 + 4 x 5 + 4)
363 * mdt_rec_setxattr 136
365 * name 256 (XATTR_NAME_MAX)
366 * value 65536 (XATTR_SIZE_MAX)
368 #define MDS_EA_MAXREQSIZE 66288
371 * These are the maximum request and reply sizes (rounded up to 1 KB
372 * boundaries) for the "regular" MDS_REQUEST_PORTAL and MDS_REPLY_PORTAL.
374 #define MDS_REG_MAXREQSIZE (((max(MDS_EA_MAXREQSIZE, \
375 MDS_LOV_MAXREQSIZE) + 1023) >> 10) << 10)
376 #define MDS_REG_MAXREPSIZE MDS_REG_MAXREQSIZE
379 * The update request includes all of updates from the create, which might
380 * include linkea (4K maxim), together with other updates, we set it to 9K:
381 * lustre_msg + ptlrpc_body + UPDATE_BUF_SIZE (8K)
383 #define OUT_MAXREQSIZE (9 * 1024)
384 #define OUT_MAXREPSIZE MDS_MAXREPSIZE
386 /** MDS_BUFSIZE = max_reqsize (w/o LOV EA) + max sptlrpc payload size */
387 #define MDS_BUFSIZE max(MDS_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \
391 * MDS_REG_BUFSIZE should at least be MDS_REG_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD.
392 * However, we need to allocate a much larger buffer for it because LNet
393 * requires each MD(rqbd) has at least MDS_REQ_MAXREQSIZE bytes left to avoid
394 * dropping of maximum-sized incoming request. So if MDS_REG_BUFSIZE is only a
395 * little larger than MDS_REG_MAXREQSIZE, then it can only fit in one request
396 * even there are about MDS_REG_MAX_REQSIZE bytes left in a rqbd, and memory
397 * utilization is very low.
399 * In the meanwhile, size of rqbd can't be too large, because rqbd can't be
400 * reused until all requests fit in it have been processed and released,
401 * which means one long blocked request can prevent the rqbd be reused.
402 * Now we set request buffer size to 160 KB, so even each rqbd is unlinked
403 * from LNet with unused 65 KB, buffer utilization will be about 59%.
404 * Please check LU-2432 for details.
406 #define MDS_REG_BUFSIZE max(MDS_REG_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \
410 * OUT_BUFSIZE = max_out_reqsize + max sptlrpc payload (~1K) which is
411 * about 10K, for the same reason as MDS_REG_BUFSIZE, we also give some
412 * extra bytes to each request buffer to improve buffer utilization rate.
414 #define OUT_BUFSIZE max(OUT_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \
417 /** FLD_MAXREQSIZE == lustre_msg + __u32 padding + ptlrpc_body + opc */
418 #define FLD_MAXREQSIZE (160)
420 /** FLD_MAXREPSIZE == lustre_msg + ptlrpc_body */
421 #define FLD_MAXREPSIZE (152)
422 #define FLD_BUFSIZE (1 << 12)
425 * SEQ_MAXREQSIZE == lustre_msg + __u32 padding + ptlrpc_body + opc + lu_range +
427 #define SEQ_MAXREQSIZE (160)
429 /** SEQ_MAXREPSIZE == lustre_msg + ptlrpc_body + lu_range */
430 #define SEQ_MAXREPSIZE (152)
431 #define SEQ_BUFSIZE (1 << 12)
433 /** MGS threads must be >= 3, see bug 22458 comment #28 */
434 #define MGS_NTHRS_INIT (PTLRPC_NTHRS_INIT + 1)
435 #define MGS_NTHRS_MAX 32
438 #define MGS_BUFSIZE (8 * 1024)
439 #define MGS_MAXREQSIZE (7 * 1024)
440 #define MGS_MAXREPSIZE (9 * 1024)
443 * OSS threads constants:
445 * Given 8 as factor and 64 as base threads number
448 * On 8-core server configured to 2 partitions, we will have
449 * 64 + 8 * 4 = 96 threads for each partition, 192 total threads.
452 * On 32-core machine configured to 4 partitions, we will have
453 * 64 + 8 * 8 = 112 threads for each partition, so total threads number
454 * will be 112 * 4 = 448.
457 * On 64-core machine configured to 4 partitions, we will have
458 * 64 + 16 * 8 = 192 threads for each partition, so total threads number
459 * will be 192 * 4 = 768 which is above limit OSS_NTHRS_MAX(512), so we
460 * cut off the value to OSS_NTHRS_MAX(512) / 4 which is 128 threads
461 * for each partition.
463 * So we can see that with these constants, threads number wil be at the
464 * similar level of old versions, unless the server has many cores.
466 /* depress threads factor for VM with small memory size */
467 #define OSS_THR_FACTOR min_t(int, 8, \
468 NUM_CACHEPAGES >> (28 - PAGE_CACHE_SHIFT))
469 #define OSS_NTHRS_INIT (PTLRPC_NTHRS_INIT + 1)
470 #define OSS_NTHRS_BASE 64
471 #define OSS_NTHRS_MAX 512
473 /* threads for handling "create" request */
474 #define OSS_CR_THR_FACTOR 1
475 #define OSS_CR_NTHRS_INIT PTLRPC_NTHRS_INIT
476 #define OSS_CR_NTHRS_BASE 8
477 #define OSS_CR_NTHRS_MAX 64
480 * OST_IO_MAXREQSIZE ~=
481 * lustre_msg + ptlrpc_body + obdo + obd_ioobj +
482 * DT_MAX_BRW_PAGES * niobuf_remote
484 * - single object with 16 pages is 512 bytes
485 * - OST_IO_MAXREQSIZE must be at least 1 page of cookies plus some spillover
486 * - Must be a multiple of 1024
487 * - actual size is about 18K
489 #define _OST_MAXREQSIZE_SUM (sizeof(struct lustre_msg) + \
490 sizeof(struct ptlrpc_body) + \
491 sizeof(struct obdo) + \
492 sizeof(struct obd_ioobj) + \
493 sizeof(struct niobuf_remote) * DT_MAX_BRW_PAGES)
495 * FIEMAP request can be 4K+ for now
497 #define OST_MAXREQSIZE (5 * 1024)
498 #define OST_IO_MAXREQSIZE max_t(int, OST_MAXREQSIZE, \
499 (((_OST_MAXREQSIZE_SUM - 1) | (1024 - 1)) + 1))
501 #define OST_MAXREPSIZE (9 * 1024)
502 #define OST_IO_MAXREPSIZE OST_MAXREPSIZE
505 /** OST_BUFSIZE = max_reqsize + max sptlrpc payload size */
506 #define OST_BUFSIZE max_t(int, OST_MAXREQSIZE + 1024, 16 * 1024)
508 * OST_IO_MAXREQSIZE is 18K, giving extra 46K can increase buffer utilization
509 * rate of request buffer, please check comment of MDS_LOV_BUFSIZE for details.
511 #define OST_IO_BUFSIZE max_t(int, OST_IO_MAXREQSIZE + 1024, 64 * 1024)
513 /* Macro to hide a typecast. */
514 #define ptlrpc_req_async_args(req) ((void *)&req->rq_async_args)
517 * Structure to single define portal connection.
519 struct ptlrpc_connection {
520 /** linkage for connections hash table */
521 cfs_hlist_node_t c_hash;
522 /** Our own lnet nid for this connection */
524 /** Remote side nid for this connection */
525 lnet_process_id_t c_peer;
526 /** UUID of the other side */
527 struct obd_uuid c_remote_uuid;
528 /** reference counter for this connection */
529 cfs_atomic_t c_refcount;
532 /** Client definition for PortalRPC */
533 struct ptlrpc_client {
534 /** What lnet portal does this client send messages to by default */
535 __u32 cli_request_portal;
536 /** What portal do we expect replies on */
537 __u32 cli_reply_portal;
538 /** Name of the client */
542 /** state flags of requests */
543 /* XXX only ones left are those used by the bulk descs as well! */
544 #define PTL_RPC_FL_INTR (1 << 0) /* reply wait was interrupted by user */
545 #define PTL_RPC_FL_TIMEOUT (1 << 7) /* request timed out waiting for reply */
547 #define REQ_MAX_ACK_LOCKS 8
549 union ptlrpc_async_args {
551 * Scratchpad for passing args to completion interpreter. Users
552 * cast to the struct of their choosing, and CLASSERT that this is
553 * big enough. For _tons_ of context, OBD_ALLOC a struct and store
554 * a pointer to it here. The pointer_arg ensures this struct is at
555 * least big enough for that.
557 void *pointer_arg[11];
561 struct ptlrpc_request_set;
562 typedef int (*set_interpreter_func)(struct ptlrpc_request_set *, void *, int);
563 typedef int (*set_producer_func)(struct ptlrpc_request_set *, void *);
566 * Definition of request set structure.
567 * Request set is a list of requests (not necessary to the same target) that
568 * once populated with RPCs could be sent in parallel.
569 * There are two kinds of request sets. General purpose and with dedicated
570 * serving thread. Example of the latter is ptlrpcd set.
571 * For general purpose sets once request set started sending it is impossible
572 * to add new requests to such set.
573 * Provides a way to call "completion callbacks" when all requests in the set
576 struct ptlrpc_request_set {
577 cfs_atomic_t set_refcount;
578 /** number of in queue requests */
579 cfs_atomic_t set_new_count;
580 /** number of uncompleted requests */
581 cfs_atomic_t set_remaining;
582 /** wait queue to wait on for request events */
583 wait_queue_head_t set_waitq;
584 wait_queue_head_t *set_wakeup_ptr;
585 /** List of requests in the set */
586 cfs_list_t set_requests;
588 * List of completion callbacks to be called when the set is completed
589 * This is only used if \a set_interpret is NULL.
590 * Links struct ptlrpc_set_cbdata.
592 cfs_list_t set_cblist;
593 /** Completion callback, if only one. */
594 set_interpreter_func set_interpret;
595 /** opaq argument passed to completion \a set_interpret callback. */
598 * Lock for \a set_new_requests manipulations
599 * locked so that any old caller can communicate requests to
600 * the set holder who can then fold them into the lock-free set
602 spinlock_t set_new_req_lock;
603 /** List of new yet unsent requests. Only used with ptlrpcd now. */
604 cfs_list_t set_new_requests;
606 /** rq_status of requests that have been freed already */
608 /** Additional fields used by the flow control extension */
609 /** Maximum number of RPCs in flight */
610 int set_max_inflight;
611 /** Callback function used to generate RPCs */
612 set_producer_func set_producer;
613 /** opaq argument passed to the producer callback */
614 void *set_producer_arg;
618 * Description of a single ptrlrpc_set callback
620 struct ptlrpc_set_cbdata {
621 /** List linkage item */
623 /** Pointer to interpreting function */
624 set_interpreter_func psc_interpret;
625 /** Opaq argument to pass to the callback */
629 struct ptlrpc_bulk_desc;
630 struct ptlrpc_service_part;
631 struct ptlrpc_service;
634 * ptlrpc callback & work item stuff
636 struct ptlrpc_cb_id {
637 void (*cbid_fn)(lnet_event_t *ev); /* specific callback fn */
638 void *cbid_arg; /* additional arg */
641 /** Maximum number of locks to fit into reply state */
642 #define RS_MAX_LOCKS 8
646 * Structure to define reply state on the server
647 * Reply state holds various reply message information. Also for "difficult"
648 * replies (rep-ack case) we store the state after sending reply and wait
649 * for the client to acknowledge the reception. In these cases locks could be
650 * added to the state for replay/failover consistency guarantees.
652 struct ptlrpc_reply_state {
653 /** Callback description */
654 struct ptlrpc_cb_id rs_cb_id;
655 /** Linkage for list of all reply states in a system */
657 /** Linkage for list of all reply states on same export */
658 cfs_list_t rs_exp_list;
659 /** Linkage for list of all reply states for same obd */
660 cfs_list_t rs_obd_list;
662 cfs_list_t rs_debug_list;
664 /** A spinlock to protect the reply state flags */
666 /** Reply state flags */
667 unsigned long rs_difficult:1; /* ACK/commit stuff */
668 unsigned long rs_no_ack:1; /* no ACK, even for
669 difficult requests */
670 unsigned long rs_scheduled:1; /* being handled? */
671 unsigned long rs_scheduled_ever:1;/* any schedule attempts? */
672 unsigned long rs_handled:1; /* been handled yet? */
673 unsigned long rs_on_net:1; /* reply_out_callback pending? */
674 unsigned long rs_prealloc:1; /* rs from prealloc list */
675 unsigned long rs_committed:1;/* the transaction was committed
676 and the rs was dispatched
677 by ptlrpc_commit_replies */
678 /** Size of the state */
682 /** Transaction number */
686 struct obd_export *rs_export;
687 struct ptlrpc_service_part *rs_svcpt;
688 /** Lnet metadata handle for the reply */
689 lnet_handle_md_t rs_md_h;
690 cfs_atomic_t rs_refcount;
692 /** Context for the sevice thread */
693 struct ptlrpc_svc_ctx *rs_svc_ctx;
694 /** Reply buffer (actually sent to the client), encoded if needed */
695 struct lustre_msg *rs_repbuf; /* wrapper */
696 /** Size of the reply buffer */
697 int rs_repbuf_len; /* wrapper buf length */
698 /** Size of the reply message */
699 int rs_repdata_len; /* wrapper msg length */
701 * Actual reply message. Its content is encrupted (if needed) to
702 * produce reply buffer for actual sending. In simple case
703 * of no network encryption we jus set \a rs_repbuf to \a rs_msg
705 struct lustre_msg *rs_msg; /* reply message */
707 /** Number of locks awaiting client ACK */
709 /** Handles of locks awaiting client reply ACK */
710 struct lustre_handle rs_locks[RS_MAX_LOCKS];
711 /** Lock modes of locks in \a rs_locks */
712 ldlm_mode_t rs_modes[RS_MAX_LOCKS];
715 struct ptlrpc_thread;
719 RQ_PHASE_NEW = 0xebc0de00,
720 RQ_PHASE_RPC = 0xebc0de01,
721 RQ_PHASE_BULK = 0xebc0de02,
722 RQ_PHASE_INTERPRET = 0xebc0de03,
723 RQ_PHASE_COMPLETE = 0xebc0de04,
724 RQ_PHASE_UNREGISTERING = 0xebc0de05,
725 RQ_PHASE_UNDEFINED = 0xebc0de06
728 /** Type of request interpreter call-back */
729 typedef int (*ptlrpc_interpterer_t)(const struct lu_env *env,
730 struct ptlrpc_request *req,
734 * Definition of request pool structure.
735 * The pool is used to store empty preallocated requests for the case
736 * when we would actually need to send something without performing
737 * any allocations (to avoid e.g. OOM).
739 struct ptlrpc_request_pool {
740 /** Locks the list */
742 /** list of ptlrpc_request structs */
743 cfs_list_t prp_req_list;
744 /** Maximum message size that would fit into a rquest from this pool */
746 /** Function to allocate more requests for this pool */
747 void (*prp_populate)(struct ptlrpc_request_pool *, int);
756 * \defgroup nrs Network Request Scheduler
759 struct ptlrpc_nrs_policy;
760 struct ptlrpc_nrs_resource;
761 struct ptlrpc_nrs_request;
764 * NRS control operations.
766 * These are common for all policies.
768 enum ptlrpc_nrs_ctl {
770 * Not a valid opcode.
772 PTLRPC_NRS_CTL_INVALID,
774 * Activate the policy.
776 PTLRPC_NRS_CTL_START,
778 * Reserved for multiple primary policies, which may be a possibility
783 * Policies can start using opcodes from this value and onwards for
784 * their own purposes; the assigned value itself is arbitrary.
786 PTLRPC_NRS_CTL_1ST_POL_SPEC = 0x20,
790 * ORR policy operations
793 NRS_CTL_ORR_RD_QUANTUM = PTLRPC_NRS_CTL_1ST_POL_SPEC,
794 NRS_CTL_ORR_WR_QUANTUM,
795 NRS_CTL_ORR_RD_OFF_TYPE,
796 NRS_CTL_ORR_WR_OFF_TYPE,
797 NRS_CTL_ORR_RD_SUPP_REQ,
798 NRS_CTL_ORR_WR_SUPP_REQ,
802 * NRS policy operations.
804 * These determine the behaviour of a policy, and are called in response to
807 struct ptlrpc_nrs_pol_ops {
809 * Called during policy registration; this operation is optional.
811 * \param[in,out] policy The policy being initialized
813 int (*op_policy_init) (struct ptlrpc_nrs_policy *policy);
815 * Called during policy unregistration; this operation is optional.
817 * \param[in,out] policy The policy being unregistered/finalized
819 void (*op_policy_fini) (struct ptlrpc_nrs_policy *policy);
821 * Called when activating a policy via lprocfs; policies allocate and
822 * initialize their resources here; this operation is optional.
824 * \param[in,out] policy The policy being started
826 * \see nrs_policy_start_locked()
828 int (*op_policy_start) (struct ptlrpc_nrs_policy *policy);
830 * Called when deactivating a policy via lprocfs; policies deallocate
831 * their resources here; this operation is optional
833 * \param[in,out] policy The policy being stopped
835 * \see nrs_policy_stop0()
837 void (*op_policy_stop) (struct ptlrpc_nrs_policy *policy);
839 * Used for policy-specific operations; i.e. not generic ones like
840 * \e PTLRPC_NRS_CTL_START and \e PTLRPC_NRS_CTL_GET_INFO; analogous
841 * to an ioctl; this operation is optional.
843 * \param[in,out] policy The policy carrying out operation \a opc
844 * \param[in] opc The command operation being carried out
845 * \param[in,out] arg An generic buffer for communication between the
846 * user and the control operation
851 * \see ptlrpc_nrs_policy_control()
853 int (*op_policy_ctl) (struct ptlrpc_nrs_policy *policy,
854 enum ptlrpc_nrs_ctl opc, void *arg);
857 * Called when obtaining references to the resources of the resource
858 * hierarchy for a request that has arrived for handling at the PTLRPC
859 * service. Policies should return -ve for requests they do not wish
860 * to handle. This operation is mandatory.
862 * \param[in,out] policy The policy we're getting resources for.
863 * \param[in,out] nrq The request we are getting resources for.
864 * \param[in] parent The parent resource of the resource being
865 * requested; set to NULL if none.
866 * \param[out] resp The resource is to be returned here; the
867 * fallback policy in an NRS head should
868 * \e always return a non-NULL pointer value.
869 * \param[in] moving_req When set, signifies that this is an attempt
870 * to obtain resources for a request being moved
871 * to the high-priority NRS head by
872 * ldlm_lock_reorder_req().
873 * This implies two things:
874 * 1. We are under obd_export::exp_rpc_lock and
875 * so should not sleep.
876 * 2. We should not perform non-idempotent or can
877 * skip performing idempotent operations that
878 * were carried out when resources were first
879 * taken for the request when it was initialized
880 * in ptlrpc_nrs_req_initialize().
882 * \retval 0, +ve The level of the returned resource in the resource
883 * hierarchy; currently only 0 (for a non-leaf resource)
884 * and 1 (for a leaf resource) are supported by the
888 * \see ptlrpc_nrs_req_initialize()
889 * \see ptlrpc_nrs_hpreq_add_nolock()
890 * \see ptlrpc_nrs_req_hp_move()
892 int (*op_res_get) (struct ptlrpc_nrs_policy *policy,
893 struct ptlrpc_nrs_request *nrq,
894 const struct ptlrpc_nrs_resource *parent,
895 struct ptlrpc_nrs_resource **resp,
898 * Called when releasing references taken for resources in the resource
899 * hierarchy for the request; this operation is optional.
901 * \param[in,out] policy The policy the resource belongs to
902 * \param[in] res The resource to be freed
904 * \see ptlrpc_nrs_req_finalize()
905 * \see ptlrpc_nrs_hpreq_add_nolock()
906 * \see ptlrpc_nrs_req_hp_move()
908 void (*op_res_put) (struct ptlrpc_nrs_policy *policy,
909 const struct ptlrpc_nrs_resource *res);
912 * Obtains a request for handling from the policy, and optionally
913 * removes the request from the policy; this operation is mandatory.
915 * \param[in,out] policy The policy to poll
916 * \param[in] peek When set, signifies that we just want to
917 * examine the request, and not handle it, so the
918 * request is not removed from the policy.
919 * \param[in] force When set, it will force a policy to return a
920 * request if it has one queued.
922 * \retval NULL No request available for handling
923 * \retval valid-pointer The request polled for handling
925 * \see ptlrpc_nrs_req_get_nolock()
927 struct ptlrpc_nrs_request *
928 (*op_req_get) (struct ptlrpc_nrs_policy *policy, bool peek,
931 * Called when attempting to add a request to a policy for later
932 * handling; this operation is mandatory.
934 * \param[in,out] policy The policy on which to enqueue \a nrq
935 * \param[in,out] nrq The request to enqueue
940 * \see ptlrpc_nrs_req_add_nolock()
942 int (*op_req_enqueue) (struct ptlrpc_nrs_policy *policy,
943 struct ptlrpc_nrs_request *nrq);
945 * Removes a request from the policy's set of pending requests. Normally
946 * called after a request has been polled successfully from the policy
947 * for handling; this operation is mandatory.
949 * \param[in,out] policy The policy the request \a nrq belongs to
950 * \param[in,out] nrq The request to dequeue
952 * \see ptlrpc_nrs_req_del_nolock()
954 void (*op_req_dequeue) (struct ptlrpc_nrs_policy *policy,
955 struct ptlrpc_nrs_request *nrq);
957 * Called after the request being carried out. Could be used for
958 * job/resource control; this operation is optional.
960 * \param[in,out] policy The policy which is stopping to handle request
962 * \param[in,out] nrq The request
964 * \pre spin_is_locked(&svcpt->scp_req_lock)
966 * \see ptlrpc_nrs_req_stop_nolock()
968 void (*op_req_stop) (struct ptlrpc_nrs_policy *policy,
969 struct ptlrpc_nrs_request *nrq);
971 * Registers the policy's lprocfs interface with a PTLRPC service.
973 * \param[in] svc The service
978 int (*op_lprocfs_init) (struct ptlrpc_service *svc);
980 * Unegisters the policy's lprocfs interface with a PTLRPC service.
982 * In cases of failed policy registration in
983 * \e ptlrpc_nrs_policy_register(), this function may be called for a
984 * service which has not registered the policy successfully, so
985 * implementations of this method should make sure their operations are
986 * safe in such cases.
988 * \param[in] svc The service
990 void (*op_lprocfs_fini) (struct ptlrpc_service *svc);
996 enum nrs_policy_flags {
998 * Fallback policy, use this flag only on a single supported policy per
999 * service. The flag cannot be used on policies that use
1000 * \e PTLRPC_NRS_FL_REG_EXTERN
1002 PTLRPC_NRS_FL_FALLBACK = (1 << 0),
1004 * Start policy immediately after registering.
1006 PTLRPC_NRS_FL_REG_START = (1 << 1),
1008 * This is a policy registering from a module different to the one NRS
1009 * core ships in (currently ptlrpc).
1011 PTLRPC_NRS_FL_REG_EXTERN = (1 << 2),
1017 * Denotes whether an NRS instance is for handling normal or high-priority
1018 * RPCs, or whether an operation pertains to one or both of the NRS instances
1021 enum ptlrpc_nrs_queue_type {
1022 PTLRPC_NRS_QUEUE_REG = (1 << 0),
1023 PTLRPC_NRS_QUEUE_HP = (1 << 1),
1024 PTLRPC_NRS_QUEUE_BOTH = (PTLRPC_NRS_QUEUE_REG | PTLRPC_NRS_QUEUE_HP)
1030 * A PTLRPC service has at least one NRS head instance for handling normal
1031 * priority RPCs, and may optionally have a second NRS head instance for
1032 * handling high-priority RPCs. Each NRS head maintains a list of available
1033 * policies, of which one and only one policy is acting as the fallback policy,
1034 * and optionally a different policy may be acting as the primary policy. For
1035 * all RPCs handled by this NRS head instance, NRS core will first attempt to
1036 * enqueue the RPC using the primary policy (if any). The fallback policy is
1037 * used in the following cases:
1038 * - when there was no primary policy in the
1039 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state at the time the request
1041 * - when the primary policy that was at the
1042 * ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
1043 * RPC was initialized, denoted it did not wish, or for some other reason was
1044 * not able to handle the request, by returning a non-valid NRS resource
1046 * - when the primary policy that was at the
1047 * ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
1048 * RPC was initialized, fails later during the request enqueueing stage.
1050 * \see nrs_resource_get_safe()
1051 * \see nrs_request_enqueue()
1054 spinlock_t nrs_lock;
1055 /** XXX Possibly replace svcpt->scp_req_lock with another lock here. */
1057 * List of registered policies
1059 cfs_list_t nrs_policy_list;
1061 * List of policies with queued requests. Policies that have any
1062 * outstanding requests are queued here, and this list is queried
1063 * in a round-robin manner from NRS core when obtaining a request
1064 * for handling. This ensures that requests from policies that at some
1065 * point transition away from the
1066 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state are drained.
1068 cfs_list_t nrs_policy_queued;
1070 * Service partition for this NRS head
1072 struct ptlrpc_service_part *nrs_svcpt;
1074 * Primary policy, which is the preferred policy for handling RPCs
1076 struct ptlrpc_nrs_policy *nrs_policy_primary;
1078 * Fallback policy, which is the backup policy for handling RPCs
1080 struct ptlrpc_nrs_policy *nrs_policy_fallback;
1082 * This NRS head handles either HP or regular requests
1084 enum ptlrpc_nrs_queue_type nrs_queue_type;
1086 * # queued requests from all policies in this NRS head
1088 unsigned long nrs_req_queued;
1090 * # scheduled requests from all policies in this NRS head
1092 unsigned long nrs_req_started;
1094 * # policies on this NRS
1096 unsigned nrs_num_pols;
1098 * This NRS head is in progress of starting a policy
1100 unsigned nrs_policy_starting:1;
1102 * In progress of shutting down the whole NRS head; used during
1105 unsigned nrs_stopping:1;
1108 #define NRS_POL_NAME_MAX 16
1110 struct ptlrpc_nrs_pol_desc;
1113 * Service compatibility predicate; this determines whether a policy is adequate
1114 * for handling RPCs of a particular PTLRPC service.
1116 * XXX:This should give the same result during policy registration and
1117 * unregistration, and for all partitions of a service; so the result should not
1118 * depend on temporal service or other properties, that may influence the
1121 typedef bool (*nrs_pol_desc_compat_t) (const struct ptlrpc_service *svc,
1122 const struct ptlrpc_nrs_pol_desc *desc);
1124 struct ptlrpc_nrs_pol_conf {
1126 * Human-readable policy name
1128 char nc_name[NRS_POL_NAME_MAX];
1130 * NRS operations for this policy
1132 const struct ptlrpc_nrs_pol_ops *nc_ops;
1134 * Service compatibility predicate
1136 nrs_pol_desc_compat_t nc_compat;
1138 * Set for policies that support a single ptlrpc service, i.e. ones that
1139 * have \a pd_compat set to nrs_policy_compat_one(). The variable value
1140 * depicts the name of the single service that such policies are
1143 const char *nc_compat_svc_name;
1145 * Owner module for this policy descriptor; policies registering from a
1146 * different module to the one the NRS framework is held within
1147 * (currently ptlrpc), should set this field to THIS_MODULE.
1149 struct module *nc_owner;
1151 * Policy registration flags; a bitmast of \e nrs_policy_flags
1157 * NRS policy registering descriptor
1159 * Is used to hold a description of a policy that can be passed to NRS core in
1160 * order to register the policy with NRS heads in different PTLRPC services.
1162 struct ptlrpc_nrs_pol_desc {
1164 * Human-readable policy name
1166 char pd_name[NRS_POL_NAME_MAX];
1168 * Link into nrs_core::nrs_policies
1172 * NRS operations for this policy
1174 const struct ptlrpc_nrs_pol_ops *pd_ops;
1176 * Service compatibility predicate
1178 nrs_pol_desc_compat_t pd_compat;
1180 * Set for policies that are compatible with only one PTLRPC service.
1182 * \see ptlrpc_nrs_pol_conf::nc_compat_svc_name
1184 const char *pd_compat_svc_name;
1186 * Owner module for this policy descriptor.
1188 * We need to hold a reference to the module whenever we might make use
1189 * of any of the module's contents, i.e.
1190 * - If one or more instances of the policy are at a state where they
1191 * might be handling a request, i.e.
1192 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED or
1193 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STOPPING as we will have to
1194 * call into the policy's ptlrpc_nrs_pol_ops() handlers. A reference
1195 * is taken on the module when
1196 * \e ptlrpc_nrs_pol_desc::pd_refs becomes 1, and released when it
1197 * becomes 0, so that we hold only one reference to the module maximum
1200 * We do not need to hold a reference to the module, even though we
1201 * might use code and data from the module, in the following cases:
1202 * - During external policy registration, because this should happen in
1203 * the module's init() function, in which case the module is safe from
1204 * removal because a reference is being held on the module by the
1205 * kernel, and iirc kmod (and I guess module-init-tools also) will
1206 * serialize any racing processes properly anyway.
1207 * - During external policy unregistration, because this should happen
1208 * in a module's exit() function, and any attempts to start a policy
1209 * instance would need to take a reference on the module, and this is
1210 * not possible once we have reached the point where the exit()
1211 * handler is called.
1212 * - During service registration and unregistration, as service setup
1213 * and cleanup, and policy registration, unregistration and policy
1214 * instance starting, are serialized by \e nrs_core::nrs_mutex, so
1215 * as long as users adhere to the convention of registering policies
1216 * in init() and unregistering them in module exit() functions, there
1217 * should not be a race between these operations.
1218 * - During any policy-specific lprocfs operations, because a reference
1219 * is held by the kernel on a proc entry that has been entered by a
1220 * syscall, so as long as proc entries are removed during unregistration time,
1221 * then unregistration and lprocfs operations will be properly
1224 struct module *pd_owner;
1226 * Bitmask of \e nrs_policy_flags
1230 * # of references on this descriptor
1232 cfs_atomic_t pd_refs;
1238 * Policies transition from one state to the other during their lifetime
1240 enum ptlrpc_nrs_pol_state {
1242 * Not a valid policy state.
1244 NRS_POL_STATE_INVALID,
1246 * Policies are at this state either at the start of their life, or
1247 * transition here when the user selects a different policy to act
1248 * as the primary one.
1250 NRS_POL_STATE_STOPPED,
1252 * Policy is progress of stopping
1254 NRS_POL_STATE_STOPPING,
1256 * Policy is in progress of starting
1258 NRS_POL_STATE_STARTING,
1260 * A policy is in this state in two cases:
1261 * - it is the fallback policy, which is always in this state.
1262 * - it has been activated by the user; i.e. it is the primary policy,
1264 NRS_POL_STATE_STARTED,
1268 * NRS policy information
1270 * Used for obtaining information for the status of a policy via lprocfs
1272 struct ptlrpc_nrs_pol_info {
1276 char pi_name[NRS_POL_NAME_MAX];
1278 * Current policy state
1280 enum ptlrpc_nrs_pol_state pi_state;
1282 * # RPCs enqueued for later dispatching by the policy
1286 * # RPCs started for dispatch by the policy
1288 long pi_req_started;
1290 * Is this a fallback policy?
1292 unsigned pi_fallback:1;
1298 * There is one instance of this for each policy in each NRS head of each
1299 * PTLRPC service partition.
1301 struct ptlrpc_nrs_policy {
1303 * Linkage into the NRS head's list of policies,
1304 * ptlrpc_nrs:nrs_policy_list
1306 cfs_list_t pol_list;
1308 * Linkage into the NRS head's list of policies with enqueued
1309 * requests ptlrpc_nrs:nrs_policy_queued
1311 cfs_list_t pol_list_queued;
1313 * Current state of this policy
1315 enum ptlrpc_nrs_pol_state pol_state;
1317 * Bitmask of nrs_policy_flags
1321 * # RPCs enqueued for later dispatching by the policy
1323 long pol_req_queued;
1325 * # RPCs started for dispatch by the policy
1327 long pol_req_started;
1329 * Usage Reference count taken on the policy instance
1333 * The NRS head this policy has been created at
1335 struct ptlrpc_nrs *pol_nrs;
1337 * Private policy data; varies by policy type
1341 * Policy descriptor for this policy instance.
1343 struct ptlrpc_nrs_pol_desc *pol_desc;
1349 * Resources are embedded into two types of NRS entities:
1350 * - Inside NRS policies, in the policy's private data in
1351 * ptlrpc_nrs_policy::pol_private
1352 * - In objects that act as prime-level scheduling entities in different NRS
1353 * policies; e.g. on a policy that performs round robin or similar order
1354 * scheduling across client NIDs, there would be one NRS resource per unique
1355 * client NID. On a policy which performs round robin scheduling across
1356 * backend filesystem objects, there would be one resource associated with
1357 * each of the backend filesystem objects partaking in the scheduling
1358 * performed by the policy.
1360 * NRS resources share a parent-child relationship, in which resources embedded
1361 * in policy instances are the parent entities, with all scheduling entities
1362 * a policy schedules across being the children, thus forming a simple resource
1363 * hierarchy. This hierarchy may be extended with one or more levels in the
1364 * future if the ability to have more than one primary policy is added.
1366 * Upon request initialization, references to the then active NRS policies are
1367 * taken and used to later handle the dispatching of the request with one of
1370 * \see nrs_resource_get_safe()
1371 * \see ptlrpc_nrs_req_add()
1373 struct ptlrpc_nrs_resource {
1375 * This NRS resource's parent; is NULL for resources embedded in NRS
1376 * policy instances; i.e. those are top-level ones.
1378 struct ptlrpc_nrs_resource *res_parent;
1380 * The policy associated with this resource.
1382 struct ptlrpc_nrs_policy *res_policy;
1395 * This policy is a logical wrapper around previous, non-NRS functionality.
1396 * It dispatches RPCs in the same order as they arrive from the network. This
1397 * policy is currently used as the fallback policy, and the only enabled policy
1398 * on all NRS heads of all PTLRPC service partitions.
1403 * Private data structure for the FIFO policy
1405 struct nrs_fifo_head {
1407 * Resource object for policy instance.
1409 struct ptlrpc_nrs_resource fh_res;
1411 * List of queued requests.
1415 * For debugging purposes.
1420 struct nrs_fifo_req {
1430 * CRR-N, Client Round Robin over NIDs
1435 * private data structure for CRR-N NRS
1437 struct nrs_crrn_net {
1438 struct ptlrpc_nrs_resource cn_res;
1439 cfs_binheap_t *cn_binheap;
1440 cfs_hash_t *cn_cli_hash;
1442 * Used when a new scheduling round commences, in order to synchronize
1443 * all clients with the new round number.
1447 * Determines the relevant ordering amongst request batches within a
1452 * Round Robin quantum; the maximum number of RPCs that each request
1453 * batch for each client can have in a scheduling round.
1459 * Object representing a client in CRR-N, as identified by its NID
1461 struct nrs_crrn_client {
1462 struct ptlrpc_nrs_resource cc_res;
1463 cfs_hlist_node_t cc_hnode;
1466 * The round number against which this client is currently scheduling
1471 * The sequence number used for requests scheduled by this client during
1472 * the current round number.
1475 cfs_atomic_t cc_ref;
1477 * Round Robin quantum; the maximum number of RPCs the client is allowed
1478 * to schedule in a single batch of each round.
1482 * # of pending requests for this client, on all existing rounds
1488 * CRR-N NRS request definition
1490 struct nrs_crrn_req {
1492 * Round number for this request; shared with all other requests in the
1497 * Sequence number for this request; shared with all other requests in
1504 * CRR-N policy operations.
1508 * Read the RR quantum size of a CRR-N policy.
1510 NRS_CTL_CRRN_RD_QUANTUM = PTLRPC_NRS_CTL_1ST_POL_SPEC,
1512 * Write the RR quantum size of a CRR-N policy.
1514 NRS_CTL_CRRN_WR_QUANTUM,
1522 * ORR/TRR (Object-based Round Robin/Target-based Round Robin) NRS policies
1527 * Lower and upper byte offsets of a brw RPC
1529 struct nrs_orr_req_range {
1535 * RPC types supported by the ORR/TRR policies
1538 NOS_OST_READ = (1 << 0),
1539 NOS_OST_WRITE = (1 << 1),
1540 NOS_OST_RW = (NOS_OST_READ | NOS_OST_WRITE),
1542 * Default value for policies.
1544 NOS_DFLT = NOS_OST_READ
1548 * As unique keys for grouping RPCs together, we use the object's OST FID for
1549 * the ORR policy, and the OST index for the TRR policy.
1551 * XXX: We waste some space for TRR policy instances by using a union, but it
1552 * allows to consolidate some of the code between ORR and TRR, and these
1553 * policies will probably eventually merge into one anyway.
1555 struct nrs_orr_key {
1557 /** object FID for ORR */
1558 struct lu_fid ok_fid;
1559 /** OST index for TRR */
1565 * The largest base string for unique hash/slab object names is
1566 * "nrs_orr_reg_", so 13 characters. We add 3 to this to be used for the CPT
1567 * id number, so this _should_ be more than enough for the maximum number of
1568 * CPTs on any system. If it does happen that this statement is incorrect,
1569 * nrs_orr_genobjname() will inevitably yield a non-unique name and cause
1570 * kmem_cache_create() to complain (on Linux), so the erroneous situation
1571 * will hopefully not go unnoticed.
1573 #define NRS_ORR_OBJ_NAME_MAX (sizeof("nrs_orr_reg_") + 3)
1576 * private data structure for ORR and TRR NRS
1578 struct nrs_orr_data {
1579 struct ptlrpc_nrs_resource od_res;
1580 cfs_binheap_t *od_binheap;
1581 cfs_hash_t *od_obj_hash;
1582 struct kmem_cache *od_cache;
1584 * Used when a new scheduling round commences, in order to synchronize
1585 * all object or OST batches with the new round number.
1589 * Determines the relevant ordering amongst request batches within a
1594 * RPC types that are currently supported.
1596 enum nrs_orr_supp od_supp;
1598 * Round Robin quantum; the maxium number of RPCs that each request
1599 * batch for each object or OST can have in a scheduling round.
1603 * Whether to use physical disk offsets or logical file offsets.
1607 * XXX: We need to provide a persistently allocated string to hold
1608 * unique object names for this policy, since in currently supported
1609 * versions of Linux by Lustre, kmem_cache_create() just sets a pointer
1610 * to the name string provided. kstrdup() is used in the version of
1611 * kmeme_cache_create() in current Linux mainline, so we may be able to
1612 * remove this in the future.
1614 char od_objname[NRS_ORR_OBJ_NAME_MAX];
1618 * Represents a backend-fs object or OST in the ORR and TRR policies
1621 struct nrs_orr_object {
1622 struct ptlrpc_nrs_resource oo_res;
1623 cfs_hlist_node_t oo_hnode;
1625 * The round number against which requests are being scheduled for this
1630 * The sequence number used for requests scheduled for this object or
1631 * OST during the current round number.
1635 * The key of the object or OST for which this structure instance is
1638 struct nrs_orr_key oo_key;
1641 * Round Robin quantum; the maximum number of RPCs that are allowed to
1642 * be scheduled for the object or OST in a single batch of each round.
1646 * # of pending requests for this object or OST, on all existing rounds
1652 * ORR/TRR NRS request definition
1654 struct nrs_orr_req {
1656 * The offset range this request covers
1658 struct nrs_orr_req_range or_range;
1660 * Round number for this request; shared with all other requests in the
1665 * Sequence number for this request; shared with all other requests in
1670 * For debugging purposes.
1672 struct nrs_orr_key or_key;
1674 * An ORR policy instance has filled in request information while
1675 * enqueueing the request on the service partition's regular NRS head.
1677 unsigned int or_orr_set:1;
1679 * A TRR policy instance has filled in request information while
1680 * enqueueing the request on the service partition's regular NRS head.
1682 unsigned int or_trr_set:1;
1684 * Request offset ranges have been filled in with logical offset
1687 unsigned int or_logical_set:1;
1689 * Request offset ranges have been filled in with physical offset
1692 unsigned int or_physical_set:1;
1700 * Instances of this object exist embedded within ptlrpc_request; the main
1701 * purpose of this object is to hold references to the request's resources
1702 * for the lifetime of the request, and to hold properties that policies use
1703 * use for determining the request's scheduling priority.
1705 struct ptlrpc_nrs_request {
1707 * The request's resource hierarchy.
1709 struct ptlrpc_nrs_resource *nr_res_ptrs[NRS_RES_MAX];
1711 * Index into ptlrpc_nrs_request::nr_res_ptrs of the resource of the
1712 * policy that was used to enqueue the request.
1714 * \see nrs_request_enqueue()
1716 unsigned nr_res_idx;
1717 unsigned nr_initialized:1;
1718 unsigned nr_enqueued:1;
1719 unsigned nr_started:1;
1720 unsigned nr_finalized:1;
1721 cfs_binheap_node_t nr_node;
1724 * Policy-specific fields, used for determining a request's scheduling
1725 * priority, and other supporting functionality.
1729 * Fields for the FIFO policy
1731 struct nrs_fifo_req fifo;
1733 * CRR-N request defintion
1735 struct nrs_crrn_req crr;
1736 /** ORR and TRR share the same request definition */
1737 struct nrs_orr_req orr;
1740 * Externally-registering policies may want to use this to allocate
1741 * their own request properties.
1749 * Basic request prioritization operations structure.
1750 * The whole idea is centered around locks and RPCs that might affect locks.
1751 * When a lock is contended we try to give priority to RPCs that might lead
1752 * to fastest release of that lock.
1753 * Currently only implemented for OSTs only in a way that makes all
1754 * IO and truncate RPCs that are coming from a locked region where a lock is
1755 * contended a priority over other requests.
1757 struct ptlrpc_hpreq_ops {
1759 * Check if the lock handle of the given lock is the same as
1760 * taken from the request.
1762 int (*hpreq_lock_match)(struct ptlrpc_request *, struct ldlm_lock *);
1764 * Check if the request is a high priority one.
1766 int (*hpreq_check)(struct ptlrpc_request *);
1768 * Called after the request has been handled.
1770 void (*hpreq_fini)(struct ptlrpc_request *);
1774 * Represents remote procedure call.
1776 * This is a staple structure used by everybody wanting to send a request
1779 struct ptlrpc_request {
1780 /* Request type: one of PTL_RPC_MSG_* */
1782 /** Result of request processing */
1785 * Linkage item through which this request is included into
1786 * sending/delayed lists on client and into rqbd list on server
1790 * Server side list of incoming unserved requests sorted by arrival
1791 * time. Traversed from time to time to notice about to expire
1792 * requests and sent back "early replies" to clients to let them
1793 * know server is alive and well, just very busy to service their
1796 cfs_list_t rq_timed_list;
1797 /** server-side history, used for debuging purposes. */
1798 cfs_list_t rq_history_list;
1799 /** server-side per-export list */
1800 cfs_list_t rq_exp_list;
1801 /** server-side hp handlers */
1802 struct ptlrpc_hpreq_ops *rq_ops;
1804 /** initial thread servicing this request */
1805 struct ptlrpc_thread *rq_svc_thread;
1807 /** history sequence # */
1808 __u64 rq_history_seq;
1812 /** stub for NRS request */
1813 struct ptlrpc_nrs_request rq_nrq;
1815 /** the index of service's srv_at_array into which request is linked */
1817 /** Lock to protect request flags and some other important bits, like
1821 /** client-side flags are serialized by rq_lock */
1822 unsigned int rq_intr:1, rq_replied:1, rq_err:1,
1823 rq_timedout:1, rq_resend:1, rq_restart:1,
1825 * when ->rq_replay is set, request is kept by the client even
1826 * after server commits corresponding transaction. This is
1827 * used for operations that require sequence of multiple
1828 * requests to be replayed. The only example currently is file
1829 * open/close. When last request in such a sequence is
1830 * committed, ->rq_replay is cleared on all requests in the
1834 rq_no_resend:1, rq_waiting:1, rq_receiving_reply:1,
1835 rq_no_delay:1, rq_net_err:1, rq_wait_ctx:1,
1836 rq_early:1, rq_must_unlink:1,
1837 rq_memalloc:1, /* req originated from "kswapd" */
1838 /* server-side flags */
1839 rq_packed_final:1, /* packed final reply */
1840 rq_hp:1, /* high priority RPC */
1841 rq_at_linked:1, /* link into service's srv_at_array */
1842 rq_reply_truncate:1,
1844 /* whether the "rq_set" is a valid one */
1846 rq_generation_set:1,
1847 /* do not resend request on -EINPROGRESS */
1848 rq_no_retry_einprogress:1,
1849 /* allow the req to be sent if the import is in recovery
1852 /* bulk request, sent to server, but uncommitted */
1855 unsigned int rq_nr_resend;
1857 enum rq_phase rq_phase; /* one of RQ_PHASE_* */
1858 enum rq_phase rq_next_phase; /* one of RQ_PHASE_* to be used next */
1859 cfs_atomic_t rq_refcount;/* client-side refcount for SENT race,
1860 server-side refcounf for multiple replies */
1862 /** Portal to which this request would be sent */
1863 short rq_request_portal; /* XXX FIXME bug 249 */
1864 /** Portal where to wait for reply and where reply would be sent */
1865 short rq_reply_portal; /* XXX FIXME bug 249 */
1869 * !rq_truncate : # reply bytes actually received,
1870 * rq_truncate : required repbuf_len for resend
1872 int rq_nob_received;
1873 /** Request length */
1877 /** Request message - what client sent */
1878 struct lustre_msg *rq_reqmsg;
1879 /** Reply message - server response */
1880 struct lustre_msg *rq_repmsg;
1881 /** Transaction number */
1886 * List item to for replay list. Not yet commited requests get linked
1888 * Also see \a rq_replay comment above.
1890 cfs_list_t rq_replay_list;
1893 * security and encryption data
1895 struct ptlrpc_cli_ctx *rq_cli_ctx; /**< client's half ctx */
1896 struct ptlrpc_svc_ctx *rq_svc_ctx; /**< server's half ctx */
1897 cfs_list_t rq_ctx_chain; /**< link to waited ctx */
1899 struct sptlrpc_flavor rq_flvr; /**< for client & server */
1900 enum lustre_sec_part rq_sp_from;
1902 /* client/server security flags */
1904 rq_ctx_init:1, /* context initiation */
1905 rq_ctx_fini:1, /* context destroy */
1906 rq_bulk_read:1, /* request bulk read */
1907 rq_bulk_write:1, /* request bulk write */
1908 /* server authentication flags */
1909 rq_auth_gss:1, /* authenticated by gss */
1910 rq_auth_remote:1, /* authed as remote user */
1911 rq_auth_usr_root:1, /* authed as root */
1912 rq_auth_usr_mdt:1, /* authed as mdt */
1913 rq_auth_usr_ost:1, /* authed as ost */
1914 /* security tfm flags */
1917 /* doesn't expect reply FIXME */
1919 rq_pill_init:1; /* pill initialized */
1921 uid_t rq_auth_uid; /* authed uid */
1922 uid_t rq_auth_mapped_uid; /* authed uid mapped to */
1924 /* (server side), pointed directly into req buffer */
1925 struct ptlrpc_user_desc *rq_user_desc;
1927 /* various buffer pointers */
1928 struct lustre_msg *rq_reqbuf; /* req wrapper */
1929 char *rq_repbuf; /* rep buffer */
1930 struct lustre_msg *rq_repdata; /* rep wrapper msg */
1931 struct lustre_msg *rq_clrbuf; /* only in priv mode */
1932 int rq_reqbuf_len; /* req wrapper buf len */
1933 int rq_reqdata_len; /* req wrapper msg len */
1934 int rq_repbuf_len; /* rep buffer len */
1935 int rq_repdata_len; /* rep wrapper msg len */
1936 int rq_clrbuf_len; /* only in priv mode */
1937 int rq_clrdata_len; /* only in priv mode */
1939 /** early replies go to offset 0, regular replies go after that */
1940 unsigned int rq_reply_off;
1944 /** Fields that help to see if request and reply were swabbed or not */
1945 __u32 rq_req_swab_mask;
1946 __u32 rq_rep_swab_mask;
1948 /** What was import generation when this request was sent */
1949 int rq_import_generation;
1950 enum lustre_imp_state rq_send_state;
1952 /** how many early replies (for stats) */
1955 /** client+server request */
1956 lnet_handle_md_t rq_req_md_h;
1957 struct ptlrpc_cb_id rq_req_cbid;
1958 /** optional time limit for send attempts */
1959 cfs_duration_t rq_delay_limit;
1960 /** time request was first queued */
1961 cfs_time_t rq_queued_time;
1963 /* server-side... */
1964 /** request arrival time */
1965 struct timeval rq_arrival_time;
1966 /** separated reply state */
1967 struct ptlrpc_reply_state *rq_reply_state;
1968 /** incoming request buffer */
1969 struct ptlrpc_request_buffer_desc *rq_rqbd;
1971 /** client-only incoming reply */
1972 lnet_handle_md_t rq_reply_md_h;
1973 wait_queue_head_t rq_reply_waitq;
1974 struct ptlrpc_cb_id rq_reply_cbid;
1978 /** Peer description (the other side) */
1979 lnet_process_id_t rq_peer;
1980 /** Server-side, export on which request was received */
1981 struct obd_export *rq_export;
1982 /** Client side, import where request is being sent */
1983 struct obd_import *rq_import;
1985 /** Replay callback, called after request is replayed at recovery */
1986 void (*rq_replay_cb)(struct ptlrpc_request *);
1988 * Commit callback, called when request is committed and about to be
1991 void (*rq_commit_cb)(struct ptlrpc_request *);
1992 /** Opaq data for replay and commit callbacks. */
1995 /** For bulk requests on client only: bulk descriptor */
1996 struct ptlrpc_bulk_desc *rq_bulk;
1998 /** client outgoing req */
2000 * when request/reply sent (secs), or time when request should be sent
2003 /** time for request really sent out */
2004 time_t rq_real_sent;
2006 /** when request must finish. volatile
2007 * so that servers' early reply updates to the deadline aren't
2008 * kept in per-cpu cache */
2009 volatile time_t rq_deadline;
2010 /** when req reply unlink must finish. */
2011 time_t rq_reply_deadline;
2012 /** when req bulk unlink must finish. */
2013 time_t rq_bulk_deadline;
2015 * service time estimate (secs)
2016 * If the requestsis not served by this time, it is marked as timed out.
2020 /** Multi-rpc bits */
2021 /** Per-request waitq introduced by bug 21938 for recovery waiting */
2022 wait_queue_head_t rq_set_waitq;
2023 /** Link item for request set lists */
2024 cfs_list_t rq_set_chain;
2025 /** Link back to the request set */
2026 struct ptlrpc_request_set *rq_set;
2027 /** Async completion handler, called when reply is received */
2028 ptlrpc_interpterer_t rq_interpret_reply;
2029 /** Async completion context */
2030 union ptlrpc_async_args rq_async_args;
2032 /** Pool if request is from preallocated list */
2033 struct ptlrpc_request_pool *rq_pool;
2035 struct lu_context rq_session;
2036 struct lu_context rq_recov_session;
2038 /** request format description */
2039 struct req_capsule rq_pill;
2043 * Call completion handler for rpc if any, return it's status or original
2044 * rc if there was no handler defined for this request.
2046 static inline int ptlrpc_req_interpret(const struct lu_env *env,
2047 struct ptlrpc_request *req, int rc)
2049 if (req->rq_interpret_reply != NULL) {
2050 req->rq_status = req->rq_interpret_reply(env, req,
2051 &req->rq_async_args,
2053 return req->rq_status;
2061 int ptlrpc_nrs_policy_register(struct ptlrpc_nrs_pol_conf *conf);
2062 int ptlrpc_nrs_policy_unregister(struct ptlrpc_nrs_pol_conf *conf);
2063 void ptlrpc_nrs_req_hp_move(struct ptlrpc_request *req);
2064 void nrs_policy_get_info_locked(struct ptlrpc_nrs_policy *policy,
2065 struct ptlrpc_nrs_pol_info *info);
2068 * Can the request be moved from the regular NRS head to the high-priority NRS
2069 * head (of the same PTLRPC service partition), if any?
2071 * For a reliable result, this should be checked under svcpt->scp_req lock.
2073 static inline bool ptlrpc_nrs_req_can_move(struct ptlrpc_request *req)
2075 struct ptlrpc_nrs_request *nrq = &req->rq_nrq;
2078 * LU-898: Check ptlrpc_nrs_request::nr_enqueued to make sure the
2079 * request has been enqueued first, and ptlrpc_nrs_request::nr_started
2080 * to make sure it has not been scheduled yet (analogous to previous
2081 * (non-NRS) checking of !list_empty(&ptlrpc_request::rq_list).
2083 return nrq->nr_enqueued && !nrq->nr_started && !req->rq_hp;
2088 * Returns 1 if request buffer at offset \a index was already swabbed
2090 static inline int lustre_req_swabbed(struct ptlrpc_request *req, int index)
2092 LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
2093 return req->rq_req_swab_mask & (1 << index);
2097 * Returns 1 if request reply buffer at offset \a index was already swabbed
2099 static inline int lustre_rep_swabbed(struct ptlrpc_request *req, int index)
2101 LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
2102 return req->rq_rep_swab_mask & (1 << index);
2106 * Returns 1 if request needs to be swabbed into local cpu byteorder
2108 static inline int ptlrpc_req_need_swab(struct ptlrpc_request *req)
2110 return lustre_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
2114 * Returns 1 if request reply needs to be swabbed into local cpu byteorder
2116 static inline int ptlrpc_rep_need_swab(struct ptlrpc_request *req)
2118 return lustre_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
2122 * Mark request buffer at offset \a index that it was already swabbed
2124 static inline void lustre_set_req_swabbed(struct ptlrpc_request *req, int index)
2126 LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
2127 LASSERT((req->rq_req_swab_mask & (1 << index)) == 0);
2128 req->rq_req_swab_mask |= 1 << index;
2132 * Mark request reply buffer at offset \a index that it was already swabbed
2134 static inline void lustre_set_rep_swabbed(struct ptlrpc_request *req, int index)
2136 LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
2137 LASSERT((req->rq_rep_swab_mask & (1 << index)) == 0);
2138 req->rq_rep_swab_mask |= 1 << index;
2142 * Convert numerical request phase value \a phase into text string description
2144 static inline const char *
2145 ptlrpc_phase2str(enum rq_phase phase)
2154 case RQ_PHASE_INTERPRET:
2156 case RQ_PHASE_COMPLETE:
2158 case RQ_PHASE_UNREGISTERING:
2159 return "Unregistering";
2166 * Convert numerical request phase of the request \a req into text stringi
2169 static inline const char *
2170 ptlrpc_rqphase2str(struct ptlrpc_request *req)
2172 return ptlrpc_phase2str(req->rq_phase);
2176 * Debugging functions and helpers to print request structure into debug log
2179 /* Spare the preprocessor, spoil the bugs. */
2180 #define FLAG(field, str) (field ? str : "")
2182 /** Convert bit flags into a string */
2183 #define DEBUG_REQ_FLAGS(req) \
2184 ptlrpc_rqphase2str(req), \
2185 FLAG(req->rq_intr, "I"), FLAG(req->rq_replied, "R"), \
2186 FLAG(req->rq_err, "E"), \
2187 FLAG(req->rq_timedout, "X") /* eXpired */, FLAG(req->rq_resend, "S"), \
2188 FLAG(req->rq_restart, "T"), FLAG(req->rq_replay, "P"), \
2189 FLAG(req->rq_no_resend, "N"), \
2190 FLAG(req->rq_waiting, "W"), \
2191 FLAG(req->rq_wait_ctx, "C"), FLAG(req->rq_hp, "H"), \
2192 FLAG(req->rq_committed, "M")
2194 #define REQ_FLAGS_FMT "%s:%s%s%s%s%s%s%s%s%s%s%s%s"
2196 void _debug_req(struct ptlrpc_request *req,
2197 struct libcfs_debug_msg_data *data, const char *fmt, ...)
2198 __attribute__ ((format (printf, 3, 4)));
2201 * Helper that decides if we need to print request accordig to current debug
2204 #define debug_req(msgdata, mask, cdls, req, fmt, a...) \
2206 CFS_CHECK_STACK(msgdata, mask, cdls); \
2208 if (((mask) & D_CANTMASK) != 0 || \
2209 ((libcfs_debug & (mask)) != 0 && \
2210 (libcfs_subsystem_debug & DEBUG_SUBSYSTEM) != 0)) \
2211 _debug_req((req), msgdata, fmt, ##a); \
2215 * This is the debug print function you need to use to print request sturucture
2216 * content into lustre debug log.
2217 * for most callers (level is a constant) this is resolved at compile time */
2218 #define DEBUG_REQ(level, req, fmt, args...) \
2220 if ((level) & (D_ERROR | D_WARNING)) { \
2221 static cfs_debug_limit_state_t cdls; \
2222 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, &cdls); \
2223 debug_req(&msgdata, level, &cdls, req, "@@@ "fmt" ", ## args);\
2225 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, NULL); \
2226 debug_req(&msgdata, level, NULL, req, "@@@ "fmt" ", ## args); \
2232 * Structure that defines a single page of a bulk transfer
2234 struct ptlrpc_bulk_page {
2235 /** Linkage to list of pages in a bulk */
2238 * Number of bytes in a page to transfer starting from \a bp_pageoffset
2241 /** offset within a page */
2243 /** The page itself */
2244 struct page *bp_page;
2247 #define BULK_GET_SOURCE 0
2248 #define BULK_PUT_SINK 1
2249 #define BULK_GET_SINK 2
2250 #define BULK_PUT_SOURCE 3
2253 * Definition of bulk descriptor.
2254 * Bulks are special "Two phase" RPCs where initial request message
2255 * is sent first and it is followed bt a transfer (o receiving) of a large
2256 * amount of data to be settled into pages referenced from the bulk descriptors.
2257 * Bulks transfers (the actual data following the small requests) are done
2258 * on separate LNet portals.
2259 * In lustre we use bulk transfers for READ and WRITE transfers from/to OSTs.
2260 * Another user is readpage for MDT.
2262 struct ptlrpc_bulk_desc {
2263 /** completed with failure */
2264 unsigned long bd_failure:1;
2265 /** {put,get}{source,sink} */
2266 unsigned long bd_type:2;
2268 unsigned long bd_registered:1;
2269 /** For serialization with callback */
2271 /** Import generation when request for this bulk was sent */
2272 int bd_import_generation;
2273 /** LNet portal for this bulk */
2275 /** Server side - export this bulk created for */
2276 struct obd_export *bd_export;
2277 /** Client side - import this bulk was sent on */
2278 struct obd_import *bd_import;
2279 /** Back pointer to the request */
2280 struct ptlrpc_request *bd_req;
2281 wait_queue_head_t bd_waitq; /* server side only WQ */
2282 int bd_iov_count; /* # entries in bd_iov */
2283 int bd_max_iov; /* allocated size of bd_iov */
2284 int bd_nob; /* # bytes covered */
2285 int bd_nob_transferred; /* # bytes GOT/PUT */
2289 struct ptlrpc_cb_id bd_cbid; /* network callback info */
2290 lnet_nid_t bd_sender; /* stash event::sender */
2291 int bd_md_count; /* # valid entries in bd_mds */
2292 int bd_md_max_brw; /* max entries in bd_mds */
2293 /** array of associated MDs */
2294 lnet_handle_md_t bd_mds[PTLRPC_BULK_OPS_COUNT];
2296 #if defined(__KERNEL__)
2298 * encrypt iov, size is either 0 or bd_iov_count.
2300 lnet_kiov_t *bd_enc_iov;
2302 lnet_kiov_t bd_iov[0];
2304 lnet_md_iovec_t bd_iov[0];
2309 SVC_STOPPED = 1 << 0,
2310 SVC_STOPPING = 1 << 1,
2311 SVC_STARTING = 1 << 2,
2312 SVC_RUNNING = 1 << 3,
2314 SVC_SIGNAL = 1 << 5,
2317 #define PTLRPC_THR_NAME_LEN 32
2319 * Definition of server service thread structure
2321 struct ptlrpc_thread {
2323 * List of active threads in svc->srv_threads
2327 * thread-private data (preallocated memory)
2332 * service thread index, from ptlrpc_start_threads
2336 * service thread pid
2340 * put watchdog in the structure per thread b=14840
2342 struct lc_watchdog *t_watchdog;
2344 * the svc this thread belonged to b=18582
2346 struct ptlrpc_service_part *t_svcpt;
2347 wait_queue_head_t t_ctl_waitq;
2348 struct lu_env *t_env;
2349 char t_name[PTLRPC_THR_NAME_LEN];
2352 static inline int thread_is_init(struct ptlrpc_thread *thread)
2354 return thread->t_flags == 0;
2357 static inline int thread_is_stopped(struct ptlrpc_thread *thread)
2359 return !!(thread->t_flags & SVC_STOPPED);
2362 static inline int thread_is_stopping(struct ptlrpc_thread *thread)
2364 return !!(thread->t_flags & SVC_STOPPING);
2367 static inline int thread_is_starting(struct ptlrpc_thread *thread)
2369 return !!(thread->t_flags & SVC_STARTING);
2372 static inline int thread_is_running(struct ptlrpc_thread *thread)
2374 return !!(thread->t_flags & SVC_RUNNING);
2377 static inline int thread_is_event(struct ptlrpc_thread *thread)
2379 return !!(thread->t_flags & SVC_EVENT);
2382 static inline int thread_is_signal(struct ptlrpc_thread *thread)
2384 return !!(thread->t_flags & SVC_SIGNAL);
2387 static inline void thread_clear_flags(struct ptlrpc_thread *thread, __u32 flags)
2389 thread->t_flags &= ~flags;
2392 static inline void thread_set_flags(struct ptlrpc_thread *thread, __u32 flags)
2394 thread->t_flags = flags;
2397 static inline void thread_add_flags(struct ptlrpc_thread *thread, __u32 flags)
2399 thread->t_flags |= flags;
2402 static inline int thread_test_and_clear_flags(struct ptlrpc_thread *thread,
2405 if (thread->t_flags & flags) {
2406 thread->t_flags &= ~flags;
2413 * Request buffer descriptor structure.
2414 * This is a structure that contains one posted request buffer for service.
2415 * Once data land into a buffer, event callback creates actual request and
2416 * notifies wakes one of the service threads to process new incoming request.
2417 * More than one request can fit into the buffer.
2419 struct ptlrpc_request_buffer_desc {
2420 /** Link item for rqbds on a service */
2421 cfs_list_t rqbd_list;
2422 /** History of requests for this buffer */
2423 cfs_list_t rqbd_reqs;
2424 /** Back pointer to service for which this buffer is registered */
2425 struct ptlrpc_service_part *rqbd_svcpt;
2426 /** LNet descriptor */
2427 lnet_handle_md_t rqbd_md_h;
2429 /** The buffer itself */
2431 struct ptlrpc_cb_id rqbd_cbid;
2433 * This "embedded" request structure is only used for the
2434 * last request to fit into the buffer
2436 struct ptlrpc_request rqbd_req;
2439 typedef int (*svc_handler_t)(struct ptlrpc_request *req);
2441 struct ptlrpc_service_ops {
2443 * if non-NULL called during thread creation (ptlrpc_start_thread())
2444 * to initialize service specific per-thread state.
2446 int (*so_thr_init)(struct ptlrpc_thread *thr);
2448 * if non-NULL called during thread shutdown (ptlrpc_main()) to
2449 * destruct state created by ->srv_init().
2451 void (*so_thr_done)(struct ptlrpc_thread *thr);
2453 * Handler function for incoming requests for this service
2455 int (*so_req_handler)(struct ptlrpc_request *req);
2457 * function to determine priority of the request, it's called
2458 * on every new request
2460 int (*so_hpreq_handler)(struct ptlrpc_request *);
2462 * service-specific print fn
2464 void (*so_req_printer)(void *, struct ptlrpc_request *);
2467 #ifndef __cfs_cacheline_aligned
2468 /* NB: put it here for reducing patche dependence */
2469 # define __cfs_cacheline_aligned
2473 * How many high priority requests to serve before serving one normal
2476 #define PTLRPC_SVC_HP_RATIO 10
2479 * Definition of PortalRPC service.
2480 * The service is listening on a particular portal (like tcp port)
2481 * and perform actions for a specific server like IO service for OST
2482 * or general metadata service for MDS.
2484 struct ptlrpc_service {
2485 /** serialize /proc operations */
2486 spinlock_t srv_lock;
2487 /** most often accessed fields */
2488 /** chain thru all services */
2489 cfs_list_t srv_list;
2490 /** service operations table */
2491 struct ptlrpc_service_ops srv_ops;
2492 /** only statically allocated strings here; we don't clean them */
2494 /** only statically allocated strings here; we don't clean them */
2495 char *srv_thread_name;
2496 /** service thread list */
2497 cfs_list_t srv_threads;
2498 /** threads # should be created for each partition on initializing */
2499 int srv_nthrs_cpt_init;
2500 /** limit of threads number for each partition */
2501 int srv_nthrs_cpt_limit;
2502 /** Root of /proc dir tree for this service */
2503 cfs_proc_dir_entry_t *srv_procroot;
2504 /** Pointer to statistic data for this service */
2505 struct lprocfs_stats *srv_stats;
2506 /** # hp per lp reqs to handle */
2507 int srv_hpreq_ratio;
2508 /** biggest request to receive */
2509 int srv_max_req_size;
2510 /** biggest reply to send */
2511 int srv_max_reply_size;
2512 /** size of individual buffers */
2514 /** # buffers to allocate in 1 group */
2515 int srv_nbuf_per_group;
2516 /** Local portal on which to receive requests */
2517 __u32 srv_req_portal;
2518 /** Portal on the client to send replies to */
2519 __u32 srv_rep_portal;
2521 * Tags for lu_context associated with this thread, see struct
2525 /** soft watchdog timeout multiplier */
2526 int srv_watchdog_factor;
2527 /** under unregister_service */
2528 unsigned srv_is_stopping:1;
2530 /** max # request buffers in history per partition */
2531 int srv_hist_nrqbds_cpt_max;
2532 /** number of CPTs this service bound on */
2534 /** CPTs array this service bound on */
2536 /** 2^srv_cptab_bits >= cfs_cpt_numbert(srv_cptable) */
2538 /** CPT table this service is running over */
2539 struct cfs_cpt_table *srv_cptable;
2541 * partition data for ptlrpc service
2543 struct ptlrpc_service_part *srv_parts[0];
2547 * Definition of PortalRPC service partition data.
2548 * Although a service only has one instance of it right now, but we
2549 * will have multiple instances very soon (instance per CPT).
2551 * it has four locks:
2553 * serialize operations on rqbd and requests waiting for preprocess
2555 * serialize operations active requests sent to this portal
2557 * serialize adaptive timeout stuff
2559 * serialize operations on RS list (reply states)
2561 * We don't have any use-case to take two or more locks at the same time
2562 * for now, so there is no lock order issue.
2564 struct ptlrpc_service_part {
2565 /** back reference to owner */
2566 struct ptlrpc_service *scp_service __cfs_cacheline_aligned;
2567 /* CPT id, reserved */
2569 /** always increasing number */
2571 /** # of starting threads */
2572 int scp_nthrs_starting;
2573 /** # of stopping threads, reserved for shrinking threads */
2574 int scp_nthrs_stopping;
2575 /** # running threads */
2576 int scp_nthrs_running;
2577 /** service threads list */
2578 cfs_list_t scp_threads;
2581 * serialize the following fields, used for protecting
2582 * rqbd list and incoming requests waiting for preprocess,
2583 * threads starting & stopping are also protected by this lock.
2585 spinlock_t scp_lock __cfs_cacheline_aligned;
2586 /** total # req buffer descs allocated */
2587 int scp_nrqbds_total;
2588 /** # posted request buffers for receiving */
2589 int scp_nrqbds_posted;
2590 /** in progress of allocating rqbd */
2591 int scp_rqbd_allocating;
2592 /** # incoming reqs */
2593 int scp_nreqs_incoming;
2594 /** request buffers to be reposted */
2595 cfs_list_t scp_rqbd_idle;
2596 /** req buffers receiving */
2597 cfs_list_t scp_rqbd_posted;
2598 /** incoming reqs */
2599 cfs_list_t scp_req_incoming;
2600 /** timeout before re-posting reqs, in tick */
2601 cfs_duration_t scp_rqbd_timeout;
2603 * all threads sleep on this. This wait-queue is signalled when new
2604 * incoming request arrives and when difficult reply has to be handled.
2606 wait_queue_head_t scp_waitq;
2608 /** request history */
2609 cfs_list_t scp_hist_reqs;
2610 /** request buffer history */
2611 cfs_list_t scp_hist_rqbds;
2612 /** # request buffers in history */
2613 int scp_hist_nrqbds;
2614 /** sequence number for request */
2616 /** highest seq culled from history */
2617 __u64 scp_hist_seq_culled;
2620 * serialize the following fields, used for processing requests
2621 * sent to this portal
2623 spinlock_t scp_req_lock __cfs_cacheline_aligned;
2624 /** # reqs in either of the NRS heads below */
2625 /** # reqs being served */
2626 int scp_nreqs_active;
2627 /** # HPreqs being served */
2628 int scp_nhreqs_active;
2629 /** # hp requests handled */
2632 /** NRS head for regular requests */
2633 struct ptlrpc_nrs scp_nrs_reg;
2634 /** NRS head for HP requests; this is only valid for services that can
2635 * handle HP requests */
2636 struct ptlrpc_nrs *scp_nrs_hp;
2641 * serialize the following fields, used for changes on
2644 spinlock_t scp_at_lock __cfs_cacheline_aligned;
2645 /** estimated rpc service time */
2646 struct adaptive_timeout scp_at_estimate;
2647 /** reqs waiting for replies */
2648 struct ptlrpc_at_array scp_at_array;
2649 /** early reply timer */
2650 struct timer_list scp_at_timer;
2652 cfs_time_t scp_at_checktime;
2653 /** check early replies */
2654 unsigned scp_at_check;
2658 * serialize the following fields, used for processing
2659 * replies for this portal
2661 spinlock_t scp_rep_lock __cfs_cacheline_aligned;
2662 /** all the active replies */
2663 cfs_list_t scp_rep_active;
2665 /** replies waiting for service */
2666 cfs_list_t scp_rep_queue;
2668 /** List of free reply_states */
2669 cfs_list_t scp_rep_idle;
2670 /** waitq to run, when adding stuff to srv_free_rs_list */
2671 wait_queue_head_t scp_rep_waitq;
2672 /** # 'difficult' replies */
2673 cfs_atomic_t scp_nreps_difficult;
2676 #define ptlrpc_service_for_each_part(part, i, svc) \
2678 i < (svc)->srv_ncpts && \
2679 (svc)->srv_parts != NULL && \
2680 ((part) = (svc)->srv_parts[i]) != NULL; i++)
2683 * Declaration of ptlrpcd control structure
2685 struct ptlrpcd_ctl {
2687 * Ptlrpc thread control flags (LIOD_START, LIOD_STOP, LIOD_FORCE)
2689 unsigned long pc_flags;
2691 * Thread lock protecting structure fields.
2697 struct completion pc_starting;
2701 struct completion pc_finishing;
2703 * Thread requests set.
2705 struct ptlrpc_request_set *pc_set;
2707 * Thread name used in kthread_run()
2711 * Environment for request interpreters to run in.
2713 struct lu_env pc_env;
2715 * Index of ptlrpcd thread in the array.
2719 * Number of the ptlrpcd's partners.
2723 * Pointer to the array of partners' ptlrpcd_ctl structure.
2725 struct ptlrpcd_ctl **pc_partners;
2727 * Record the partner index to be processed next.
2732 * Async rpcs flag to make sure that ptlrpcd_check() is called only
2737 * Currently not used.
2741 * User-space async rpcs callback.
2743 void *pc_wait_callback;
2745 * User-space check idle rpcs callback.
2747 void *pc_idle_callback;
2751 /* Bits for pc_flags */
2752 enum ptlrpcd_ctl_flags {
2754 * Ptlrpc thread start flag.
2756 LIOD_START = 1 << 0,
2758 * Ptlrpc thread stop flag.
2762 * Ptlrpc thread force flag (only stop force so far).
2763 * This will cause aborting any inflight rpcs handled
2764 * by thread if LIOD_STOP is specified.
2766 LIOD_FORCE = 1 << 2,
2768 * This is a recovery ptlrpc thread.
2770 LIOD_RECOVERY = 1 << 3,
2772 * The ptlrpcd is bound to some CPU core.
2781 * Service compatibility function; the policy is compatible with all services.
2783 * \param[in] svc The service the policy is attempting to register with.
2784 * \param[in] desc The policy descriptor
2786 * \retval true The policy is compatible with the service
2788 * \see ptlrpc_nrs_pol_desc::pd_compat()
2790 static inline bool nrs_policy_compat_all(const struct ptlrpc_service *svc,
2791 const struct ptlrpc_nrs_pol_desc *desc)
2797 * Service compatibility function; the policy is compatible with only a specific
2798 * service which is identified by its human-readable name at
2799 * ptlrpc_service::srv_name.
2801 * \param[in] svc The service the policy is attempting to register with.
2802 * \param[in] desc The policy descriptor
2804 * \retval false The policy is not compatible with the service
2805 * \retval true The policy is compatible with the service
2807 * \see ptlrpc_nrs_pol_desc::pd_compat()
2809 static inline bool nrs_policy_compat_one(const struct ptlrpc_service *svc,
2810 const struct ptlrpc_nrs_pol_desc *desc)
2812 LASSERT(desc->pd_compat_svc_name != NULL);
2813 return strcmp(svc->srv_name, desc->pd_compat_svc_name) == 0;
2818 /* ptlrpc/events.c */
2819 extern lnet_handle_eq_t ptlrpc_eq_h;
2820 extern int ptlrpc_uuid_to_peer(struct obd_uuid *uuid,
2821 lnet_process_id_t *peer, lnet_nid_t *self);
2823 * These callbacks are invoked by LNet when something happened to
2827 extern void request_out_callback(lnet_event_t *ev);
2828 extern void reply_in_callback(lnet_event_t *ev);
2829 extern void client_bulk_callback(lnet_event_t *ev);
2830 extern void request_in_callback(lnet_event_t *ev);
2831 extern void reply_out_callback(lnet_event_t *ev);
2832 #ifdef HAVE_SERVER_SUPPORT
2833 extern void server_bulk_callback(lnet_event_t *ev);
2837 /* ptlrpc/connection.c */
2838 struct ptlrpc_connection *ptlrpc_connection_get(lnet_process_id_t peer,
2840 struct obd_uuid *uuid);
2841 int ptlrpc_connection_put(struct ptlrpc_connection *c);
2842 struct ptlrpc_connection *ptlrpc_connection_addref(struct ptlrpc_connection *);
2843 int ptlrpc_connection_init(void);
2844 void ptlrpc_connection_fini(void);
2845 extern lnet_pid_t ptl_get_pid(void);
2847 /* ptlrpc/niobuf.c */
2849 * Actual interfacing with LNet to put/get/register/unregister stuff
2852 #ifdef HAVE_SERVER_SUPPORT
2853 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_exp(struct ptlrpc_request *req,
2854 unsigned npages, unsigned max_brw,
2855 unsigned type, unsigned portal);
2856 int ptlrpc_start_bulk_transfer(struct ptlrpc_bulk_desc *desc);
2857 void ptlrpc_abort_bulk(struct ptlrpc_bulk_desc *desc);
2859 static inline int ptlrpc_server_bulk_active(struct ptlrpc_bulk_desc *desc)
2863 LASSERT(desc != NULL);
2865 spin_lock(&desc->bd_lock);
2866 rc = desc->bd_md_count;
2867 spin_unlock(&desc->bd_lock);
2872 int ptlrpc_register_bulk(struct ptlrpc_request *req);
2873 int ptlrpc_unregister_bulk(struct ptlrpc_request *req, int async);
2875 static inline int ptlrpc_client_bulk_active(struct ptlrpc_request *req)
2877 struct ptlrpc_bulk_desc *desc;
2880 LASSERT(req != NULL);
2881 desc = req->rq_bulk;
2883 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK) &&
2884 req->rq_bulk_deadline > cfs_time_current_sec())
2890 spin_lock(&desc->bd_lock);
2891 rc = desc->bd_md_count;
2892 spin_unlock(&desc->bd_lock);
2896 #define PTLRPC_REPLY_MAYBE_DIFFICULT 0x01
2897 #define PTLRPC_REPLY_EARLY 0x02
2898 int ptlrpc_send_reply(struct ptlrpc_request *req, int flags);
2899 int ptlrpc_reply(struct ptlrpc_request *req);
2900 int ptlrpc_send_error(struct ptlrpc_request *req, int difficult);
2901 int ptlrpc_error(struct ptlrpc_request *req);
2902 void ptlrpc_resend_req(struct ptlrpc_request *request);
2903 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req);
2904 int ptl_send_rpc(struct ptlrpc_request *request, int noreply);
2905 int ptlrpc_register_rqbd(struct ptlrpc_request_buffer_desc *rqbd);
2908 /* ptlrpc/client.c */
2910 * Client-side portals API. Everything to send requests, receive replies,
2911 * request queues, request management, etc.
2914 void ptlrpc_request_committed(struct ptlrpc_request *req, int force);
2916 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
2917 struct ptlrpc_client *);
2918 void ptlrpc_cleanup_client(struct obd_import *imp);
2919 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid);
2921 int ptlrpc_queue_wait(struct ptlrpc_request *req);
2922 int ptlrpc_replay_req(struct ptlrpc_request *req);
2923 int ptlrpc_unregister_reply(struct ptlrpc_request *req, int async);
2924 void ptlrpc_restart_req(struct ptlrpc_request *req);
2925 void ptlrpc_abort_inflight(struct obd_import *imp);
2926 void ptlrpc_cleanup_imp(struct obd_import *imp);
2927 void ptlrpc_abort_set(struct ptlrpc_request_set *set);
2929 struct ptlrpc_request_set *ptlrpc_prep_set(void);
2930 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
2932 int ptlrpc_set_add_cb(struct ptlrpc_request_set *set,
2933 set_interpreter_func fn, void *data);
2934 int ptlrpc_set_next_timeout(struct ptlrpc_request_set *);
2935 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set);
2936 int ptlrpc_set_wait(struct ptlrpc_request_set *);
2937 int ptlrpc_expired_set(void *data);
2938 void ptlrpc_interrupted_set(void *data);
2939 void ptlrpc_mark_interrupted(struct ptlrpc_request *req);
2940 void ptlrpc_set_destroy(struct ptlrpc_request_set *);
2941 void ptlrpc_set_add_req(struct ptlrpc_request_set *, struct ptlrpc_request *);
2942 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
2943 struct ptlrpc_request *req);
2945 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool);
2946 void ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq);
2948 struct ptlrpc_request_pool *
2949 ptlrpc_init_rq_pool(int, int,
2950 void (*populate_pool)(struct ptlrpc_request_pool *, int));
2952 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req);
2953 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
2954 const struct req_format *format);
2955 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
2956 struct ptlrpc_request_pool *,
2957 const struct req_format *format);
2958 void ptlrpc_request_free(struct ptlrpc_request *request);
2959 int ptlrpc_request_pack(struct ptlrpc_request *request,
2960 __u32 version, int opcode);
2961 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
2962 const struct req_format *format,
2963 __u32 version, int opcode);
2964 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
2965 __u32 version, int opcode, char **bufs,
2966 struct ptlrpc_cli_ctx *ctx);
2967 struct ptlrpc_request *ptlrpc_prep_req(struct obd_import *imp, __u32 version,
2968 int opcode, int count, __u32 *lengths,
2970 struct ptlrpc_request *ptlrpc_prep_req_pool(struct obd_import *imp,
2971 __u32 version, int opcode,
2972 int count, __u32 *lengths, char **bufs,
2973 struct ptlrpc_request_pool *pool);
2974 void ptlrpc_req_finished(struct ptlrpc_request *request);
2975 void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request);
2976 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req);
2977 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
2978 unsigned npages, unsigned max_brw,
2979 unsigned type, unsigned portal);
2980 void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *bulk, int pin);
2981 static inline void ptlrpc_free_bulk_pin(struct ptlrpc_bulk_desc *bulk)
2983 __ptlrpc_free_bulk(bulk, 1);
2985 static inline void ptlrpc_free_bulk_nopin(struct ptlrpc_bulk_desc *bulk)
2987 __ptlrpc_free_bulk(bulk, 0);
2989 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
2990 struct page *page, int pageoffset, int len, int);
2991 static inline void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
2992 struct page *page, int pageoffset,
2995 __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
2998 static inline void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
2999 struct page *page, int pageoffset,
3002 __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
3005 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
3006 struct obd_import *imp);
3007 __u64 ptlrpc_next_xid(void);
3008 __u64 ptlrpc_sample_next_xid(void);
3009 __u64 ptlrpc_req_xid(struct ptlrpc_request *request);
3011 /* Set of routines to run a function in ptlrpcd context */
3012 void *ptlrpcd_alloc_work(struct obd_import *imp,
3013 int (*cb)(const struct lu_env *, void *), void *data);
3014 void ptlrpcd_destroy_work(void *handler);
3015 int ptlrpcd_queue_work(void *handler);
3018 struct ptlrpc_service_buf_conf {
3019 /* nbufs is buffers # to allocate when growing the pool */
3020 unsigned int bc_nbufs;
3021 /* buffer size to post */
3022 unsigned int bc_buf_size;
3023 /* portal to listed for requests on */
3024 unsigned int bc_req_portal;
3025 /* portal of where to send replies to */
3026 unsigned int bc_rep_portal;
3027 /* maximum request size to be accepted for this service */
3028 unsigned int bc_req_max_size;
3029 /* maximum reply size this service can ever send */
3030 unsigned int bc_rep_max_size;
3033 struct ptlrpc_service_thr_conf {
3034 /* threadname should be 8 characters or less - 6 will be added on */
3036 /* threads increasing factor for each CPU */
3037 unsigned int tc_thr_factor;
3038 /* service threads # to start on each partition while initializing */
3039 unsigned int tc_nthrs_init;
3041 * low water of threads # upper-limit on each partition while running,
3042 * service availability may be impacted if threads number is lower
3043 * than this value. It can be ZERO if the service doesn't require
3044 * CPU affinity or there is only one partition.
3046 unsigned int tc_nthrs_base;
3047 /* "soft" limit for total threads number */
3048 unsigned int tc_nthrs_max;
3049 /* user specified threads number, it will be validated due to
3050 * other members of this structure. */
3051 unsigned int tc_nthrs_user;
3052 /* set NUMA node affinity for service threads */
3053 unsigned int tc_cpu_affinity;
3054 /* Tags for lu_context associated with service thread */
3058 struct ptlrpc_service_cpt_conf {
3059 struct cfs_cpt_table *cc_cptable;
3060 /* string pattern to describe CPTs for a service */
3064 struct ptlrpc_service_conf {
3067 /* soft watchdog timeout multiplifier to print stuck service traces */
3068 unsigned int psc_watchdog_factor;
3069 /* buffer information */
3070 struct ptlrpc_service_buf_conf psc_buf;
3071 /* thread information */
3072 struct ptlrpc_service_thr_conf psc_thr;
3073 /* CPU partition information */
3074 struct ptlrpc_service_cpt_conf psc_cpt;
3075 /* function table */
3076 struct ptlrpc_service_ops psc_ops;
3079 /* ptlrpc/service.c */
3081 * Server-side services API. Register/unregister service, request state
3082 * management, service thread management
3086 void ptlrpc_save_lock(struct ptlrpc_request *req,
3087 struct lustre_handle *lock, int mode, int no_ack);
3088 void ptlrpc_commit_replies(struct obd_export *exp);
3089 void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs);
3090 void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs);
3091 int ptlrpc_hpreq_handler(struct ptlrpc_request *req);
3092 struct ptlrpc_service *ptlrpc_register_service(
3093 struct ptlrpc_service_conf *conf,
3094 struct proc_dir_entry *proc_entry);
3095 void ptlrpc_stop_all_threads(struct ptlrpc_service *svc);
3097 int ptlrpc_start_threads(struct ptlrpc_service *svc);
3098 int ptlrpc_unregister_service(struct ptlrpc_service *service);
3099 int liblustre_check_services(void *arg);
3100 void ptlrpc_daemonize(char *name);
3101 int ptlrpc_service_health_check(struct ptlrpc_service *);
3102 void ptlrpc_server_drop_request(struct ptlrpc_request *req);
3103 void ptlrpc_request_change_export(struct ptlrpc_request *req,
3104 struct obd_export *export);
3107 int ptlrpc_hr_init(void);
3108 void ptlrpc_hr_fini(void);
3110 # define ptlrpc_hr_init() (0)
3111 # define ptlrpc_hr_fini() do {} while(0)
3116 /* ptlrpc/import.c */
3121 int ptlrpc_connect_import(struct obd_import *imp);
3122 int ptlrpc_init_import(struct obd_import *imp);
3123 int ptlrpc_disconnect_import(struct obd_import *imp, int noclose);
3124 int ptlrpc_import_recovery_state_machine(struct obd_import *imp);
3125 void deuuidify(char *uuid, const char *prefix, char **uuid_start,
3128 /* ptlrpc/pack_generic.c */
3129 int ptlrpc_reconnect_import(struct obd_import *imp);
3133 * ptlrpc msg buffer and swab interface
3137 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
3139 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
3141 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len);
3142 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len);
3144 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version);
3145 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
3147 int lustre_pack_request(struct ptlrpc_request *, __u32 magic, int count,
3148 __u32 *lens, char **bufs);
3149 int lustre_pack_reply(struct ptlrpc_request *, int count, __u32 *lens,
3151 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
3152 __u32 *lens, char **bufs, int flags);
3153 #define LPRFL_EARLY_REPLY 1
3154 int lustre_pack_reply_flags(struct ptlrpc_request *, int count, __u32 *lens,
3155 char **bufs, int flags);
3156 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
3157 unsigned int newlen, int move_data);
3158 void lustre_free_reply_state(struct ptlrpc_reply_state *rs);
3159 int __lustre_unpack_msg(struct lustre_msg *m, int len);
3160 int lustre_msg_hdr_size(__u32 magic, int count);
3161 int lustre_msg_size(__u32 magic, int count, __u32 *lengths);
3162 int lustre_msg_size_v2(int count, __u32 *lengths);
3163 int lustre_packed_msg_size(struct lustre_msg *msg);
3164 int lustre_msg_early_size(void);
3165 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, int n, int min_size);
3166 void *lustre_msg_buf(struct lustre_msg *m, int n, int minlen);
3167 int lustre_msg_buflen(struct lustre_msg *m, int n);
3168 void lustre_msg_set_buflen(struct lustre_msg *m, int n, int len);
3169 int lustre_msg_bufcount(struct lustre_msg *m);
3170 char *lustre_msg_string(struct lustre_msg *m, int n, int max_len);
3171 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg);
3172 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags);
3173 __u32 lustre_msg_get_flags(struct lustre_msg *msg);
3174 void lustre_msg_add_flags(struct lustre_msg *msg, int flags);
3175 void lustre_msg_set_flags(struct lustre_msg *msg, int flags);
3176 void lustre_msg_clear_flags(struct lustre_msg *msg, int flags);
3177 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg);
3178 void lustre_msg_add_op_flags(struct lustre_msg *msg, int flags);
3179 void lustre_msg_set_op_flags(struct lustre_msg *msg, int flags);
3180 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg);
3181 __u32 lustre_msg_get_type(struct lustre_msg *msg);
3182 __u32 lustre_msg_get_version(struct lustre_msg *msg);
3183 void lustre_msg_add_version(struct lustre_msg *msg, int version);
3184 __u32 lustre_msg_get_opc(struct lustre_msg *msg);
3185 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg);
3186 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg);
3187 __u64 *lustre_msg_get_versions(struct lustre_msg *msg);
3188 __u64 lustre_msg_get_transno(struct lustre_msg *msg);
3189 __u64 lustre_msg_get_slv(struct lustre_msg *msg);
3190 __u32 lustre_msg_get_limit(struct lustre_msg *msg);
3191 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv);
3192 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit);
3193 int lustre_msg_get_status(struct lustre_msg *msg);
3194 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg);
3195 int lustre_msg_is_v1(struct lustre_msg *msg);
3196 __u32 lustre_msg_get_magic(struct lustre_msg *msg);
3197 __u32 lustre_msg_get_timeout(struct lustre_msg *msg);
3198 __u32 lustre_msg_get_service_time(struct lustre_msg *msg);
3199 char *lustre_msg_get_jobid(struct lustre_msg *msg);
3200 __u32 lustre_msg_get_cksum(struct lustre_msg *msg);
3201 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 50, 0)
3202 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg, int compat18);
3204 # warning "remove checksum compatibility support for b1_8"
3205 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg);
3207 void lustre_msg_set_handle(struct lustre_msg *msg,struct lustre_handle *handle);
3208 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type);
3209 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc);
3210 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid);
3211 void lustre_msg_set_last_committed(struct lustre_msg *msg,__u64 last_committed);
3212 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions);
3213 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno);
3214 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status);
3215 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt);
3216 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *sizes);
3217 void ptlrpc_request_set_replen(struct ptlrpc_request *req);
3218 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout);
3219 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time);
3220 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid);
3221 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum);
3224 lustre_shrink_reply(struct ptlrpc_request *req, int segment,
3225 unsigned int newlen, int move_data)
3227 LASSERT(req->rq_reply_state);
3228 LASSERT(req->rq_repmsg);
3229 req->rq_replen = lustre_shrink_msg(req->rq_repmsg, segment,
3233 #ifdef LUSTRE_TRANSLATE_ERRNOS
3235 static inline int ptlrpc_status_hton(int h)
3238 * Positive errnos must be network errnos, such as LUSTRE_EDEADLK,
3239 * ELDLM_LOCK_ABORTED, etc.
3242 return -lustre_errno_hton(-h);
3247 static inline int ptlrpc_status_ntoh(int n)
3250 * See the comment in ptlrpc_status_hton().
3253 return -lustre_errno_ntoh(-n);
3260 #define ptlrpc_status_hton(h) (h)
3261 #define ptlrpc_status_ntoh(n) (n)
3266 /** Change request phase of \a req to \a new_phase */
3268 ptlrpc_rqphase_move(struct ptlrpc_request *req, enum rq_phase new_phase)
3270 if (req->rq_phase == new_phase)
3273 if (new_phase == RQ_PHASE_UNREGISTERING) {
3274 req->rq_next_phase = req->rq_phase;
3276 cfs_atomic_inc(&req->rq_import->imp_unregistering);
3279 if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
3281 cfs_atomic_dec(&req->rq_import->imp_unregistering);
3284 DEBUG_REQ(D_INFO, req, "move req \"%s\" -> \"%s\"",
3285 ptlrpc_rqphase2str(req), ptlrpc_phase2str(new_phase));
3287 req->rq_phase = new_phase;
3291 * Returns true if request \a req got early reply and hard deadline is not met
3294 ptlrpc_client_early(struct ptlrpc_request *req)
3296 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3297 req->rq_reply_deadline > cfs_time_current_sec())
3299 return req->rq_early;
3303 * Returns true if we got real reply from server for this request
3306 ptlrpc_client_replied(struct ptlrpc_request *req)
3308 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3309 req->rq_reply_deadline > cfs_time_current_sec())
3311 return req->rq_replied;
3314 /** Returns true if request \a req is in process of receiving server reply */
3316 ptlrpc_client_recv(struct ptlrpc_request *req)
3318 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3319 req->rq_reply_deadline > cfs_time_current_sec())
3321 return req->rq_receiving_reply;
3325 ptlrpc_client_recv_or_unlink(struct ptlrpc_request *req)
3329 spin_lock(&req->rq_lock);
3330 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3331 req->rq_reply_deadline > cfs_time_current_sec()) {
3332 spin_unlock(&req->rq_lock);
3335 rc = req->rq_receiving_reply || req->rq_must_unlink;
3336 spin_unlock(&req->rq_lock);
3341 ptlrpc_client_wake_req(struct ptlrpc_request *req)
3343 if (req->rq_set == NULL)
3344 wake_up(&req->rq_reply_waitq);
3346 wake_up(&req->rq_set->set_waitq);
3350 ptlrpc_rs_addref(struct ptlrpc_reply_state *rs)
3352 LASSERT(cfs_atomic_read(&rs->rs_refcount) > 0);
3353 cfs_atomic_inc(&rs->rs_refcount);
3357 ptlrpc_rs_decref(struct ptlrpc_reply_state *rs)
3359 LASSERT(cfs_atomic_read(&rs->rs_refcount) > 0);
3360 if (cfs_atomic_dec_and_test(&rs->rs_refcount))
3361 lustre_free_reply_state(rs);
3364 /* Should only be called once per req */
3365 static inline void ptlrpc_req_drop_rs(struct ptlrpc_request *req)
3367 if (req->rq_reply_state == NULL)
3368 return; /* shouldn't occur */
3369 ptlrpc_rs_decref(req->rq_reply_state);
3370 req->rq_reply_state = NULL;
3371 req->rq_repmsg = NULL;
3374 static inline __u32 lustre_request_magic(struct ptlrpc_request *req)
3376 return lustre_msg_get_magic(req->rq_reqmsg);
3379 static inline int ptlrpc_req_get_repsize(struct ptlrpc_request *req)
3381 switch (req->rq_reqmsg->lm_magic) {
3382 case LUSTRE_MSG_MAGIC_V2:
3383 return req->rq_reqmsg->lm_repsize;
3385 LASSERTF(0, "incorrect message magic: %08x\n",
3386 req->rq_reqmsg->lm_magic);
3391 static inline int ptlrpc_send_limit_expired(struct ptlrpc_request *req)
3393 if (req->rq_delay_limit != 0 &&
3394 cfs_time_before(cfs_time_add(req->rq_queued_time,
3395 cfs_time_seconds(req->rq_delay_limit)),
3396 cfs_time_current())) {
3402 static inline int ptlrpc_no_resend(struct ptlrpc_request *req)
3404 if (!req->rq_no_resend && ptlrpc_send_limit_expired(req)) {
3405 spin_lock(&req->rq_lock);
3406 req->rq_no_resend = 1;
3407 spin_unlock(&req->rq_lock);
3409 return req->rq_no_resend;
3413 ptlrpc_server_get_timeout(struct ptlrpc_service_part *svcpt)
3415 int at = AT_OFF ? 0 : at_get(&svcpt->scp_at_estimate);
3417 return svcpt->scp_service->srv_watchdog_factor *
3418 max_t(int, at, obd_timeout);
3421 static inline struct ptlrpc_service *
3422 ptlrpc_req2svc(struct ptlrpc_request *req)
3424 LASSERT(req->rq_rqbd != NULL);
3425 return req->rq_rqbd->rqbd_svcpt->scp_service;
3428 /* ldlm/ldlm_lib.c */
3430 * Target client logic
3433 int client_obd_setup(struct obd_device *obddev, struct lustre_cfg *lcfg);
3434 int client_obd_cleanup(struct obd_device *obddev);
3435 int client_connect_import(const struct lu_env *env,
3436 struct obd_export **exp, struct obd_device *obd,
3437 struct obd_uuid *cluuid, struct obd_connect_data *,
3439 int client_disconnect_export(struct obd_export *exp);
3440 int client_import_add_conn(struct obd_import *imp, struct obd_uuid *uuid,
3442 int client_import_del_conn(struct obd_import *imp, struct obd_uuid *uuid);
3443 int client_import_find_conn(struct obd_import *imp, lnet_nid_t peer,
3444 struct obd_uuid *uuid);
3445 int import_set_conn_priority(struct obd_import *imp, struct obd_uuid *uuid);
3446 void client_destroy_import(struct obd_import *imp);
3449 #ifdef HAVE_SERVER_SUPPORT
3450 int server_disconnect_export(struct obd_export *exp);
3453 /* ptlrpc/pinger.c */
3455 * Pinger API (client side only)
3458 enum timeout_event {
3461 struct timeout_item;
3462 typedef int (*timeout_cb_t)(struct timeout_item *, void *);
3463 int ptlrpc_pinger_add_import(struct obd_import *imp);
3464 int ptlrpc_pinger_del_import(struct obd_import *imp);
3465 int ptlrpc_add_timeout_client(int time, enum timeout_event event,
3466 timeout_cb_t cb, void *data,
3467 cfs_list_t *obd_list);
3468 int ptlrpc_del_timeout_client(cfs_list_t *obd_list,
3469 enum timeout_event event);
3470 struct ptlrpc_request * ptlrpc_prep_ping(struct obd_import *imp);
3471 int ptlrpc_obd_ping(struct obd_device *obd);
3473 void ping_evictor_start(void);
3474 void ping_evictor_stop(void);
3476 #define ping_evictor_start() do {} while (0)
3477 #define ping_evictor_stop() do {} while (0)
3479 void ptlrpc_pinger_ir_up(void);
3480 void ptlrpc_pinger_ir_down(void);
3482 int ptlrpc_pinger_suppress_pings(void);
3484 /* ptlrpc daemon bind policy */
3486 /* all ptlrpcd threads are free mode */
3487 PDB_POLICY_NONE = 1,
3488 /* all ptlrpcd threads are bound mode */
3489 PDB_POLICY_FULL = 2,
3490 /* <free1 bound1> <free2 bound2> ... <freeN boundN> */
3491 PDB_POLICY_PAIR = 3,
3492 /* <free1 bound1> <bound1 free2> ... <freeN boundN> <boundN free1>,
3493 * means each ptlrpcd[X] has two partners: thread[X-1] and thread[X+1].
3494 * If kernel supports NUMA, pthrpcd threads are binded and
3495 * grouped by NUMA node */
3496 PDB_POLICY_NEIGHBOR = 4,
3499 /* ptlrpc daemon load policy
3500 * It is caller's duty to specify how to push the async RPC into some ptlrpcd
3501 * queue, but it is not enforced, affected by "ptlrpcd_bind_policy". If it is
3502 * "PDB_POLICY_FULL", then the RPC will be processed by the selected ptlrpcd,
3503 * Otherwise, the RPC may be processed by the selected ptlrpcd or its partner,
3504 * depends on which is scheduled firstly, to accelerate the RPC processing. */
3506 /* on the same CPU core as the caller */
3507 PDL_POLICY_SAME = 1,
3508 /* within the same CPU partition, but not the same core as the caller */
3509 PDL_POLICY_LOCAL = 2,
3510 /* round-robin on all CPU cores, but not the same core as the caller */
3511 PDL_POLICY_ROUND = 3,
3512 /* the specified CPU core is preferred, but not enforced */
3513 PDL_POLICY_PREFERRED = 4,
3516 /* ptlrpc/ptlrpcd.c */
3517 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force);
3518 void ptlrpcd_free(struct ptlrpcd_ctl *pc);
3519 void ptlrpcd_wake(struct ptlrpc_request *req);
3520 void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx);
3521 void ptlrpcd_add_rqset(struct ptlrpc_request_set *set);
3522 int ptlrpcd_addref(void);
3523 void ptlrpcd_decref(void);
3525 /* ptlrpc/lproc_ptlrpc.c */
3527 * procfs output related functions
3530 const char* ll_opcode2str(__u32 opcode);
3532 void ptlrpc_lprocfs_register_obd(struct obd_device *obd);
3533 void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd);
3534 void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes);
3536 static inline void ptlrpc_lprocfs_register_obd(struct obd_device *obd) {}
3537 static inline void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd) {}
3538 static inline void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes) {}
3542 /* ptlrpc/llog_server.c */
3543 int llog_origin_handle_open(struct ptlrpc_request *req);
3544 int llog_origin_handle_destroy(struct ptlrpc_request *req);
3545 int llog_origin_handle_prev_block(struct ptlrpc_request *req);
3546 int llog_origin_handle_next_block(struct ptlrpc_request *req);
3547 int llog_origin_handle_read_header(struct ptlrpc_request *req);
3548 int llog_origin_handle_close(struct ptlrpc_request *req);
3550 /* ptlrpc/llog_client.c */
3551 extern struct llog_operations llog_client_ops;